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34 A Nonlinear Additive Schwar z Preconditioned | nexact
Newton Method for Shocked Duct Flows

Xiao-Chuan Cai!, David E. Keyes?, David P. Young®

I ntroduction

A nonlinearly preconditioned inexact Newton algorithm (PIN) was recently introduced, in
[CKOO], for solving large sparse nonlinear system of equations arising from the discretization
of nonlinear partial differential equations. In PIN the nonlinear system F'(u) = 0 is trans-
formed into a new nonlinear system F(u) = 0, which has the same solution as the original
system. For certain applications the nonlinearities of the new function F(u) are more bal-
anced and, as a result, the inexact Newton method converges more rapidly. In this paper,
we shall use the nonlinear additive Schwarz algorithm as the preconditioner and focus on the
performance of PIN for a compressible shock tube problem, which is known to be a difficult
test case for inexact Newton type algorithms.

A motivating problem

We consider a one-dimensional compressible flow problem described by the full potential
equation in a variable-area duct [BBH+93]. The problem is to determine the solution potential
u(z) satisfying

(Apuz)w =0, (1)
for 0 < x < 2 and u(0) = 0 and u(2) = ug given. The duct area
A= A(z) =04+ 0.6(x —1)%

and the density p is given by

V1 /(-1
p=p) = @00 = (1+ 2 a ) T

Here v = u, is the velocity, v = 1.4 is the ratio of specific heat and ¢ is the speed of sound.
The flow is supersonic at each point of the interval (0,2) where the Mach number M = |v|/c
exceeds 1. We use a standard finite difference method to discretize (1) on a uniform mesh

O=z0<m1 < < Ty < Tpy1 = 2.
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Letu® = (u?,...,u")T be the solution vector of the finite difference problem, and

»'n
vi = (ufyy —ul) /(@i — 33).
The discrete nonlinear problem is of the form:

Ajpjvj = Ajr1bPjtivivr, J=1,....m, )
where A; denotes the midpoint value A((z; + z;41)/2), and 5, is an approximation of p; =
p(z;) defined using the so-called first order density biasing [BBH+93, HMS78],

Pi = Pi = HiA-pj,
where A_ denotes the undivided upwind difference operator, i.e., A_p; = p; — p;_1, and
where the switching function y; is defined as

M?
= 1- e b
Bi = i T 0, M @)

In (3), M; is the local Mach number at (x; 4+ ;41)/2 and M, is a given cutoff Mach number
taken to be 0.95 in this paper. & is the level of the switching function, which is taken to be 2
in our numerical experiments. This means that 4 is replaced by the maximum of the 5 values
centered around z;. The switching function x4, controls the amount of artificial viscosity. At
points where M; < M., no upwinding is applied therefore p; = p;. As M; increases above
M., p; provides an increasing amount of upwinding. In the following discussion, we denote
the nonlinear system (2) in the form of a standard equation:

F(u*) =0, (4)
where F = (F,...,F,)Y, F; = F;(u1,...,uy,), and we drop the superscript h and simply
use u = (u,...,u,)’ to denote vectors in the space R™. The problem looks rather simple;

however, it is quite a challenging equation for the inexact Newton algorithm (IN), which
is commonly used for solving such systems ([DS83, DES82, EW94]), and can briefly be
described here. Suppose u(¥) is the current approximate solution; a new approximate solution
u®+1) can be computed through the following steps: Find the inexact Newton direction p(*)
such that

1P @®) = F'(®)p®|| < || F (™), ()
and then the new approximate solution
uk+1) = (k) — \(k) (k)

Here n;, is a scalar that determines how accurately the Jacobian system needs to be solved
using, for example, Krylov subspace methods [BS90, BS94, EW94, EW96]. A(¥) is another
scalar that determines how far one should go in the selected inexact Newton direction [DS83].
IN has two well-known properties. First, if the initial guess is close enough to the desired
solution then the convergence is very fast. Second, such a good initial guess is generally
very difficult to obtain, especially for nonlinear equations that have unbalanced nonlineari-
ties [LRW96]. The step length A(¥) is often determined by the components with the worst
nonlinearities, and this may lead to an extended period of stagnation in the nonlinear residual
curve; see Fig.2 for a typical picture and more in the references [CGK+98, GKM+00, JF95,
PCS+99, YMB+90, YMB+91].
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Descriptions of algorithms

Let us recall the nonlinearly preconditioned inexact Newton algorithms [CKO00]: Find the
solution u* € R™ of (4) by solving a preconditioned system

F(u*) =0. (6)

Note that F and F' may have different forms, but we require that they have the same solution.
In general, F is a function of both F' and w«, and we do not expect to know explicitly how F
depends on F or u. As an example, F may take the form of a composite function

F(u®) = G(F(u")),
which makes G look like a preconditioner and some desirable properties of G include:
1. IfG(z) =0,thenz = 0.
2. G ~ F~!in some sense.
3. G(F(w)) is easily computable forw € R™.

4. If a Newton-Krylov type method is used for solving (6), then the matrix-vector product
(G(F(w)))"v should also be easily computable for w,v € R™.

