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Preface

This volume captures 53 of 100 the presentations of the Thirteenth International Confer-
ence on Domain Decomposition Methods, which was hosted by the University of Lyon in the
Champfleuri Conference Center in the Province of Rhone-Alps, France, October 9-12, 2000.
Approximately 117 mathematicians, engineers, physical scientists, and computer scientists
from 22 countries came to this nearly annual gathering.

Since three parallel sessions were employed at the conference in order to accommodate
as many presenters as possible, attendees and non-attendees alike may turn to this volume
to keep up with the diversity of subject matter that the topical umbrella of “domain decom-
position” inspires throughout the community. The interest of so many authors in meeting the
editorial demands of this proceedings volume demonstrates that the common thread of domain
decomposition continues to justify a regular meeting. “Divide and conquer” may be the most
basic of algorithmic paradigms, but theoreticians and practitioners alike are still seeking - and
finding - incrementally more effective forms, and value the interdisciplinary forum provided
by this proceedings series.

Besides inspiring elegant theory, domain decomposition methodology satisfies the archi-
tectural imperatives of high-performance computers better than methods operating only on
the finest scale of the discretization and over the global data set. These imperatives include:
concurrency on the scale of the number of available processors, spatial data locality, tem-
poral data locality, reasonably small communication-to-computation ratios, and reasonably
infrequent process synchronization (measured by the number of useful floating-point opera-
tions performed between synchronizations). Spatial data locality refers to the proximity of
the addresses of successively used elements, and temporal data locality refers to the prox-
imity in time of successive references to a given element. Spatial and temporal locality are
both enhanced when a large computation based on nearest-neighbor updates is processed in
contiguous blocks. On cache-based computers, subdomain blocks may be tuned for work-
ingset sizes that reside in cache. On message-passing or cache-coherent nonuniform memory
access (cc-NUMA) parallel computers, the concentration of gridpoint-oriented computations
- proportional to subdomain volume - between external stencil edge-oriented communications
- proportional to subdomain surface area, combined with a synchronization frequency of at
most once per volume computation, gives domain decomposition excellent parallel scalability
on a per iteration basis, over a range of problem size and concurrency. In view of these im-
portant architectural advantages for domain decomposition methods, it is fortunate, indeed,
that mathematicians studied the convergence behavior aspects of the subject in advance of
the wide availability of these cost-effective architectures, and showed how to endow domain
decomposition iterative methods with algorithmic scalability, as well.

Domain decomposition has proved to be an ideal paradigm not only for execution on ad-
vanced architecture computers, but also for the development of reusable, portable software.
Since the most complex operation in a Schwarz-type domain decomposition iterative method
- the application of the preconditioner - is logically equivalent in each subdomain to a conven-
tional preconditioner applied to the global domain, software developed for the global problem
can readily be adapted to the local problem, instantly presenting lots of “legacy” scientific
code to be harvested for parallel implementations. Furthermore, since the majority of data
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sharing between subdomains in domain decomposition codes occurs in two archetypal com-
munication operations - ghost point updates in overlapping zones between neighboring sub-
domains, and global reduction operations, as in forming an inner product - domain decom-
position methods map readily onto optimized, standardized message-passing environments,
such as MPI.

Finally, it should be noted that domain decomposition is often a natural paradigm for the
modeling community. Physical systems are often decomposed into two or more contiguous
subdomains based on phenomenological considerations, such as the importance or neglibility
of viscosity or reactivity, or any other feature, and the subdomains are discretized accordingly,
as independent tasks. This physically-based domain decomposition may be mirrored in the
software engineering of the corresponding code, and leads to threads of execution that operate
on contiguous subdomain blocks, which can either be further subdivided or aggregated to
fit the granularity of an available parallel computer, and have the correct topological and
mathematical characteristics for scalability.

Organizing the contents of an interdisciplinary proceedings is an interesting job, and our
decisions will inevitably surprise a few authors, though we hope without causing offense.
It is often difficult to assign a paper to just one of the categories of theory, algorithms, and
applications. Readers are encouraged not to take the primary divisions very seriously, but to
trace all the connections.

These proceedings will be of interest to mathematicians, computer scientists, and compu-
tational scientists, so we project its contents onto some relevant classification schemes below.

American Mathematical Society (AMS) 1991 subject classifications include:
Optimal control
Numerical simulation, modeling
Iterative methods for linear systems
Multigrid methods, domain decomposition for IVPs
Finite elements, Rayleigh-Ritz and Galerkin methods, finite elements
Spectral, collocation and related methods
Multigrid methods, domain decomposition for BVPs
Integral equations
Parallel computation
Mathematical software

Association for Computing Machinery (ACM) 1998 subject classifications include:
Programming environments, reusable libraries
Analysis and complexity of numerical algorithms
Numerical linear algebra, optimization, differential equations
Mathematical software, parallel implementations, portability
Applications in physical sciences and engineering

Applications for which domain decomposition methods have been specialized in this pro-
ceedings include:

Stokes, Euler, Navier-Stokes, multiphase flow, reacting flow
Porous media, atmospheric transport
Phase change, free surface phenomena
Semiconductor device physics
Linear and nonlinear elasticity
Acoustics, electromagnetics

The Neumann-Neumann method - a substructuring preconditioner typically employing
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Additive Schwarz on the resulting interface problem - remains a topic of theoretical devel-
opment and diverse applications [Giraud et al., Alart et al., Pavarino & Widlund], as odes
the related Finite Element Tearing and Interconnection (FETI) method [Brenner, Dostal et
al.]. Primal-dual formulations of FETI were heavily featured in the twelfth symposium in
Chiba; primal-dual formulations emerge in further contexts in this proceedings [Klawonn &
Widlund, Hoppe et al.].

Mortar methods, a nonoverlapping form of domain decomposition permitting flexibility in
the form of nonmatching grids, were also a very active area in the Chiba symposium and con-
tinue to draw attention [Bjørstad et al., Braess & Dahmen, Oswald & Wohlmuth, Shyy et al.,
Tai et al.]. Another active area in nonoverlapping domain decomposition that is closely tied
to the discretization is the optimal parametrization of Robin interface conditions [Bounaim,
Gander, Gander et al., Faille et al., Dolean et al., Rapin & Lube, Knopp et al.]. Related
interface developments are presented under the rubric of optimal control and virtual control
[Gervasio et al., Pironneau et al.].

Overlapping domain decomposition methods continue to be refined, as well. This volume
features two papers that shore up the highly effective Restricted Additive Schwarz (RAS)
method. One [Cai et al.] shows how RAS, with its asymmetrical communication-saving
restriction and extension operators can be rendered symmetric in an appropriate subspace and
produces new theoretical bounds that mirror its observed superiority with respect to standard
Additive Schwarz. The other [Frommer et al.] adopts a purely algebraic approach of oblique
projections to produce the same ranking of additive Schwarz variants over the class of M-
matrices, and also considers a restricted multiplicative Schwarz.

Two papers on the Aitken-Schwarz method introduced in Chiba [Baranger et al., Garbey et
al.] extend this overlapping technique, whose analysis depends upon Fourier decomposition
of interface modes to nonlinear problems and less regular meshes. Meanwhile, nonlinear
Additive Schwarz preconditioning [Cai et al.] has been applied to problems with shocks and
has been shown to greatly improve the domain of convergence of Newton’s method.

A novel purely algebraic method known as “multigraph”, providing an algorithmic “spec-
trum” between exact Gaussian elimination and blocked iteration is presented in [Bank &
Smith]. At an opposite extreme, waveform relaxation, a method that avoids forming discrete
algebraic problems at common intermediate timesteps is advocated in [Daoud & Gander].

The implications for domain decomposition of several discretization techniques, apart
from the customary conforming finite element and finite difference techniques on a single
partitioned grid, are taken up by various authors. We mention especially fictitious domain
methods [Feng & Karakashian, Lasser & Toselli], spectral methods [Azaiez et al.], and the
increasingly theoretically supported discretization technique of finite volumes [Cautres et al.].
Apart from these methods rooted in differential equation formulations, there is a paper on
domain decomposition for integral equation-based boundary element methods [Boubendir &
Bendali].

These highlighted contributions only begin to call attention to technical points of interest
in the current proceedings. We also note, sadly, a point of personal interest to all applied
mathematicians, whether working in domain decomposition or not: this proceedings contains
two of the last contributions of Jacques-Louis Lions.

For the convenience of readers coming recently into the subject of domain decomposition
methods, a bibliography of previous proceedings is provided below, along with some major
recent review articles and related special interest volumes. This list will inevitably be found
embarrassingly incomplete. (No attempt has been made to supplement this list with the larger
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and closely related literature of multigrid and general iterative methods, except for the books
by Hackbusch and Saad, which have significant domain decomposition components.)
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This conference has been dedicated to the memory of Wiktor Eckhaus who was a great ap-
plied Mathematician, and a good man. His contribution to the matching asymptotic theory
in the 70’s was in nature a domain decomposition approach to the construction of uniform
asymptotic expansion for singular perturbed problems.
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1 Additive Schwarz method for nonsymmetric problems :
application to frictional multicontact problems

P. Alart 1, M. Barboteu 2, P. Le Tallec 3, M. Vidrascu 4

Introduction

In this paper, we present a generalization of a Neumann-Neumann domain decomposition
method for solving nonsymmetric elliptic systems in a scalable way. It uses the theoretical
framework of Schwarz additive decomposition method and introduces a coarse space well
adapted to nonsymmetric cases. The efficiency of this method is evaluated on nonsymmetric
frictional contact problems.

In iterative substructuring, the parallel solution of a complex structural problem is achieved
by splitting the original domain of computation in smaller nonoverlapping simpler subdo-
mains, and by reducing the initial problem to an interface system to be solved by a parallel
two-level preconditioned conjugate gradient method. Many variants of this approach have
been proposed and investigated in the recent literature, all associated to different choices of
preconditioners and of coarse spaces [BPS86], [Smi92], [LTDRV91].

Up to now, the main objectives when developing such preconditioners were to achieve
efficiency and scalability even in presence of complex geometries, strongly heterogeneous
coefficients, general elliptic operators (3D anisotropic elasticity, shells, etc ..) and arbitrary
meshes (unstructured, nonmatching, etc ..). These objectives cannot be reached without an
adequate coarse solver [DW92]. For FETI preconditioners, this coarse solver is introduced
by strongly imposing a kinematic constraint at each iteration (rigid body modes in FETI1
[FR94], rigid and corner modes in FETI2, corner modes only in FETI DP [FLL � 01]). In bal-
anced Neumann-Neumann techniques, this solver appears while imposing orthogonality to an
adequate coarse space of singular modes. The recent applications have introduced two new
key dimensions in the development of such a coarse solver, namely its ability to handle non-
symmetric operators, and its industrial feasibility (automatic construction and cost efficiency).
In our case, this new perspective is motivated by multicontact frictional problems.

This evolution requires complete review of the construction process of such coarse solvers,
which is done hereafter in the framework of the Neumann-Neumann Domain Decomposition
Method. The key point is the construction of the local spaces ���� of rigid motions. For sym-
metric problems, the space ���� is the kernel �	��
�

�
of the local Schur operators, with the

possible addition of corner modes for fourth order problems. For advection diffusion prob-
lems, the good choice is based on constants. In the general case, the choice of ���� must both
set the arbitrary constants to zero in the solutions of the local Neumann problems (thus ensur-
ing a scale invariance of the related energy norm), and regularize these local problems. For
this purpose, we will introduce dual rigid modes obtained by solving local adjoint regularized
Neumann problems.

1Université Montpellier, alart@lmgc.univ-montp2.fr
2Université Perpignan, barboteu@univ-perp.fr
3Ecole Polytechnique, patrick.letallec@polytechnique.fr
4INRIA Rocquencourt, Marina.Vidrascu@inria.fr



4 ALART, BARBOTEU, LE TALLEC, VIDRASCU

The paper is organized as follows. The basic domain decomposition methodology is first
reviewed (

�
2), with an application to frictional contact problems illustrating the difficulties

arising in presence of nonsymmetric operators (
�
3). Such nonsymmetric problems are han-

dled in (
�
4) by reformulating the two level Neumann-Neumann preconditioner to an additive

Schwarz algorithm, and by defining an appropriate coarse space by duality. In the last section
(
�
5), we test the efficiency of this updated general Neumann-Neumann preconditioner on the

numerical solution of nonsymmetric structural problems with contact and friction.

Balancing method for symmetric systems

The basic idea in nonoverlapping domain decomposition methods is to split the domain � of
study into � small nonoverlapping subdomains �������
	 ��� �� and interfaces defined by :��	��������� �������������� � � with

� ��	�� ���"! # ��� $ ���%'&(*) ��� $,+ � ��� .

Substructuring techniques consist then in reducing the original global system to an interface
problem by a block Gaussian elimination of the internal degrees of freedom and in iteratively
solving the resulting variational interface problem :-

�.0/ �1 2 3 � �. � �465 	 3 �7 � �405 8 �46/ �1 	 Tr 9:�;�<>= ?�@ (1)

The matrices �A	 �B
� ����C

�
�
� � C

� ED and �
�

denote respectively the global Schur comple-

ment matrix (defined on
�

) and the local Schur complement matrices (defined on
� �

by
�GFH	JIK F � �;L�FMON,�GPK FMRQTS,LUF� . Above, � C

�  D is the restriction operator which goes from
�

to
� �

, and
K F 	 # PK � L F��L F  N �K � + denotes the subdomain stiffness matrix, the first block

corresponding to the internal degrees of freedom PV � , the second one corresponding to the
interface degrees IV � . The interface problem (1) can be solved by a preconditioned conjugate
gradient method (symmetric cases) or the GMRES method (nonsymmetric cases). Hereafter,
we use the multilevel Neumann-Neumann preconditioner. This iterative technique never re-
quires the explicit calculation of the matrix � . We have just to form the matrix vector products
� IW and X Q�S IY by solving independent auxiliary Dirichlet and Neumann problems on the local
subdomains and a global coarse problem defined on a space of singular (rigid body) motions.
Altogether, the product of the preconditioner X Q � and of the residual gradient IY has the
following form,

X Q � IY 	 �B
� ����Z\[

� �^]� �  Q � � [
�  D IY`_ �badc �

where [
�

is a weighting matrix, defining a local partition of unity on the interface and �e]�G Q �
denotes an regularized inverse of �

�
. Moreover,

afc
is linear combination of subdomain rigid

body motions over the interface obtained by projection of the residual onto this set of rigid
body motions. In practice, the projection

agc
is obtained by solving a global optimization

problem over the interface
�

in order to minimize the residual [LT94] :

min hji�k IY kml?on 	 min hjiHp`� �q��XrQ � � �sQ �  IY EDt��XrQ � � �sQ �  IYvu @ (2)
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This balanced preconditioner is very general and can be efficiently applied to linear or
nonlinear three-dimensional elasticity problems using either matching or nonmatching grids
[TSV94], to nonlinear plate or shell problems [TMV98].

A first “mechanical” nonsymmetric extension

As constructed above, the basic balanced Neumann Neumann preconditioner is not well
adapted to nonsymmetric problems. Indeed the minimization problem (2) is not well de-
fined for nonsymmetric Schur complement matrices. The numerical experiments [BAV01]
also show that the behaviour of the iterative Schur complement solver (GMRES algorithm) is
strongly perturbed when applied to structural problems with friction, i.e. when nonsymmetry
is introduced in the tangent matrices [4]. The first idea is to replace the matrix � by the sym-
metrized matrix � � ( � � 	 � � � D ). Another choice is to use a symmetric matrix which has a
mechanical meaning [BAV01] considering the interface reduced matrix ��� with a zero friction
coefficient ( � � 	 ��� ��� ) to evaluate the norm of the difference between X Q � and � Q � and so
to formulate the coarse problem. Then the minimization problem takes the following form :

min hji\k*= IY k*= l? n 	 min h i p � � � �;XrQ � � � Q �  IY ODt�;XrQ � � � Q �  IY u @ (3)

This minimum is reached for the function
a c

which cancels its gradient, which defines
a c

as the solution of the following equality :

� a D � � a  c 	 �Ha D � � �B
� ���
�
[
� �^]�GF�RQ � � [

� OD
	 IY � (4)

which defines the coarse problem specially adapted to the nonsymmetry of the friction [BAV01].
As we will see later, the dependence due to nonsymmetry is reduced, but it is nonoptimal. So,
to establish a general nonsymmetric preconditioner, we now introduce a generalisation of this
preconditioner by viewing it as an additive Schwarz method.

Interpretation as additive Schwarz methods and general ex-
tension to nonsymmetric problems

The Neumann-Neumann preconditioner can in fact be viewed as an additive Schwarz tech-
nique [TV97] iteratively solving an interface problem with operator � 	 � on the interface
space �1 using the preconditionerX Q � 	 ]� Q � � B

��� � � ]� � RQ � � � � ED^@
Above, the operator ]� � 	 ]� (resp. ]� � 	 ]� F ) denotes an approximate restriction of the
original operator � onto the coarse space �1�� 	�� �� ����� � �� ��� �1 (resp. onto the local spaces
�1��� ), the local spaces �1��� � �1 � 	 Tr 9b� �<>= ?�� are locally defined by duality

�1 �� 	�� �4�� / � � �1 � � 3 � �4�� � �4 � 5 	 � � 8 �4 � / �1 �"!
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and the extension from local to global space is given by � � 	r� � � � �  [
� �

with
� � n �1��

�1 � the orthogonal ]� projection. This extension operator is in fact the key originality of the
Neumann-Neumann preconditioner. With this notation, the additive Schwarz preconditioner
reduces to the previous preconditionerXrQ � 	 ]� Q �� � B � � � � � �  [

� �^]� � RQ � � [
� OD^� � � � � ED^@ (5)

operating within the orthogonal of the coarse space, that is the image of the projection � � �� �  .
The basic question is now to properly construct the local component ���� of the coarse space

�1 � . The objective is that its orthogonal complement (where the preconditioner lives) be nice.
With a detailed examination, it can be observed that being nice means in fact that:
- the local Neumann solutions � � must be scale invariant in energy norm, which requires to
put all constants to zero in the local Neumann subproblems,
- the local Neumann subproblems must be regularized by adding a few boundary conditions.

Altogether, one only needs to impose implicitly that a few constants or boundary condi-
tions � � � be equal to zero for the solutions � � of the local Neumann problems. We therefore
need them to satisfy � � � � � � ��� 	�� � 8
	 �
that is � K � � � � � K � RQ\D�� � � � 	 � � 8
	 �
or equivalently, since � � is solution of a local Neumann problem with matrix

K �
�
[
�
�
�
�4 � � K � RQ\D�� � ��� 	�� � 8
	 � �4 / �1 �� @

This is automatically guaranteed if �4 is orthogonal to the function [
� � K �  Q� � � � , that is if

the local space is generated by the so called dual rigid modes as follows

�� � 	 vect � � K �  Q D � � � m@
Detailed algorithm

The adapted strategy which generalizes the approach of both the symmetric and the advection
case, is thus given by the following steps [PAV00] :

1. Identify the local degrees of freedom ��� � �  � ����� � � which cancel all � � rigid modes
of subdomain � . In practice, this is done by identification of the small pivots in the
factorization of the associated local stiffness matrix, with the possibility of choosing
more degrees of freedom than necessary. For plate and shell problems, we can simply
choose the degrees of freedom which lie on subdomain corners.

2. Introduce a regularization
K ��

of the local stiffness
K �

on
1 � 	 9b�;� � 3 K �� 4 � ���4 � 5 	 3 K � 4 � ���4 � 5 � B

� � �
X � � � 4 � ��� � �  �4 � ��� � �  � 8\4 � ���4 � / 1 � �

the matrix X �
being a definite positive arbitrary matrix. For nonsymmetric problems,

the matrices
K �

and
K ��

are nonsymmetric.
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3. Compute dual rigid modes � 4 �� �  � ��� � � � by solving local regularized Neumann prob-
lems set on the space

1 �
of subdomain displacement functions defined on subdomains� , 3 � K ��  D 4 �� � ���4 � 5 	 �4 � � � � �  � 8 �4 � / 1 � � 4 �� � / 1 � @ (6)

For advection-diffusion problems or for unsteady problems, we must also introduce the
dual constant mode defined by,3 � K �� OD 4 �� � �4 � 5 	 ���

� �4 � � 8 �4 � / 1 � � 4 �� / 1 � �
(7)

in order to achieve scale invariance in the Neumann subproblems.

4. Introduce the local rigid space
� � 	 vect

# 4 �� � � 	 	 ��� � � + .

The last construction leads to the local rigid spaces already introduced for symmetric cases
[TV97] or for the advection-diffusion case [ATNV00]. The space

� �
does not depend on the

choice of the regularized matrix X �
because all elements 4 � of

���
verify by construction,3 � K �  D 4 � � �4 � 5 	�� � 8 �4 � / 1 �

such that
�4 � ��� � � j	 � � 8�� @

With this choice, the 2-level Neumann-Neumann preconditioner takes the form defined in (5)

X Q � � 	 � � � �B
� ��� � � � � �  [

� ���� �  Q � � [
�  D � � � � �  D �t@ (8)

Above, the regularized Schur inverse � �� �  Q � acting on a given linear form � � defined on
the local interface space �1	�� yields the interface vector � �� �  Q �
� � 	�� 
v� � �  ? � obtained by
solution of the local regularized Neumann problem :3�K �� � � ���4 � 5 	� � ��� 
v� �4 � 
� ? �  � 8 �4 � / 1 � � � � / 1 � @ (9)

Our construction ensures that the solutions � � 	 � �� �  Q ��� [
�  D � � � � �  D IY of the local Neu-

mann problems have rigid constants � � � � � �  fixed to zero. Indeed, by definition of the dual
rigid modes 4 �� � and by the construction of � � and by the projection

� �
, we have :

� � ��� � �  	 3 � K �� OD 4 �� � � � � 5 	 3 IY � � � � � �  [
� 4 �� � 5 	�� @ (10)

This value of the rigid constant on � � cancels the effect of the regularization. We have in-
deed:

3 K �� � � � � � 5 	 3 K � � � � � � 5 , which guarantees in some way the optimality of our
algorithm.

Application to frictional contact problems

Nonsymmetric frictional contact problems

The behaviour of multicontact structures is characterized by a multiplicity of contact inter-
faces between deformable structure bodies. These large nonlinear problems constitute a class
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of problems well suited to the use of the above numerical substructuring techniques. The
modelling of the frictional contact problem is first based on a hybrid formulation presented
in Alart and Curnier [PC91]. Following this augmented Lagrangian approach [PC91], the
equilibrium of a discretized contact bodies system is governed by the system of nonlinear
equations ��� � � D � ����� D ��� D
	 � . ���  	 � �� � � � � 	 � . ���  j	�� � (11)

where
�

is a restriction operator from � to
���

(
���

is the contact boundary). The notation. stands for kinematic variables (displacements or rotations) and
�

for the static variables
(contact forces or torques). Moreover, 	 � . ���  defines the discretized contact operator, with

 the corresponding penalty coefficient,

� � � D and
� ��� D denote respectively the internal and the

external discretized forces,3 � � � D � .  � �4b5 	 � ����� ��� ����� .  n � ����� �4 and
3 � ��� D � �405 	 � ����� �4 �

and 	 � . ���  is the assembly of elementary contributions according to the notion of contact
element [PC91]. For sake of simplicity, the local contact operator is presented for a contact
between a deformable body and a rigid obstacle in a bidimensional modelling. Consequently
the displacement u concerns only the node of the body on

���
and

�
the contact force exerted

by
���

on the obstacle. It is convenient to split it into normal and tangential components� 	 � �! � � D and to express 	 � � . ���  in this local frame :

	 � � . ���  	 � Q�  � � 
#"�$&%('*),+).- � D � (12)

where
� 	 � �/ � � D , � � 	 � � � 
#0 � ,

� D 	 � D � 
21 . D , � Q� 	43 � �t� � � � �  and 5 � � Q�  the
Coulomb set 6 7 � Q� � � 7 � Q�98;:  (where 7 is the Coulomb coefficient and 1 . D is a displacement
increment). If the contact status is sliding, the tangent matrix of this operator is non symmetric
and takes the tensorial form�=< 	 � � . ���  	f�  � 7 : ?>  � �,@ 	 � � . ���  	 
 �  � 7 : ?>  @
For more complex contact elements, this type of local matrix is distributed on all contact
nodes of target contactor areas.
We have chosen to treat both variables . and

�
simultaneously through Newton’s method.

The system of equations is then split into two parts involving the pair Ar	 � . ���  , i.e. a
differentiable elastic part G and a nondifferentiable frictional contact one 	a �BAG � 	 �BAG 	�� @ (13)

To overcome the nondifferentiability of the equation (13), Newton’s method may be extended
to the following iterative form [PC91]:� K � � � � � /C�A � 	 � � a �BA �  � 	 �DA �   where CEA � 	FA � ��� � A � � (14)

to be solved at each iteration 3 by the previously introduced generalized Neumann-Neumann
domain decomposition method. The matrix

K � 	�� a �DA �  is the usual elastic stiffness ma-
trix and

� � � / � 	 �BA �  represents the generalized Jacobian of 	 at A � . The nonsymmetry
of the matrix

� � �
is due to the friction terms. The contact interface is discretized by contact

finite elements which yields elementary nonsymmetric tangent matrices if the contact status
is “in friction situation”.
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“Multi-contact” structures

The efficiency of these different multilevel preconditioners will be assessed on two examples
of “multicontact” structures :
- collections of deformable grains with contact interfaces between the grains.
- rolling shutters composed by many slats jointed by a hinge with play and eventually rotative
friction.

Collection of deformable grains

Our motivation here is to study in granular media modelling the behaviour of a collection
of deformable grains submitted to classical solicitations such as shear or compression. This
problem is an interesting and delicate “multicontact” problem : the proportion of contact is
very large. The interactions between the grains are governed by the frictional contact laws
(Signorini unilateral contact law and Coulomb friction law).

At a discrete level, the interactions between grains are modelled by a frictional contact

One subdomain
Collection of grains

Bi-facet contact element

"multiplier" node

elastic node

Figure 1: Deformable grains, one subdomain and a bi-facet contact element.

element (Figure 1) which takes into account large slip over the contact interface. This bi-facet
contact element has 5 nodes : 4 elastic nodes which contain the displacement . �B0 � � 0 �  and
a multiplier node containing the frictional contact forces

�
. Moreover the contactor node can

slip over two target facets. A generalization to more facets can be carried out easily.

Rolling shutters composed by many hinged slats

The aim of this problem is to simulate the quasi-static behavior of such shutters submitted to
strong winds [ABLM99]. A rolling shutter is a specific case of multi-contact structure. The
rolling shutters for shops, stores and hangars are formed by a succession of slats jointed by
a hinge [ABLM99]. Such a structure is then composed by an assembly of elastic structures
(plates in flexion and torsion) which leads to consider a large number of contact zones. The
edges of the slats are designed in such a way that the slats fit into each other. To facilitate
the rolling of the shutters at the opening, the profile of the slat requires a gap or a play in the
hinge. We must then develop a specific model which takes into account the play � � � � � �  in
the hinge and eventually the friction in the rotations �D1 �  of the hinges between the slats. The
contact and friction laws are more complicated than the usual case. For more details on the
modelling, see [ABLM99].
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Figure 2: hinge contact element.

Substructuring strategy

One feature of this nonlinear nonsymmetric domain decomposition strategy consists in putting
the numerical subdomain interfaces away from the physical contact interfaces [BAV01]. Con-
trary to current approaches we therefore suggest to treat the physical contact interfaces as
internal surfaces : the contact interfaces (hinges for shutters and contact area for deformable
grains) must be inside the subdomains and do not constitute decomposition interfaces. Thus,
the decomposition is not forced to respect the geometry of its components; such a subdomain
is shown in Figure 1. This allows a better balance of the size of the subdomains and leads to
an optimal decomposition for parallel efficiency.

