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Introduction

Many authors have made significant contributions to the so-called mortar element method
(see [4] [5] [7] [8] [10] [11], and references therein). The mortar element method is a non-
conforming domain decomposition method with non-overlapping subdomains. The meshes
on different subdomains need not align across subdomain interfaces, and the matching of dis-
cretizations on adjacent subdomains is only enforced weakly. This offers the advantages of
freely choosing highly varying mesh sizes on different subdomains and is very promising to
approximate the problems with abruptly changing diffision coefficients or local anisotropies.

The rotated ��� element is an important nonconforming element. It was first proposed and
analysed in [12] for numerically solving the Stokes problem. The rotated ��� element provides
the simplest example of discretely divergence-free nonconforming element on quadrilaterals.
Due to its simplicity, the rotated ��� element is used to simulate the deformation of martensitic
crystals with microstructure in [9]. Independently, it also was derived within the framwork of
mixed element method (see [2]). In [2] it was proven that Raviart-Thomas mixed rectangle
element method is equivalent to rotated ��� nonconforming element method.

The purpose of this paper is to study the rotated ��� mortar element method. A mortar
element version for rotated Q1 element is proposed. By constructing some relations between
rotated ��� mortar element and bilinear element, the optimal error estimate for rotated ���
mortar element method is proven.

For convenience, the symbols � , 	 , and 
 will be used in this paper, and �
������� ,
����	���� , and ����
���� mean that ������� �!�"� , ����#�$%�%��� , and $%�&�����'�������(�)��� for some
constants � � , $%� , $&� , and �*� that are independent of mesh parameters. For any subdomain+-,/.

, we use usual 0 � inner product 13254%27698 , Sobolev space :<;=1 + 6 with usual Sobolev
norm >?2@>&A*B&C 8ED and seminorm F&2@F A*BGC 8ED . If

+IHJ.
, we denote the usual 0 � inner product by

13254%276 , the Sobolev norm by >K2=> ; and seminorm by F&2LF ; , where M may be fractional (for details
see [1]).

Preliminaries

Consider the following model problem: find NPOQ: �R 1 . 6 such that

S 1TNU49VW6 HJX 1YV"6&4[Z�V�O\: �R 1 . 6G4 (1)
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where S 1TNU49VW6 H 1 � N
4 � V"6&4 X 1YV"6 H 1 X 4 V"6&4
X OQ0 � 1 . 6 , . is a rectangular or 0 -shape bounded domain.

Divide
.

into geometrically conforming rectangular substructures, i.e., �. H������ � �. � with�. �	� �.�
 being empty set or a vertex or an edge for ��
H�� . With each
. � we associate a quasi-

uniform triangulation ����1 . � 6 made of elements that are rectangles whose edges are parallel to
� -axis or � -axis. The mesh parameter � � is the diameter of the largest element in ����1 . � 6 . Let� � 
 denote the open edge that is common to

. � and
.�


. Denote by
�

the set of all interfaces
between the subdomains, i.e.,

��H ��� . ��� � . . Each edge inherits two triangulations made
of segments that are edges of elements of the triangulations of

. � and
. 


respectively. In this
way each

� � 
 is provided with two independent and different one dimensional meshes, which
are denoted by � �� 1 � � 
 6 and � 
� 1 � � 
 6 respectively. Let

. ��� � and
� . ��� � be the sets of vertices

of the triangulation � � 1 . � 6 that are in
. � and

� . � respectively.
For each triangulation � � 1 . � 6 , the rotated ��� element space is defined by� � 1 . � 6 H � V�O\0 � 1 . � 6 F V F ! H S �!�" S �! � " S �! � " S$#! 1Y� �&% � � 6&4

