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4 A New Look at FETI

Susanne C. Brenner1

Introduction

The Finite Element Tearing and Interconnecting (FETI) Method is usually formulated in terms
of matrices and vectors (cf. [FR91], [MT96], [PJF97], [Tez98], [RF99], [MTF99], [KW01]
and the references therein). In this paper we give a coordinate-free formulation of the FETI
method and construct a new FETI preconditioner in terms of this formulation, which enable
us to analyze it within the additive Schwarz framework. We will present the ideas for a
second-order model problem on a polyhedral domain ������� . Details of the analysis can be
found in [Bre00] (which deals with the 2D analog) and a forthcoming paper on the 3D FETI
preconditioner.

Let �	��
�����
���� be tetrahedra which form a quasi-uniform triangulation of � with mesh-
size � . Each of these subdomains is the union of tetrahedra from the quasi-uniform triangu-
lation � of � , the mesh-size of which is denoted by � . Let ����������� �� ����� be the � � finite
element space associated with � . The model problem is:

Find !#"$�%����� such that

& �'!(
*)+��, -+.0/ )2143 5�)%"6�������7
 (1)

where
/ "#8:9;����� and the variational form & �=<>
<?� is defined by

& �@)A
CBD�:, �EFCG � & F �')H
*B��JI�KAL & F �')H
*B��2,NM F - .PO�Q )R< Q BS1;3T� (2)

The coefficients M��U
������
CMV� in (2) are positive constants.
For simplicity we assume that W�� F	X W�� is not zero-dimensional. We say that � F is (i)

anchored if W�� F2X W�� contains a face of � F , (ii) hinged if W�� F2X W�� contains an edge of � F
but no faces, and (iii) floating if W�� F:X W7�Y,[Z .
Remark 1 The construction and analysis of the 3D preconditioner in this paper can be ap-
plied (with modifications) to the general case where ���\
�����
���� are nonoverlapping polyhe-
dral subdomains which do not necessarily form a triangulation of � and whose boundaries
can intersect W7� in zero-dimensional sets.

A Coordinate-Free Formulation of FETI

Let ] F ,[W�� F7^ W7� and ]S,�_ �FCG � ] F be the interface of the subdomains. The space ���@](� ( ��`����� ) of discrete harmonic functions is the orthogonal complement of the space ab)%"$�`�����dc)e,gf on ]ih with respect to & �=<>
<?� . By solving (in parallel) a discrete Poisson equation on
each subdomain, the problem (1) can be reduced to the following problem on the interface:
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Find
�!#"$�%��] � such that& � �!(
*)+��, - . / )2143 5D)%"6���@](�7� (3)

Let �`��] F � be the space of discrete harmonic functions on � F which vanish on W�� FiX W�� ,
and �� ,N�`�@] � � � �%��] 9\� � <<< � ���@] � �7�
Let

� F (resp.
���

or
���

) be the set of nodes on ] F (resp. the open edge � or the open face 	
of a subdomain) and

� , _ �FCG � � F . For each 
S" � we define �� to be the index set of the
subdomains neighboring 
 , i.e.,

� � , a���������� c�
#"6W7� F h2

and for each �7
���"�� � we define � ��� ��� � " ��! (the dual space of

�� ) by

�"��� ��� �b� �) ��,[)��b�#
H�%$e)&�+�'
7� (*)�+ �) , �') � 
���� 
*) � �d" ���� (4)

The subspace of
��, spanned by all such � �-� �.� � ’s is denoted by / � and the space of Lagrange

multipliers is / ,10 �-243 / � .
In terms of / , which enforces the continuity along ] , the interface problem (3) can be

reformulated as:
Find � �BT
65H�d" �� � / such that�EFCG � & F �@B F 
*) F �87:9;5 
 �)=<J, �EFCG �

- . O / ) F 1;3 5 �)%" ��Y
 (5)

9*�i
 �B�< , f 5>�e"?/ 
 (6)

where
�B�, �'B � 
���� 
*B � � , �) , �') � 
�����
*) � � and 9*< 
�< < is the canonical bilinear form between

a vector space and its dual space.
The solution of (3) is related to

�B by
�!A@@
. O ,[B F for �����B�:� .