Numerical behaviour of Neumann-Neumann preconditioners

In this section, we analyse the convergence behaviour of the interface solver (GMRES) with
the multi-level Neumann-Neumann preconditioners. We test their efficiency as a function of
the friction coefficient and the number of subdomains (scalability properties). As previously
observed, the nonsymmetry is due to our formulation of frictional contact problems. The con-
sidered preconditioners are :
- The standard Neumann-Neumann preconditioner with coarse space (2-level),
- The specific Neumann-Neumann preconditioner which uses a symmetrized matrix � � (with
a friction coefficient equal to zero),
- The new nonsymmetric Neumann-Neumann preconditioner introduced in this paper.

The first result, described in Figure 3, gives the evolution of average number of GMRES

0.0 0.4 0.8 1.2 1.6 2.0
friction

50
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G
.M
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 Specific 2−level Neumann−Neumann
 Non symmetric 2−level Neumann−Neumann

Figure 3: Influence of the friction coefficient on the preconditioners.

iterations (per Newton iterations) for different values of the friction coefficient varying from
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0 to 2 for a rolling shutters with 16 slats and 30 subdomains (26 floating subdomains), re-
spectively. We observe the inefficiency of the solver using the standard Neumann-Neumann
preconditioner (curve

�
) for values of friction coefficient close to 7 	 � ��� . This is due to

the large increase of the ratio of slip status and so to the large proportion of nonsymmetry.
The first extension procedure (curve � ) improves this dependance but does not cancel it. On
the other hand, the new nonsymmetric preconditioner (curve � ) makes the interface solver
insensitive to the nonsymetry.

Next, we analyse the scalability properties of the different Neumann-Neumann precon-
ditioners for the problems of rolling shutters and collections of deformable grains. For the
rolling shutters (figure 4), we can verify that for a problem without friction ( 7f	 � , sym-
metric problem), the 2-level Neumann-Neumann preconditioner has a classical behaviour :
independence from subdomain number (curve � ). But with friction, the standard procedure
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 1−level Neumann−Neumann (µ = 0.2)

Figure 4: Numerical scalability of the preconditioners (rolling shutters).

leads to a high increase of the number of iterations (curve � ) with the number of subdomains.
The results are even worse than without coarse solver (curve ). The first extension strategy
(curve � ) improves the convergence but is not optimal. On the other hand, the 2-level nonsym-
metric Neumann-Neumann preconditioner (curve � ) leads to a full recovery of the numerical
scalability properties obtained with a symmetric problem.

We finally present for the collection of deformable grains the influence of the number of
sub-domains (Figure 5) on the number of iterations. The good behaviour of the nonsym-
metric preconditioner is confirmed when the number of floating subdomains increases. This
nonsymmetric procedure is more efficient than the standard and specific balancing method
specially in presence of shear. Indeed, the friction (and then the nonsymmetry) plays a more
important role in shear than in compression (Figure 5). Thus the strategy developed in this
paper extends to large scale nonsymmetric (frictional contact) problems.
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[LTDRV91]Patrick Le Tallec, Yann-Hervé De Roeck, and Marina Vidrascu. Domain-
decomposition methods for large linearly elliptic three dimensional problems. J. of Com-
putational and Applied Mathematics, 34, 1991.

[PAV00]P. Le Tallec P. Alart, M. Barboteu and M. Vidrascu. Méthode de schwarz additive
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2 Multigraph Algorithms Based on Sparse Gaussian
Elimination

R. E. Bank1, R. K. Smith2

Introduction

In this work, we describe a multilevel-multigraph algorithm. An excellent recent survey on
algebraic approaches to multilevel iterative methods is given in Wagner [Wag99]. This article
also contains an extensive bibliography. The algorithm discussed here is described more fully
in [BS00]. Our goal is to develop an iterative solver with the simplicity of use and robustness
of general sparse Gaussian elimination, and at the same time to capture the computational ef-
ficiency of classical multigrid algorithms. While we do not believe that the current algorithm
achieves this goal, it represents an important step in this direction. To guarantee robustness,
general sparse Gaussian elimination with minimum degree ordering is a point in the param-
eter space of our method. This is a well known and widely used method, among the most
computationally efficient of general sparse direct methods [GL81].

To obtain simplicity of use and implementation, our algorithms incorporate many tech-
nologies and algorithms originally developed for general sparse Gaussian elimination. Be-
sides the minimum degree algorithm, the Reverse Cuthill-McKee ordering is the basis of our
coarsening procedure. Our sparse matrix data structures are a generalization of those first
introduced in the symmetric Yale Sparse Matrix Package [EGSS82], and our (incomplete)
factorization procedure is a generalization of the sparse row elimination scheme used there.
To gain computational efficiency, our method offers the possibility to compute an incomplete
factorization with the user able to specify a drop tolerance and an absolute bound on the to-
tal fill-in. This factorization becomes the smoother in a multilevel procedure similar to the
classical multigrid method.

Sparse direct methods typically have two phases. In the initialization phase, equations are
ordered, and symbolic and numerical factorizations are computed. In the solution phase, the
solution of the linear system is computed using the factorization. Our procedure, as well as
other algebraic multilevel methods, also breaks naturally into two phases. The initialization
consists of ordering, incomplete symbolic and numeric factorizations, and the computation of
the transfer matrices between levels. In the solution phase, the preconditioner computed in the
initialization phase is used to compute the solution using the preconditioned Composite Step
Conjugate Gradient (CSCG) or the Composite Step Biconjugate Gradient (CSBCG) method
[BC93].

In the spirit of general sparse Gaussian elimination, we have tried to minimize the number
of user specified control parameters. In the initialization phase, there are three parameters.
The most important is the drop tolerance (

��� "�� ) for the incomplete factorization. Because the
fill-in for the ILU tends to be a very nonlinear and unpredictable function of the drop tolerance,
we also allow the user to specify an upper bound on the amount to fill-in the be allowed in the

1University of California at San Diego, La Jolla CA 92093, rbank@ucsd.edu. The work of this author was
supported by the National Science Foundation under contract DMS-9706090.

2Agere Systems, Murray Hill, NJ 07974, kentsmith@agere.com.
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incomplete factorization ( 3 ��� � � � ). Finally, the maximum number of levels in the multilevel
procedure ( 3 ��� ��� � ) can be specified. In the solution phase, the user can specify only two
control parameters: the maximum number of iterations ( 3 ����� � ) and an error tolerance (

� "�� )
for the convergence criterion.

Our main interest is in developing a solver for discretizations of scalar elliptic problems
as in the finite element code PLTMG [Ban98]. However, our solver was developed as a stand-
alone linear equations solver, and can formally be applied to any structurally symmetric, non-
singular, sparse matrix. By structurally symmetric, we mean that the pattern of nonzeros in
the matrix is symmetric, although the numerical values of the matrix elements may render
it nonsymmetric. Many problems arising in practice naturally have structural symmetry, and
of course all can be made structurally symmetric by storing some extra zeroes. For certain
problems handled by PLTMG, the matrices are symmetric and positive definite, but for others,
the linear systems are highly nonsymmetric and/or indefinite. Thus in practice, this represents
a very broad class of behavior.

Structural symmetry allows for some important simplifications in the implementation. In
particular, we can handle linear systems involving symmetric matrices � and nonsymmetric
matrices � and � D within a single, unified code, rather than developing specialized subrou-
tines for each of these three cases. In the nonsymmetric case, linear systems involving � D
arise naturally in the context of the CSBCG algorithm, and hence are important for our solver.
This limits the complexity of the code, and also eliminates additional parameters that might
be needed to further classify a given matrix. On the other hand, it seems clear that a special-
ized solver directed at a specific problem or class of problems, and making use of additional
knowledge, is likely to outperform our algorithm on that particular class of problems. Al-
though we do not think our method is provably “best” for any particular problem, we believe
its generality and robustness, coupled with reasonable computational efficiency, make it an
interesting and useful approach for solving linear systems.

Matrix Formulation

Let � be a large sparse, nonsingular �	��� matrix. We assume that the sparsity pattern of� is symmetric, although the numerical values need not be. We consider the solution of the
linear system

� � 	 
 @ (1)

Let � be an ��� � nonsingular smoothing matrix. In our case, � is an approximate factor-
ization of � , i.e.,

�d	d��� � �  � Q � � � �� �� � D � � � (2)

where � is (strict) lower triangular,


is (strict) upper triangular with the same sparsity pattern
as � D , � is diagonal, and � is a permutation matrix.

Given an initial guess � � , 3 steps of the smoothing procedure produce iterates ��� , ���� � 3 , given by


 � Q � 	 � D � 
 � � ��� Q �  �
�E1 � Q � 	 
 � Q � � (3)

� � 	 � � Q � � � D 1 � Q � @
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The second component of the two-level preconditioner is the coarse grid correction. Here
we assume that the matrix � can be partitioned as

�� � �� D 	 # � � � � � �� � � � ��� + �
(4)

where the subscripts
�

and � denote fine and coarse, respectively. Similar to the smoother, the
partition of � in fine and coarse blocks involves a permutation matrix

�� . The
����

�� coarse
grid matrix

�� is given by

�� 	 � 1 � ��� ����� # � � � � � �� � � � ��� + #�� � �
� ��� +	 1 � � � � � � � � � 1 � � � � � � � � � � � � � � ��� @ (5)

The matrices
1 � � and

� D� � are
�� � � matrices, with identical sparsity patterns; thus

�� has a

symmetric sparsity pattern. If � D 	�� , we require
1 � � 	 � D� � , so

�� D 	 �� .
Let

�1 	 � 1 � ��� ��� � �� � �� 	 �� D # � � �� ��� + @ (6)

In standard multigrid terminology, the matrices
�1

and
��

are called restriction and prolon-
gation, respectively. Given an approximate solution � � to (1), the coarse grid correction
produces an iterate � � ��� as follows:

�
 	 �1 � 
 � � � �  ��� �1 	 �
 � (7)
� � ��� 	 � � � �� �1 @

In typical multilevel fashion, the linear system
�� �1 	 �
 in (7) is solved by recursion, in our

case a multilevel V-cycle. One the coarsest level, we apply the iteration (3). A single cycle
takes an initial guess � � to a final guess ��� as follows: � � is defined using (3), � l is defined
using (7), and ��� is defined using (3). Note in particular that we use only one pre-smoothing
and one post-smoothing iteration.

Some Implementation Details

To complete the definition of the method, we must provide algorithms to:

	 Compute the incomplete factorization matrix � in (2).

	 Compute the permutation matrix � in (2).

	 Compute the fine-coarse partitioning matrix
�� in (4).

	 Compute the sparsity patterns and numerical values in the prolongation and restriction
matrices in (6).
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ILU Factorization

Our incomplete � � � �  � Q �*� � �   factorization is similar to the row elimination scheme
developed for the symmetric YSMP codes [EGSS82, GL81]. Without loss of generality,
assume that the permutation matrix � 	 � , so that ��	f� � � �  � Q �*� � �   � � , where

�
is the error matrix.

After
�

steps of elimination, we have the block factorization# � � � � � l� l � � l l + 	 # � � � � � � � �� l � � + # � Q �� � �� � + # � � � �� � �  � l� � + � # � � � � � l� l � � + �
where � � � is

� � � and � l l is � � � � � � � . We assume that at this stage the blocks � � � ,� � � , � l � ,  � � , and
 � l have been computed.

Our goal for step
� � �

is to compute the first row and column of the approximate Schur
complement

�
, given by

� 	 � � � 	 � l l � � � � l � � � Q �� �  � l � �  �0 	 � D � � 	 � D l l � � �  D� l � � Q �� � � D l � � � ^@
This is done by a procedure similar to the row elimination scheme employed by the symmetric
YSMP codes. After the complete (sparse) vectors

�
and 0 are computed, certain entries are

dropped (assigned to the error matrix
�

). In particular, we neglect a pair of off-diagonal
elements if

����� = � ��� = � =  � � = � � � "�� 	 = � �
� � � � = � (8)

where $ 	 � � � ; � � � has not yet been computed. The drop tolerance
��� "�� is applied in a

symmetric fashion to maintain a symmetric sparsity pattern in the factorization.
It is well known that the fill-in generated through the application of a criterion such as (8)

is a highly nonlinear and matrix dependent function of
� � "�� . This is especially problematic

in the present context, since control of the fill-in is necessary in order to control the work per
iteration in the multilevel iteration. Thus, in addition to the drop tolerance

��� "�� , the user sets
the parameter 3 ��� � � � , which specifies that the total number of nonzeros in


is not larger

than 3 ��� � � � � � .
Our basic strategy is to compute the incomplete decomposition using the given drop tol-

erance. If it fails to meet the given storage bound, we increase the drop tolerance and begin
a new incomplete factorization. We continue in this fashion until we complete a factorization
within the given storage bound. Of course, such repeated factorizations are computationally
expensive, so we develop heuristics which allow us to predict a drop tolerance which will
satisfy the storage bound. Thus, should the original factorization fail to satisfy the storage
bound, usually only one additional ILU factorization is needed. This is discussed in detail in
[BS00].

Finally, we note that there is no comprehensive theory regarding the stability of incomplete
triangular decompositions. For certain classes of matrices (e.g., M-matrices), the existence of
certain incomplete factorizations has been established; however, in the general case, with po-
tentially indefinite and/or highly nonsymmetric matrices, one must contend in a practical way
with the possibility of failure or near failure of the factorization. In our implementation, a
failure is revealed by some diagonal entries in � becoming close to zero. Off-diagonal ele-
ments � � � and

 ���
are multiplied by � Q �� � , and the solution of ��� � �  � Q � � � ��  � 	 
 also
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involves multiplication by � Q �� � . For purposes of calculating the factorization and solution,
the value of � Q �� � is modified near zero as follows:

� Q �� � 	 � � 2 � � � for = � � � = 5 	
� � � 2 	 l for = � � � = � 	 @

Here 	 is a small constant; in our implementation, 	 	 7 = = �U= = , where 7 is the machine epsilon.
Although many failures could render the preconditioner well-defined but essentially useless,
in practice we have noted that � Q �� � is rarely modified for a the large class of finite element
matrices which are the main target of our procedure.

Ordering

The minimum degree ordering is used to compute the permutation matrix � in (2). Intu-
itively, if one is computing an incomplete factorization, an ordering which tends to minimize
the fill-in in a complete factorization should tend to minimize the error

�
in the incomplete

factorization. For particular classes of matrices, specialized ordering schemes have been de-
veloped; for example, for matrices arising from convection dominated problems, ordering
along the flow direction has been used with great success. However, in this general setting,
we prefer to use just one strategy for all matrices, to reduce the complexity of the implementa-
tion, and to avoid the issue of deciding among various ordering possibilities. We remark that
for convection dominated problems, minimum degree orderings perform comparably well to
the specialized ones, provided some (modest) fill-in is allowed in the incomplete factorization.
For us, this seems to be a reasonable compromise.

Our minimum degree ordering is a standard implementation. We have implemented two
small enhancements to the minimum degree ordering; as a practical matter, both involve
changes to the input graph data structure that is provided to the minimum degree code. First,
we have implemented a drop tolerance similar to that used in the factorization. In particular,
the edge in the graph corresponding to off-diagonal entries � ��� and � � � is not included in the
input data structure if

����� = � ��� = � = � � � = � � � "�� 	 = � �
� � � � = @
This excludes many entries which are likely to be dropped in the subsequent incomplete fac-
torization.

The second modification involves some modest a priori diagonal pivoting designed to
minimize the number failures (near zero diagonal elements) in the subsequent factorization.
This procedure is described in detail in [BS00].

Fine-Coarse Partitioning

Our coarsening scheme is based upon another well-known sparse matrix ordering technique,
the Reverse Cuthill-McKee algorithm. This ordering tends to yield reordered matrices with
minimal bandwidth, and is widely used with generalized band elimination algorithms [GL81].
Our coarsening procedure is just a simple post-processing step of the basic ordering routine,
in which the � vertices of graph are marked as COARSE or FINE. Initially, all vertices are
UNMARKED. We proceed through the vertices in RCM order; each UNMARKED vertex we
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encounter is relabeled COARSE, and all of its neighbors are labeled FINE. This implicitly
defines the matrix

�� given in (4).
Under this procedure, all coarse vertices are surrounded by fine vertices. This implies

that the matrix � ��� in (4) is a diagonal matrix. For the sparsity patterns of matrices arising
from discretizations of scalar partial differential equations as in PLTMG, the number of coarse
unknowns

�� is typically on the order of � 2�� to � 2�� .
Computing the Transfer Matrices

We now define the matrices
1 � � and

� D� � of (5). To define the sparsity structure, we take
all the connections of each coarse grid vertex to its fine grid neighbors; that is, the sparsity
structures of

1 � � and
� D� � are the same as the block � � � .

We chose numerical values for
1 � � and

� � � according to the formulae

� � � 	 ��� � � � Q �� � � � � �1 � � 	 � � � � � Q �� � �� � � @
Here � � � is a diagonal matrix with diagonal entries equal to those of � � � . In this sense,
the nonzero entries in

1 � � and
� � � are chosen as multipliers in Gaussian Elimination. The

nonnegative diagonal matrices
� � � and �� � � are chosen such that nonzero rows of

� � � and
columns of

1 � � , respectively, have unit norms in
� � .

Finally, if necessary, the coarsened matrix
�� of (5) is “sparsified” using the drop tolerance

and a criterion like (8) to remove small off-diagonal elements. Empirically, applying a drop
tolerance to

�� at the end of the coarsening procedure has proved more efficient, and more
effective, than trying to independently sparsify its constituent matrices.

Numerical Illustrations

In this section, we present a few numerical illustrations. The problems are all of the form� � 0 	 � in ��	f� � � �  � � � � �  with 0o	�� on � � . The operators
� �

,
� � � ���

, are given by

� � 0 	 � C�0 �� l 0 	 � C�0 � � ��� ��0 � �� � 0 	 � C�0 � � ��� ��0 � � � ��� ��0 � �
�
	 0 	 � C�0 � � ��� ��0 �
��� 0 	 � C�0 � � ��� ��0 �
�� 0 	 � @ � � � 0 �&� � 0 ��� �
��� 0 	 � C�0 � � ��� � � ��� � @ � =0 � � � � � @ �  0 � ! @

These problems are standard PDE’s chosen to reflect a wide variety of behavior. We solved
these problems on � � � uniform meshes with ��	 � �*� � � ����� � � ; the resulting linear systems
are of order � 	 � l . Uniform meshes were used for standardization, although these problems
could be more effectively solved in PLTMG using adaptive meshes. A

� � � mesh, as well
as the solutions to the seven problems are shown in Figure 1. Continuous piecewise linear
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Figure 1: A
� � � uniform triangulation, and solutions to problems 1-7.
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Table 1: Performance comparison.� � Levels Digits Cycles Init. Solve

Problem 1,
� � "��G	 � � Q\l

51 2601 7 8.4 3 2.1e-1 5.1e-2
101 10201 7 6.8 3 1.0e 0 2.9e-1
201 40401 9 6.2 3 4.5e 0 1.4e 0

Problem 2,
� � "��G	 � � Q �

51 2601 7 7.5 1 2.5e-1 6.4e-2
101 10201 8 6.1 1 1.2e 0 3.7e-1
201 40401 9 10.3 3 6.5e 0 4.6e 0

Problem 3,
� � "��G	 � � Q �

51 2601 7 11.6 1 5.8e-1 1.2e-1
101 10201 8 6.5 1 4.9e 0 5.1e-1
201 40401 8 10.0 2 6.8e 0 3.7e 0

Problem 4,
� � "��G	 � � Q 	

51 2601 6 6.7 1 3.7e-1 3.8e-2
101 10201 7 6.1 3 2.3e 0 4.9e-1
201 40401 7 7.0 4 13.4e 0 2.9e 0

Problem 5,
� � "��G	 � � Q\l

51 2601 7 7.6 2 2.7e-1 4.1e-2
101 10201 7 6.4 2 1.2e 0 2.3e-1
201 40401 8 6.7 2 4.4e 0 1.0e 0

Problem 6,
� � "��G	 � � Q 	

51 2601 6 8.6 1 2.0e-1 2.4e-2
101 10201 7 8.2 1 8.9e-1 1.4e-1
201 40401 8 7.5 1 4.1e 0 6.7e-1

Problem 7,
� � "��G	 � � Q �

51 2601 6 10.3 2 2.9e-1 1.0e-1
101 10201 7 7.7 2 1.6e 0 6.6e-1
201 40401 8 6.6 2 8.2e 0 3.1e 0
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finite elements and the usual nodal basis functions are used in PLTMG to construct the linear
systems.

In Table 1, we summarize the results of the calculation. Here Levels refers to the number
of levels used in the calculation. In this test, the parameter 3 ��� � � � was sufficiently large
that it had no effect on the computation. The fill-in control parameter 3 ��� � � � was also suffi-
ciently large that it had no effect on the computation. The drop tolerance was set as indicated;
although not carefully optimized, the tolerance was crudely chosen according to the difficulty
of the problem to produce roughly comparable results for all problems. The initial guess for
all problems was � � 	 � .

The parameter Digits refers to

� � � � � � 	 ������� = = 
 � = == = 
 � = = @ (9)

In these experiments, we asked for � digits of accuracy. The column labeled Cycles indicates
the number of multigrid cycles (accelerated by composite step conjugate gradients or biconju-
gate gradients) that were used to achieve the indicated number of digits. Finally, the last two
columns, labeled Init. and Solve, record the CPU time for the initialization and solution phases
of the algorithm, respectively. Initialization includes all the orderings, incomplete factoriza-
tions, and computation of transfer matrices used in the multigraph preconditioner. Solution
includes the time to solve (1) to at least 6 digits given the preconditioner. These experiments
were run on an SGI Octane R10000 250mhz, using double precision arithmetic and the f90
compiler.

In analyzing these results, it is clear that our procedure does reasonably well on all of the
problems. Although it appears that the rate of convergence is not always independent of � , it
seems apparent that the work is growing no faster than logarithmically. CPU times for larger
values of � are affected by cache performance as well as the slightly larger number of cycles.

In our next experiment, we illustrate the effect of the parameters 3 ��� ��� � and
� � "�� . For

the
� � , � 	 , and

���
and � 	 � � � � � , we solved the problem for

� � "���	 � � Q � , � � � � �

and
� � 3 ��� ��� � �	�

.
� 	

and
�
�

are the two most challenging problems in this suite. The
results are given in Table 2. Although we expect all iterations to eventually converge (at least
in exact arithmetic), we terminated the iteration after 3 ��� � � 	 � �

steps or when the solution
had 6 digits, as measured by (9).

Here we see that, in general, decreasing the drop tolerance or increasing the number of
levels improves the convergence behavior of the method. On the other hand, the timings
do not always follow the same trend. For example, increasing the number of levels from3 ��� ��� �T	 � to 3 ��� ��� �T	 �

often decreases the number of cycles but increases the time. This
is because for 3 ��� ��� � 	 �

, our method defaults to the standard CG of BCG iteration with
the incomplete factorization preconditioner. When 3 ��� � � � 5 � , one pre-smoothing and one
post-smoothing step are used for the largest matrix. With the additional cost of the recursion,
the overall cost of the preconditioner is more than double the cost for the case 3 ��� � � �T	 � .

We also note that, unlike the classical multigrid method, where the coarsest matrix is
solved exactly, in our code we have chosen to approximately solve the coarsest system using
just one smoothing iteration using the incomplete factorization. When the maximum number
of levels are used, as in Table 1, the smallest system is typically

� � � or
� � �

, and this is
an irrelevant remark. However, in the case of Table 2, the fact that the smallest system is not
solved exactly significantly influences the convergence.
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Table 2: Dependence of convergence of
� � "�� and 3 ��� � � � .

� � "�� 3 ��� ��� � Digits Cycles Init. Solve

Problem 1, � 	 � � � � �
1 3.7 25 1.1 2.7

� � Q � 2 4.3 25 2.6 6.3
3 6.2 22 3.7 7.6
1 5.6 25 1.5 3.3

� � Q l 2 6.2 13 3.5 4.3
3 6.1 8 4.2 3.3
1 6.0 12 2.2 1.8

� � Q � 2 6.2 6 4.9 2.3
3 7.0 4 5.6 2.0
1 6.5 5 3.7 1.0

� � Q 	 2 6.5 2 7.9 1.2
3 8.5 2 5.6 1.5

Problem 4, � 	 � � � � �
1 3.1 25 1.2 3.0

� � Q � 2 3.6 25 2.7 7.2
3 3.9 25 3.8 10.2
1 3.7 25 1.5 4.4

� � Q l 2 4.2 25 3.5 11.0
3 2.5 25 4.2 10.0
1 6.1 25 3.4 5.0

� � Q � 2 3.7 25 7.7 11.8
3 5.7 25 9.6 14.1
1 6.7 5 8.1 1.3

� � Q 	 2 6.7 4 12.1 2.4
3 7.0 4 12.9 2.8

Problem 7, � 	 � � � � �
1 3.1 25 1.4 7.9

� � Q � 2 3.1 25 3.2 18.9
3 4.5 25 4.0 22.3
1 5.5 25 1.9 8.7

� � Q l 2 6.2 10 4.5 9.5
3 6.4 7 5.2 6.9
1 7.0 6 2.9 2.3

� � Q � 2 7.5 4 6.9 3.6
3 7.7 3 7.8 3.8
1 6.2 3 3.8 1.2

� � Q 	 2 8.8 2 9.4 2.4
3 7.4 1 10.5 2.2
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Finally we note biconjugate gradient iteration used for nonsymmetric problems requires
two matrix multiplies and two preconditioning applications (for the matrix and its transpose),
so the overall cost per step is about twice that of the regular conjugate gradient iteration.
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3 The Mortar element method revisited – What are the
right norms?

D. Braess1, W. Dahmen2

Introduction

A number of investigations have recently been devoted to the mortar method as a domain
decomposition method with non-overlapping subdomains. Its attraction comes from its great
flexibility due to the fact that different types of discretization are possible on different sub-
domains. The best experience is with 96� -elliptic problems. In contrast to standard conform-
ing elements, there may be jumps across the interfaces between adjacent subdomains, and
the continuity conditions are replaced by weak matching conditions the so called mortaring
conditions. Our guiding question here will be to what extent there still remain “interdomain-
constraints” on the discretizations which are possibly imposed by stability and accuracy re-
quirements, in particular, when dealing with highly non-quasi-uniform meshes.

There is by now almost a standard way to treat mortar elements in the framework of
nonconforming elements, where it was originally analyzed, see e.g. [BMP94]. However,
since it may be technically cumbersome to eliminate the constraints imposed by the matching
conditions and since fast solvers are by now available for mixed formulations, the analysis
as a saddle point problem has recently attracted interest, see e.g. [BB99, BDW99, Woh99b].
Moreover, on a principal level the inf-sup condition is also often hidden in the analysis of
mortar elements based on the nonconforming theory. If the inf-sup condition holds, the error
of approximation by functions with and without the mortaring conditions are of the same order
[Bra01, Remark III.4.10]. This tool is frequently used for estimating the term that represents
the approximation error in the lemma of Berger, Scott, and Strang. Therefore we believe that
the understanding of the saddle point formulation is at the heart of the matter which will be
the point of view taken in this paper.