S('! O*)P4 +-, !/. ,�0 V�F
,�0/1

M H32 4<Z54 O6�7��1 . � 698:<;>= 4 � 4?4 � O6�7��1 . � 6&4A@ : � 4 � � � 4 � HCB 4EDGF7HJI+-K
V F
, !ML 1 M H +-K V F , !ON 1 M>P�4

with norm and seminorm

>GV�> A LQ C 0�R D H 1TS!VUXW Q C 0�R D >GV�> �A L C !
D 6 �?Y � 4 F V F A LQ C 0�R D H 1ZS!VUXW Q C 0�R D F V�F �A L C ! D 6 �?Y �>[
Introduce the global discrete space

� � 1 . 6 H �\��� � � � 1 . � 6G4
with norm >&V >L� � � H 1 �]��� � >GV�> �A LQ C

0 R
D 6 �?Y � and seminorm F V F7� � � H 1 �]�9� � F V�F �A LQ C

0 R
D 6 �?Y � .

Define one of the sides of
� � 
 as mortar denoted by ^7_ C � D and the other as nonmortar

denoted by `a_ C 
 D . Assume that the mortar for ^7_ C � D H `J_ C 
 D H�� � 
 is chosen by the condition� � �b� 
 , i.e., the fine side is chosen as mortar. Based on this assumption, the two elements
of the slave triangulation � 
� 1c`a_ C 
 D 6 that touch the ends of `a_ C 
 D are longer than the respective
elements of the mortar triangulation � �� 1d^-_ C � D 6 . Define an auxiliary test space e ��f 1g`J_ C 
 D 6
to be a subspace of the space 0 � 1 � � 
 6 such that its functions are piecewise constants on� 
� 1g`J_ C 
 D 6 . The dimension of e ��f 1c`a_ C 
 D 6 is equal to the number of elements on the `�_ C 
 D .
For each nonmortar `a_ C 
 D Hh� � 
 , we define an 0 � -orthogonal projection � _ji 0 � 1 � � 
 6lke ��f 1g`J_ C 
 D 6 by

1 � _ V�4nm 6po N Crqts/u fwv D H 1YV�4?m 6po N Crqts/u fwv D 4 Zxm�O6e ��f 1g`J_ C 
 D 6 [ (2)
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Now we define rotated ��� mortar element space
� � H � V�O � � 1 . 6 F-� _ V 
 H � _ V � 4 Zx`a_ C 
 D H ^(_ C � D , � P�4

where V � H V�F � s u R v and V 
 H V F qts/u fwv . The condition of the equality of the 0 � -orthogonal
projection of traces onto the test space for each interface is called the mortar condition. The
rotated ��� mortar element approximation of problem (1) is: find N ��O � � such that

S � 1TN � 49V � 6 H 1 X 49V � 6G4 Z V � O � � 4 (3)

where

S ��1TN5� 4 V>��6 H �S��� � S � � � 1YNx� 49V>��6G4 S � � � 1YNx� 49V>�"6 H S!	UXW Q C 0 R D 1 � N5�W4 � V>��6 ! [
Some Technical Lemmas

In this section we present some auxiliary technical lemmas that are necessary to prove our
results.

Let � � Y � 1 . � 6 be the partition which is constructed by connecting midpoints of the oppo-
site edges of elements of ��� 1 . � 6 , �� � Y � 1 . � 6 be piecewise bilinear conforming element space
defined on � � Y � 1 . � 6 , and

�� � Y �R 1 . � 6 be the subspace of
�� � Y � 1 . � 6 consisting of functions

with zero traces on
� . � . Define operator � � i � � 1 . � 6 k �� � Y � 1 . � 6 as follows:

Definition 1 Given V O � � 1 . � 6 , we define � � V O �� � Y � 1 . � 6 by the values of � � V at
the vertices of the partition � � Y � 1 . � 6 . The vertices are divided into four sets of points:� If � is a central point of 4 , 4 O6� � 1 . � 6 , then