Remark 2 Throughout this paper we always keep elements of �%��] F �� or
��! on the left-hand

side of the canonical bilinear form 9=<>
<C< , and members of ���@] F � , �� or their quotient spaces
on the right-hand side.

The FETI method solves (5)–(6) in the following way.
Let the Schur complement operator D F c4���@] F �E$GF �`��] F �H be defined by

9;D F4I � 
 I 9J<:, & F � I � 
 I 9�� 5 I � 
 I 9 "$�%��] F ��� (7)

Let K�L4+MD F , ab) " �`�@] F �[cND F ) , f+h , �;K�LJ+OD F �HP , a4Q " �%�@] F �  cR9*QD
*)<Y, f5D) " Ker D F h , and the pseudo-inverse DTS cR�UK�LJ+6D F � P $GF �`�@](�WVXK�LJ+MD F be defined by
the following properties:

9*Q:�U
MD SF Q 9 < , 9*Q 9 
MD SF Q:�J< 5>Q:�U
HQ 9 "e�;K�LJ+OD F � P 

D F D SF Q , Q 5>QY" �UK�L4+MD F � P 

D SF D F I , Y F I 5 I "#�`��] F �7
 (8)

where Y F c4�`��] F �Z$"F �`�@] F �WVXK�LJ+MD F is the canonical projection.
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Remark 3 K�L4+GD F is the space of constant functions for a floating � F and K�L4+GD F , abf h for
an anchored or a hinged � F , in which case D SF ,:D � �F .

Let
�D c �� $"F ��  be the product of the D F ’s. Then

K�L4+ �D ,:K�LJ+MD � � <�<< � K�LJ+6D �
and the pseudo-inverse

�D S cP�;K�LJ+ �D�� P $"F �� V Ker
�D is the product of the D SF ’s.

Let ��� " ��! be defined by

9 ��� 
 �)<:, �EFCG �
- . O / ) F 1;3 5 �)R, �') � 
�����
*) � �d" ���
 (9)

and let 5 � " / satisfy

9;5 � 
 �)<�, 9 � � 
 �)< 5 �)`"�K�L4+ �D � (10)

It follows from (5), (7), (9) and (10) that 5��D, 5 $ 5 � "?/ X �;K�LJ+ �D��HP . Moreover, equation
(5) can be written as �D �B 7 5��	, � � $ 5 � � (11)

Since ��� $�5 � " �UK�L4+ �Di�WP by (10), we obtain from (8) and (11) the relation

Y �B 7 �D S 5 � , �D S � � � $ 5 � ��
 (12)

where Yec �� $"F �� VXK�LJ+ �D is the product of the Y F ’s. Equation (6) and (12) then imply

9*QD
 �D S 5��.<�, 9*Q 
 �D S � ��� $ 5 � �H< 5>QY"?/ X �;K�LJ+ �D:� P � (13)

Equation (13) is a symmetric positive definite (SPD) system on

	 ,:/ X �UK�LJ+ �D�� P
which determines 5 � . Once we have found 5 � (and hence 5 ,:5 � 7�5 � ), then we can recover�B (and hence

�! ) in two steps. In the first step we determine (by a parallel solve)
�B � " �� with

the property that

Y �B � , �D S � � � $ 57�7� (14)

In the second step we find
�B � "?K�LJ+ �D such that

9U�i
 �B � <�, $,9*�i
 �B��J< 5>� "�/ � (15)

Then
�B�, �B � 7 �B � and 5 ,�5 � 7 5 � satisfy the system (5)–(6).

Equation (13) can be rewritten as
� S 5 � ,
	 � 


where
� S c&	 $ F 	  and 	 � "�	  , �� V+�;/ P 7 K�LJ+ �D�� are defined by

9*QD
 � S�� <�, 9*QD
 �D S� < 5>Q 
 � "�	 
 (16)

and 9UQ 
�	 � <�, 9*QD
 �D S�� ��� $ 5 � �H< 5>Q�" 	 . The operator
� S is therefore at the heart of the

FETI method.
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Remark 4 The underdetermined system ����f � is solvable since

/ P X K�LJ+ �D , abf h:� (17)

The overdetermined system ��� � � is solvable because �H��� � and ����� � imply 9U�i
 �B � <�, f 5>� "
/ X �;K�LJ+ �D:� P . Its solution is also unique because of �H����� .
Additive Schwarz FETI Preconditioners