The fact that the framework for the saddle point formulation is still less well established
in comparison with the nonconforming method is due to the subtle difference between (at
least) two trace spaces in the scale of Sobolev spaces with index 1/2. To be specific, let� � � denote the (typical) interface between the subdomains � � and ��� . When the variational
problem is considered in the Sobolev space 90�,� �< or 9 �� �;�< , then the trace space 9 � � l� � � � � � 
endowed with the norm k � k����	��
�	� ' ?��� - n 	 k�� ?��� � k � � l � �

�
 (where � ?��� is the standard indicator

function) turns out to be an appropriate function space for the jumps over the interior boundary� � � . In the 2D case this can be realized by forcing the trial functions to be continuous at the
cross points, which is a mild constraint. However, for 3D problems the jumps would have to
vanish along the boundaries of the interfaces, and this would entail severe restrictions on the
discretizations for neighboring subdomains. Thus jumps living in the larger space 9b� � l � � � �  ,
are usually admitted in actual computations with mortar elements.

1Ruhr-Universität Bochum, braess@num.ruhr-uni-bochum.de
2RWTH Aachen, dahmen@igpm.rwth-aachen.de

The work of this author has been supported in part by the TMR network “Wavelets in Numerical Simulation” funded
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This discrepancy (gap) prohibits the use of Brezzi’s theory with the standard Sobolev
spaces and their norms. For a rigorous treatment one had to resort to nonstandard methods.
One possibility is to introduce mesh-dependent norms as done, e.g. in [BDW99, DFG � 01,
Woh99b]. Continuity, ellipticity, and the inf-sup condition as required by Brezzi’s theory
are then available. Another concept can be found in [BB99, Woh99a] where the analysis is
performed in a two-stage process. In a first step merely the direct variables are estimated by
the nonconforming theory. In the second step only the inf-sup condition and no ellipticity is
required for achieving an error estimate of the Lagrange multipliers.

A principal objective of this paper is to narrow this gap somewhat. Specifically, we will
explore to what extent and under what circumstances one can dispense with mesh-dependent
norms. Some mesh-dependence still turns out to remain but only for one variable and in a
weaker form no longer involving an explicit mesh size parameter. Moreover, the new norms
can be bounded by k � k � �	��
�	� ' ?��� - if applied to a function in the space 9 � � l� � � � � �  . It models a

function space in which 9 � � l� � � � � �  has a finite codimension, while it differs from 96� � l � � � � 
by an infinite dimensional space. It is now easily understandable why all the different concepts
have one point in common. They all make use of the fact — in an open or hidden way — that
the subset of finite element functions whose jumps belong to 9 � � l� � � � � �  , is sufficiently thick.

Aside from these theoretical considerations there is the following practical reason for
addressing the above issue. Nonoverlapping domain decomposition appears to be particularly
suitable for problems with complicated domains or jumping coefficients so that one expects
solutions with singular behavior. Therefore the use of highly non-quasi-uniform or adaptively
refined meshes in different subdomains should be covered by the theory. However, the mesh-
dependent norms from [BDW99, BD98, Woh99b] only work well when using quasi-uniform
meshes. In fact, in connection with error estimates the mesh sizes should not even differ
too much from one subdomain to the other one, see [DFG � 01] for an extension to mesh-
dependent norms with suitable local mesh size functions.

So the core question is how independently from each other can the discretizations on
different subdomains be chosen so as to retain stability and overall accuracy even when the
individual meshes are highly non-quasi-uniform.

Recently, an error analysis has been performed in [KLPV01] for the mortar method on
meshes that are only locally quasi-uniform. The price that has been paid there is that the
meshes on adjacent subdomains have to match along the boundary of the interface which in
the three dimensional case severly imposes on the mesh generator. Our approach allows us
to abundon this constraint to restore full mortar flexibility. We still obtain error estimates of
the same type as in [KLPV01], where the constants now depend only on one sided mesh size
ratios. Cleary, local refinements on or near an interface would result from a singular behavior
of the approximated solution on or near that interface affecting both adjacent subdomains.
Thus conditions of this type (even two sided versions) tend to be satisfied automatically by
reasonable mesh adaptation strategies.

The paper is organized as follows. In Section 3 we describe the continuous problem.
Section 3 is concerned with the discrete counterparts. Specifically, we formulate several re-
quirements to be met by the discretizations. These are similar in spirit (and in fact closely
related) to those in [KLPV01] and have been recognized to play a pivotal role in many pre-
ceding investigations [BB99, BMP94, BDW99, BD98, Woh99b]. Section 3 is devoted to the
stability analysis for this setting. In contrast to [KLPV01] we work here in a saddle point
context for a choice of norms that is different from prior investigations. In Section 3 we dis-
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cuss error estimates from different point of views. The concepts are then applied in Section
3 to the so called dual basis mortar method from [BP99, KLPV01, Woh99a]. In particular,
we establish standard types of error estimates for locally quasi-uniform meshes without the
above mentioned interface boundary matching condition from [KLPV01].

The continuous problem

Consider the second order elliptic boundary value problem

������� � � �  ��� � � 0 � � J	 � � �  in � �
� � �  � @

�'� 	 � � �  on
� � � ��� �0 	 � on
�	� n 	�� ��
 � � � (1)

where � � �  is a piecewise sufficiently smooth and uniformly positive definite matrix defined
for � in the bounded domain � ����

,
� �

is a subset of the boundary
�

of � (with positive
measure relative to

�
), and

� � n 	 � 
 � � . 9q�� � � � �< denotes the closure in 9 �,� �< of all5�� -functions vanishing on
���

.
Suppose that � is decomposed into non-overlapping subdomains � � � � 	 �*� @e@>@ � ������� ,

i.e.,

���	 ��������
� ��� �� � � � � ! � � 	! for

�#"	 �E@ (2)

For simplicity we will assume throughout the rest of the paper that the domain � ��$�
and

that the subdomains � � in (2) are polyhedral. If the closures of � � and � � have a � � � �  -
dimensional intersection, we set �� � � n 	 �� � ! �� � . However, we do not insist on the partition
to be geometrically conforming, i.e.,

� � � need not be a full common face of both subdomains.
The

� � � form the skeleton % n 	 �
� � �
� � � @

� � � , � � , and
�	�

will always be assumed to be the union of polyhedral subsets of the bound-
aries of the � � .

The mortar method is based on a variational formulation of (1) with respect to the product
space &

' n 	�� � / �jl*� �< n � = �  / 9 � �;� �  � � 	 ��� @>@e@ � �(���)� � � = ?�*0	�� ! �
endowed with the norm

k ��k ��� ' n 	 # B ���+�,�
� ��� k ��k l� � ' �  - + � � l @

The space 9 �� � � �;�< is characterized as a subspace of

&
' determined by appropriate con-

straints on jumps across interfaces.
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This suggests the following weak formulation of (1): For a suitable pair of spaces

& � � �
find �D0 ���  / & � �

such that

� �D0 � �  � 
 ��� ��� J	 � � � �  � �
� � � � � �v � � ?�� for all � / & �


 �B0 � 7G 	 � for all 7 / � � (3)

where �D0 � �  � �
�

and � � � �  � � ?�� denote the � l inner products on � and
� � , respectively.

� �B0 � �v n 	 � ���
�
 � � � �  ��0 � �   � � �\� �  � � �
 � � � 7G n 	 � ?�����	� �D7 � 6 � 8  � � ?� � @

The jump 6 � 8 of a function � / & is defined on

%
by 6 � 8 n 	 ��= �  � ��= � � on

� � � (see [BDW99]
for further background information). We note that each interface

� � � appears only once in the
sum over

%
.

Discretization

In order to describe next the mortar method as a discrete version of (3), we choose for each
subdomain � � a (conforming) triangulation 
 � subject to the following assumptions:
(a) Each triangulation is completely independent of those on neighboring subdomains. This
means that the nodes in 
 � which belong to

� � � need not match with any of the nodes of 
 � .
(b) The 
 � will always be shape regular but only locally quasi-uniform, i.e., the ratios of
maximal and minimal diameters of the elements in 
 � need not remain bounded.

With each 
 � we associate a finite element space

% ��
 �  � 9q���;� � <! 9q�� � � � �< . In
principle, this could have any fixed polynomial order, but for simplicity we will refer in most
cases to spaces of piecewise linear finite elements on 
 � . We set&

� n 	 � �+�,�
� ���

%
� ��
 �  �

&
' � (4)

where the index � indicates the dependence on the discretization.
The next crucial step is to fix the Lagrange multipliers for each

� � � (i.e. the space
�

in (3)). In this context, we stress the following implicit notational convention to be used
throughout the rest. The indexing of the interface

� � � (as opposed to
� � � ) always expresses

that � � has been chosen as the non-mortar side. This distinction is important because the
Lagrange multipliers will only depend on the non-mortar side in a way that will be specified
later in more detail. Whenever

� � � is a full common face of both adjacent subdomains, the
choice of the mortar side is completely arbitrary. If

� � � is strictly contained in at least one of
the faces, the following provision has to be taken. We will always assume that � � � � is covered
by the faces of the cells in

� � � induced by at least one of the triangulations 
 � or 
 � . If only
one of these triangulations has this property, the corresponding subdomain has to be chosen
as the non-mortar side and hence will be denoted by � � .

Meanwhile several types of Lagrange multiplier spaces have been considered in the liter-
ature, see e.g. [BMP94, BD98, KLPV01, Woh99a]. Instead of considering any specification
we formulate first some requirements on the multiplier spaces that can be extracted from the
above mentioned studies. To this end, let 
 � � denote the restriction of the mesh 
 � to

� � � and
set

� �� � n 	 % ��
 � �  ! 9q�� � � � � ��d9 � � l� � � � � �  . Given
� �� � , we will employ finite dimensional

spaces
� � � � � l � � � �  with the following properties:
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P.1 The spaces
� �� � and

� � � have the same dimension��� � � �� � 	 � � � � � � @ (5)

P.2 Whenever

% ��
 �  has approximation order � , then
� � � should have approximation or-

der at least � � � , i.e., � ���
�����  � k � �	� k � � ?��� � � �� � Q � = ��= � Q ��� ?��� � (6)

where �� is the maximal mesh size of 
 � � . More precisely, defining for every vertex � of

 � the local mesh size � � n 	 � � � � ��� ����
 n 
 / 
 � � � � /�
 ! , we set

�� n 	 � ���� �� �� �
� � � n 	 � � �� ��  � �

� @
Thus for piecewise linear finite elements on � � one has ��	 �

and (6) requires first
order convergence.

P.3 The pair � � �� � � � � �  is � l -stable, i.e.,

� ���
����� ��

�����
����� ���

� � � �  � � ?  �k ��k � � ?��� k � k � � ?� � � � � (7)

for some fixed constant � � (depending on
� � � ).

P.4 It is well-known that (7) implies that� � � � � � �v � � ?��� 	 � � � �v � � ?� � � 8 � / � �� � � (8)

uniquely defines a projector
� � � n � l � � � �  � � � � such thatk � � � � k � � ?��� � � Q �� k � k � � ?��� � � / � l � � � � m@ (9)

Here we require in addition that the adjoint
� �� � n � l � � � �  � � �� � of

� � � is also bounded

on 9 � � l� � � � � �  k � �� � ��k � � ��
� � ' ?  � - � � � k � k ���	��
� � ' ?  � - @ (10)

The pair � � �� � � � � �  is called admissible if P.1 – P.4 hold.

Remark 1 When 
 � � is quasi-uniform, P.4 is a consequence of (9) and the approximation
property (6) in P.2 provided that the spaces

� � � also satisfy a standard inverse property.
Only if the meshes are merely locally quasi-uniform, requirement P.4 requires attention.

The space of discrete multipliers is now defined as

� � n 	 ? �� � � � � � (11)
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where, again, the index � indicates the dependence on 
 � � and should not be viewed as mesh
size parameter when used as a subscript. Moreover, the finite element functions that satisfy
the mortaring conditions, form the space1 � n 	�� � � / & � � 
 ��� � � 7Gt	 � 8 7 � / � � ! @ (12)

The discrete counterpart to (3) now reads

� �B0 � � � �  � 
 � � � ��� �  	 � � � � �  � �
� � � � � � �  � � ? � � � � / & � �


 �D0 � � 7 �  	 � � 7 � / � � @ (13)

We will show that, (13) is a stable and accurate discretization of (3), if the pairs � � �� � � � � �  ,� � � / % are (uniformly) admissible in the above sense.

Stability

First we address the stability of (13). In contrast to [KLPV01] we treat (13) as a saddle point
problem. Thus, one has to show that the operators

� � n 	 # � � � �
� � � + n & � � � � �

& �� � � �� (14)

induced by (13) are uniformly bounded and have uniformly bounded inverses with respect to
the underlying meshes. Of course, this depends on the norms for

&
� and

� � which have
yet to be specified. As explained in [BDW99], due to the subtle differences between the
trace spaces 9 � � l � � � �  and 9 � � l� � � � � �  , standard (broken Sobolev norms) turn out to be in-
appropriate. While for quasi-uniform grids appropriate mesh-dependent norms offer a cure
[BDW99, BD98, Woh99b, Woh99a] we wish to reduce the mesh-dependence of norms in
favor of mesh flexibility.

Our main deviation from previous studies therefore lies in the choice of the norms. Recall
that the jumps 6 � � 8 are not required to lie in the spaces 9 � � l� � � � � �  which naturally arise in the
analysis of the continuous problem. However, it will be seen that it suffices to measure their
projection into the trace spaces

� �� � � 9 � � l� � � � � �  in the norm k � k ���	��
�	� ' ?��� - . In fact, for any

� � / & � we define k � � k>l � � � n 	 k � � kml ��� ' � B?� � � � k � �� � 6 � � 8 kml� � � 
�	� ' ? �� - � (15)

while for 7 / � � � � n 	 � ?� ��� � ��9 � � l� � � � � �   � we take the natural dual normk�7 kml Q � � l n 	 B?� � �	� k 7 kml ' � �	��
�	� ' ?��� -B-�� @ (16)

Note that any mesh-dependence of k � k ��� � enters only implicitly through the projectors
� �� � .

First we address the continuity of the bilinear forms � � � � �  � 
 � � � �  with respect to these
norms. Since for � � / & � and 7 � / � �= � � � � 7 �  � � ?��� =�	d= � � �� � � � � 7 �  � � ?� � = � k � �� � � � k ���	��
� � ' ?  � - k�7 � k ' � � ��
� � ' ?  � -B-�� �
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one has, in view of (15), that= � �B0 � � � � >= 3� k�0 � k ��� � k � � k ��� � � = 
 � � � � 7 � e= 3� k � � k ��� � k�7 � k Q � � l � (17)

holds for any � � � 0 � / & � , 7 � / � � , where the constants depend on the constant � � in P.3.
The first step towards confirming stability of the discretization is to confirm the ellipticity

of the bilinear form � � � � �  on the kernel1 � n 	�� � / & � n 
 � � � 7Gt	�� for 7 / � � !
of the constraints.

Proposition 1 The bilinear form � � � � �  is elliptic on
1 � , i.e.,

� � � � � ek ��kml��� � for all � / 1 � @ (18)

Proof The inequality � � � � � ek ��k l��� ' for � / 1 � , can be inferred by the analysis in [BMP94].
So the desired ellipticity estimate stated in the theorem follows as soon as we have proved
that also � ?  � � � k 6 � 8 k l � � l � � � ?��� 3

� k � k l� � ' for � / 1 � . But this is obviously true since
by definition of

� � � one has for � � / 1 � and any
� / � l � � � �  that � � �� � 6 � � 8 � �  � � ?��� 	� 6 � � 8 � � � � �  � � ? �� 	 � @ Thus

� �� � 6 � � 8 	 � which completes the proof.

Since the continuity (17) and ellipticity (18) have already been established, it remains to
verify the validity of the LBB-condition to ensure the stability of the discretization (13), i.e.,
the uniform bounded invertibility of the mappings

� � from (14); see, e.g. [BF91].

Theorem 1 Assume that the pairs � � �� � � � � �  are admissible (i.e., that P.1 – P.4 hold) and
that the meshes 
 � are shape regular and locally quasi-uniform. Then there exists a constant�d5 � depending only on the mesh parameters and on the constants � � � � � in P.3 and P.4,
respectively, such that the pairs of spaces

&
� � � � defined above satisfy the LBB-condition

� ���� ����� ��� �
�������


 ��� � 7Gk � k � � � k 7 k Q � � l � � @ (19)

The main ingredient in the proof of Theorem 1 is the following observation.

Lemma 1 Under the hypotheses of Theorem 1 there exists for every 7 / � � � an element
� � / � �� � such that ��� � � 7G � � ?� � � � � k � � kml� � � 
�	� ' ? �� - � k 7 k>l ' � � ��
� � ' ?� � -B-�� 	 (20)

holds for some constant � 5 � independent of ��� and 7 .

Proof Given any 7 / � � � , one can find, by definition, a � / 9 � � l� � � � � �  such that

k 7 k ' ���	��
�	� ' ?��� -B- � � � � � � 7G � � ?���k ��k � �	��
�	� ' ?��� - 	 � ��� � � � � 7G � � ? ��k � k ���	��
�	� ' ?��� - 	 � � � �� � � � 7G � � ?� �k ��k � �	��
�	� ' ? �� - @
Thus, setting ��� n 	 � �� � � / � �� � , we conclude, in view of (10),

� Q �� k � � k � � � 
�	� ' ?  � - k 7 k ' ���	��
� � ' ? �� -B- � � k ��k � �	��
�	� ' ? �� - k 7 k ' � � ��
� � ' ?  � -D-�� � � ��� � � 7G � � ?��� �
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which completes the proof.

We are now ready to complete the
Proof of Theorem 1. Given 7 / � � let 7 � � denote its component corresponding to

� � � � % .

We define a suitable � / & � as follows. For each
� � � let � � � / � �� � be the function constructed

in Lemma 1 satisfying (20). Bearing in mind, that, by our notational convention, � � denotes
the non-mortar side of

� � � , we define
�� � � to be the harmonic extension of the boundary data

�� � � � �  	 �
� � � � �  if � / � � � �� if � / � � � 
 � � � �

and define ��= �  n 	 � ?� � � �
�

�� � � as the superposition of these extensions. In particular, �

vanishes identically on any subdomain � � that is never a non-mortar side. Hence� 6 � 8 � 7G � � ? ���	d��� � � � 7G � � ? �� 5
� k � � � kml� � � 
�	� ' ? �� - � k�7 kml ' � � � 
�	� ' ?� � -B- � @ (21)

This therefore implies alsoB?����� �
�

� 6 � 8 � 7G � � ?��� 5

�

B?� � � �
�

k �� � � k l� � ' �  - � k 7 k l ' ���	��
�	� ' ?��� -B- �5

� k ��k l� � ' �  - � B
�
k�7 k l ' � �	��
�	� ' ? �� -B- � @ (22)

Since clearly k � �� � ��k � � � 
�	� ' ? �� - 	 k � � � k � � � 
�	� ' ?� � - it follows that� B?�����	� k � k>l � � '
�
 -�� � � l � � B? ���� � k � � � kml� � � 
�	� ' ?� � - � � � l � k ��k ��� � @

Combining (21) and (22), we have� B?����� � k�7 kml ' � � � 
�	� ' ?� � -B-�� � � � l��� � � B?� � �	� k ��kml� � '
�
 - � � � l � � B? ���� � k � � � kml� � � 
�	� ' ? �� - � � � l�� 	
3

�

B?� ��� � � 6 � 8 � 7G � � ?��� �
and conclude that


 � � � 7G 5
� k ��k ��� � k�7 k Q � � l . This establishes the validity of the LBB-condition.

Error Estimates

We wish to discuss next the accuracy of the above discretizations. For simplicity we confine
the discussion to piecewise linear trial spaces on the subdomains so that the approximation
order is � 	 �

. Accordingly the approximation order of the multipliers is assumed to be� � � 	 � . The higher order case can be treated analogously provided the solution 0 of the
continuous problem (3) has enough regularity on each � � . Moreover, we will always assume
that the pairs � � �� � � � � �  are admissible and that the meshes 
 � are shape regular and locally
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quasi-uniform. Let us denote by �� � the maximal mesh size in � � . If 0s= �  / 9 l �;� �  , then
one hopes that the discrete solution 0 � of (13) satisfies an estimate of the type

k 0 � 0 � kml ��� � � � � �����B
� ��� �� l � k 0skmll �

�
 @ (23)

We want to identify the essential obstructions encountered when going about an estimate
of the type (24). The usual point of departure is Strang’s second lemma, see e.g. [Bra01],
p. 107 or [BDW99], which says that

k 0 � 0 � k ��� � � � � � ���
� � ��� � k 0 � � � k ��� � � � ���

� � ��� �

� � � � @�'� 6 � � 8 � �k � � k ��� � � @ (24)

Since � � / 1 � , due to the orthogonality relation (12) we may subtract an arbitrary element7 � / � � from the conormal derivative of 0 in the consistency error so thatB? �� � � � � � 0�\� � 6 � � 8  � � ?  � 	 B? �� � � � � � 0�\� � 7 � � 6 � � 8  � � ?  �
� B? �� � � k � � 0�\� � 7 � k ' � �	��
 ' ?� � -D- � k 6 � � 8 k � � l � ?��� @ (25)

We know from the trace theorem that k 6 � � 8 k � � l � ?��� � � � k � � k � �
�
 � k � � k ���

�
�  . Moreover,

when the
� � � have approximation order � � � 	 � , a standard duality argument ensures that

we can find a 7 � / � � � such that
�
�
�
�
� � 0�\� � 7 � ���� ' � � � 
 ' ? �� -B-�� � � �� � ���� � � 0�\� �

�
�
� � � l � ?� � � � �� � k ��0 k � �

�

� � �� � k 0sk l �

�

�

where we have used the trace theorem again. Therefore, by using the Cauchy–Schwarz in-
equality, one obtainsB? �� � � � � � 0�\� � 6 � � 8  � � ?� � � �

� B?��� � � ��`l � k�0 k>ll �
�
 � � � l k � � k � � '

� �
� B?��� � � ��`l � k�0 k>ll �

�
 � � � l k � � k � � � �

so that the quotient in (24) is bounded by �
� � ?  � � � �� l � k 0sk ll �

�

� � � l .

It remains to establish an analogous bound for the approximation error
� ��� � � ��� � k 0 �

� � k ��� � in (24). To this end, note first that 6 0 � � � 8 	 � 6 � � 8 and for � � / 1 � one has
� �� � 6 0 � � � 8 	�� . Hence, � ���

� � ��� � k 0 � � � k ��� � 	 � ���
� � ��� � k 0 � � � k ��� ' @ (26)

The right hand side of (26) has indeed been shown in [KLPV01] to be bounded by the right
hand side of (23) under a certain assumption M1. This condition requires that the meshes



36 BRAESS, DAHMEN

induced by 
 � and 
 � match along the boundary � � � � of the interface
� � � . Condition M1

allows one to employ local extensions from 9 � � l� � � � � �  to deal with the constraints.
In order to avoid this constraint we prefer an alternative and start with an unconstrained

approximation of 0 on each subdomain � � . In fact, from the inf-sup condition in Theorem 1
above and Fortin’s general argument [Bra01, Remark III.4.10] we conclude that the estimate
in

&
� yields an upper bound for the approximation in the kernel

1 � ,� ���
� � ��� � k 0 � � � k � � � � � � ���

� � ����� k 0 � � � k � � � @ (27)

In this case, however, the full norm has to be used, i.e., the terms k � �� � 6 0 � � � 8 k ���	��
�	� ' ?��� - have

to be estimated as well (in particular, when 6 0 � � � 8 "/ 9 � � l� � � � � �  ). Since 0 / 9 l �;�< , there
are many ways to construct an approximation � � in

&
� such that

k 0 � � � k>l � � ' � � � �����B
� ��� ��`l � k�0 k>ll �

�

�

(28)

e.g. Lagrange interpolants or Clément’s quasi-interpolants would do. Thus, it remains to
estimate the terms k � �� � 6 0 � � � 8 k ���	��
�	� ' ?��� - which are actually more problematic. Of course,

the problem is that under the above assumptions 6 0 � � � 8 is not necessarily in 9 � � l� � � � � �  so
that one cannot directly bound k � �� � 6 0 � � � 8 k � �	��
� � ' ?��� - by k 6 0 � � � 8 k � �	��
� � ' ?��� - (see (10) in

P.4) and use then the trace theorem in order to ensure ultimately thatk � �� � 6 0 � � � 8 k ���	��
� � ' ?� � - � � � k 0 � � � k ���
�
 � k�0 � � � k � �

�
�  � (29)

thereby obtaining again the same bound as in (28) and thus confirming (23). Therefore we
will discuss next some instances where (29) is indeed true which incidentally will shed some
light on the type of obstructions arising in the general case.

First of all, since 6 0 8 	�� we have 6 0 � � � 8 / 9 � � l� � � � � �  if and only if 6 � � 8 / 9 � � l� � � � � �  .
For

� 	 �
this can always be arranged by choosing � � to interpolate 0 at the cross points

(without requiring the whole mortar discretization to enforce continuity at cross points!) In
the case

� 	 �
this is not possible. This is exactly where condition M1 in [KLPV01] comes

into play which requires that the meshes in � � and � � match along � � � � so that 6 � � 8 can

indeed be arranged to be in 9 � � l� � � � � �  , e.g., by choosing � � as the nodal interpolant. In this
case (10) in P.4 can be invoked to estimatek � �� � 6 0 � � � 8 k � �	��
�	� ' ? �� - � � k 6 0 � � � 8 k � �	��
�	� ' ?��� -
which indeed leads to (29) and thus is an instance where (23) can be confirmed. Hence in
summary, one way to ensure an estimate of the type (23) is to sacrifice some of the mortar
flexibility by enforcing interface boundary matching condition M1.

On the other hand, one could hope that 6 0 � � � 8 fails to be in 9 � � l� � � � � �  by such a small
deviation so that the smoothing caused by the application of

� �� � keeps k � �� � 6 0 � � � 8 k � � ��
� � ' ?� � -
comparable to k 6 0 � � � 8 k � � l � ?  � which would again lead to (29). One way to pursue this line
is to apply an inverse inequalityk � � k � �	��
� � ' ?��� - � � k � Q � � l � � k � � ? �� � � � / � �� � � (30)
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which is to be understood as follows. Following [DFG � 01] we denote by � a mesh function,
namely the unique piecewise linear function that interpolates the maximal diameter of all tri-
angles sharing the corresponding nodal point. Then estimates of the form (30) are established
in [DFG � 01]. Now denoting by � � � � � the mesh size functions induced on

� � � by the mesh
on � � and � � , respectively, we havek � �� � 6 0 � � � 8 k ���	��
� � ' ?� � - � � k � Q � � l� � �� � 6 0 � � � 8 k � � ?� �E@ (31)

Now if
� �� � were sufficiently local in the sense that the following condition

P.5: k � Q �� � �� � ��k � � ?� � � � k � Q �� ��k � � ?��� � (32)

holds, this combined with (32) would allow us to infer from (31) thatk � �� � 6 0 � � � 8 k � �	��
�	� ' ?��� - � � k � Q � � l� 6 0 � � � 8 k � � ?  �E@ (33)

We recall that � � is the non-mortar side. Arranging now for � � n 	 � � = �  , � � n 	 � � = � �
that the restrictions � � = ?��� , � � = ?��� to

� � � are suitable local Clément approximations, standard
arguments yieldk � Q � � l� 6 0 � � � 8 k l� � ?� � � � B

� �� �� Z ��� Q �
� l� � � �
� � l� � �\ l = 0 = l� � l � �� �

� B
� � �� � � � �� � � ��� ���� � ��� Q �

� l� � � �
� � l� � � �  l = 0s= l� � l � �� � _ � (34)

where
�
 is the union of supports of basis functions overlapping 
 . Thus introducing

� � � n 	 � � ��
� ?� � 	 � � � �  2 � � � �  � (35)

we obtain from (34) by summing over 
k � Q � � l� 6 0 � � � 8 k l� � ?��� � � l � � � �� l � � �� l� � k 0sk l� � l � ?  � @
This estimate combined with the trace theoremk � �� � 6 0 � � � 8 k � � ��
� � ' ?� � - � �
� � � � �� � k 0sk l �

�
 � �� � k�0 k l �

�
�
�s�

(36)

also yields the estimate (23) upon summing over
�

.