As in the linear equation case, the definition of a preconditioner can not be given precisely,
nor is it necessary. Also as in the linear equation case, preconditioning can greatly improve
the robustness of the iterative methods, since the preconditioner is designed so that the new
system (6) has more uniform nonlinearities. Note that the Jacobian of the preconditioned
function can be computed, at least in theory, using the chain rule; i.e.,

_ 0GOF
T Ov Ou’
If G is close to F~* in the sense that G(F(u)) ~ u, then 2225 ~ [ ie, F'(u) ~ I,
In this case, the algorithm converges in one iteration, or few iterations, depending on how
close is G to F~!. Most of the current research has been on the case of linear G see, for
example, [CGK+98, GKM+00, PW98]. In this paper, we shall focus on the case when G is
the single-level nonlinear additive Schwarz method [CD94, DH97].

Let S = (1,...,n) be an index set; i.e., one integer for each unknown w; and F;. We
assume that Sy, ..., Sy is a partition of S in the sense that

F'(u) (")

UfiIS,- =S,and S; C S.

Here we allow the subsets to have overlap. Let n; be the dimension of S;; then, in general,
Zf;l n; > n. Using the partition of S, we introduce subspaces of R™ and the corresponding
restriction and extension matrices. For each S; we define V; ¢ R™ as

Vi ={v|v = (v1,...,v,)T € R" v, =0, ifk ¢ S;}

and a n x n restriction (also extension) matrix I, whose kth column is either the kth column
of the n x n identity matrix I,«, if k € S; or zero if k ¢ S;. Similarly, let s be a subset
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of S; we denote by I, the restriction on s. Note that the matrix I is always symmetric and
the same matrix can be used as both restriction and extension operator. Many other forms
of restriction/extension are available in the literature; however, we only consider the simplest
form in this paper.

Using the restriction operator, we define the subdomain nonlinear function as

Fs, = Ig,F.

We next define the major component of the algorithm, namely the nonlinearly preconditioned
function. For any given v € R™, define T;(v) € V; as the solution of the following subspace
nonlinear system

Fs,(v—Ti(v)) =0,

fori =1,..., N. We introduce a new function

Flu) = Ti(w), 6)

which we will refer to as the nonlinearly preconditioned F'(u) and the corresponding algo-
rithm additive Schwarz preconditioned inexact Newton method (ASPIN).

We remark that the evaluation of the function F(v), for a given v, involves the calculation
of T;, which in turn involves the solution of nonlinear systems on S;. If the overlap is zero,
then this is simply a block nonlinear Jacobi preconditioner. Assuming that all the subdomain
problems are uniquely solvable, it is proved in [CKO00] that the nonlinear systems (4) and (6)
are equivalent in the sense that they have the same solution.

If (6) is solved using a Newton type algorithm, then the Jacobian is needed in one form or
another. Let

F,
J=F= (g ) andJSi :(ISiJlsi)nxn
Uj /) pxn

be the Jacobians of the original nonlinear system and subdomain nonlinear system, respec-
tively. Then, as shown in [CK00], the Jacobian of the preconditioned nonlinear system can be
approximated by

N
NED P b ©)
i=1

(9) is an extremely interesting formula since it corresponds exactly to the additive Schwarz
preconditioned linear Jacobian system of the original un-preconditioned equation. This fact
implies that, first of all, we know how to solve the Jacobian system of the preconditioned
nonlinear system, and second, the Jacobian itself is already well-conditioned. In other words,
nonlinear preconditioning automatically offers a linear preconditioning for the corresponding
Jacobian system.
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Numerical experiments

We show a few numerical experiments in this section using ASPIN. In all the experiments,
the subdomain Jacobian matrices Jg, are formed using a finite difference scheme. The im-
plementation is done using PETSc [BGM+01] on a cluster of workstations. In the tests, we
always set ug = 1.15 and the corresponding Mach distribution of the solution is given in
Fig.1. The level number & in the switching function is set to 2.

We stop the global ASPIN iterations if

IF @™ < 1070 F (@),
The global linear iteration for solving the global Jacobian system is stopped if
|F(®) — F'(@®)p®|| < 1073 F (™).
At the kth global nonlinear iteration, nonlinear subsystems
Fs.(g{"”) =0,

have to be solved. We use the standard inexact Newton with a cubic line search for such
systems with initial guess g,(”f)) = 0. The local nonlinear iteration in subdomain S; is stopped
if | Fs, (98| < 10-2(|Fs, (9511

For comparison purposes, we first solve the problem using the regular inexact Newton’s
method. The Jacobian problems are solved with GMRES, and the nonlinear residual history
are shown in Fig.2 for two mesh sizes h = 1/128 and h = 1/256. It can be seen clearly the
convergence degenerates as the mesh is refined. In general, The finer the mesh, the longer the
plateau period lasts. This happens no matter how accurately one solves the Jacobian problems.
We next solve the same discrete nonlinear systems using ASPIN. We use 8 subdomains with
the overlapping size equals to 5h. The numbers of ASPIN iterations are shown in Fig.1. The
iteration numbers are much smaller than that of the regular inexact Newton’s method (Fig.2),
and the nonlinear iteration numbers do not change that much as we refine the mesh from
h =1/128to h = 1/256 to get a better resolution of the shock wave.
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Figure 1: Mach distribution and the shock location.
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Figure 2: Nonlinear residual history of the inexact Newton’s algorithm for the flow problem
with mesh sizes h = 1/128 and h = 1/256.
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Figure 3: Nonlinear residual history of the additive Schwarz preconditioned inexact Newton’s
algorithm for the flow problem with mesh sizes h = 1/128 and h = 1/256.
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