Let � F c ��! �, �`�@]V� �H � <<�< � �`��] � �H A$ F ���@] F �H be the restriction map. Then � F maps�UK�L4+ �D�� P into �UK�L4+GD F � P and we can express (16) as

� S , �EFCG � ��� F�� �
	HD SF ��� F�� ��

where � c&	 $"F �UK�L4+ �D:� P is the natural injection. It is therefore natural to precondition

� S ,
which is a sum of SPD operators, by the sum of the “inverses” of the SPD operators, i.e., the
FETI preconditioner � c&	, $GF 	 should have the form

� , �EFCG �  F D F  	F 
 (18)

where
 F cR�;K�LJ+GD F � P $"F 	 is “inverse” to � F � in the sense that 0 �FCG �  F � F � , the

identity operator on 	 , i.e., �EFCG �  F � F 5 ,:5 5 5#"�	 � (19)

Remark 5 It follows from ����� � that � is an additive Schwarz preconditioner and hence can
be analyzed by the well-known additive Schwarz theory (cf. [SBG96] and the references
therein).

We will define the operator
 F in terms of three operators.

For each 
#" � F , we define � ��� F "$�%�@] F � by

� �-� F �����:, � � if � ,�
T
f if �R" � F ^ aW
 h:�
Note that a��O�-� F c8
e" � F h is a basis of �`��] F � . For ��"�� ��V��+
�� � we define � F c �%�@] F �� $GF
/ by

� F Q , E
�-243

O 9*QD
�� ��� F < E�W2���� M�	� � ��� �M� F 
 (20)

and  F c4�`��] F �H �$"F ���@] F �H by

9� F � 
!� �-� F <�, 9 � 
�� ��� F <MV�" E�W2�� � M 	��# 5A
 " � F � (21)
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The operators � F and  F form a partition of unity with � F on the space / :�EFCG � � F  F � F �$, � 5 �S" / � (22)

Remark 6 The operator  F is a diagonal scaling operator which together with � F forms an
averaging process that yields �����4� and also ensures the bound for the condition number of� � S is independent of the coefficients M��U
�����
CMV� . This scaling technique is well-known.

Finally we note that if
� c / $"F 	 is a projection operator and the map

 F cH�UK�L4+GD F � P $"F
	 is defined by

 F ) F , � � F  F ) F 5D) F "e�;K�LJ+GD F � P 
 (23)

then (19) follows from (22). Hence the crucial step in defining the additive Schwarz FETI
preconditioner � is the construction of the projection

�
.

Let �e"�/ and

� � ,N��$ � �i� (24)

Then
�

is a projection from / onto 	 provided that �?F � � is linear and

9*� ��
 �)< , 9U�i
 �)=< 5 �)%"�K�L4+ �D 
 (25)

� � , f if �e"�	 � (26)

Remark 7 Once we have chosen a solution space for (25), we can take � � to be the member of
the solution space that minimizes an appropriate inner product norm. This will automatically
guarantee that � F � � is linear and (26) is satisfied.

A New 3D Preconditioner

Let � (resp. � ) be the set of vertices (resp. (open) edges) of floating subdomains and /�� ,
0 ��2 � / � . For � "�� we define

� � ,�a���� ����� c � �YW�� F h:

and for �7
H��"�� � , we define

� � � �.� � , �� � � � E�-243�� �"�-� �.� � � (27)

Let the space / � �N/ be generated by all such � � � �.� � ’s and /
	%, 0 � 2 	 / �
.

The solution space of the projection equation (25) is then chosen to be /�� , /��7 /
	 ,
where the subscript � stands for wire-basket.

Remark 8 Equation (25) is solvable in /�� because f is the only
�) " K�LJ+ �D annihilated by

all � � "?/
� .
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According to Remark 7, we still need to introduce an appropriate inner product on /��
in order to complete the definition of

�
.

Let 
 (resp. � or 	 ) be a vertex (resp. an open edge or an open face) of � F , and
�� �-� F " ��

(resp.
�� � � F " �� or

�� � � F " �� ) be characterized by (i) the � -th component of
�� �-� F (resp.