Theorem 2 Suppose that all the meshes 
 � are shape regular and locally (not globally) quasi-
uniform. If P.5 holds, then the matching condition M1 from [KLPV01] can indeed be abun-
doned to obtain still an estimate of the form (23), provided that there exist a uniform bound

� � � � � @ (37)

Of course, if the meshes are quasi-uniform, the above argument simplifies and one arrives
at the situation considered in [BDW99, BD98]. Note also that (37) is a weak constraint
that tends to be satisfied automatically when the meshes are determined by reasonable error
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estimators since a possible singularity on or near an interface will affect a neighborhood on
both sides.

Finally, it should be noted that estimates of the form (23) are ultimately of limited value
when dealing with highly non-quasi-uniform meshes. In fact, they would be only useful when
the solution 0 has deficient regularity so that the local 9 l norms (or even 9 � -norms for� 3 �

) are not appropriate. This issue is beyond the scope of the present discussion and will
be addressed elsewhere.

Dual Bases

We wish to apply our approach to the so called dual bases mortar method that has been pro-
posed in [KLPV01] for

� 	 �
and in [Woh99a] for

� 	 �
, see also [BP99] for a similar

approach in the wavelet context. Note that the assumptions in [KLPV01] are phrased in a
somewhat different way but Lemma 3.2 in [KLPV01] relates the requirements there closely
to the present formulation P.4. Specifically, in [KLPV01] two types of Lagrange multiplier
spaces

� � are discussed for piecewise linear trial functions in

&
� . Finite volume discretiza-

tions on dual meshes are shown to satisfy P.1 – P.4 where, however, P.4 can only be ensured
to hold under certain restrictions on local mesh size ratios.

In contrast, the so called dual bases mortar method realizes P.1 – P.4 for any locally quasi-
uniform shape regular meshes without any quantitative mesh constraints. Let us briefly recall
the main ingredients.

The multiplier space
� � � is most conveniently defined with the aid of the following map-

ping
� � � . Let 
 be any triangle in 
 � � and let for any � / � �� � the values of � at the nodes � �

of 
 be denoted by � � . Then
� � � � 	 �

is defined as the unique piecewise linear function on

 � � whose restriction to 
 is determined by its nodal values

� �
, for

� 	 �
as follows:

(i)
� � n 	 � � � � �  � � � for all vertices � "	 
 "	 � of 
 when none of these vertices belongs
to � � � � ;

(ii) If exactly one vertex, say � � lies on � � � � set
� � n 	d���  � � �  2 � ,

�  n 	 � � �  � � � �  2 � ,� � n 	f� � � � � � �   2 � ;

(iii) If exactly two vertices �  � � � belong to � � � � let
� � 	 �  	 � � n 	 � � ;

(iv) If all vertices of 
 belong to � � � � set
� � 	 �  	 � � 	 � � where � � is the nearest

interior node to 
 .

Now let us denote by
� �

, � � /�� � � , the standard piecewise linear basis functions for
� �� �

normalized by
� � � �  t	 1 � �  , where � � � is the set of interior nodes of 
 � � . Let

� � n 	 � � � � � � � � /�� � �
and define

� � � n 	 � � � � � � � n � � /�� � � ! . This yields

� � � � � �  � � ?� ��	�� � � "	�$ � � � � � � �  � � � 	 = 
 =� � � � /�
 � (38)

so that ��� � � � � 	 ��� �
%
�� � � (39)



WHAT ARE THE RIGHT NORMS? 39

which is P.1. More precisely, one concludes from the above relations� � � � � �  � � ?����	 � � 1 � � � � � � n 	 �

�
B

���
� � � � = 
 = � � � Q �� @ (40)

Thus one has the explicit representations

� � � � 	 B� � ���  � � � � � �  � � ?  � � Q �� � � � � �� � �U	 B� � ��� �� � � � � �  � � ?  � � Q �� � � @ (41)

Since constants are easily seen to be locally reproduced in
� � � , it is now easy to verify

the approximation property P.2. Likewise biorthogonality (40) easily leads to P.3, see also
[KLPV01] while P.4 has also been established already in Lemma 3.2 of [KLPV01]. Hence all
the requirements P.1 – P.4 hold in this case. Thus to apply the above reasoning we only have
to discuss (32). For any 
 / 
 � � one has for

� � n 	 ��� ��� � � 	 � ����� � � , �
 n 	 � � � � n � � /�
 !k � Q � � l � �� � � k � � � � � � Q � � l�
B� � � � � Q �� k � k � � ) � k � � k � � ) � k � � k � � ) � � � � Q � � l� k � k � � �� �

where we have used that, in view of the � � normalization of the basis functions
� � � � �

, the
local quasi-uniformity of 
 � � and (40), � Q �� k � � k � � ) � k � � k � � ) � � � . Hence (32) follows from
summing over 
o/ 
 � � . This confirms that P.5 holds as well.

Corollary 1 The error estimate (23) holds for the dual basis mortar method provided the
meshes satisfy (37).

If the Lagrange multiplier spaces did not have local dual bases either
� �

or
� �

in (40)
would have global support but would, by Demko’s theorem, exhibit a certain exponential
decay. This would still entail the validity of condition P5 but under certain constraints on the
local mesh size ratios, as expected.
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4 A New Look at FETI

Susanne C. Brenner1

Introduction

The Finite Element Tearing and Interconnecting (FETI) Method is usually formulated in terms
of matrices and vectors (cf. [FR91], [MT96], [PJF97], [Tez98], [RF99], [MTF99], [KW01]
and the references therein). In this paper we give a coordinate-free formulation of the FETI
method and construct a new FETI preconditioner in terms of this formulation, which enable
us to analyze it within the additive Schwarz framework. We will present the ideas for a
second-order model problem on a polyhedral domain � � � � . Details of the analysis can be
found in [Bre00] (which deals with the 2D analog) and a forthcoming paper on the 3D FETI
preconditioner.

Let � � � @e@>@ � � � be tetrahedra which form a quasi-uniform triangulation of � with mesh-
size 9 . Each of these subdomains is the union of tetrahedra from the quasi-uniform triangu-
lation 
 of � , the mesh-size of which is denoted by � . Let

1 �;�< � 90�� � �< be the
� � finite

element space associated with 
 . The model problem is:
Find 0 / 1 � �< such that

� �B0 � �vt	 � � �
� � � 8 � / 1 �;�< � (1)

where
� / � l �;�< and the variational form � � � � �  is defined by

� � � � �  	 �B
� ��� � � ��� � �  � � � � � ��� � � j	 	 � ���

�
� � � � � � � @ (2)

The coefficients 	 � � @>@e@ � 	 � in (2) are positive constants.
For simplicity we assume that ��� � ! ��� is not zero-dimensional. We say that � �

is (i)
anchored if ��� � ! ��� contains a face of � � , (ii) hinged if ��� � !o��� contains an edge of � �
but no faces, and (iii) floating if ��� � !o� ��	! .

Remark 1 The construction and analysis of the 3D preconditioner in this paper can be ap-
plied (with modifications) to the general case where � � � @e@>@ � � � are nonoverlapping polyhe-
dral subdomains which do not necessarily form a triangulation of � and whose boundaries
can intersect � � in zero-dimensional sets.

A Coordinate-Free Formulation of FETI

Let
� � 	 ��� � 
T� � and

� 	
� �� ��� � � be the interface of the subdomains. The space
1 � �  (

�1 � �< ) of discrete harmonic functions is the orthogonal complement of the space � � / 1 �;�< n
� 	 � on

� !
with respect to � � � � �  . By solving (in parallel) a discrete Poisson equation on

each subdomain, the problem (1) can be reduced to the following problem on the interface:
1Department of Mathematics,University of South Carolina, Columbia, SC 29208, USA.



42 BRENNER

Find �0 / 1 � �  such that

� � �0 � �vt	 � � �
� � � 8 � / 1 � �  @ (3)

Let
1 � � �  be the space of discrete harmonic functions on � �

which vanish on ��� � !���� ,
and �1 	 1 � � �  � 1 � � l  � � � �

� 1 � � �  @
Let �

�
(resp. �

�
or � � ) be the set of nodes on

� �
(resp. the open edge � or the open face

�
of a subdomain) and � 	 � �� ��� � �

. For each � / � we define
� $ to be the index set of the

subdomains neighboring � , i.e.,� $ 	 � � � $ ��� n � / � � � ! �
and for each

� � � / � $ we define 7 $ � � � � / �1 � (the dual space of �1 ) by

7 $ � � � � � �� t	 � � ���\ � � � ���  � ��� �� 	 ��� � � @>@e@ � � �  / �1 @ (4)

The subspace of �1 � spanned by all such 7 $ � � � � ’s is denoted by
� $ and the space of Lagrange

multipliers is
� 	�� $ ��� � $ .

In terms of
�

, which enforces the continuity along
�

, the interface problem (3) can be
reformulated as:

Find � �� � �  / �1 � �
such that

�B
� ��� � � � � � � � �  �

� � � �� � 	 �B
� ���

� �
�

�
� � � � 8 �� / �1 �

(5)
� 7 � �� � 	 � 8 7 / � �

(6)

where �� 	d� � � � @>@>@ � � �  , �� 	d��� � � @e@>@ � � �  and
� � � � � is the canonical bilinear form between

a vector space and its dual space.
The solution of (3) is related to �� by �0���

�
� 	 � �

for
� � $ ���

.

Remark 2 Throughout this paper we always keep elements of
1 � � �  � or �1 � on the left-hand

side of the canonical bilinear form
� � � � � , and members of

1 � � �  , �1 or their quotient spaces
on the right-hand side.

The FETI method solves (5)–(6) in the following way.
Let the Schur complement operator

� � n 1 � � �  � � 1 � � �  � be defined by� � �
	 � � 	 l � 	 � � � 	 � � 	 l  8 	 � � 	 l / 1 � � � �@ (7)

Let �� � � � 	 � � / 1 � � �  n � � � 	 � ! , ���� � � �  � 	 � � / 1 � � �  � n � � � � � 	 �8 � / Ker
� � !

, and the pseudo-inverse
� � n ���� � � �  � � � 1 � �  2 �� � � � be defined by

the following properties:� � � � � �� � l � 	 � � l � � �� � � � 8 � � � � l / ���� � � �  � �� � � �� � 	 � 8 � / ���� � � �  � �� �� � � 	 	 � � 	 8 	 / 1 � � �  � (8)

where � � n 1 � � �  � � 1 � � �  2 �� � � � is the canonical projection.
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Remark 3 �� � � � is the space of constant functions for a floating � �
and �� � � � 	 � � ! for

an anchored or a hinged � � , in which case
� �� 	 � Q ��

.

Let �� n �1 � � �1	� be the product of the
� �

’s. Then

�� � �� 	��� � � � � � � �
� �� � � �

and the pseudo-inverse �� � n ���� � ��  � � � �1U2 Ker �� is the product of the
� �� ’s.

Let
c
� / �1 � be defined by

� c
�
� �� � 	 �B

� ���
���

�

�
� � � � 8 ���	d��� � � @e@>@ � � �  / �1 �

(9)

and let
� � / �

satisfy � � � � �� � 	 � c
�
� �� � 8 �� / �� � �� @ (10)

It follows from (5), (7), (9) and (10) that
� � 	 � � � � / � !q���� � ��  � . Moreover, equation

(5) can be written as �� �� � � � 	 c
�
� � � @ (11)

Since
c
�
� � � / ���� � ��  � by (10), we obtain from (8) and (11) the relation

� �� � �� � � � 	 �� � � c � � � �  � (12)

where � n �1 � � �1�2 �� � �� is the product of the � � ’s. Equation (6) and (12) then imply� � � �� � � � � 	 � � � �� � � c � � � �  � 8 � / � ! ���� � ��  � @ (13)

Equation (13) is a symmetric positive definite (SPD) system on� 	 � ! ���� � ��  �
which determines

� � . Once we have found
� � (and hence

� 	 � � � � � ), then we can recover�� (and hence �0 ) in two steps. In the first step we determine (by a parallel solve) �� � / �1 with
the property that

� �� � 	 �� � � c � � �  @ (14)

In the second step we find �� � / �� � �� such that� 7 � �� � � 	 � � 7 � �� � � 8 7 / � @ (15)

Then �� 	 �� � � �� � and
� 	 � � � � � satisfy the system (5)–(6).

Equation (13) can be rewritten as
� � � � 	 � � �

where
� � n � � � � �

and � � / � � 	 �1U2 � � � � �� � ��  are defined by� � ��� ��� � 	 � � � �� ��� � 8 � � � / � �
(16)

and
� � � � � � 	 � � � �� �<� c � � � �  � 8 � / �

. The operator
� � is therefore at the heart of the

FETI method.
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Remark 4 The underdetermined system � � �  is solvable since
� � ! �� � �� 	 � � ! @ (17)

The overdetermined system � � �  is solvable because � � �  and � � �  imply
� 7 � �� � � 	�� 8 7 /

� !q���� � ��  � . Its solution is also unique because of � ���  .
Additive Schwarz FETI Preconditioners

Let
� � n �1 � 	 1 � � �  � � � � �

� 1 � � �  � � � 1 � � �  � be the restriction map. Then
� �

maps���� � ��  � into ���� � � �  � and we can express (16) as

� � 	 �B
� ��� � � � �  D � �� � � � �  �

where
� n � � � ���� � ��  � is the natural injection. It is therefore natural to precondition

� � ,
which is a sum of SPD operators, by the sum of the “inverses” of the SPD operators, i.e., the
FETI preconditioner � n � � � � �

should have the form

�b	 �B
� ��� � � � � � D� � (18)

where � � n ���� � � �  � � � �
is “inverse” to

� ���
in the sense that � �� ��� � � � ��� 	 the

identity operator on
�

, i.e.,
�B

� ��� � � � � � 	 � 8 � / � @ (19)

Remark 5 It follows from � ���  that � is an additive Schwarz preconditioner and hence can
be analyzed by the well-known additive Schwarz theory (cf. [SBG96] and the references
therein).

We will define the operator � � in terms of three operators.
For each � /�� �

, we define 1 $ � � / 1 � � �  by

1 $ � � ���� 	 � �
if � 	 � �� if � /�� � 
 � � ! @

Note that �&1 $ � � n � / � � !
is a basis of

1 � � �  . For
� / 6 � 2 �v�	�  we define 
 � n 1 � � �  � � ��

by


 � � 	 B$ ��� �

� � � 1 $ � � � B� � ) % 	 D� 7 $ � � � � � (20)

and � � n 1 � � �  � � � 1 � � �  � by� � � � � 1 $ � � � 	 �
�
� 1 $ � � � 2 � B� � ) % 	 D� 	 8 � / � � @ (21)
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The operators 
 � and � � form a partition of unity with
� �

on the space
�

:

�B
� ��� 
 � � � � � 7 	F7 8 7 / � @ (22)

Remark 6 The operator � � is a diagonal scaling operator which together with 
 � forms an
averaging process that yields � � �  and also ensures the bound for the condition number of� � � is independent of the coefficients 	 � � @e@>@ � 	 � . This scaling technique is well-known.

Finally we note that if
� n � � � �

is a projection operator and the map � � n ���� � � �  � � ��
is defined by

� � � � 	 � 
 � � � � � 8 � � / ���� � � �  � � (23)

then (19) follows from (22). Hence the crucial step in defining the additive Schwarz FETI
preconditioner � is the construction of the projection

�
.

Let 7 / �
and

� 7:	 7 � 7 � @ (24)

Then
�

is a projection from
�

onto
�

provided that 7 � 7 � is linear and� 7 � � �� � 	 � 7 � �� � 8 �� / �� � ��o� (25)7 � 	 � if 7 / � @ (26)

Remark 7 Once we have chosen a solution space for (25), we can take 7 � to be the member of
the solution space that minimizes an appropriate inner product norm. This will automatically
guarantee that 7 � 7 � is linear and (26) is satisfied.

A New 3D Preconditioner

Let � (resp. � ) be the set of vertices (resp. (open) edges) of floating subdomains and
��� 	� $ � � � $ . For � / � we define� � 	�� � � $ ��� n � � ��� � ! �

and for
� � � / � � , we define

7 � � � � � 	 �= � � = B$ ����� 7 $ � � � � @ (27)

Let the space
� � � �

be generated by all such 7 � � � � � ’s and
��� 	 � �

� � � �
.

The solution space of the projection equation (25) is then chosen to be
�
	 	 ��� � ���

,
where the subscript � stands for wire-basket.

Remark 8 Equation (25) is solvable in
�	

because � is the only �� / �� � �� annihilated by
all 7 � / ��	

.
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According to Remark 7, we still need to introduce an appropriate inner product on
��	

in order to complete the definition of
�

.
Let � (resp. � or

�
) be a vertex (resp. an open edge or an open face) of � �

, and �� $ � � / �1
(resp. �� � � � / �1 or �� � � � / �1 ) be characterized by (i) the $ -th component of �� $ � � (resp. �� � � � or�� � � � ) equals 1 at � (resp. the nodes in � or

�
) and vanishes at all the other nodes in �

�
, and

(ii) all the other components of �� $ � � (resp. �� � � � or �� � � � ) vanish.
For � / � , 7 $ / � $ and �� 	 � � � � @>@e@ � � �  / �� � �� , where the � � ’s are constants, we

have � 7 $ � �� � 	 � 7 $ � B� � ) % � � �� $ � � � @ (28)

It is easy to see (cf. (2) and (44) below) that

� � B� � ) % � � �� $ � � � B� � ) % � � �� $ � � � � �
B
� � ) % 	 � � l� @ (29)

Remark 9 To avoid the proliferation of constants, we use the notation � � � to represent
the statement that � � constant � � , where the constant is independent of the mesh-sizes, the
number of subdomains and the coefficients 	 � � @e@>@ � 	 � . The notation � � � is equivalent to� � � and � � � .

In view of (28) and (29), it is natural to define

k 7 $ k � % 	 �����
�

����� % � 
��� �
� 7 $ � � � � ) % � � �� $ � � ���� � � � ) % 	 � � l�  � � l 8 7 $ / � $ @ (30)

Similarly, for 7 � / � �
and ��U	d� � � � @>@>@ � � �  / �� � �� , we have� 7 � � �� � 	 � 7 � � B� � ) � � � �� � � � � @ (31)

It is again easy to see (cf. (2) and (44) below) that

� � B� � ) � � � �� � � � � B� � ) � � � �� � � � � ��9 B
� � ) � 	 � � l� @ (32)

In view of (31) and (32), we define

k�7 � k � � 	 � ���
�

����� � � 
��� �
� 7 � � � � � ) � � � �� � � � ���9 � � � ) � 	 � � l�  � � l 8 7 � / � � @ (33)

Since k � k � % and k � k � � are dual to inner product norms, they are also norms of inner
products. If we definek�7 kml �
	 	 B$ � � k�7 $ k>l � % � B � � � k 7 � k>l � � 8 7 / ��	 �

(34)

where 7�	 � $ � � 7 $ � � �
� � 7 � , 7 $ / � $ and 7 � / � �

, then k � k � 	 is also an inner
product norm.

We can now define the projection operator
�

by (24), where 7 � / ��	
is the solution of

(25) with the minimum
��	

norm. The preconditioner � is then given by (18), (20), (21) and
(23).
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Remark 10 The computation of the minimum norm solution 7 � of (25) in the space
��	

is
the “coarse problem” that provides global communication among the subdomains.

Note that both k � k � % and k � k � � can be computed without knowing the triangulation 

if we use appropriate bases. The case of k � k � � is clear from (33) if we use the basis � 7 � � � � � � n� / � � 
 � � � ! , � � 	 � � � � � ! . For k � k � % we use the basis � � � � l 7 $ � � � � � n � / � $ 
 � � � ! ,� � 	 � � � � $ ! . Let 7�	 � � � ) % ��� � ��� c �'� �\� � l 7 $ � � � � �R . Using (4) we can rewrite the right-hand
side of (30) as

� ���
�

����� % � 
��� � � �
� l � � � ) % ��� � ��� c � � � � � � ��� ��� � � � ) % 	 � � l�  � � l 	 � ���

�
����� % � 
��� � � � � ) % ��� � ��� c � � � � � � ��� � � � � ) % 	 � � l�  � � l �

which shows that k � k � % can indeed be computed without knowledge of 
 .
Hence the coarse problem is mesh-independent and the coefficient matrix for the coarse

problem can be computed and factorized once the � �
’s and the 	 � ’s are given. This process

can be carried out prior to or simultaneous with the meshing of the subdomains, and the same
factorization of the coarse problem can be applied to any triangulation of the subdomains.

Remark 11 The complexity of the computation of the coefficient matrix for the coarse prob-
lem is the same as that of a finite element stiffness matrix, where each floating subdomain
corresponds to a node and two such nodes are neighbors if they share a common vertex.

Remark 12 By construction, we havek�7 � k � 	 � k�7	�'k � 	 �
(35)

where 7 � / � 	
is any solution of (25). In Section 4 we will construct a solution 7 � 	� $ � � 7 � � $ � � �
� � 7 � � � , where each 7 � � $ / � $ (resp. 7 � � � / � �

) depends only on the
restriction of 7 to � � � ) % � � (resp. � � � ) � � � ). Then k�7 � k � 	 provides local estimates for 7 �
(and hence

� 7 ) which ensure that the condition number estimate for � � � is independent of�
.

Condition Number Estimates

There is a simple estimate for
� ��
 � ��� � �  . Let

� / � be arbitrary. We have

� � � �� � � � 	 �B
� ���

� � � � � � �� � � � �
and hence, in view of (16) and (19),

� � � � � � � 	 �B
� ���

�� � � � ��  � � � (36)

where
 � 	 � � � / ���� � � �  � and � �� ��� � �  � 	 � . It then follows from (18), (36) and the

additive Schwarz theory that � ��
 � � � � �  � � @ (37)

The following are useful formulas (cf. [MT96]) for
� � � �� � � � and

� � � � �� � � .
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Lemma 1 The following estimates hold n� 7 � �� � 7 � � � l � �����
���� �� ������� ��

� 7 � �� �� � �� ��� 	 � = � � = l� � '
�

� - 	 � � l 8 7 / ���� � ��  � �
where ��U	d��� � � � l � @e@>@ � � �  , and

�� � � � ��  � � � � l � � ���
� � ����' ? � - ������� � �

�  � � � � �	 � � l� = � � = � � ' � � - 8  � / ���� � � �  � @
Remark 13 If � � is a floating subdomain, then without loss of generality we may assume the
� � in Lemma 1 satisfy �

�
� �

� � � 	 � .
Lemma 1 enables us to employ the following estimates, which have been established

in the study of 3D domain decomposition preconditioners (cf. [Dry88], [BPS89], [BX91],
[DSW94], [DW95], [KW01] and the references therein).

Lemma 2 Let � be a regular tetrahedron of diameter 9 and � be any discrete harmonic
function with respect to a quasi-uniform subdivision of � with mesh-size � . Let �o� resp. � or�  be a vertex � resp. an open edge or an open face  of � , and � $ � resp. �

�
or ���\ be the

discrete harmonic function that coincides with � at � � resp. the nodes in � or
�  and vanishes

at all the other nodes on � � .
Then the following estimates hold provided � vanishes on one of the faces or � � � � � 	�� nk � � k l	 
 ' � - � 6 � � � � ��9 2 �  8 = � = l� � ' � - � (38)= � $ = l� � ' � - � = ��= l� � ' � - � (39)= � � = l� � ' � - � 6 � � � � ��9 2 �  8 = � = l� � ' � - � (40)= � � = l� � ' � - � 6 � � � � ��9 2 �  8 l = ��= l� � ' � - @ (41)

If � vanishes on one of the edges, then � � �  and � � �  remain valid, and the following estimates
hold n = � $ = l� � ' � - � 6 � � � � ��9 2 �  8 = � = l� � ' � - � (42)= � � = l� � ' � - � 6 � � � � ��9 2 �  8 l = ��= l� � ' � - @ (43)

In the special case where � is the constant function
�
, we have= � $ = l� � ' � - � � � = � � = l� � ' � - ��9 and = � � = l� � ' � - � 9�6 � � � � ��9 2 �  8 @ (44)

Let
 � / ���� � � �  � and

� 	 � �� ��� � �  � . From (23), (24) and Lemma 1 we have� � � �� � � � �

%
� �

%
l � (45)%

� 	 ��� �
�� � �� ������� ��

� � �� ��� 
 � � �  � � �� � l� �� ��� 	 � = � � = l� � '
�

� -
�

(46)%
l 	 ��� �

�� � �� ������� ��

� 7 � � �� � l� �� ��� 	 � = � � = l� � '
�

� -
�

(47)
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where 7 � / ��	
is the minimum

��	
norm solution of (25) with

7 	 �B
� ��� 
 � � �

 � @ (48)

The term

%
� can be estimated by (20), (21), Remark 13, (39)–(43) and (46). The result is%

� � 6 � � � � �;9 2 �\ 8 l �B
� ���

�� � � � ��  � � @ (49)

In view of Remark 12, we will estimate

%
l by constructing a local solution of (25). For

� / � we define 7 � � � / � �
by

� 7	� � � � �� � � � � 	 � 7 � �� � � � � �� B
� � � ��� �

�� � � � � 8 $ / � � � (50)

where 7 is given by (48) and 	 � � � is the set of the two faces of � �
which have � as an edge.

We also define 7 � � $ 	F7 $ for � / � , or equivalently,� 7 � � $ � �� $ � � � 	 � 7 � �� $ � � � 8 $ / � $ @ (51)

Note that, for a floating subdomain � �
, the $ -th component of the sum of �� � � � � �� � � � � ��� � �� � � �

over all six edges of � � and �� $ � � over all four vertices of � � is exactly the constant function
1. Hence 7	� 	 � $ � � 7	� � $ � � �

� � 7	� � � satisfies (25).

Remark 14 Since 7 � and 7 belong to the space
�

and the functions � � � ) � �� � � � and � � � ) � � �� � � � �� � � � ��� � �� �� � � � � are continuous on the interface
�

, we have

� 7 � � B� � ) � �� � � � � 	�� 	 � 7 � B� � ) � � �� � � � � B
� � � ��� �

�

� �� � � � � � @
Therefore the overdetermined system (50) is consistent and, in view of (4) and (27), has a
unique solution.