1�� � V"6%1�� 6 H �� SK � U , ! �
F B ' F + K � V

1
MX8

� If � is a midpoint of one dege
B O � 4 , 4 O � � 1 . � 6 , then

1�� � VW6&1	� 6 H �
F B F + K V

1
MX8

� If � O . ��� � � � . ��� � , then

1	� � VW6&1�� 6 H �� S K � �
F B ' F + K � V

1
M�4

where the sum is taken over all edges
B ' with the common vertex � ,

B ' O � 4 ' , 4 ' O �7��1 . � 6 ;� If � O � . ��� � , then

1ge � V"6%1�� 6 H F B�
 F
F B 
 F " F B�
 F 1 �F B 
 F + K f V

1
M=6 " F B 
 F

F B 
 F " F B�
 F 1 �F B�
 F + K � V
1
M=6G4

where
B�
 O � 4 � � � . � and

B 
 O � 4 � � � . � are the left and right neighbor edges of � , 4 � ,4 � O �7��1 . � 6 . If � is a vertex of
. � , then 4 � H 4 � .

The above operator � � has the following properties.
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Lemma 1 For any V�O � ��1 . � 6 , we have

F � � V�F A L C 0 R D 
 F V F A LQ C 0�R D 4
> � � V�>9o N C 0�R D 
 >GV�>9o N C 0�R D 4+ ,�0 R

� � V 1 M H + ,a0 R V 1 M�4
> � � V % V�>9o N C 0 R D � � � F V�F A LQ C 0 R D 4
> � � V % V�>9o N C � D � � �nY �� F V�F A LQ C 0 R D 4

where � is an edge of
. � .

We now introduce a subspace
� �� 1 . � 6 of

� ��1 . � 6 for each open edge � of
. � as follows:� �� 1 . � 6 H � V�O � � 1 . � 6 F + K V

1
M H32 4 Z B O � . �X� � P [

Define an operator � � � i � �� 1 . � 6 k �� � Y � 1 . � 6 by
Definition 2 Given V O � �� 1 . � 6 , we define � � � V O �� � Y � 1 . � 6 by the values of � � � V at

the vertices of the partition � � Y � 1 . � 6 .� If � is a central point of 4 or a midpoint of one edge of 4 , 4 O � � 1 . � 6 , or � O. ��� � � � . ��� � , then 1	� � � VW6&1	� 6 H 1�� � VW6&1�� 6 ;� If � O � . ��� � � � , then 1�� � � V"6%1�� 6 HC2 ;� If � O � . ��� � � � , then

1	� � � V"6%1�� 6 H F B 
 F
F B 
 F " F B�
 F 1 �F B 
 F + K f V

1
M=6 " F B�
 F

F B 
 F " F B�
 F 1 �F B�
 F + K � V
1
ML6&4

where
B�
 O � 4 � � � . � and

B 
 O � 4 � � � . � are the left and right neighbor edges of � ,4 � 4?4 � O �7��1 . � 6 . If � is a vertex of
. � , 4 � H 4 � .

Define the pseudo-inverse map 1�� � 6 � i �� � Y � 1 . � 6	k � ��1 . � 6 by

�
F B F +-K 1	� � 6 � V

1
M H V�1	� 6G4[Z V�O �� � Y � 1 . � 6&4

where
B O � 4 , 4 O6��� 1 . � 6 , � is the midpoint of

B
. Obviously, we have

1	� � 6 � � � V H V�4 1�� � 6 � � � � m H m 4[Z�V�O � � 1 . � 6G4 Zxm�O � �� 1 . � 6 [
Using the discrete norms, we can prove the following Lemma holds.