�� � � F or�� � � F ) equals 1 at 
 (resp. the nodes in � or 	 ) and vanishes at all the other nodes in
� F , and

(ii) all the other components of
�� ��� F (resp.

�� � � F or
�� � � F ) vanish.

For 
Y" � , � �e" / � and
�)e, � � � 
�����
 � � � "NK�L4+ �D , where the � F ’s are constants, we

have

9U�"� 
 �)<�, 9U�"� 
 EF 2�� � � F �� �-� F <�� (28)

It is easy to see (cf. (2) and (44) below) that&�� EF 2�� � � F �� �-� F 
 EF 2�� � � F �� �-� F���� � EF 2�� � M F � 9F � (29)

Remark 9 To avoid the proliferation of constants, we use the notation �	��
 to represent
the statement that � � constant � 
 , where the constant is independent of the mesh-sizes, the
number of subdomains and the coefficients M � 
�����
 M � . The notation � � 
 is equivalent to
����
 and 
��� .

In view of (28) and (29), it is natural to define

� � � ��� �0, ������
O
��� �����

O
� � 9*�"� 
60 F 2�� � � F �� ��� F <��� 0 F 2�� � M F � 9F � ��� 9 5>� � "?/ � � (30)

Similarly, for � � "?/ �
and

�) , � � � 
���� 
 � � �d"?K�L4+ �D , we have

9U� � 
 �)<:, 9*� � 
 EF 2�� � � F �� � � F <�� (31)

It is again easy to see (cf. (2) and (44) below) that&�� EF 2�� � � F �� � � F 
 EF 2�� � � F �� � � F ��� � EF 2�� � M F � 9F � (32)

In view of (31) and (32), we define

� � � � � � , ������
O
� � � ���

O
� � 9U� � 
60 F 2�� � � F �� � � F <�@� 0 F 2�� � M F � 9F � ��� 9 5 � � " / � � (33)

Since
� < ��� � and

� < ��� � are dual to inner product norms, they are also norms of inner
products. If we define

� � � 9 �"! , E
�-2 �

� � � � 9 � � 7 E � 2 	 � � � � 9 � � 5>� "�/
� 
 (34)

where ��, 0 �-2 � �"�!7:0 � 2 	 � � , �"� ":/ � and � � ":/ �
, then

� < � � !
is also an inner

product norm.
We can now define the projection operator

�
by (24), where � � " /� is the solution of

(25) with the minimum /� norm. The preconditioner � is then given by (18), (20), (21) and
(23).
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Remark 10 The computation of the minimum norm solution �� of (25) in the space /� is
the “coarse problem” that provides global communication among the subdomains.

Note that both
� < ��� � and

� < ��� � can be computed without knowing the triangulation �
if we use appropriate bases. The case of

� < � � � is clear from (33) if we use the basis a4� � � � � � � c�#" � � ^ aJ� �Uh , � ��, ��� K � � h . For
� < ��� � we use the basis aU� ��� 9 � �-� � � � � c �6" � � ^ a4� �bh ,

� �	, ��� K � � h . Let �S, 0 �W2�� ����� � �
	 � � ��� ��� 9 � �-� � � � � � . Using (4) we can rewrite the right-hand
side of (30) as

������
O
� � �����

O
� � � ��� 9 0 �W2�� ����� � �
	 � �b� � �T$ � � � ���� 0 F 2���� M F � 9F � ��� 9 , ������

O
� � �����

O
� � 0 �W2�� ���
� � ��	 � �b� � �T$ � � � �� 0 F 2���� M F � 9F � ��� 9 


which shows that
� < ��� � can indeed be computed without knowledge of � .

Hence the coarse problem is mesh-independent and the coefficient matrix for the coarse
problem can be computed and factorized once the � F ’s and the M F ’s are given. This process
can be carried out prior to or simultaneous with the meshing of the subdomains, and the same
factorization of the coarse problem can be applied to any triangulation of the subdomains.

Remark 11 The complexity of the computation of the coefficient matrix for the coarse prob-
lem is the same as that of a finite element stiffness matrix, where each floating subdomain
corresponds to a node and two such nodes are neighbors if they share a common vertex.