It follows from (20), (21), (30), (33), Lemma 1, (44), (48), (50), and (51) thatk�7	� � $ k l � % � B
�

�
��� $ �� � � � ��  � � �

k 7	� � � k l � � � 6 � � � � �;9 2 �\ 8 B
�

�
���
� �� � � � ��  � � �

and hence, by (34),

k 7 � k l � 	 � 6 � � � � ��9 2 �\ 8 �B
� ���

�  � � � ��  � � @ (52)
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Let ���	 ��� � � @>@>@ � � �  / �1 be arbitrary. Definitions (27), (30), (33), (34) and the Cauchy-
Schwarz inequality imply

� 7 � � �� � � � B$ � � k 7 � � $ kml � % � � � l � � B$ � � B� � ) % 	 � � � ���\ l�� � � l� � B �
� � k 7 � � � kml � � � � � l � 9 B�

� �
B
� � ) � 	 � �� l� � � � � � l � (53)

where ��
�
� � 	 = � � = Q � � $ ����� � � ���\ is the mean nodal value of � � on � . It follows from

Remark 13, (38), (39), (42), (44) and the Cauchy-Schwarz inequality that

� � � ���\ l � = ��� �  $ = l� � ' � � - � 6 � � � � �;9 2 �\ 8 = � � = l� � '
�

� - � (54)9 �� l� � � � k���� �  � kml	 
 ' � - � 6 � � � � ��9 2 �\ 8 = � � = l� � '
�

� - @ (55)

Combining (53), (54) and (55), we find

� 7 � � �� � l � 6 � � � � ��9 2 �\ 8 k�7 � k l � 	 �B
� ��� 	 � = � � = l� � '

�
� - �

which together with (35), (47) and (52) yield%
l � 6 � � � � �;9 2 �\ 8 l �B

� ���
�� � � � ��  � � @ (56)

Finally we conclude from (16), (45), (49) and (56),

� � ��� � � � � 6 � � � � �;9 2 �\ 8 l �B
� ���

�� � � � ��  � � (57)

whenever
 � / ���� � � �  � for

� � $ ���
and
� 	 � �� ��� � �  � . It then follows from (18), (57)

and the additive Schwarz theory that� ���)� ��� � �  � 6 � � � � ��9 2 �\ 8 l @ (58)

Combining (37) and (58), we have the following theorem on the condition number ����� � �� .
Theorem 1 There exists a positive constant 5 , independent of � , 9 ,

�
and the 	 � ’s, such

that
����� � �  � 5 6 � � � � ��9 2 �  8 l @
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5 Aitken-Schwarz algorithm on Cartesian grid

M. Garbey , D. Tromeur-Dervout 1 2

Introduction

This paper is devoted to the generalization of the Aitken-Schwarz (AS) domain decomposition
method (resp. Steffensen-Schwarz (SS)) method introduced in [GTD01]. A solver was first
designed to solve linear (resp. nonlinear) elliptic problems in metacomputing framework with
a slow communication network. In [GTD01] the domain decomposition was one dimensional
domain decomposition of multidimensionnal problems. We extend this domain decompo-
sition to multilevel one dimensional AS (resp. SS) domain decomposition. The AS (resp.
SS) method is recursively applied in one different direction at each level. The difficulty is to
generate homogeneous Dirichlet boundary conditions at each level of domain decomposition.
This problem is solved in AS domain decomposition with the superposition principle when
linear problems are solved. A similar shifting technique is also adopted to solve nonlinear
problems with SS. Some results on 2D linear and nonlinear problems are given as examples.

The arithmetical complexity of AS is investigated when the inner solver has linear or non-
linear complexity. Notably, a comparison with the best implementation of a fast solvers such
as FFT on Poisson problem are given. The stability of the Aitken-Schwarz and Steffensen-
Schwarz multilevel domain decomposition methods is investigated with an extensive sensi-
tivity analysis experiment that measures the influence on the convergence history when one
systematically perturbed randomly the subproblem solution at the end of each subdomain
solve.

The plan of this paper is as follows: section 1 recalls the principles of the Aitken-Schwarz
domain decompositions, section 2 describes the extension of the methodology from one di-
mensional domain decomposition to domain decomposition in several space directions, sec-
tion 3 comments on the arithmetical complexity of the method, and section 4 comments on
the stability of the method. Finally, section 5 gives the conclusions and perspectives.

1 Principles of the Aitken-Schwarz method

We are going to describe briefly the numerical ideas behind the Aitken Schwarz method. We
refer to [GTD01] for more details.

For simplicity, we illustrate the concept with the discretized Helmholtz operator � 6 0 8 	C�0 � � 0 ��� 5 � � with a grid that is a tensorial product of one dimensional grids, and a square
domain decomposed into strip subdomains.

Let us consider the homogeneous Dirichlet problem � 6  8 	 �
� � � 	 � � � �  �  � �

� 	 � �
in one space dimension. We restrict ourselves to a decomposition of � into two overlapping
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subdomains � � � � l and consider the additive Schwarz algorithm [Sch80, Lio88, Lio89].

� 6 0 � ���� 8 	 �
� � � � � 0 � ���� � ? � 	 0 �l � ? � � � 6 0 � ���l 8 	 �

� � � l � 0 ����l � ? 
 	 0 � � � ? 
 @ (1)

with given initial conditions 0�� � � ? 
 � 0 � l � ? � to start this iterative process.
To simplify the presentation, we assume implicitly in our notations that the homogeneous

Dirichlet boundary conditions are satisfied by all intermediate subproblems. This algorithm
can be executed in parallel on two computers [Kuz91]. At the end of each subdomain solve,
the artificial interfaces 0 �l � ? � and 0 � � � ? 
 have to be exchanged between the two computers.

In order to avoid as much as possible redundancy in the computation we fix once and for
all the overlap between subdomains to be the minimum, i.e of size one mesh. This algorithm
can be extended to an arbitrary number of subdomains and is nicely scalable, because the
communications linked only subdomains that are neighbors.

However it is one of the worst numerical algorithms to solve the problem, because the
convergence is extremely slow. We introduce thereafter a modified version of this Schwarz
algorithm so called Aitken-Schwarz that transforms this dead slow iterative solver into a direct
fast solver while keeping the scalability of the Schwarz algorithm for a moderate number of
subdomains. The idea is as follows.

We observe that the interface operator T,�D0 � � � ? � �  ? � � 0 �l � ? 
 �  ? 
 OD � �B0 � ���� � ? � �  ? � � 0 � ���l � ? 
 �  ? 
 OD (2)

is linear.
Therefore, the sequence �D0��� � ? � � 0 �l � ? 
  has pure linear convergence that is, it satisfies the

identities:

0 � ���� � ? 
 �  � ? 
 	 1 � �B0 �l � ? � �  � ? �  � 0 � ���l � ? � �  � ? � 	 1 l �B0 � � � ? 
 �  � ? 
  � (3)

where 1 � (resp. 1 l ) is the damping factor associated to the operator � in subdomain � � (resp.� l ) [GH97]. Consequently

0 l � � ? 
 � 0 �� � ? 
 	 1 � �B0 �l � ? � � 0 � l � ? �  � 0 ll � ? � � 0 �l � ? � 	 1 l �B0 �� � ? 
 � 0 � � � ? 
  � (4)

So except if the initial boundary conditions match with the exact solution


at the interfaces,
the amplification factors can be computed from the linear system(4). Since 1 � 1 l "	 � the limit � ? � � � 	 �*� � is obtained as the solution of the linear system (3). Consequently, this gener-
alized Aitken acceleration procedure gives the exact limit of the sequence on the interface

���
based on two successive Schwarz iterates 0��� � ? � � � 	 �*� �v� and the initial condition 0 � � � ? � @ An
additional solve of each subproblem (1) with boundary conditions 0	�? � gives the final solution
of the ODE problem. We can further improve this first algorithm as follows.

Let � � � � � l  be the solution of

� 6 � � 8 	 � � � � � � � � ? � 	 � � � 6 � l 8 	�� � � � l � � � ? 
 	 � @ (5)

We have then 1 � 	 � � ? 
 � 1 l 	 � � ? � @ Consequently 1 � and 1 l can be computed before-hand
numerically or analytically.

Once �D1 � � 1 l  are known, we need only one Schwarz iterate to accelerate the interface
and an additional solves for each subproblems. This is a total of two solves per subdomain.
The Aitken acceleration thus transforms the additive Schwarz procedure into an exact solver
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regardless of the speed of convergence of the original Schwarz method, and in particular with
a minimum overlap.

This Aitken-Schwarz algorithm can be reproduced for multidimensional problems. As a
matter of fact, it can be shown [GTD01] that the coefficients of each wave number of the sine
expansion of the trace of the solution generated by the Schwarz algorithm has its own rate of
exact linear convergence.

We can then generalize the one dimensional algorithm to two space dimensions as follows:
	 step1 : compute analytically or numerically in parallel each damping factor 1 �� for each

wave number
�

from the two point one D boundary value problems analogues of (5)
with the operator � � � 0 �&� � � � 2 � l� � � � l � � � ��  � � �0 �
with � � being the space step in � direction.

	 step2: apply one additive Schwarz iterate to the Helmholtz problem with subdomain
solver of choice (multigrid, fast Fourier transform, PDC3D, etc...)

	 step3:

- compute the sine expansion
�0 � � � ? � � �d	 � � ��� � 	 � @ @ � of the traces on the

artificial interface
� � � � 	 � @ @ � for the initial boundary condition 0�� � ? � and the solution

given by one Schwarz iterate 0G� � ? � � � 	 ����� .

- apply generalized Aitken acceleration separately to each wave coefficients in
order to get

�0 �� � ? � @
- recompose the trace 0 �� � ? � in physical space.

	 step4: compute in parallel the solution in each subdomains � � � �s	 ����� with new inner
BCs and subdomain solver of choice.

So far, we have restricted ourselves to domain decomposition with two subdomains. We
show in [GTD01], that a generalized Aitken acceleration technique can be applied to an ar-
bitrary number � 5 �

of subdomains with strip domain decomposition. Our main result is
that no matter is the number of subdomains, the total number of subdomain solves required to
produce the final solution is still two.

However the generalized Aitken acceleration of the vectorial sequences of the sine expan-
sion coefficients of the interface introduces a coupling between all interfaces.

To be more specific, we obtain a given linear system for each wave number
�

,

�0 � 	 � � � � � �  Q � � �0 � ��� � � � �0 � m@ (6)

and � � has the following pentadiagonal structure:

0 1 � 0 0 ....1 � � �l 0 0 1 � � l ...1  � �l 0 0 1  � l ...

... 1 � � �� Q � 0 0 1 � � � Q �

... 1  � �� Q � 0 0 1  � � Q �

... 0 0 1 � 0
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But we observe first that this generalized Aitken acceleration processes independently
each waves coefficients of the sinus expansion of the interfaces. Second the highest is the
frequency

�
the smallest are the damping factors 1 � � �� � 1 � � � � 1  � �� � 1  � � @ A careful stability

analysis of the method shows that

	 for low frequencies, we should use the generalized Aitken acceleration coupling all the
subdomains.

	 for intermediate frequencies, we can neglect this global coupling and implement only
the local interaction between subdomains that overlap.

	 for high frequencies, we do not use Aitken acceleration because one iteration of the
Schwarz algorithm damps the high frequencies error enough.

The algorithm has then the same structure than the two subdomains algorithm presented
above. Step 1 and step 4 are fully parallel. Step 2 requires only local communication and
scales well with the number of processors. Step 3 requires global communication of inter-
faces in Fourier space for low wave numbers, and local communications for intermediate
frequencies. In addition for moderated number of subdomains, the arithmetic complexity of
step 3 that is the kernel of the method is negligible compared to step 2.

Our algorithm can be extended successfully to grids that are tensorial product of one
dimensional grids with arbitrary (irregular) space step [BGO00], iterative domain decom-
position method such as Dirichlet-Neumann procedure with non-overlapping subdomains or
red/black subdomains iterative procedure.

For nonlinear elliptic problems, the Aitken acceleration is no longer exact. the so-called
Steffensen-Schwarz variant is then a very efficient numerical method for low order perturba-
tion of constant coefficient linear operators - once again we refer to [GTD01] for more details.
We will proceed now with the description of the generalization of the method to domain de-
composition in more than one space directions.

2 Multilevel Aitken-Schwarz and Steffensen-Schwarz Domain
Decomposition

Let us consider first the linear case and denote � the discrete linear differential operator. For
simplicity, we will restrict this presentation to problems in two space dimensions. Once again,
we assume homogeneous Dirichlet Boundary conditions on domain � @ We introduce a first
level of domain decomposition into strips in direction �� 	 �

� ��� � � � � � �
where the � � 	d� � � � � � � � �   � � � � �G are the overlapped rectangles represented in Figure 1.

To proceed with a two dimensional domain decomposition, we introduce a second level of
domain decomposition and decompose each subdomain � � into a set of overlapping rectangles
in direction � , � � 	 �

� ����� � �

� � � � �
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Ω 1 Ω 2 Ω 3
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
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� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
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� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
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� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
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Figure 1: Multilevel Aitken-Schwarz Method principle

The main idea is to apply recursively on each subdomain decomposition level the Aitken-
Schwarz algorithm. The difficulty comes from the fact that the Dirichlet boundary conditions
of the subdomain at the first level are no more homogeneous Dirichlet boundary conditions.
Consequently, the sine expansion operator should not be applied directly to the trace of the
interfaces solution generated by this second level of the Schwarz algorithm.

We introduce therefore a shift denoted � � in each subdomain � � , in order to retrieve the
homogeneous Dirichlet boundary conditions problem on each strip � � @

Let > be the notation for the Kronecker product. In each strip � � , we solve with Aitken-
Schwarz the modified problem

� 6 � � ���� 8 	 �
� � 6 � � 8 � � � � (7)

� � ���� 	 � � � ��� � (8)

where � � in matrix notation is defined as

� � 	 � Q �� @ & � > 0 � � � � � � � � Q �� @ &  > 0 � � � � � �

�
(9)

with
� �

the size of the strip � � in � direction:
� � 	 � � � � � � � �  , � � 	d� � � � � � @ @ � � � �   row vector

of the x coordinates of the grid points in �� � in increasing order,

&
� 	 � � � � � � � � � @ @ � � � � �  and

&
 	 � � � � � � �  � @ @ � � � �   , and 0 � � � � � � , 0 � � � � � � are the column vectors containing the artificial

boundary condition.
Table 1 gives the error between the Aitken-Schwarz solution and the discretized exact

solution 0�� � � �vH	�� � l � � @ � �  ��� � � �  in maximum norm for a number of subdomains � �
in � -direction varying from 1 to 16 and a number of subdomains � � in � -direction varying
from 2 to 16 and for four global size meshes varying from

� � � � � to
� � � � � � �

points for the
Poisson problem. It exhibits that :

	 the methodology gives accurate results close to the machine accuracy (we recall that
the test are done with the Matlab software),
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	 the accuracy reached increases with the number of subdomains especially for large size
problem. This is due to the fact that the local system are smaller leading to smaller
conditioning number and then round off error in the LU factorization are smaller than
in the few-subdomain case.

� � � � � points � � subdomains� � subdomains 1 2 4 8 16
2 1.9920e-13 2.9296e-14 9.3051e-15 4.0246e-16 7.0777e-16
4 1.2676e-13 2.2225e-14 2.8172e-15 4.0246e-16 7.0777e-16
8 4.2848e-15 1.1623e-15 4.7184e-16 4.0246e-16 7.0777e-16

16 8.5522e-16 2.2421e-16 4.0246e-16 4.0246e-16 7.0777e-16

��� ����� points � � subdomains� � subdomains 1 2 4 8 16
2 1.0693e-12 3.8589e-13 6.1952e-14 9.1593e-15 1.1380e-15
4 9.3924e-13 4.1277e-13 4.2577e-14 1.1005e-14 1.1380e-15
8 5.3798e-13 1.0418e-13 3.6227e-14 2.2204e-15 1.1102e-15

16 4.8329e-15 2.1164e-15 1.2906e-15 2.1649e-15 1.1380e-15
� � � � � � � points � � subdomains� � subdomains 1 2 4 8 16

2 7.7432e-12 2.3652e-12 1.2857e-12 8.1442e-14 1.6535e-14
4 6.2317e-12 1.6914e-12 6.3427e-13 1.3916e-13 1.9729e-14
8 2.6878e-12 1.2031e-12 3.5410e-13 1.7667e-13 7.2026e-15
16 1.0170e-12 4.1206e-13 5.3402e-14 2.3787e-14 5.9119e-15� � � � � � �

points � � subdomains� � subdomains 1 2 4 8 16
2 4.3664e-11 1.3513e-11 2.1562e-12 1.6181e-12 1.6694e-13
4 2.9052e-11 6.6053e-12 2.8467e-12 1.1419e-12 3.3179e-13
8 2.0213e-11 6.7309e-12 4.5298e-12 1.3563e-12 2.1001e-13

16 1.9160e-11 4.4557e-12 1.8232e-12 3.2840e-13 8.4238e-14

Table 1: Error with respect of the number of subdomains

Secondly, let us consider the nonlinear case. The problem to be solved can be written
formally as

���B0��0o	 �
(10)

We do not have anymore the superposition principle as in the linear case, but we can still use
the same shift to recover at the first level of domain decomposition homogeneous Dirichlet
boundary conditions. We set:

�E6 � � ���� � � � 8 	 � � �o� � (11)
� ����� 	 � � � ��� � (12)

where � � is defined as in (9).



AITKEN-SCHWARZ ALGORITHM ON CARTESIAN GRID 59

The solution for one Schwarz iterate on the subdomain � � is obtained as

0 � ���� 	 � � ���� � � � (13)

To illustrate the two level domain decomposition algorithm, we consider the Bratu problem
which represents a simplified model of combustion written as follows:

C�0 � � � �  � � � ��� � 0 � � � �   	 � � � � � �  / � 	46 � � � 8 l ��� � � � (14)0 � � � � t	�� � � � � �  / ��� @ (15)

The discrete operator on a regular stencil of space step �
�

in � direction and � � in � direction
is:

� 0 � ����� � � 0 � Q � � � � � 0 � � �
� l� � 0 � � � ��� � 0 � � � Q � � � 0 � � �

� l� � � � ��� � 0 � � � ^@
This operator is a nonlinear and nonseparable discrete operator. We use a Newton scheme to
solve each nonlinear subdomain problem. The solution of the linear systems inside the New-
ton loop are obtained either by sparse LU or Preconditioned Conjugate gradient method with
uncomplete LU. The acceleration procedure is described in [GTD01]. To be more precise,
since the nonlinearity of the discrete operator is a second order perturbation of the Laplacian,
we use the same acceleration procedure as in the Poisson problem case; that is, we compute
the diagonal approximation of the matrix of acceleration � [GTD01] based on three succes-
sive Schwarz iterates.

Figures 2 and 3 give the convergence history of the Steffenson-Schwarz multilevel domain
decomposition on the 2D Bratu problem with � � � � � 	 � � � subdomains and

� 	 � .
The convergence history is given for two problem sizes, namely

� ��� � �
and

� � � � � @ For
the smaller problem the size of overlap is one mesh cell, but for the 3 times larger problem
we have used 3 mesh cells overlap. The convergence to the exact discrete solution of the
problem, at the outer loop level i.e the Steffensen-Schwarz iteration between � � strips, -see
2- and inside each strips -see 3- with the second level of Steffensen-Schwarz iteration seems
to be almost independent of the number of grid points provided that the size of the overlap
between subdomains in each space direction stays the same.

The stop criterion for the Newton loop (resp. the Steffensen-Schwarz iterative procedure
inside strips) was that the difference between two successive iterates was less than

� � Q�� (resp.
� � Q � ).
3 Arithmetical complexity

For the Helmholtz or Poisson operator case, the arithmetic complexity of the Aitken Schwarz
method can be easily given analytically, provided the arithmetic complexity of the linear
solver used in each subdomain is given.

Let us assume for simplicity that the arithmetic complexity of a fast sinus transform or
its inverse of a vector of size � is

� � �D" � l ����m@ For strip domain decomposition with � �
subdomains, and a problem of global size � � �:� � , the Aitken acceleration requires the
sinus transform and its inverse of the artificial interfaces at two iteration levels. It results
into

� �0��� � � �  � � �D" � l �;� �  operations. The solution of the pentadiagonal linear system
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corresponding to the acceleration procedure itself cost
� � � � �M� � � �  operations. We recall

that we need to solve each subdomain problem twice.
If one uses a sparse Gaussian elimination for each subdomain linear solve, the overall

arithmetic complexity is therefore approximately

�"� � � � � � � � �� � � �  l � � � �M� � � �  � � �D" � l �;� �  � � � � � ��� � � � 
If one uses a fast Poisson or Helmholtz solver, the arithmetic complexity becomes approxi-
mately

� � � � � � � � �� � � �  # � � � l � � �� � � �  � ����� l �;� �  + � � � �M� � � � �� � � " � l ��� �  � � �"� � �M� � � � ^@
This complexity analysis can be extended to the two level domain decomposition method
described in this paper. We have summarized in Figure 4 and Figure 5 the result of this
analysis. The efficiency of our solver increases when the number of subdomains � � in the
second space direction increases from 1 to 16. Our two level domain decomposition method
speedup significantly the sparse Gaussian solver, but stays at best

� � �
slower than a fast

Poisson solver.
Our methodology is not therefore the best Poisson solver in terms of arithmetic complex-

ity, but as shown in [BGH � ] its parallel efficiency in distributed computing with slow network
is very good, as opposed to the parallel efficiency of fast Poisson solver based on Fast Fourier
Transform algorithm that requires global transpose of matrices.

We proceed now with some experimental measurement of the arithmetic complexity of
our two levels domain decomposition with the Bratu problem. We have compared different
iterative procedures for the same final global accuracy of the solution: the error in maximum
norm between the exact solution of the discrete problem and the final iterate is about

� � Q 	 .
The linear subdomain solver inside the Newton loop is either sparse Gaussian elimination

or conjugate gradient with incomplete LU preconditioning. We select the most efficient solver
in our experiments, and typically the direct linear solver is preferred when the subdomains are
narrow strips.

Figure 6 reports on the domain decomposition performance with � � 	 �
or � � 	 � �

strip subdomains compared to the iterative solver with no domain decomposition i.e � � 	 � .
The problem’s size is � � �6� � with � � 	 � �

, and � � 	 � ��� � ��� � ��� � �
. We get good

performances only if the strips are narrow enough and � � is large. Once again the Steffensen-
Schwarz algorithm for such problem becomes a very efficient algorithm for large problems.
The two level domain decomposition efficiency follows the same principle. In addition, the
parallel efficiency of this algorithm in metacomputing situation has been demonstrated in
[BGH � ].

Now we proceed with some remarks on the stability of this method.

4 Sensitivity analysis

For the linear case, and when the acceleration matrix � � are known analytically, the additional
source of unstabilities in the Aitken Schwarz algorithm may come from the linear solve of (6).
Let us restrict ourselves to uniform strip domain decomposition with minimum overlap and
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denote # 1 � � � 1 l1 l � � 1 � + (16)

the generic subblock of � � for a given wave number
�

. The conditioning number of � � � � �
for the Helmholtz operator, is bounded by [GTD]:

� " � � � � � � � �  � � � �

� � 1 � � 1 l � � � 1 �  Q l� � 1 l � � � 1 �  Q � 
with

1 � 	 � � � � � � � � �  2 � � � � � � � � �  � 1 l 	 � � � � � � � � � � � �
�   2 � � � � � � � � �  �

where
� �

is the size of the � � strip in � direction. The conditioning number is then of order
� Q �� for

� 	 �`� � m@ A direct numerical simulation to test the sensitivity of our algorithm to
perturbation on the RHS of the linear differential problem confirms the good stability proper-
ties of the one-level and two-level Aitken-Schwarz method. The linear stability of the solvers
deteriorates very slowly as the number of subdomains increases, as expected.

The sensitivity analysis of the Steffensen-Schwarz method for nonlinear elliptic prob-
lems is more challenging, because � �� is approximately reconstructed from the sequence of 3
Schwarz iterates:# �0  � � � �� Q � � �0  � � � l� Q � �0  � � � l� Q � � �0  � � ���� Q ��0 � � � � ��

��� � �0 � � � � l�
��� �0 � � � � l�

��� � �0 � � � ����
��� + 	 � ��

# �0 � � �� l� � �0 � � � ���� �0 � � �� � �0 � � ���0  � �� l� � �0  � � ���� �0  � �� � �0  � �� +(17)

where the
�0 � � �� and

�0  � �� stand for the sine expansion coefficients of the left and right interfaces
solution in � � @

In particular there is no guarantee that (17) system is well posed. In our implementation,
the Steffensen acceleration algorithm is applied only to waves for which this system is not
badly conditioned or possibly singular. We have undertaken an extensive sensitivity analysis
experiment that measures the influence on the convergence history of our algorithm when
one systematically perturbed randomly the subproblem solution at the end of each subdomain
solve. The test for a given domain decomposition and a given number of grid points was
realized 50 times, and we checked by doubling the number of runs the sensitivity of the
result. Figure 7 shows a representative average measure of the error that was obtained as a
function of the norm of the perturbation. We looked at square domains with � � 	 �

(’o’
curves), � � 	 �

(’+’ curves), � � 	 �
(’v’ curves) and � � 	 � � (’*’ curves). We checked the

influence of the number of points in � direction, for these four different cases. It should be
noticed that the standard deviation from the mean in these experiments are of the same order
than the mean of errors. These results seems to provide some confidence in the robustness of
our method.

5 Conclusion

We have extended our result on Aitken like acceleration of the Schwarz algorithm presented
in [GTD01], to two level domain decomposition and further investigated the arithmetic com-
plexity and stability of our algorithm.
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Figure 2: Convergence of the first level of Steffensen-Schwarz iterative solver, ’o’ for
� � � � �

problem size, ’*’ for
� � � � �

problem size.

Further extension of this method to irregular meshes or non-matching grids are presently
under investigation -see [BGO00] for example. We have shown in this paper that our tech-
nique is robust and numerically efficient, for the Helmholtz operator or weakly nonlinear high
order perturbation of this operator such as the operator in Bratu problem. The main interest
of our methodology lies however in its application to large scale metacomputing. The LIONS
project [BGH � ] demonstrates the rather unique ability of our algorithm to provide numeri-
cal and parallel efficiency for a PDE solver with several hundred of processors distributed on
several heterogeneous large-scale parallel computers in Europe linked with a slow network.
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6 Domain decomposition and fictitious domain methods
with distributed Lagrange multipliers

Yu.A. Kuznetsov1

Introduction

In this paper we consider three applications of the distributed Lagrange multiplier technique
[DGH � 92, GHJ � 97, GK98] to design new domain decomposition and fictitious domain meth-
ods for the diffusion equation

� � � � �E0�t	 � � � / � � (1)

in a bounded 2D/3D polygonal domain with the homogeneous Dirichlet boundary condition

0 	 � � � / ��� � (2)

and a piece-wise constant diffusion coefficient � .
The above restrictions are imposed for the sake of simplicity. The generalizations of the

algorithms and theoretical results to more complicated equations, domains, and boundary
conditions are obvious.

Let � � be a triangular/tetrahedral partitioning of � , and
1 � be the corresponding piece-

wise linear finite element subspace of 9 �� �;�< . We shall always assume in this paper that � �
is a shape-regular mesh. Then the classical finite element method

0 � / 1 � n � �B0 � � �vt	 � ���v 8 � / 1 � (3)

where
� �B0 � �v 	 �� � ��0 � � � � � and � ���vt	 �� �

� � � �
results in the system of linear algebraic equations

� �0o	 �
�

(4)

with a symmetric positive definite matrix � / � ��� � , ��	 ��� � 1 � , and a vector �
� / � � . We

also denote by
�

the mass matrix and by
��

the lumped mass matrix, i.e.
��

is diagonal and�
��H	 ��

�� , ��  	f� ��� @e@>@ � �  , �� / � � .
For � � � � and � l � � being non-overlapping subdomains of � � such that � � 	�� � � � �U� l � � ,

we denote by � � and � l the corresponding stiffness matrices and by
� � � �� �  and

� l � �� l 
the corresponding mass (lumped mass) matrices. The matrices � ,

�
and

��
can be introduced

by subassembling of matrices � � , � �
,
�� �

with the same subassembling matrices � � , � 	 �*��� ,
respectively. For instance,

� 	 � � � � � � � � l � l � l ��� 	 � � �� � � � � � l �� l � l @
1Department of Mathematics, University of Houston, Houston, TX, 77204-3008, USA, e-mail: kuz@math.uh.edu
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Domain decomposition for composite materials

Let � be a rectangle and � � , �"	 �*� 3 , 3 � �
, be open non-overlapping polygonal subdo-

mains of � , i.e. �
� � � � 	  for � "	 $ and � � � ! ���d	  , � � $ 	 ��� 3 . An example of �

is given in Figure 1. We assume that �
�

are shape-regular, � � � � ��� � � � � � � � � �  � � l � and��� � � � ��� ��� � � � � �< � � � � with some positive constants � � , � l , and � � where
� 5 � is given.