Lemma 2 For any V�O �� � Y � 1 . � 6 , we have

F 1�� � 6 � V F A LQ C 0�R D � F V�F A LQ C 0OR D 4 >�1�� � 6 � V�>9o N C 0 R D ��>&V >Jo N C 0 R D [
Let

� � be a special set of edges which belong to
� . � or are the edges of rectangles which

have one side on a mortar ^7_ C � D . We introduce a special subspace
� �� 1 . � 6 , � � 1 . � 6 as

follows: � �� 1 . � 6 H � V�O � � 1 . � 6 F +7K V
1
M HC2 4-Z B O � � P [
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Define a discrete harmonic part : � V of V�O � ��1 . � 6 by

S � � � 1 : � V�4?m 6 HC2 4-ZOm�O � �� 1 . � 6G4+ K
: � V 1 M H + K V 1 M�4 Z B O � � [

Also we define a projection operator � � i � � 1 . � 6 k � �� 1 . � 6 by

S � � � 1�� � V�4nm 6 H S � � � 1TV�4nm 6&4[ZOm�O � �� 1 . � 6 [
Lemma 3 Let � H `a_ C � D be a nonmortar edge of

. � , and V be discrete harmonic in
. � with�

K
V
1
M HC2 for any

B O � � � `J_ C � D . Then

F V�F A LQ C 0 R D ��> � � � V > A L�� N��� Crqts/u R v D [
Let `J_ C 
 D be a nonmortar edge of

.&

, � � fR 1g`J_ C 
 D 6 be the continuous function space whose

elements are piecewise linear over all segments that have the midpoints of edges belonging to`J_ C 
 D as their nodals and equal zero at the ends of `�_ C 
 D . Let ` __ C 
 D be the set of midpoints of

edges in � 
� 1g`J_ C 
 D 6 . Define an auxiliary operator � _ i 0 � 1c`a_ C 
 D 6 k�� ��fR 1c`J_ C 
 D 6 as follows:

1�� _ V"6%1�� 6 H 1 � _ VW6&1�� 6&4 Z � O ` __ C 
 D [
Lemma 4 >�� _ V >Jo N Crqts/u fwv D ��>&V >Jo N C qts/u fwv D , Z�V�O\0 � 1c`a_ C 
 D 6 .

By interpolation estimate [6] and operator interpolation theory in Chapter 12 in [3], we
can derive the following result.

Lemma 5 >GV % � _ V�>9o N Crqts/u fwv D � � �nY �
 F V�F A L�� N C qts/u fwv D , Z�V�O : �?Y � 1g`J_ C 
 D 6 .
Error Estimate

The following result is the well-known second Strang Lemma.

Lemma 6 Let N and N � be the solutions of (1) and (3) respectively, if

,
	
,

 O\0 � 1 � 4 6 , then

F N % N � F A LQ C 0 D � @ I :� U
� Q F N % V�F A LQ C
0
D "������� U
� Q F �S��� � S!VUXW Q C 0 R D

�
, !
,
	
,

 m 1 M

F m F A LQ C 0 D F [ (4)

The first term in (4) is known as the approximation error, while the second term is called
the consistency error.

Using Lemmas 1-5, arguing as in [11], we can prove the following two Lemmas.

Lemma 7 Let N and N � be the solution of (1) and (3) respectively. Assume NKF
0OR
OP: � 1 . � 6 ,

then we have

F �S�9� � S!	UXW Q C 0 R D
+-, !
� N��� m 1 M"FW��1 �S��� � � � � F NKF �A N C

0 R
D 6 �?Y � F m�F A LQ C 0 D 4 ZOm�O � � [
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Lemma 8 For any NPO\: �R 1 . 6 with NKF
0 R
O\: � 1 . � 6 , we have

@rI :� U
� Q F N % V F A LQ C
0
D ��1

�S��� � � � � F N?F �A N C
0 R
D 6 �?Y � [

From Lemmas 6-8 we obtain the following optimal error estimate.

Theorem 1 Let N and NM� be the solution of (1) and (3) respectively, NKF
0 R
OQ: � 1 . � 6 , then

F N % N5��F A LQ C 0 D ��1 �S��� � � � � F NKF �A L C
0 R
D 6 �nY ��[
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