Remark 12 By construction, we have� � � ��� ! � � �� ��� ! 
 (35)

where � � " / � is any solution of (25). In Section 4 we will construct a solution � � ,0 ��2 � � � � � 7 0 � 2 	 � � � � , where each � � � �Y" / � (resp. � � � � " / �
) depends only on the

restriction of � to _ F 2�� � ] F (resp. _ F 2�� � ] F ). Then
� � � � � !

provides local estimates for � �
(and hence

� � ) which ensure that the condition number estimate for � � S is independent of� .

Condition Number Estimates

There is a simple estimate for ����� �A��� � S � . Let 5$"�	 be arbitrary. We have

9;5 
 �D S 5 <:, �EFCG � 9�� F 5 
6D SF � F 5 <
and hence, in view of (16) and (19),

9 5 
 � S 5 <:, �EFCG � 9�� F 
6D SF � F <7
 (36)

where � F , � F 5 "��UK�L4+GD F � P and 0 �FCG �  F � F , 5 . It then follows from (18), (36) and the
additive Schwarz theory that

� ��� � ��� � S ���:��� (37)

The following are useful formulas (cf. [MT96]) for 9=<>
 �D S < < and 9=<>
MD SF < < .
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Lemma 1 The following estimates hold c
9*�i
 �D S �8< ��� 9 � ������� 2 �� ������� �	

9*�i
 �)<
" 0 �FCG � M F � ) F � 9
��� . O � # ��� 9 5>�S" �UK�L4+ �D�� P 


where
�) , �') � 
*)�94
�����
*) � � , and

9�� F 
6D SF � F < ��� 9 � ������
O
2 � ��

O
� ������� 	

O 9 � F 
*) F <M ��� 9F � ) F � 
 �  . O � 5 � F " �UK�L4+GD F � P �
Remark 13 If � F is a floating subdomain, then without loss of generality we may assume the) F in Lemma 1 satisfy �

. O ) F 143 ,Nf .
Lemma 1 enables us to employ the following estimates, which have been established

in the study of 3D domain decomposition preconditioners (cf. [Dry88], [BPS89], [BX91],
[DSW94], [DW95], [KW01] and the references therein).

Lemma 2 Let � be a regular tetrahedron of diameter � and ) be any discrete harmonic
function with respect to a quasi-uniform subdivision of � with mesh-size � . Let 
 � resp. � or
	0� be a vertex � resp. an open edge or an open face � of � , and ) � � resp. ) � or )��H� be the
discrete harmonic function that coincides with ) at 
�� resp. the nodes in � or 	0� and vanishes
at all the other nodes on W�� .

Then the following estimates hold provided ) vanishes on one of the faces or ��� )d1;36,[f c
� ) � � 9� �  � � � �#�A7�� K �@� V;�A��� � ) � 9
 �  � � 
 (38)
� ).� � 9
 �  � � � � ) � 9
 �  � � 
 (39)
� ) � � 9
 �  � � � �#�A7�� K �@� V;�A��� � ) � 9
 �  � � 
 (40)
� ) � � 9
 �  � � � �#�A7�� K �@� V;�A��� 9 � ) � 9
 �  � � � (41)

If ) vanishes on one of the edges, then �����4� and ��� �b� remain valid, and the following estimates
hold c

� ).� � 9
 �  � � � �#�A7��>K �@� V;�A��� � ) � 9
 �  � � 
 (42)
� ) � � 9
 �  � � � �#�A7��>K �@� V;�A��� 9 � ) � 9
 �  � � � (43)

In the special case where ) is the constant function � , we have
� �O� � 9
��� � � � � 
 � � � � 9
��� � � � � and

� � � � 9
��� � � � ���#�A7�� K �@� V;�A���4� (44)

Let � F " �UK�LJ+ D F � P and 5 , 0 �FCG �  F � F . From (23), (24) and Lemma 1 we have

9;5 
 �D S 5 < �  � 7! 9�
 (45)

 (� , ��� ��� 2 �� ������� �	
9 0 �FCG � � F  F � F 
 �)=< 9
0 �FCG � M F � ) F � 9
 �  . O � 
 (46)

 9 , ��� ��� 2 �� ������� �	
9U� �;
 �)< 9

0 �FCG � M F � ) F � 9
 �  . O � 
 (47)
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where � ��"?/
� is the minimum /� norm solution of (25) with

�#, �EFCG � � F  F � F � (48)

The term  � can be estimated by (20), (21), Remark 13, (39)–(43) and (46). The result is

 � � � �A7!�>K ��� V��H� � 9 �EFCG � 9�� F 
MD SF � F <�� (49)

In view of Remark 12, we will estimate  9 by constructing a local solution of (25). For
�0" � we define � � � � " / �

by

9U�� � � 
 �� � � F <�, 9*�i
 �� � � F 7 ��
E

� 2 � ���
O �� � � F < 5E� "�� � 
 (50)

where � is given by (48) and
� � � F is the set of the two faces of � F which have � as an edge.