We also assume that � 	 � � �' � , 1 � � � " � � � / � � � � 8 in �
�
, �s	 �*� 3 , and � � �

in the rest of� . We shall call this model example a “composite material”.

Figure 1: The computational grid.

The stiffness matrix � of system (4) can be presented in the form

��	�� � � �B
� ���

�

1 � � � (5)

where � � � �� � �� j	 �
� � � �

�
� � � � � � 8 � � � � � / 1 � �

and � � � �� � �� t	 �� � � � � � � � � � 8 � � � � � / 1 � @
It is obvious that with an appropriate permutation matrix � � we have

� � � � � � 	 � � � �� � �
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where
� � � is the stiffness matrix of the Laplacian for the subdomain �

�
,
� � � � 3 .

In [Kuz00] was proposed to replace system (4) with � in (5) by a saddle point system

� #
�0
�� + 	 # � � � 

� � 5 + #
�0
�� + 	 # �� � + (6)

with
�  	f� � � � l @>@>@ � �  / � ��� ';� � -

and the block diagonal matrix

5 	
���
�
1 � � �

. . . 1 � � �
����
� / � ';� � - � '*� � - @

System (6) is equivalent to system (4) in the sense that the solution vector �0 to (4) coin-
cides with the solution subvector �0 to (6) and vice versa. Moreover,

�� � � �1 � �0 /	� � � � �
for any solution subvector �� � to (6), ��	 �*� 3 .

Let a matrix 9�
 	�9 
 5 � be spectrally equivalent to � Q �� , i.e

� 	 �;9�
 �� � ��  � � � Q �� ��
�
��  � � � ��9�
 �� � ��  8 �� / � �

with positive constants � 	 and � � independent of the mesh � � . Then the matrix

 	 # 9�
 �� 9 < + (7)

with 9 < 	 � � � � � � �� � � �l � @>@>@ � � �� ! �
where � �� denotes the generalized inverse to � � , � 	 ��� 3 , was proposed in [Kuz00] as
an effective preconditioner for the matrix

�
in (6). To justify the latter statement we have

to consider the matrix
� 

in its invariant subspace �
3 � supplied with the scalar product
generated by the matrix � 	 # 9 
 �� � <

+ �
where

� < 	 ��� � � � � � � � l � @e@>@ � � � ! @
It can be easily shown that

� 
is a symmetric operator in �
3 � with respect to the

�
-

scalar product. Moreover, ��3 � 	 �
36� �   . To this end, all non-zero eigenvalues of the
matrix

� 
belong to the union of two segments 6 � � � � l 8 and 6 � � � � 	 8 with end points

� � � � l 3 � 3 � � � � 	 @
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The condition number of
� 

with respect to the subspace ��3 � and the

�
-scalar product is

defined by
� � � ��� � �  t	 � ��� � � 	 � = � � = !� � � � � � � = � l = ! @

Under all the above assumptions the following result was proved in [Kuz00].

Proposition 1

� � � ��� � �   � �  � (8)

where �  is a positive constant independent of the values 1 � � 1 l � @e@>@ � 1 � and the mesh � � .

Remark 1 In general, the constant �  depends on the constants � � , ��	 �*� � .
The implementation procedure of the preconditioner


is based on a simple observation

that

� � � �� 	 # � � �� � + (9)

where
� � � � � � �� @

The results of numerical experiments for the geometry given in Fig. 1 are presented in
Table 1. For numerical experiments 9 
 was chosen to be the BPX-preconditioner [BPX90].

Table 1. The number of PCG iterations.1 � � � � � � � � � � � � � � � � � � � � � �
�

15 16 18 18
� � Q � 17 22 25 27
� � Q\l 19 23 27 29
� � Q � 19 23 27 29
� � Q 	 19 23 27 29

The vectors
� �

, �s	 ��� 3 , in (6) can be called the discrete distributed Lagrange multipliers.
They have a very simple connection with the continuous/differential distributed Lagrange
multiplier. System (6) can be obtained by the straightforward finite element discretization of
the variational problem: find 0 / 9 �� �;�< , � � / 9 �,� � �  , � 	 �*� 3 , such that�� ��0 � � � � � � �B

� ���
�
� � �

� � � � � � � 	 �� �
� � � ��

� � ��0
� ��7 � � � � 1 � �

� � �
� � � �E7 � � � 	 � � �s	 ��� 3 � (10)

8 � / 9q�� �;�< , 7 � / 9q�,� � �  , �s	 ��� 3 .
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Fictitious domain method

The name “fictitious domain method” was originally suggested by V.K. Saul’ev in [Sau63].
The Saul’ev’s idea is to replace differential problem (1)–(2) by the problem

� �o� � ' ��0 '  	 � ' � � / � �
0 ' 	 � � � / � � � (11)

where
�

is a rectangle containing the original simply-connected domain � ,

� ' 	 � � � � / � �
� � �' � � / � 
 �� � � ' 	 � � � � / � �� � � / � 
 �� @

It was proved that k�0 ' � �0 k � �� ' � - � � as 1 � � where

�0 	 � 0 � ��/ � �� � ��/ � 
 �� @
The form of the equation in (1) reminds us the situation considered in the previous section.

If we introduce the distributed Lagrange multiplier by

� 	 �

1 0 (12)

in � 	 � 
 �� , then the weak saddle point formulation reads as follows: find 0 / 90�� � �  ,� / 9q��� �  , � 	 � on � � ! � �
, such that�

�

��0 � � � � � � �
�

� � � � � � � 	 �
�

� ' � � � ��
�

��0 � ��7 � � � 1 �
�

� � � ��7 � � 	 � � (13)

8 � / 9q�� � �  , 7 / 9q�,� �  , 7 	 � on � � !o� �
.

The interesting observation is that with 1 	 � formulation (13) coincides with the dis-
tributed Lagrange multiplier fictitious domain method invented by R. Glowinski (see [DGH � 92,
GHJ � 97]). Thus, the Glowinski’s method is the closure with respect to the parameter 1 of the
Saul’ev’s method.

The finite element discretization to (13) results in the algebraic system

� ��
� �0 ��0 l
��
���
� �

��
� � � � � � l �� l � � l l � l l� � l l � 1 � l l

���
�
��
� �0 ��0 l
��
���
� 	 ��

� �
� �
�
� l�
���
� (14)

where � l l stays for the stiffness matrix in subdomain � , and

� � 	 � � � � � � l� l � � l l �
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stays for the stiffness matrix in the rectangle
�

. If we present
�

in a different block form:

� 	 � � � � 
� � 1 5 � � 5 	 � l l �

and assume that a matrix 9 
 is spectrally equivalent to � Q �� , then the preconditioner for
�

can be proposed in the form of the block diagonal matrix

 	 � 9 
 �� 9 < � (15)

where 9 < 	 � Q �l l .
Assume that the norm preserving finite element extension theorem for the subdomain �

with respect to the rectangle
�

holds. Then,
� � � � � � �   � � �

where � � is a positive constant independent of the mesh
� � and value of 1 / 6 � � � 8 . In the

case 1 	 � the result was proved in [GK98]. For the case 1 5 � one has to use technique from
[Kuz00].

Overlapping domain decomposition

Let � � be partitioned into two subdomains � ��� � and � l � � such that
� � 	 � ��� � !6� l � � is

nonempty. We assume that � � � � ��� � � ! ���< � � " � � � 5 � , and the norm preserving finite
element extension results from

� � into � ��� � and � l � � hold [Wid87]. Later we shall give the
algebraic interpretation of this assumption.

Let the bilinear form � �B0 � �v be split into two bilinear forms [Kuz97]:

� �B0 � �v 	 � � �B0 � �  � � l �D0 � �v (16)

and the linear form � ���v be also splitted into two linear forms:

� ���vt	 � � ���v � � l ���v (17)

where
� � �B0 � �vt	 ��

�
� � ��0 � � � � �

with
� � 	 � � � � / � � 
 � �

� 2 �v� � / � �
and

� � � � j	 ��
�
	 � � � � �

with 	 � 	 � �*� � / � � 
 � �
� 2 �v� � / � �
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� 	 �*� � . Then, let us define two new bilinear and linear forms by�� � �0 � ��  	 � � �B0 � � � �  � � l �B0 l � � l  �
 � �T� ��  	 �
� � � � � � � � � � l  � � ��

�E� ��  	 � � � � �  � � l � � l 
(18)

where

�� 	 #
� � �� l + � � � / 1 � 	 p � n � / 9 � � � �  � � 	�� on ���q!o��� � u � � 	 �*��� �

and � / 1 <U	 p � n � / 9 � � �  ��� 	�� on ���q!o� � u @
Then, the weak formulation of (1) based on the above overlapping decomposition with dis-
tributed Lagrange multipliers can be given by: find �0 / �1 	 1 � � 1 l , � / 1 < such that

�� � �0 � ��  � 
 � �T� ��v 	 �
�E���v �
 � �0 � 7G 	 � (19)

8 �� / �1
, 7 / 1 < .

The finite element discretization of (19) can be suggested with the same formulae by
replacing

�1
and

1 < by
�1 � and

1 < � � which are the traces of the finite element space
1 � onto� ��� � , � l � � and

� � , respectively. The finite element discretization of (19) results in the system
of algebraic equations

� �
�0
�� � �

��
� � � � � �� � l � l
� � � l �

� �
�
��
� �0 ��0 l
��
� �
� 	 ��

� �
� �
�
� l�
� �
� �

(20)

where

� � 	 � � � � � � �� � � � ' � -��� � � l 	 � � ' l -��� � � l� l � � l l � �
� � 	 # �

� � + � � l 	 #
� �� + @

Here � � is defined by

� � � ���� �7Gt	 �
� � � � � ��7 � � � � 8 � � � 7 � / 1 < � � � (21)

i.e.
� � � is the stiffness matrix for the Laplacian in the subdomain

� � .
We introduce a preconditioner


for
�

in the form of a block diagonal matrix:

 	 �� 9 � � �� 9 l �� � 9 <
�� �

(22)
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where 9 � is spectrally equivalent to � Q �� , � 	 �*� � , and 9 Q �< is spectrally equivalent to the
Schur complement matrix

� < 	 � � � Q �� � � � � l � Q �l � l @ (23)

We have plenty of choices for 9 � and 9 l , for instance, multigrid preconditioner. The question
is only about a choice for 9 < .

The assumption about the norm preserving finite element extension results (in the con-
text of the above method) is equivalent to the assumption that the matrix � � is spectrally
equivalent to matrices

� ' � -� 	�� ' � -� � � � � � Q �� � � � � � � 	 �*� � @
In this case simple transformations show that the matrix

� < is spectrally equivalent to the
matrix � � . The conclusion is obvious: we have to choose9 <U	 � Q �� @
Implementation procedure for 9�< is very simple due to the formulae

 � 	 ��
� 9 � � �� 9 l �� � � <

� �
�
��
� � � � � �� � l � l�� � �� l �

� �
� �

where �� � 	f� � � <  and �� l 	 � � < �  @
Proposition 2 Under the assumptions made, the eigenvalues of the matrix

 �
belong to

the union of two segments 6 � � � � l 8 , 6 � � � � 	 8 with the end points
� � � � l 3 � 3 � � � � 	

independent of the mesh � � .

Remark 2 The values of
� � , � l , � � and

� 	
from Proposition 2 depend on the constants of

spectral equivalence 9 � and � � , as well as � � and
� ' � -� , � 	 �*��� .
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7 Overlapping preconditioners for discontinuous Galerkin
approximations of second order problems

C. Lasser 1, A. Toselli 2

Introduction

The purpose of this paper is to present a two–level overlapping preconditioner for discontin-
uous Galerkin finite element discretization of advection-diffusion problems in two or three
dimensions. Our problem is discretized using a discontinuous Galerkin (DG) finite element
method. The original domain is then subdivided into overlapping subdomains in order to in-
troduce a number of local problems. We propose two different coarse problems. The first
one is an advection–diffusion problem discretized using a continuous finite element space on
a coarse triangulation. The second employs a smoothed aggregation technique and does not
require the introduction of a coarse mesh. The performance of the corresponding two methods
is illustrated for two test problems in two dimensions discretized with linear finite elements.

Discontinuous Galerkin approximations have been used since the early 1970s and are re-
cently becoming more and more popular for the approximation of a large class of problems;
we refer to [CKS00] for a comprehensive review of these methods. Here, we consider a dis-
continuous � � -finite element method proposed in [HSS00]. As for many DG methods, the
approximate solution belongs to a space of discontinuous finite element functions, i.e., it is
piecewise polynomial of a certain degree on a given triangulation, being in general discontin-
uous across the elements. Suitable bilinear forms, which also contain interface contributions,
are then employed, in order to ensure consistency.

We know of only two previous works on DD preconditioners for DG approximations; see
[FK00, LT00].

Continuous and discrete problems

We consider the following scalar advection-diffusion problem with Dirichlet conditions

� 0 	 � � � � � ��0  � 
 � ��0 � � 0 	 � �
in � �

0 	 � � on
� � (1)

where � is a bounded open polyhedral domain in
�$�

,
� 	 �v� �

, and
�

its boundary. Problem
(1) describes a large class of diffusion-transport-reaction processes.

We consider problem (1) and make some further hypotheses. We assume that � 	� � � � � ! �� � � ��� is a symmetric positive–semidefinite matrix,

�  � � �  � � � � � / � � � � / � �
1Technische Universität München, classer@mathematik.tu-muenchen.de
2ETH Zürich, toselli@sam.math.ethz.ch
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and � are a vector field in

� � � � � �< and a function in � �o�;�< , respectively, such that

� � � �� � � 
 m� �  � � � � / � �
(2)

and the right-hand side
�

is a function in � l �;�< . The existence of a unique solution of (1)
is shown in [HSS00]. We note that we have considered only the case of strongly–imposed
homogeneous Dirichlet boundary conditions for simplicity, but that more general ones can be
employed, such as Neumann, Robin, or weakly–imposed Dirichlet conditions. Our methods
can be extended to these cases. We also recall that in case � does not have full rank, Dirichlet
conditions can only be imposed on a part of the boundary; see [HSS00].

We next introduce 
 � , a conforming, shape–regular triangulation of � consisting of open
simplices � with diameter

� � �  . We denote by � � � �\ the space of polynomials on � of total
degree

� /�� � and define the vector of local polynomial degrees W 	 ����� n � / 
 �  . We
consider the finite element space

��� � � � 
 � t	��&0 / �jl*�;�< n 0 = � / � $	� � �\ ! @
and define

� �� �;� � 
 �  as the subspace of functions in
� � � � � 
 �  vanishing on

�
. Our FE

approximation space is chosen as
1 � 	 � �� �;� � 
 �  .

We define � � � D as the set of edges that are intersections of the element boundaries and
� � � D

as the union of the edges in � � � D . For � / 
 � , we then denote the unit outward normal to � �
at �:/ � � by 7
�`� �  and partition the part of its boundary that is also contained in

� � � D into
two sets: � Q � 	 � � / � � ! � � � D n 
 � �  � 7
� � �  3 � ! � inflow part  �� � � 	 � � / � � ! � � � D n 
 � �  � 7 � � �  � � ! � outflow part  @
Given � / � � �;� � 
 �  , its restriction to �� � �� is denoted by � � 	 � =��� . Then, for �6/ � Q �
there exists a unique neighbor � � with � / � � � and set

� �� � �  	 �� � �  � � Q� � �  	 �� � � �  � � �����	 � �� � � Q� @
Given an interior edge � / � � � D , there are two elements � � � � � , with, e.g., � 5 $ , that share

this edge. We define

6 � 8 � 	 ��= � � � � � � � = � � � �
� � 3 � 5 � 	 �

� ����= � � � � � � � = � � � �
�  �

and


as the unit normal which points from � � to � � . We note, that 7 and


point in different
directions in general and that

� � � and 6 � 8 are distinct. Similarly, for �H	�� � ! � , we set

6 � 8 � 	 ��= � @
Finally, we introduce a discontinuity-penalization function

�
defined on

��� � D :
for an edge � / � � � D , we denote the diameter of � by �

�
and define� � 	 �

�
� 3

�� � l 5 �
�
� �

where �� 	 = = � = = and
�
� is a suitably chosen positive constant.



PRECONDITIONERS FOR DG APPROXIMATIONS 79

For 0 � � / 1 �
, we consider the bilinear form

� �D0 � �  	 B
� �� �

�
�
� ��0 � � � � � � B

� �� �

�
� � 
 � �E0 � � 0� � � �

� B
� �� �

�
� + � � ? � ) �

� 
 � 7G � 0 � � � � � � � ? � ) �

� 6 0 8 6 � 8 � �
� � ? � ) �

� 6 0 8 3 � � � �  �  5 � 3 � � ��0� �  5 6 � 8  � � �
which has been proposed in [HSS00]. Our DG approximation of (1) is then defined as the
unique 0 / 1 �

such that

� �B0 � �vt	d� � � �v 	 
 ' � - � � / 1 � @ (3)

Problem (3) can be written in matrix form as

��0o	 � �
(4)

where we have used the same notation for a function 0 / 1 �
and the corresponding vector

of degrees of freedom, and a bilinear form, e.g., � � � � �  , and its matrix representation in the
space

1 �
. Similarly, in the following we use the same notation for functional spaces and the

corresponding spaces of vectors of degrees of freedom.
We consider the following scalar product in

� �� �;� � 
 �  :
� �D0 � �  	 B

� �� �

�
�
� ��0 � � � � � � � ? � ) �

� 6 0 8 6 � 8 � � �
Two–level overlapping preconditioners

We consider preconditioners of � of the form

�
� Q � 	 �B

� ��� � � � Q �� � � � � � � Q �� � � �
where the � � � ! are local operators associated to a partition of � into subdomains and � �
is associated to a global, low–dimensional problem. More precisely, we consider a non–
overlapping partition of � into subdomains

	 � 	��,� � ! � �
�

� � �
of diameter 9 5 � . We next extend each � � to a larger region � �� � � , in such a way that � ��
is the union of some elements in 
 � .

The first problem we need to address is the choice of the local solvers associated to the� � �� ! . Here, we exploit the fact that we work with discontinuous FE functions and define our
local spaces by1 � 	��?0 / 1 � n 0 � � 	 � � � � � 
�� �� ! � � � � � �r@ (5)
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We note that a function in
1 �

is discontinuous and, as opposed to the case of conforming
approximations, in general does not vanish on � � �� . Then,

� � n 1 � � 1 �
is the natural

interpolation operator from the subspace
1 �

into
1 � and the restriction

� � n 1 � � 1 �
puts to

zero the degrees of freedom outside �� �� .
We showed in [LT00] that, in the pure hyperbolic case � 	 � , the local operator � � 	� � � � � n 1 � � 1 �

,
� � � � � , is the approximation of a Dirichlet problem with weakly

imposed boundary conditions on the inflow part of the boundary ��� �� , which is therefore
well–posed. If some diffusion is present, � � , although having contributions from bilinear
forms defined on the boundary, is not the approximation of a Dirichlet problem with weakly
imposed boundary conditions on ��� �� . However, it is positive–definite and the corresponding
local problem in � �� is well–posed.

We also note that, thanks to the choice of the local spaces, the case of zero overlap,� �� 	�� � � � � � � � �
can be considered, as was already noted in [FK00].

The first coarse solver that we consider was already introduced in [LT00]. It requires
that the partition 	 � is a coarse mesh 
 � . The matrix � � is then the approximation of our
advection–diffusion problem on the continuous, piecewise linear FE space1 � 	 � � � � � 
 � �!o9 �� � �< � 1 � @
If
� � n 1 � � 1 �

is the natural interpolation operator from the subspace
1 � into

1 � , then our
coarse solver is

� � 	 � � � � � �
and it can be easily shown to be positive–definite. In [LT00], we proved that this choice
of coarse space leads to an optimal, scalable preconditioner for GMRES. The second coarse
solver is introduced in the next section.

Smoothed aggregation techniques

The use of smoothed aggregation (SA) techniques allows to build coarser spaces without
the need of introducing coarser triangulations for multi–level and two–level precondition-
ers, and is particularly advantageous when dealing with problems on unstructured grids; see
[VMB96, BV99, JKMK00]. The use of such techniques also appears to be promising for DG
approximations, thanks to the possibility for the smoothed coarse basis functions to ‘follow’
the direction of the flow



.

We first suppose that the reaction term � is identically zero. We start by associating a
vector to each subdomain. Let �� � / 1 � be the characteristic function of � � . The functions� �� � ! span a subspace of dimension � and are good candidates for building a coarse space
since they are able to reproduce constant functions. Unfortunately, they have a high energy.
We note that we are working with discontinuous functions and that the term in the energy
bilinear form � � � � �  responsible for this high energy is the penalization term. Indeed, we have

� � �� � � �� �  � 9 � Q �
� @
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The idea of SA techniques is then to smooth these functions out by increasing their support us-
ing the stencil of suitable polynomials in � . The property of being able to reproduce constants
relies on the kernel of the operator

�
.

� � 	��`@
For � / � � , we define

� � 	 � � �� � n 	d� � � � � Q � �� � �� � � � � � � � � ��/ � � � � 8 �
where � is a suitable diagonal matrix that can be chosen, for instance, as the diagonal part of
� . We note that the smoothed functions are still able to reproduce the constants.

We first consider the pure hyperbolic case � 	 � . Given an element � / 
 � and a
neighboring element � � that share an edge � with � , the degrees of freedom of � on � are only
coupled with the corresponding degrees of freedom of � � on � through the upwinding term of
the bilinear form. Due to this fact:

	 we need two applications of
�

, in order to extend the supports of the � �� � ! of one layer;

	 the support only increases along the streamlines, in the positive direction of the flow


.

This second property appears to be extremely favorable since the exchange of information
produced by the coarse solve follows the same pattern as that of the original problem.

If the diffusion is not zero, the degrees of freedom of the element � on � are coupled to all
the degrees of freedom of � � . In this case:

	 we need one application of
�

, in order to extend the supports of the � �� � ! of one layer
and we expect the entries of the smoothed functions to be higher in the direction of the
flow for convection–dominated problems;

	 their support is extended in all directions.

If the reaction coefficient is not zero, constant functions are not in general reproduced, but we
expect this to be balanced by the better conditioning of � .

Our coarse space is then defined as1 � n 	 � � � � � � � ! @
We remark that a SA technique provides now all the components of our preconditioner:

	 the coarse space, through the matrix
� � , the columns of which are the vectors � � � ! ;

	 the local solvers, since the overlapping subdomains can be chosen as the supports of
the functions � � � ! .

For the last property, we remark that, in the diffusive case the overlap between the subdomains
is
� � � �  .
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Numerical results

In this section, we show some test cases for two simple problems in two dimensions. They
are for uniform meshes on the unit square, consisting of

� ��� � �G triangles, and linear finite
elements. We impose Dirichlet conditions weakly. We have employed

� � � � �
without

restart. We have stopped our iterations once a reduction of the residual norm of
� � Q  is

achieved or after
� ��� iterations. We note that, for coarse spaces built with SA techniques, the

overlap 1 	 � � is determined by the degree � of the smoothing operator.
We first consider the Poisson equation with inhomogeneous Dirichlet conditions:

� C�0 	 � � � in � � 0 	 � � � � on
� @

and partitions into � � ��� � squares ( 9 	 � 2 � � ), with � � 	 �v� � � � � � � � � � . Table 1 shows
the iteration counts for the two algorithms, as functions of � and the inverse of the relative
overlap. We have also considered the case of zero overlap, denoted by 9 2 1"	 �

.
Both methods appear to be rather insensitive to the size of the original problem and the

number of subdomains, when the relative overlap 1 2 9 is positive and fixed. The two algo-
rithms appear to be optimal and scalable. We also note that the iteration numbers decrease
when the relative overlap increases, and that the iterations for method (II) (smoothed ag-
gregation) are roughly double those of method (I) (standard coarse space). We remark that
for symmetric positive–definite problems, the condition number grows linearly with 9 2 1 for
method (I), while in general we expect a quadratic growth for method (II); see [JKMK00].

The case of zero overlap requires a special discussion. Our results show that the number of
iterations obtained are generally comparable to, but slightly higher than, those obtained in the
case of 1 5 � for both algorithms. From our numerical results for algorithm (I), we are unable
to deduce whether it is optimal or non–optimal, with the number of iterations growing as a
power of 9 2 � . We refer to [FK00] for a method with the same local solvers but a different
coarse space, which exhibits a rate of convergence that appears to grow linearly with 9 2 � . On
the other hand, we note that for algorithm (II), comparable numbers of iterations are obtained
when the ratio 9 2 � is fixed.

However, we believe that due to the minimal communication between the subdomains and
the relatively small iteration counts that we have obtained, the algorithms with zero overlap
might be competitive in practice.

We next consider the advection-diffusion equation

� CE0 � 
 � ��0 � � 0 	 �
in � � 0 	�� on

� �
with constant coefficients and weakly–imposed zero Dirichlet boundary conditions. We con-
sider the case 
 	 � � � � � � �G � � 	 � �Tl*@
The right-hand side

�
is always chosen such that the exact solution is

0 	 � � � � � � � � � �  � � � ��� �vm@
The numbers of iterations are shown in Table 2.

As for the Poisson problem with nonvanishing overlap, the iteration counts decrease when
the overlap increases and are independent of the number of subdomains and the problem size.
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two level (I) 9 2 1� � � �
16 8 4 2

16 4 13 - - 13 14
32 4 15 - 13 12 13
32 8 13 - - 13 15
64 4 19 15 14 13 13
64 8 16 - 13 13 14
64 16 13 - - 13 15

128 4 25 18 16 14 13
128 8 35 15 14 13 14
128 16 15 - 13 13 15
128 32 12 - - 13 15

two level (II), � 	 � 2 �9 2 1� � � �
16 8 4 2

16 4 21 - - 22 18
32 4 28 - 30 25 20
32 8 25 - - 26 22
64 4 37 40 33 27 21
64 8 33 - 35 31 25
64 16 26 - - 27 25
128 4 48 53 44 35 28
128 8 43 47 42 34 27
128 16 34 - 37 35 28
128 32 26 - - 27 25

Figure 1: Poisson problem with standard coarse space (left) and a coarse space built using a
smooth aggregation technique (right).

two level (I):

 	 � � � � � � �G , � 	 � � l9 2 1� � � �

16 8 4 2
16 4 14 - - 14 15
32 4 16 - 14 13 14
32 8 12 - - 13 15
64 4 19 15 14 13 14
64 8 13 - 13 13 15
64 16 10 - - 12 15

128 4 24 19 16 14 14
128 8 35 13 13 13 15
128 16 11 - 11 11 15

two level (II), � 	 � 2 �9 2 1� � � �
16 8 4 2

16 4 22 - - 17 15
32 4 28 - 24 20 16
32 8 28 - - 22 19
64 4 38 33 27 22 16
64 8 39 - 32 28 21
64 16 31 - - 25 23
128 4 50 45 37 30 23
128 8 53 45 40 32 23
128 16 43 - 37 34 26

Figure 2: Advection–diffusion problem with standard coarse space (left) and a coarse space
built using a smooth aggregation technique (right).

SA techniques also give numbers of iterations that are double those for a standard coarse
space.

The behavior for zero overlap appears to be more regular when a standard coarse space is
employed. The number of iterations appears to grow like 9 2 � , when � is fixed. For a fixed
value of 9 2 � , slower convergence rates are obtained for � larger. We can then conclude that,
for the case of zero overlap, the iteration counts are indeed bounded by a 5 �;9 2 �\ , with 5 a
suitable constant; see also [FK00].

On the other hand, with a SA technique comparable numbers of iterations are obtained for
fixed � , regardless the value of 9 , but the method does not appear to be optimal in this case.
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8 On Polynomial Reproduction of Dual FE Bases

Peter Oswald1, Barbara Wohlmuth2

Introduction and abstract algebraic condition

We construct local piecewise polynomial dual bases for standard Lagrange finite element
spaces which themselves provide maximal polynomial reproduction. By means of such dual
bases for the Lagrange multiplier, extremely efficient realization of mortar methods on non-
matching triangulations can be obtained without losing the optimality of the discretization
errors. In contrast to the standard mortar approach, the locality of the constrained basis
functions is preserved. The construction of dual bases and quasi-interpolants for univariate
spline spaces is well-understood (see, e.g., [dB76, dB90, dBF73, Sch81]). However, the dual
space is usually of a more complicated structure, and cannot be fixed beforehand, see also
[DKU99, DS97, Ste00] for related research in the context of biorthogonal multiresolution
analysis.

We start with an abstract framework. Let � � 1 � � �
&

be subspaces of a real Hilbert
space 9 . Furthermore, we assume that � n 	 ��� � � � � n 	 ��� � 1 	 ��� � � � 3 n 	��� �

& 3 �
. Let

�
,
�

,
�

and � be bases of � ,
1

,
�

and

&
, respectively. All function

systems are written as row vectors, the matrix notation used below will be consistent with this
assumption. We also frequently use the notation

���
� � � 
 n 	 � �  � � � l  � for the Gram matrix

associated with two finite systems
� � � � l � 9 . Note that

���

 � � � 	 � � � � � 
 , and that

� Q �� � �exists whenever the elements of
�

are linearly independent. By our assumptions, there exist
matrices � , � / � �

� � and � / � �
�
�
, such that

� 	�� � ,
� 	�� � and

� 	�� � . The
sets of basis functions

�
and
�

are called biorthogonal (or, equivalently,
�

is dual to
�

) if

� � � 	 � � � � @ (1)

The components of the function systems
�

and
�

are denoted by
� � and

� � , respectively.
We introduce the dual operators

�
	  	 � � � ��� � � � �   � � � and
�
�

 	 � � � ��� � � � �   � � � ,i.e., �  � ��	 7G � 	�� � �  � 7G � . Assuming that
�

and
�

are biorthogonal, we find that
��	

reproduces the subspace � , i.e.,
� 	 � 	 � 8 � / � �

(2)

if and only if � � � .
In the rest of this section, we establish algebraic conditions on

�
such that biorthogonality

and subspace reproduction are satisfied for given choices of
�

,
�

, and � .

Lemma 1 Under the above assumptions, (1) and (2) hold if and only if

� � � 	 �  �� � � � �
(3)

�� � � 	 �� � � � �

� � � @ (4)

1Bell Laboratories, Lucent Technologies, poswald@research.bell-labs.com
2Math. Inst. A, University of Stuttgart, wohlmuth@mathematik.uni-stuttgart.de

This work was supported in part by MSRI, UC Berkeley
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Proof Equation (3) is equivalent to (1) since
�

� � � 	d� �  � �  � 	��  � �  � �" � �d	 �  � � � � �r@
In a second step, we establish (4). If � � �

, then there exists a 5 / � ��� � such that� 	 � 5 . Assuming (1), we find 5 	 �

� � � and
�� � � 	 �� � � 5 	 �� � � � �

� � � . On
the other hand, since � is a basis in

&
� 9 ,

� Q �� � � exists. Thus, if (4) is satisfied, � � �
follows from

� 	 � � Q �� � � �� � � 	 � � �

�
� � 	 � �

�
� � .

Proposition 1 For given subspaces � � 1 � &
� 9 and their bases

� � � � � satisfying the
above assumptions, there exists a subspace

� �
&

and its basis
�

such that (1) and (2) are
satisfied if and only if

�

� � � has maximal rank �"	 ��� � � .

Proof We will use the result of Lemma 1. The necessity is obvious from (4). To proof
the existence of

�
and
�

we will find � from the system (3)-(4) using the SVD of � . Let��	  � � � �� ��  , where
 / � � � � , � / � ��� � are orthogonal, and

� / � ���v� is diagonal
and nonsingular. Obviously, � satisfies (3) if and only if it is of the form

�d	 � Q �� � �  � � Q � � �   �  � � / � ��� '*� Q � - @ (5)

It remains that the arbitrary matrix
�

can be chosen such that (4) will be satisfied, too. Sub-
stituting the known factorizations for � and � , we obtain

�

� � �  	 �

� � � �  �� � �  	 �

� � � � �  � � Q � � � t	 �

� � � 
# � � � � �
� � + @

Thus, (4) holds if and only if the matrix equation �U	 �

� � �  � �  � � � � � � Q �   is satisfied.
Using the factorization of

�

� � � , the latter can be rewritten as
�

� � � � � 	 �

� � �  � � � � � � Q � �0@ (6)

Since the � � � matrix
�

� � � has maximal rank � , solutions
�

exist.
The above criterion does not depend on the particular choice of the bases

�
and

�
but

rather on the choice of the spaces
1

and � themselves (it is equivalent to requiring that��� � �v � 	 � for all � / 1
implies ��	 � for any � / � ). Equations (5)-(6) allow us to

find all
� �

&
dual to

�
, and such that the associated

� 	
reproduces � . Whether this

procedure is effective depends on the factorization of � , and the structure of
�

� � � and
� Q �� � � .

This is the place where the specific choices for

&
� 1 � � and for the bases come in. In the

subsequent sections, we specialize to the case 9 	 � l �;�< , to Lagrange finite element spaces1
and corresponding spaces

&
of piecewise polynomials on a partition of � � �$� ,

� 	 �*��� ,
and to � coinciding with the space �  of all polynomials of degree

� 
 . As we will see, the
resulting matrices have then a simple, sparse structure, and can easily be computed, which in
turn enables us to achieve additional properties of

�
such as local support of all

� � .

1D construction

We consider the univariate finite element case. Let 
 	 �#C�� n � 	 ��� @>@e@ � � ! be the
partition of a univariate interval � 	 6 � � 
 8 into consecutive intervals C�� of length � � . On the
interval 6 � �*� � 8 , we define a special basis for �  by

�  	 6 � � � � l � @>@e@ � �  � � � 8 �



ON POLYNOMIAL REPRODUCTION OF DUAL FE BASES 87

where � � � � �	 � � � �  2 � , � � � � �	 � � � �  2 � . The remaining polynomials � � � �  of degree� 	 �v� @>@e@ � 
 are supposed to vanish at
� 	 � �

and form an orthonormal system on 6 � �*� � 8
with respect to the � l � � �*� �  -scalar product. We note that

��� � �  	 
 � � in 1D. Obviously,
a basis in

& n 	�� � / � l �;�< = � � � ) / � � � � 	 ��� @>@e@ � � ! , � � 
 , is given by

�
	 6 ��� � � @e@>@ � � � � 8 �
where � � ) 	46 � � � � � @e@>@ � � � � � 8 is the unscaled transformation of the system

� � from 6 � �*� � 8 toCU� . For further reference, let � �� ) 	46 � � � � � @>@>@ � � � Q ��� � 8 . We note that � �� ) is empty if � 	 � .
We restrict ourselves to the case that the conforming finite element space

1 n 	 & ! 9b�� � � 
satisfies homogeneous Dirichlet boundary condition. This is the interesting case for mortar
finite elements. To obtain optimal results, the Lagrange multiplier space

�
which has by

construction the same dimension as
1

has to be associated with the interior nodes on the
interface. We found it convenient to use� 	 6 � �� � � � � � � � � � � l � � �� 
 � @>@>@ � � � � � Q � � � � � � � � �� � 8
as basis in

1
. In this form, it is sometimes called hierarchical finite element basis. Us-

ing the notation of the previous section, we can write
� 	 �  � � � ��  , where

� 	��� � � � � � � Q � � � �v� � � � Q � � � �v� @>@>@ � � �v� � � � Q �  and

���	�


����������������������

����������          �� � �� �   �����       ��� �����         �� �   
...

. . .      �� �        �����  ������� �!"          �� � # �� �          �� � �����         # �� �          "

$�%%%%%%%%%%%%%%%%%%%%%&
�(' � �� �*) �

(7)

We note that


is a � � � � E� �o� � � � E� matrix,
 � / � � � Q � � ' � ��� - � ,

 l / � � ��� � ' � ��� - �
whereas

�
is a � � � � �  �:� � � � �  diagonal matrix. The dimension of

&
and

1
is 3 	� � � � E� and � 	 � � � � , respectively. If � 	 � , � � � Q � formally stands for a matrix of zero

size. Having in mind Proposition 1, it is sufficient to find a subsystem
�  � �

of size 
 � �
such that

� � � �

� � � � �
"	�� to guarantee the existence of a dual system

�
satisfying �  � � .

The remaining part of this section is devoted to the construction of suitable subsystems
� �

for the case 
 	 � of maximal possible degree of polynomial reproduction, i.e., � � � � . This
is a little bit more than required in the mortar context, where optimal a priori error estimates
can be obtained with a Lagrange multiplier space satisfying � � Q � � � . We assume � � �
(the case � � �

, � � �
, can be dealt with as a simple linear algebra problem). Then,

automatically,
��� � 1 � ��� � � � . Consider any three consecutive intervals C�� Q � � C�� � CU� ��� .

Without loss of generality, after a suitable linear coordinate transform we can assume thatCU� coincides with 6 � �*� � 8 and that the new intervals left and right to 6 � �*� � 8 have lengths
� 	 � � � Q � 2 � � and � � 	 � � � ��� 2 � � , respectively. We choose the system� � 	46 � � � � Q � � � � � � � � ��� � � @e@>@ � � � Q ��� � � � � � � � � � � � ��� 8 � � (8)
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and denote its transformation to 6 � � � ��� � � 8 ��6 � ��� � 8 � 6 �*� � � � � 8 again by
� � . By construc-

tion, the transformations of � ��� � � @e@>@ � � � Q ��� � have support in 6 � �*� � 8 and coincide with the
functions � l � @>@e@ � � � from

� � while the remaining two functions are scaled piecewise linear
hat functions.

In order to prove
� � � �

� � � � �
"	 � , we have a free choice of the basis in � � . We will

choose
� � 	 6 �� � � �� � � �� l � @>@e@ � �� � 8 such that for � / 6 � ��� � 8

�� � � � j	 � � �B� � l
� �Q � � � � �  ���

�
� � � �  � �� � � � j	 � � �B� � l

� �Q � � � � � �  � �
�
� � � �  �

and �� � � � j	 � � � �  � � 	 � � @e@>@ � � . We note the following properties:

(P1) Restricted to 6 � �*� � 8 , the basis
� � is orthogonal, �� � and �� � are not normalized.

(P2) �� � , �� l , �� 	�� @>@e@ are even, �� � , �� � , �� �*� @>@e@ are odd.

(P3) All zeros of �� � , �� � are in � � �*� �  , i.e., �� � � �  5 � for
� / � 
=6 � �*� � 8 and �� � � �  3 � for� 3 � �

and �� � � �  5 � for
� 5 � .

(P1) and (P2) follow from the definition. To prove (P3) for �� � , assume that it has zeros outside6 � �*� � 8 . Since �� � is even and of even degree
� � � � � , its zeros are symmetrically located with

respect to the origin. Let � 3 � � 3 @>@e@ 3 � � 3 �
be the zeros of odd multiplicity inside� � � �  . By assumption at least one pair of zeros is outside 6 � ��� � 8 and thus

� � � � � � . Recall
also that by construction �� � � � � t	 �� � � � t	 � . Now, we define a polynomial

��� �  n 	d� � � � l m� � l � � l �  @>@e@e� � l � � l �  � � / 6 � �*� � 8 @
which has the same sign as �� � everywhere in � � ��� �  , with the exception of zeros of even
multiplicity. Thus, � �Q � ��� �  �� � � �  ��� 5 � . This contradicts the orthogonality property since
from

� � � ���  � � � � � � and ��� � � U	 ��� � U	 � we conclude that � / � � � � 6 � l � @e@>@ � � � 8 .
The same reasoning goes through for �� � , we leave this upon the reader. We are now in the
position to show that

� � � �

� � � � �
"	 � for the above

� � and
� � . Equivalently, we show that

orthogonality of

� 	 � � �� � � � � �� � � �B� � l � � �� �
to all functions from

� � yields � � 	 � for all
� 	 � � @>@>@ � � . Testing with the translates

of � � Q ��� � (which coincide with �� � = � Q � � � � ) and using (P1) immediately gives � � 	 � for all
�t	 � � @>@e@ � � . Thus, only � � and � � can be different from zero. Now, we test �� � and �� � with
the two remaining hat functions which will be denoted by

�� � and
�� l . Let

�� � be supported in6 � � � � � � 8 and
�� l in 6 � �*� � � � � 8 . We recall that

�� � and
�� l are positive in � � � � � � � �  and� ��� � � � �  , respectively. Moreover, in 6 � ��� � 8 they can be written as

�� � 	 �`@ � � �� � � �� �  � �� �
and

�� l 	 � @ � � �� � � �� �  � �� l , where
�� � , �� l / � � � � 6 � l � @e@>@ � � 8 . Then, due to (P1) and (P3), the� � �

determinant � � � �
� �$ � � �$ � � � � �$ � � �$ 
 � 	 ����

5 � 5 �3 � 5 � ����
5 � � (9)

is positive. This shows � � 	 � � 	 � , and concludes the verification of
� � � �

� � � � �
"	 � . As a

by-product, we see that the inverse
� Q �� � � � � continuously depends on � � � � .



ON POLYNOMIAL REPRODUCTION OF DUAL FE BASES 89

Proposition 2 For the above defined basis
�

in the space
1

of 5 � finite elements of degree� � � on a partition 
 of an interval, there exists a locally supported dual basis
�

consisting
of piecewise polynomial functions of degree � on the same 
 such that � � � � , and the
associated projections

� 	
and

�
� possess � $ -norm bounds (

� � � � �
) which depend

only on � , and on the local meshsize ratio
c ��
  n 	 � � � � � Q � � ��� � �O2 � � .

Proof The existence of a dual basis with � � � � has already been established. To construct a
locally supported basis, we specify

�
as follows: Obviously, the

�
-th column in

�
is naturally

associated with the vertex � � n 	 � � � � Q �� ��� � � , � � � � � � � , of 
 , see (6) and the explicit
form of


given in (7). For each

�
we chose three consecutive intervals C �  , CU�  ��� andCU�  � l such that

� / �e� � � ��� � � � � � � �*� � � � � !
. Then, we take the special choice of

� �
and

� � given by (8) associated with these three consecutive intervals and define
� � / � � ��� ,� � � � � � � , by

�

� � � � �
� � 	 �

� � � � �  l � � �
(10)

where �  l  � is the
�

-th row of the matrix
 l . In a next step, we set the

�
-th column in

�
by associating the components of

� � to the position in this column by correspondence to the
functions in the chosen

� � and leaving zeros in positions corresponding to
� � not in

� � . Note
that we work with different subsystems

� � for the vertices � � . Each column of
�

has thus� ��� � � � nonzero entries, associated with
� � whose support is close to � � by construction.

Since (10) implies (6), we conclude that

�d	 � Q �� � �  � � Q � � �   (11)

indeed defines a locally supported dual basis reproducing polynomials, with the supports of
the
� � close to the supports of

� � for all �T	 ��� @e@>@ � � � � 1
.

Since all steps in the construction depend only on the local meshsize ratio, the uniform� $ -stability bounds for the projections
� 	

and
�
� (as well as local � $ -error estimates for

smooth functions) can be derived. Since this is standard, we will not go into details.
Dual systems with basis functions of small support have been constructed in [Woh01]

for � � �
and 

	 � � � . As was mentioned in the introduction, for the mortar finite

element applications polynomial reproduction of degree 
 	 � � � would suffice. Our above
proof implies that for this case the construction of an adequate dual basis can be based on� � Q � 	46 � � Q ��� � Q � � � � � � � � � � � � @>@e@ � � � Q\l � � � � � Q � � � � � � � � ��� 8 and

� � Q � , � � �
.

Higher order mortar finite elements

In this section, we establish optimal a priori estimates for the discretization error of noncon-
forming mortar finite element methods. These domain decomposition techniques provide a
more flexible approach than standard conforming formulations, and are of special interest for
time dependent problems, rotating geometries, diffusion coefficients with jumps, problems
with local anisotropies, corner singularities and when different terms dominate in different re-
gions of the simulation domain. To obtain optimal a priori estimates, the interface between the
different regions has to be handled appropriately. Very often suitable matching conditions at
the interfaces can be formulated as weak continuity conditions. We assume that the bounded
polygonal subdomain � �� l is geometrically conforming decomposed in non-overlapping
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polygonal subdomains � � , � � � � � . In particular, the situation with many crosspoints is
included. Each subdomain is associated with a locally quasi-uniform simplicial or quadrilat-
eral triangulation 
 � , and the discrete space of conforming finite elements of order � satisfying
homogeneous Dirichlet boundary conditions on � � !���� � is denoted by

1 � �;� �  . On each
interface

c � � n 	 � � � !���� � , we use the one-dimensional mesh inherited either from 
 � or 
 � .
The choice is arbitrary but fixed. Now, we replace the standard Lagrange multiplier space, see
[BMP94], by our dual space. The basis functions of the Lagrange multiplier space

1 � Q � � c � � 
on the interface

c � � are defined as the scaled transformed dual basis functions
� � / � . Here�

is our locally supported basis consisting of piecewise polynomial functions of degree � � �
or � and reproducing polynomials of order � � � . Then, the constrained nonconforming mortar
finite element space � � � � l �;�< is defined by

� � n 	�� � / � l � �<T= � � �  / 1 � � � �  � � i �  6 � 8 � � � 	�� � � / 1 � Q � � c � �  � � � � 3 � � � ! @
The analysis of the resulting jump terms across the interfaces plays an essential role for the
a priori estimates of the discretization schemes. It is sufficient to analyze the jump term on
the reference interface � 	 6 � � 
 8 . In particular, optimal methods can only be obtained if the
consistency error is small enough compared with the best approximation error on the different
subdomain. Indeed, in [Woh01, Conditions (Sa)–(Sd)], sufficient conditions for abstract La-
grange multiplier spaces are given to obtain a discretization error of order � � and � � ��� in the9q� - and � l -norm, respectively. For convenience, we briefly review the conditions. In a short
form they read for dual spaces as: Locality of the support of the dual basis functions, polyno-
mial reproduction of degree � � � , stability of the projections

�
� ,
� 	

and the existence of a
well-defined stable operator

� �
� n � l � �  � �1

. The projection
� �
� will be defined by�

�

� �
� � � � � 	 �

�
� � � � � � / � @

Here,
�1

is a subspace of

& ! 9 ��� �  having the same dimension as
1

and satisfying a low
order approximation property for all � / 96�,� �  . We point out that the required approximation
property of

�1
does not depend on the order � . For a more detailed discussion on the properties

of
�1

, we refer to [Woh01]. We note that in the case of our locally supported dual basis
�

,
the best approximation property of the nonconforming space � � is automatically guaranteed.
Since

�
� is by construction 9 � � -stable, no problem at the crosspoints occurs. The analysis of

the consistency error requires the polynomial reproduction of degree � � � and the existence
of such a

� �
� . Of crucial importance is the weighted � l -norm of the jump,

� 2 �
��k 6 � 8 k � � i �  ,

� / � � across the interfaces
c � � .

Lemma 2 Replacing in the mortar finite element approach the standard Lagrange multiplier
space on each interface

c � � by our locally constructed dual space
1 � Q � � c � �  yields optimal a

priori estimates for the discretization error in the � l -norm (order � � ��� ) and in the 9 � -norm
(order � � ). Moreover, the error in the Lagrange multiplier measured in a weighted � l -norm,�
��k 6 � 8 k � � i �  , is of order � � .

Proof Almost all required conditions, as locality, polynomial reproduction of degree � �
�
, and stability of

�
� ,
� 	

are satisfied by our above construction. Thus to establish the
optimality, it is sufficient to define a suitable

�1
and show that the corresponding projection

� �
� is uniformly stable. The low order approximation property is, e.g., satisfied if �1 n 	
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� � � � � � � � � � � � � � � � � � l � � � � l � � � � � � @>@e@ � � � � � Q\l � � � � � Q � � � � � � Q � � � � � � � � � � � ! is a subspace
of

�1
. Considering

� 	 �  � � � ��  and adding � � � � to the first basis function and � � � � to
the last one provides a new set

� � of linear independent functions. The associated space
�1

satisfies �1 � �1
, has the same dimension as

1
and a locally supported basis. In algebraic

notation, we can write
� � as

� � n 	 �  � � � ��   where
�� / � ��� � Q � has only two nonzero

entries,
�	 � � � 	 �	 � � � Q � 	 �

. To show that
� �
� is well defined, it is sufficient to prove that

� � � � � is non-singular. Using (11), we find
� � � � � 	 � � � � � ��  . The special structure of

��
yields that the first and last column of

� ��  is the first and last column of
�

, respectively, all
other columns are zero. Our construction of

�
shows that the first column of

�
depends on� � or

� � Q � which is associated with C � , C l , C � . Since we have assumed � � �
, we find	 � � � 	 	 ��� � Q � 	 � . Therefore it is sufficient to show that

� � 	 � � � and
� � 	 � � � Q � are nonzero.

Using the same notation as before �� � and �� � are orthonormal polynomials on C l and extended
to � . The coefficient

	 ��� � is the first component of the solution � of
�

� �$ � � �$ � � � � �$ � � �$ 
 � � 	 � , where
� � 	 � � �� � � � � � � � and � l 	 � � �� � � � � � � � . By means of (P3), we find � � 5 � and � l 3 � which
together with (9) yields that

	 ��� � 5 � . The same reasoning holds for
	 � � � Q � , and we obtain� � � �� � � � "	�� .

1D examples for �����

The aim of this section is to illustrate the above theoretical result, and to provide explicit
formulas for � � �

, at least for the case of uniform partitions. We base the construction of
our dual bases on (8). From now on we will assume that � 	 6 � � � 8 , C ��	 6 � � ��� � 8 ,�:	 ��� @e@>@ � � , and � � �

. We refer to [OW00] for a detailed discussion and for an explicit
representation of the matrices

�
and � . For our convenience, we will fix the basis for � � �

on C��<	46 � � � 8 and obtain the bases � � ) by translation:

��� � 	 �� � 6 � �� � � l� 8 	46 � � � � � 8 � � 	 �"�6 � �� � � �� � � l� 8 	 6 � � � � � � � � � �  � � 8 � � 	 ���
6 � �� � � �� � � 	 � � � l��8 	 6 � � � � � � � � � �  � � � � � � � � m� � � � �  � � 8 � � 	 � @

This will lead to the following � -independent formulas for the diagonal blocks
� Q �� � ) � � � ) of

� Q �� � � :

� Q �� � ) � � � ) 	 # � � �
� � � + � �� � � � �

� � � � �
� � � �

�� � ���
�
� � � � � � �
� � � � � �
� � � � �
� � � � � � � �

����
� �

for � 	 �*� �v� �
, respectively. The explicit formulas for

�
and


only differ in the sizes of

the identity matrices for different � . Thus, we have all ingredients ready for using (11), with
the exception of the matrix

�
. The construction of

�
is described in the proof of Proposition

2, and depends on � and the desired degree of polynomial reproduction 
 � � . We refer to
[OW00] for the calculation of the entries of

�
. Although we provide explicit results only for

uniform partitions, the construction can be used for non-uniform partitions without essential
changes. For � 	 �

, the dual basis functions
� � obtained along the lines of the previous
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section are as follows. Away from the endpoints of � , we get

� � � �  n 	 �� � � l� � �� � 	
� � l� � � / 6 � � �*� �G ��

� � �� ��� � l � � l� ��� � � / 6 � � � � � 8 �� l� � �� � l � �� � l� � l � � / ��� � �*� � � � 8 � � � � � � � � �
for the interior dual basis functions (here and below, we only show formula for the intervals
in the support of

� � ). For the boundary dual basis functions near the left and right endpoint
of � , we obtain modified expressions:

� � � �  n 	 �� � � � �� � � l� � � / 6 � � �  �� �l � � / 6 �*� � 8 �� l� � �� � �� � l� � � / � �v� �  � � l � �  n 	 ����
��

� � � �� � ��/ 6 � � �  �� ll � ��/ 6 �*� � 8 ��
� � �� � l� � l� � ��/ � �v� � 8 �� l� � �	 � �� � l	 � ��/ � � � � 8 �� � Q\l , � � Q � are defined in a similar way. Now, it is easy to verify that the locally sup-

ported basis functions
� � are biorthogonal with the standard hat functions. Furthermore,��� Q ������ � � 	 � and � � Q ������ � � � 	 � and thus � � � � . We note that in [Woh00, Woh01], a

dual basis with smaller support but only � � � � has been constructed.
For � 	 �

, we introduce a dual basis satisfying � l � � . We distinguish between two
different types of dual basis functions

���� and
� �� which are associated with the bubble and hat

functions of the finite element basis functions, respectively. The interior dual basis functions���� with support on C � Q � �(C � �(C � ��� ( � 	 � � @e@>@ � � � �
) and

� �� with support on C � �(C � ���
( � 	 �v� @e@>@ � � � �

) are defined by the corresponding � �� , � � � � � , as follows:

� �� � �  n 	 �� � � � l � �� Q � � � � �� Q � � �l � l� Q �� � � �� � �
�� � �� � � � l�� �l � ����� � � � �� ��� � �l � l����
� � �� � �  n 	 � �l � �� � �l � �� � �l � l��l � �� ��� � �l � ����� �l � l� ��� @

The modifications for the boundary dual basis functions
���� , ���l , and

� �� concern only their
values on C � , otherwise the above formula apply correspondingly. We define on C � : ���� n 	��� 2 � � �� � � 2 � � �� � � 2 � � l� , ���l n 	 � � 2 � � �� � � 2 � � �� � � 2 � � l� , and

� �� n 	 � � � 2 � � �� � � 2�� � �� �� 2 � � l� . The modifications for
���� Q � , ���� , and

� �� Q � on C � are analogous. Note that the
support of the dual basis functions

���� ,
� �� is contained in

�	�
neighboring C � close to the

support of the corresponding finite element basis functions. Moreover, we find by construction� l � � .
For � 	 �

, we do not specify the explicit formulas for the basis functions and refer to
[OW00] for details. Figure 1 illustrates the interior dual basis functions, � 	 �

, for � l � �
and � � � �

, respectively. We have three different types associated with hat functions,
quadratic, and cubic bubbles, and supports consisting of two, three and one/two consecutive
intervals, respectively.