We also define � � � � , � � for 
#" � , or equivalently,

9*� � � � 
 �� ��� F <:, 9*�i
 ��O�-� F < 5E� "?� �d� (51)

Note that, for a floating subdomain � F , the � -th component of the sum of
�� � � F 7 �� 0 � 2 � ���

O �� � � F
over all six edges of � F and

��O�-� F over all four vertices of � F is exactly the constant function
1. Hence ��d,�0 �-2 � �� � � 7 0 � 2 	 �� � � satisfies (25).

Remark 14 Since � � and � belong to the space / and the functions 0 F 2�� � �� � � F and 0 F 2�� � � �� � � F 7
0 � 2 � ���

O �� �� � � F�� are continuous on the interface ] , we have

9*� � 
 EF 2�� � �� � � F <�,[f0, 9*�i
 EF 2�� � � �� � � F 7 E
� 2 � ���

O �� �� � � F�� <7�
Therefore the overdetermined system (50) is consistent and, in view of (4) and (27), has a
unique solution.

It follows from (20), (21), (30), (33), Lemma 1, (44), (48), (50), and (51) that

� �� � � � 9 � � � E
�

.PO
� � 9��

F 
6D SF � F <7

� �� � � � 9 � � � � �A7�� K ��� V��H� � E

�

. O
�
� 9�� F 
MD SF � F <�


and hence, by (34),

� � � � 9 � ! � � �A7!�>K �@��V��H� � �EFCG � 9 � F 
6D SF � F <7� (52)
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Let
�)%, �') �U
�����
C);�P�d" �� be arbitrary. Definitions (27), (30), (33), (34) and the Cauchy-

Schwarz inequality imply

9*� � 
 �) < � � E
�-2 �

� � � � � � 9 � � � ��� 9 � � E�-2 � EF 2���� M F ) F �#
H� 9�� ��� 9
7 � E � 2 	 � � � � � � 9 � � � ��� 9 � � E

� 2 	
EF 2�� � M F �) 9� � F � ��� 9 
 (53)

where
�) � � F , � � � � � � 0 �-243�� ) F �#
H� is the mean nodal value of ) F on � . It follows from

Remark 13, (38), (39), (42), (44) and the Cauchy-Schwarz inequality that

� ) F �#
H� 9 � � �') F � � � 9
��� . O � � � �A7!�>K ��� V��H� � � ) F � 9
��� .PO � 
 (54)� �) 9� � F � � �') F � � � 9� �  � � � � �A7!�>K �@��V��H� � � ) F � 9
 �  . O � � (55)

Combining (53), (54) and (55), we find

9*� ��
 �)< 9 � � �A7!�>K �@��V��H� � � � � � 9 � ! �EFCG � M F � ) F � 9
 � 
. O
� 


which together with (35), (47) and (52) yield

 9"� � �A7!�>K ��� V��H� � 9 �EFCG � 9�� F 
MD SF � F <�� (56)

Finally we conclude from (16), (45), (49) and (56),

9;5 
 � S 5 < � � �A7!�>K ��� V��H� � 9 �EFCG � 9�� F 
MD SF � F < (57)

whenever � F "e�;K�LJ+GD F � P for � � �B�:� and 56,�0 �FCG �  F � F . It then follows from (18), (57)
and the additive Schwarz theory that

� ����� ��� � S � � � �A7!�>K �@��V��H� � 9 � (58)

Combining (37) and (58), we have the following theorem on the condition number � ��� � S�� .
Theorem 1 There exists a positive constant � , independent of � , � , � and the M F ’s, such
that

� ��� � S �Z�	� �#�A7��>K �@� V;�A��� 9 �
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