2D results

The above approach generalizes to higher dimensions, as we demonstrate with the following
example. We consider the space

1
of quadratic Lagrange 5 � -elements, i.e., � 	 �

, with
homogeneous Dirichlet boundary conditions on a triangulation 
 of a bounded polygonal do-
main � � � l , and show the existence of a dual basis of locally supported piecewise quadrat-
ics on 
 such that

�
reproduces linear polynomials locally, i.e., � � � � , under a certain
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Figure 1: Interior dual basis functions �  � � , 
 	 �
(above) and 
 	 �

(below)

regularity condition on 
 . For lowest order finite elements, dual basis functions satisfying� � � � have been constructed in [KLPV01, WK01, Woh01].
The basis � in

&
which is set to be the space of discontinuous piecewise quadratics is

conveniently given by the collection of all elemental nodal shape functions � � � � , piecewise
linear barycentric coordinate function for vertex � of triangle C , and � � � � , quadratic tent
function associated with triangle C and its edge � . Each such function is supported on a single
triangle, and there are � of them for each C . As before, an explicit, sparse factorization of �
can be found (see [OW00]), and Proposition 1 can be applied. Following the considerations
of Section 8, it is sufficient to find a locally defined subsystem

� � such that
� � � �

� � � � � "	�� .
Let C / 
 be any triangle all edges of which are interior to � . We specify a basis

� � of� � by setting
� � n 	46 � � � � l � � � 8 where � � denotes the extension of the barycentric coordinate

function associated with the vertex � � of C to all of
� l which is defined by requiring � � / � �

and � � � � �  	 1 � � � � � � 	 �*� �v� � . The subsystem
� � is defined by 6 � � � � � � 
 � � � � 8 where

� �


denote the conforming quadratic bubble functions associated with the edges � � of the triangleC . Using the affine invariance of both
� � and

� � we can without loss of generality assume
that C is equilateral, with area ��	 � . All the other notation can be found in the left of Figure
2. The area of the triangle C � , attached to C along � � , is denoted by � � .
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Figure 2: Notation for Lemma 3 (left) and counterexample (right)
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Lemma 3 Let the triangles in the left part of Figure 2 satisfy the following condition: For
each

� 	 ����� � � , the diagonal � � � � belongs to the closure of the corresponding quadrilateralC�� C � . Then the determinant of
�

� � � � � is positive and depends continuously on the location
of the

� � . If the additional geometric assumption is dropped, the matrix
�

� � � � � may become
singular.

Proof The proof is based on elementary calculations. We start by stating the formula� � � � � � � � �B� ��� 	 � � � � � 	 �� � � 	 � � � � 	 l � 	 �   �
which holds, due to affine invariance of all functions involved, for all triangles. This allows
us to compute all scalar products necessary for

�

� � � � � . E.g.,� � � � � � � � � � � � 	 � � � � � � � � � � � � � � � � � � � � � � � � � � 	 �� � � � �� � � � � � � t	 � � � l �� �

since � � � � �  	 � � � 2 � 	 � � � . Since � � � � l � � � � �
, we have � l � � �  � � � � � �  	� � � � � � � j	 � � � � which leads to the ansatz

� l � � � t	 � � � � ��� �� � � � � � � t	 � � � � � � �� �
where our geometric assumption implies that � � � ��� l � � �  � � � � � �   � � or, equivalently,= � � = � � � � � . With this at hand, we compute� � � � � � � � � l � � 	 � �

� � � � �� � � � � � l � � �  t	 � � � � � � � l � � � � � �� � �
and, analogously, � � � � � � � � � � � � 	 � � � � � � � l � � � � � �� � @
Applying the same analysis to the other rows of

�

� � � � � and observing that the rows almost
completely divide by � � � � �  , we get the following explicit formula

� �� �������
	
���  �� "���� ��� � "���� � � � "���� � � ����� ������ � # ��� � � ��� � # �"! � � ��� � � �"! �� ��� � � �#! � � # �$� � � ��� � #%�"! �� ��� � #%� !� � ��� � � � ! � � # ��� �

������'&

where = � � � =�	�� � = � � = 2 � � � � �  � � � , � 	 �*� �v� � , follows from our assumption.
A straightforward calculation reveals that

� 	 � �`� � � l � �  � � � � � �  � � � � � � � � �   �
where � � �BAGj	 � � � � l � ��� , � l �BAGj	 � � � l � � l ��� � ��� � � for any A / � � , and� � � � � � t	 � l � � �  � � � � � � l � � �  � � �l � � � � � �  � � �� � � � � � l �@
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The global minimum of
�

with respect to the cube
� � � / 6 � � � � � � 8 , � 	 �*� �v� � , is attained on

the boundary of this cube, and can be determined easily:� � � � � �  � � l � �  � � � � � � � � � l � � l � � � � � � �  � � � � l � � 
holds for all

� � � of interest. Substitution gives

� � � �`� � � � �  � �  5 � �U@ (12)

since � �
5 � , � 	 �*��� � �
. This shows the assertions of Lemma 3 under the geometric

assumptions made. The continuous dependence of the determinant and thus the inverse of
�

� � � � � on the local topology is obvious.
It remains to provide a counterexample that shows that the above choice for

� � may fail to
guarantee the invertibility of

�

� � � � � . The right part of Figure 2 contains the counterexample.
We claim that if

� � is moved to the left, the determinant of
�

� � � � � will vanish at some point.
Indeed, the specification of the example is such that � 	 � � 	 � l 	 � � 	 �

, both C
and C l are equilateral (thus,

� �l 	 � ), and
� �� 	 �

since
� � belongs to the extension of � � .

Thus, according to the above formula, � 	 	 � � � � � is a linear function with respect to
� � � ,

with slope 	 	 � �`� � �l � � �� � � l � � � �	 � � and � 	 � � � (since for
� � � 	 � the geometric

assumption is satisfied and therefore (12) is valid). Thus, moving
� � sufficiently far to the

left or, equivalently, decreasing
� � � , we finally hit a zero value for � . This proves our claim.

Remark 1 One possible modification is to start the construction of dual bases with a finite
element space

&
corresponding to a refined partition 
 � rather than with the space of non-

smooth piecewise polynomials on the same 
 . This could make the resulting
�

suitable
for applications, where higher smoothness of the functions in the dual system is required.
However, for use as Lagrange multiplier subspaces of 9 Q � � l in the mortar finite element
method this is not essential.

Remark 2 In contrast to constructions of biorthogonal wavelet systems [DKU99, DS97,
Ste00], the spaces

�
obtained here are not refinable, i.e., if 
 � is a proper refinement of 
 ,

we cannot expect to have
� � � � . However, as suggested in a similar problem in [Osw99],

we still have refinability

& � � &
for the container spaces of piecewise polynomials which

enables the use of our systems in a multilevel setup.

Acknowledgement: The authors would like to thank C. de Boor and R. Verfürth for their
interest and fruitful comments.
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9 Decomposition Algorithms for DDM

Olivier Pironneau1 and Stéphane Del Pino2 and Jacques-Louis Lions3

Control and DDM

We present here decomposition algorithms similar to Schwarz’ for the numerical solution
of the elliptic and parabolic problems in complex domain. They are well suited to domains
described by Constructive Solid Geometry (CSG), set operations on simple shapes, a data
structure often used in image synthesis and Virtual Reality[BC94].
We introduce briefly also the decomposition of evolution problems into subproblems on over-
lapping and nonoverlapping subdomains obtained with Lagrange multipliers without referring
to an optimization problem so as to avoid two point boundary value problems.

This paper summarizes several earlier ones, parts of a long term project aimed at solving PDEs
with the data structures of VR [LP99b][LP99c] [LP99a] [LP98b] [LP98a] [GLP99] [HLP99]
[BLP01]. It is being implemented into freefem3d, a user-friendly, language driven PDE
solver. Freefem3d takes VRML[HW96] data and POV-Ray input (http://www.povray.org);
it uses the fictitious domain method with finite element discretization and it is well suited to
DDM[BW86] at the algorithmic level.

Consider the problem of adjusting � so that �����v be nearest to � � / � l � �  and subject to

� / 1 � � ��� � ��vt	 � ��� � ��  8 �� / 1 @ (1)

where

� � � � ��vt	 �
�
� �� � � � � / � l*� �  (2)

Naturally it can be solved by minimizing

� ���v 	 	
� � ��� � �v � �� �

�
� � � � � El � � (3)

and the method is feasible for any non empty
� � � .

When � 	 �s� � and � � !0� � "	  (see Figure 4 for the notations) we can combine opti-
mal control and domain decomposition.

Consider the solutions of

� � ��� � � �� � t	 � � � � � � �� �  � B � � ? � � � � �� � � � (4)

1UP6: pironneau@ann.jussieu.fr
2UP6: Université Paris VI
3Collège de France
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Let

supp 

� � � !o� � � B 
 � 	 � � � � � � t	 �

�

 �
� l� � � @ (5)

� ��� ���  	 	
�
B
� � � ��� �  � �� B � � � ��� � � �  �  � �� B � � � k � � k l	 
 ' ? � � - � (6)

where � 	�� � � ! / � � l � � ! �� �  . We solve� ���
� � < �:��� ���  � subject to 
 � � � � 	 
 ��� � � (7)

The key point is to observe that this problem decouples when solved by a gradient method so
that the overhead is small when control is added to DDM.

Note that the method works also when the problem is only to solve a PDE like

� / 1 � � � � � ��vt	d� � � ��  8 �� / 1 @ (8)

Then the (virtual) control is an artefax to convert the problem into an optimization problem
which decouples on each sub-domain.
Some numerical results are shown on Figure 3 for a Laplace equation (see [LP99c] for more
details). It shows that the cost and convergence is comparable to Schwarz’ (see [Lio78]).
The same is true of time dependent partial Differential equations (see [LP99a]) .

Virtual Control

The previous exercise leads us to investigate ”virtual controls” in a more general framework.
To solve

�
� �B0 � �0\j	f� � � �0  8 �0 / 1 	�9 �� �;�<^@ (9)

we introduce the virtual controls
� � ��� l / � l � �  with

� � � � l 	 � (see figure 4). Let � � be
the same operator as � but with integrals on � � . Then solve by a conjugate gradient algorithm
for example:

� � �< � � � � j	 �

�
�

�
� � l � � � ll  � � � �� B � � ? � � 0\l� (10)

subject to

�
�
� �B0 � � �0 � t	 � � � � �0 �  � � � � � �0 �  � 8 �0 � / 1 � � (11)

�
�

 �B0 l � �0 l j	f� � l � �0 l  � � � l � �0 l  � 8 �0 l / 1 l (12)

with
1 � 	�9q���;� �  ! 1 . Notice that the solution to (9) is the sum of functions each having its

support in � � (see figure 5): ��	F0 � � 0 l . At the solution � 0 � 2 �\� 	F0 � 	 � on � l ! ��� �
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Figure 1: A Laplace equation whose solution is � 	 � � � � l is solved on a domain decom-
posed into 3 subdomains by virtual controls on their common boundaries. Several formu-
lations are compared with the Schwarz algorithm. Each domain has its own mesh, so the
method is non-conforming
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Figure 2: Left The virtual control set

�
is in � � !�� l . Right Decomposition of a function

(thick line) into two functions with support each in � � � �s	 �����



100 PIRONNEAU, DELPINO, LIONS

- 2 0

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

0 0.5 1 1.5 2 2.5

iteration 1
iteration 2
standard FEM

1 0

100

1000

104

105

0 2 4 6 8 1 0 1 2

control criteria
L2 error

Figure 3: Computation of a Laplace equation on a four piece domain by the method of virtual
control and comparison with Schwarz’ algorithm
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Decomposition of the Space

While introducing the concept of virtual control there was another important idea when we
wrote that the solution is the sum of functions with support in each sub-domain; in fact a
decomposition of the variational space can be used:9 �� �;�<t	�9 �� � � �  � 9 �� � � l  (13)

Consider again a simple elliptic problem like

0s= ? 	�� � C�0o	 �
in � 	�� � � � l � � ! � l "	�� (14)

0o	F0 � � 0 l , 0 �� =
�
� / 9q�� �;� �  .

Optimal control is not the only tool to apply the decomposition of the space; the fixed point
algorithm for instance works too. Let 0T�� be defined recursively by� �B0 � ���� � 0 � �  � Co�D0 � ���� � 0 �l t	 �

in � �� �B0 � ���l � 0 �l  � Co�D0 � � � 0 � ���l t	 �
in � l (15)

Such an iterative scheme is a sort of regularized Schwarz algorithm (it is Schwarz when � 	� ); converges is shown in [HLP99] for the continuous case and in [BLP01] for the discrete
case, the numerical difficulty being the evaluation of mixed integrals like� �

� �

�


��0 � � � �0 l (16)

Convergence

More precisely to evaluate

� � �D0 � � 0 l � � � � � l t	 � �B0 � � � �  � � �D0 l � � l  � � � �D0 � � � l  � � � �B0 l � � �  (17)

we use the following quadrature with quadrature points � �
�� � ! � ��� ��� �

� ��	 �*� � in triangle � � :
� � �D0 � � t	 �

�
B
� = � �� = � �E0 � � �� �  � � � � � �� �  � � �� idem on �Hl� @ (18)

Proposition(F. Brezzi) When the quadrature points are the vertices of both triangulations
(18) is an admissible quadrature for � and a coercive bilinear forms Furthermore the fixed
point algorithm converges when discretized with �U� elements and the error is optimal.

Chimera

Chimera as introduced by Steger[SB87] is a Schwarz algorithm with � 	 � 
 � 	d� � � � l .
For instance, potential flow around an airfoil involves solving Laplace’s equation in a domain
outside the airfoil[Pir87].

� C � ����� 	 �
� � ���� = ? � 
 	 � �l � � ���l = ? 
�� 	 � �� (19)
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Figure 4: With non matching grid one must compute integrals of products of functions piece-
wise linear on each grid.

Figure 5: Meshes and domain decomposition to compute the stream function around a two-
pieces airfoil, namely the solution of C � 	�� with Dirichlet data by the Chimera method. A
finer mesh is built around the smaller airfoil (on the left) and a coarse mesh for the rest of the
domain, with an elliptic hole in place of the small airfoil (the scale for both domains is not
the same on this picture). The whole domain is the union of the fine and coarse domains.
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Figure 6: Stream function around a two-pieces airfoil (namely solution of C � 	 � with
Dirichlet data) by the Chimera method (i.e. Schwarz algorithm). The convergence is obtained
after 4 iterations.

Here too we can use a decomposition of the variational space and therefore prove convergence
of the Chimera method for arbitrary meshes. In our numerical test the domain is the region
outside two airfoils and within a circle which approximates infinity. The finite element method
of order one on triangles has been used. The domain is divided in two: a domain near the
airfoil which is triangulated with small triangles and the rest of the domain which uses bigger
triangles. Here the domain has two airfoils, a large one and a small one. The decomposition
must be such that the physical domain is the union of both domain, and the domains must
overlap. Then Schwarz algorithm is used with translation and quadratures at the vertices as
explained above. Four iterations are sufficient for convergence to machine accuracy (figures
6 and 7.)

Decomposition of Operators

Our last idea is in the family of operator splitting methods. Consider

� � �B0 � �0 t	 B � �
� �
� � � � � 0� � � � �0� ��� �

� � �D0 � �0\t	 � �
�
� � 0 �0 � � �

� � � � l 	 ��� � � � � l 	 � in �
( �
� � � � � � � � are extended by 0 outside � � ).

Let
� � � � l � � � � � l be positive and small; we now introduce the system

� � � � 0 �� � � �0 �  � � � �B0 � � �0 �  � � �0 � ��� � � � �  � � � 	 � � � � � �0 � 
� � � � � �� � � �� �  � � � � �

� 
 � � � � � �� �  � � �� � � 0 � � 0 �  � � � 	 �
This method works with/without overlapping.
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Figure 7: Decomposition of operator: a Laplace equation solved on a composite domain with
overlapping.

Numerical Example

We consider the heat equation � D 0 � C�0 	 � � in � � � � � �H (20)

with zero initial and boundary conditions.
The domain ��	 � � � � l is made of the unit circle centered at the origin and a rectangle� � ���  � � � � �  .
The source term is in a disk centered at the origin and of radius 0.4.
The algorithm is

�

1 � �B0 � ���� � 0 ��  � C�0 � ���� 	 � � � � � �  � � % �G� in � �
�

1 � � � � ��� � � �  � C � � ��� 	 �

� �D0 � � 0 l  in 5 (21)

with Dirichlet conditions on ��� and Neumann conditions on � 5 , where 5 	�� � ! � l .
The parameters of the computations are 1 � 	 � @ � � � � � 	 �`@ � � and the results are shown

on figure 7 For problems with discontinuous coefficients the method without overlapping is
more attractive. We consider the convection-diffusion equation� D 0 � 4 � ��0 � � � �  �E0�t	 � in � � � � � �H (22)

with initial and boundary conditions.
The problem is in � 	 � � � �  � � � � �  . It is an academic example of the dissipation of

a pollutant from an enclosure 5 into a medium � � (rock) with low diffusion but cracked
(boundary

�
). Furthermore below in � � in another medium � l (sand) with large diffusion

constant
 l , the pollutant is also convected (water in sand) at velocity 4 . The velocity derives

from a potential
�

solution of
� � � �B7?� �  	�� in � l � = � ��� 	 � � = � ��� 	 � (23)
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Figure 8: Top: reconstructed solution at the two instants
� 	 �`@ � and

� 	 � @ � . Bottom:
solution in each subdomain at

� 	 � @ �
and 4 	 � 7?� � .

Equation (22) is discretized in time by an implicit Euler scheme and in space by the finite
element method of degree one on triangles. The convection term is treated by the Galerkin-
Characteristic method. Equation (23) is also discretized by the same finite element method.

We have chosen the following Domain Decomposition Method:
�

1 � � �B0 � ���� � 0 �� �

& � � �0 �  � �  ��0 � ���� � � �0 �  � 
 � �B0 � � 0 � � �0 � t	�� (24)

8 �0 � / 1 � � � $U	 �����v� $ "	 � (25)

where 0 � �

& � � �  � 0 � � � � 4 � � � �1 �  , 1 � is the finite element space on � � and


 � �B0 � �vt	 �
� � 	 � 0 � � � � � 0� � ���� �  � 	 � � ! � l (26)

The parameters chosen are:

7�	 � � �  � 	��`@ � � �*�  l 	 �`@ � � � 1 � � 	 � @ ��� � � 1 � l 	�� @ � � � � 	 � @ � � (27)

	 � 	 � � � � 	�� @ � ��� 	 l 	 � ��� � � l 	 � (28)

The mesh of � � is 1.5 times finer than the mesh of � l . The method is not unconditionally
stable; we have tried several values for the operator



and not all of them work; but the fact

that the coefficients of the PDE are constant in each sub-domain and the inherent parallelism
are the two major advantages. The results are on figure 8.
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Figure 9: LeftA scene displayed by POV-Ray. The objects are never intersected, it is the
graphic rendering that takes care of the problem. Right The trace of the real part of the
scattered acoustic field on the surface of the geometry [PHPT00]

Computation in Virtual Realities

Parallel computing with non-conforming meshes is easy to implement once a fast and ro-
bust interpolator is available to compute functions on all the meshes. Such is the case of
freefem+[BHOP99], a public domain software written by one of the authors. The previous
numerical results of this chapter were obtained with it.

Freefem3d

DDM is potentially useful to speed-up computation of virtual scenes created by Constructive
Solid Geometry. However all of them are in 3d, so we are currently developing a 3d ver-
sion of freefem. It has a language which is interpreted using bison, it reads geometries
created with POV-Ray (the file cross.pov below for instance) and it uses the Fictitious
Domain Embedding Method (FDEM). Results are displayed with IBM’s Data Explorer (cf
http://www.dx.com) or even Pov-Ray (Suzuki’s path in http://www.public.usit.net/ rsuzuki/ e/ povray/iso/index.html)

vector a = (0,0,0);
vector b = (1,1,1);
vector n = (100,100,100);
structmesh Mesh(n,a,b);
scene S("cross.pov",Mesh);
array mu(Mesh) = 1;
w = 5;
solve(u) {
u * wˆ2 + div(mu*grad(u)) =0;
dnu(u)-I*w*u=I*w *(Nx-1) on<1,0,0>

};
plot(u);

Operator Overloading in C++makes it easy to program the vector case by using templates
over the scalar case (generic programming). Thus the following is possible with any number
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Figure 10: Displayed are 4 iso-temperature surfaces (0.95, 0.5, 0.25, 0.05) for a transient
solution of the heat equation at time 0.1, around a table-shaped object at temperature 1 with
Neumann conditions on the boundary of the computational domain, (shown on the right with
POV-Ray) and initial temperature zero; the program in freefem3d language is given above.

of unknowns (2 here):

solve(u,v){
pde(u) - laplace(u) = f1;

on(a) dnu(u) + v = g;
pde(v) u - laplace(v) = f2;

on(a) u + 10*v = h };

However it will be quite a challenge to find a general preconditioner for iterative solutions of
the linear systems.

We conclude with a last example with the heat equation

double i=0; double dt=0.1; do{
solve(u) { u - div (dt * grad(u)) = u;

u=1 on <1,0,0>;
dnu(u) = 0 on Mesh;

};
i=i+1;
dxplot("u.dat",u,Mesh);

}while(i<=5);

The results are shown on figure 10
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10 Cartesian and Curvilinear Grid Methods for
Multi-domain, Moving Boundary Problems

W. Shyy1 M. Francois2 H.S. Udaykumar3

Introduction

A variety of physical phenomena involve the coupling of evolution of multiple materials
with boundaries that move, deform or evolve in time. Examples include the deformation of
drops, bubbles, liquid free surfaces, phase boundaries in solidification and vaporization, fluid-
structure interaction problems at the large scale such as in aeroelasticity and in the small scale
such in biomechanics, and a whole host of other interesting phenomena. These problems
are challenging due to the complexity associated with the often severely deformed bound-
aries, multiple time and length scales, and the nonlinearity resulting from the coupling of
the interface dynamics with the dynamics of the material. Ideally one would like to track
the moving boundary as a sharp front (allowing discontinuities in quantities such as stress
and energy across the interface) without smearing the information at the front. Also, one
would like to solve the field equations within each region separated by the interfaces with
satisfactory accuracy. If the interfaces become multiply-connected, it is desirable to follow
the evolution of the interfaces through such topological changes. Numerous techniques exist
for tracking arbitrarily shaped moving interfaces, each with its own strengths and weaknesses
[Cra84, FR89, SURS96]. These techniques may be classified under two main categories: (a)
surface tracking or predominantly Lagrangian methods [FZP � 93, SS95, SS96] and (b) vol-
ume tracking or Eulerian methods [HN81, AP91]. The main features of the two types are
presented in Figure 1. We offer the following comments to contrast the relative characteristics
among different approaches.

a. Interface Definition

The Lagrangian methods maintain the interface as a discontinuity and explicitly track its evo-
lution. If detailed information regarding the interface location is desired, Eulerian methods
may need elaborate procedures to deduce the interface location based on the volume frac-
tion information, and uncertainty corresponding to one grid cell is unavoidable [AP91, HN81,
SZ99]. In the Lagrangian case, the interface can be tracked as a (n-1)-dimensional entity for
a n-dimensional space [DS85, GGL � 88, WM86]. No modeling is necessary to define the
interface or its effect on the flow field. In the case of Eulerian schemes, modeling or solution
of additional equations is required to obtain information regarding phase fractions or other
functions yielding information in the two-phase regions.

1Department of Aerospace Engineering, Mechanics and Engineering Science, University of Florida,
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2Department of Aerospace Engineering, Mechanics and Engineering Science, University of Florida,
francoim@aero.ufl.edu

3Department of Mechanical Engineering, University of Iowa.
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b. Interfacial Boundary Conditions

In the Lagrangian methods, boundary conditions can be applied at the exact location of the
interface since the interface position is explicitly known at each instant. In the Eulerian meth-
ods, the boundary conditions are manipulated to appear in the governing transport equations
[BKZ92]. This leads to the smearing of boundary information.

c. Discretization of the Domain

In the Lagrangian methods, the grid adapts to the interface and hence grid rearrangement and
motion terms have to be incorporated. When the interface begins to distort, the grid needs to
be regenerated each time. The resulting grid on which the field variables are computed may
be skewed and unevenly distributed, thus influencing the accuracy of the field solver. The
Eulerian methods have an advantage in this regard since the computations are performed on
a fixed grid, hence obviating the need for grid rearrangement. However, when the interface is
arbitrarily shaped, improved resolution in desired regions is difficult to obtain, unless compli-
cated local refinements are adopted. In the Lagrangian method a set of governing equations
needs to be solved for each different material and region, whereas in an Eulerian method only
a single set of equations with appropriate source terms is solved for the entire domain.

d. Movement and Deformation of the Interface

Lagrangian methods have so far experienced difficulty in handling topological changes, mainly
due to the breakdown of the structured grid arrangement and the need for redistribution of field
information in the vicinity of the interface for unstructured grid methods [WM86]. On the
other hand, in Eulerian methods mergers and fragmentations are taken care of automatically,
merely by updating the values of the phase fraction. However, the detailed physical features
involved during such events may not be fully resolved due to the smearing of information
as mentioned above. The choice of moving boundary method from the general categories
above depends to a large extent on its appropriateness of the physical problem chosen. In
the following, we highlight recent efforts in developing computational techniques for treating
moving boundary problems. Both moving and fixed grid methods will be considered. To aid
the discussion, for the fixed grid method, we use the impact dynamics, and for the moving
grid method, we use the soft contact lens dynamics to highlight the solution characteristics.

A Fixed-grid, Sharp-interface Method for Multiple Moving
Boundaries: Impact Dynamics

The dynamics of impact between materials is characterized by large deformation and short
time scales. Wave propagation in the impacting media is highly nonlinear, and involves lo-
calized phenomena such as shear bands, crack propagation, and wave refraction [Mey94].
These problems are typically challenging to solve because, in contrast to conventional struc-
tural dynamics problems, the deviatoric and pressure terms in the stress tensors are both
important and need to be modeled separately. In contrast to conventional fluid dynamics
problems, the stress and strain fields are related through nonlinear elasto-plastic yield sur-
faces, the models for which must be included in the governing equations. Furthermore,
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the interface between materials experiences not only fast motion, but also large variations
in shape. In this section we summarize a numerical solution technique progressively devel-
oped in [SURS96, USR96, UKSTST97, UMS99, UTS � 00, YMUS99] for the simulation of
high-speed multi-material impact. Of particular interest is the interaction of solid impactors
with targets. This problem is important in applications such as munitions-target interactions,
automobile collision assessment, geological impact dynamics, and shock processing [Mey94].
Such interactions present the following challenges to numerical simulation techniques:

1. High velocities of impact leading to large deformations of the impactor as well as tar-
gets.

2. Nonlinear wave-propagation and the development of shocks in the systems.

3. Modeling of the constitutive properties of materials under intense impact conditions and
accurate numerical calculation of the elasto-plastic behaviour described by the models.

4. Phenomena at multiple interfaces (such as impactor-target, target-ambient and impactor-
ambient), i.e. both free surface and surface-surface dynamics.

The method adopted falls under the class of combined Eulerian-Lagrangian method. It
operates on a fixed Cartesian mesh (the Eulerian part) while the interfaces move through
the mesh (the Lagrangian part). The method treats the interfaces as discontinuities without
smearing on the mesh, therefore it is a sharp interface method. The advantage of the fixed
grid approach is obviously that grid topology remains simple while large distortions of the
interface take place. This allows an extension of highly accurate shock-capturing methods
(Essentially Non-Oscillatory or ENO [HEOC97, SO88, SO89] in the present case) developed
for scalar conservation laws in fixed grid settings to solve moving boundary problems with
arbitrarily distorted interfaces. A Cartesian grid ENO formulation suffers little change when
applied to the present problem. We now proceed to describe the method in detail.

Interface Tracking Algorithm

The interface is described by interfacial markers defined by the coordinates

& � �  . The spacing
between the markers is maintained at some fraction of the grid spacing � , � @ � � 3 � � 3 � @ � � .
The convention adopted is that as one traverses the interface along the arc-length, the material
enclosed by the interface lies to the right. This is illustrated in Figure 2. The functions
� � �  	 � � � l � 
 � � � � � and ��� � t	 � � � l � 
 � � � � � are generated. The coefficients �

� � � , 
 � � �
and �

� � � at any interfacial point
�

are obtained by fitting polynomials through the coordinates� � � Q � � � � Q �  , � � � � � �  and � � � ��� � � � ���  . The coefficients �
� � � , 
 � � � and �

� � � are stored for
each marker point. Once the interface has been defined, the information on its relationship
with the grid has to be established. There may be several interfaces (henceforth called objects)
immersed in the domain. Each of the objects may enclose material with different transport
properties. Therefore it is necessary to identify which phase each computational point (i.e.
cell center point) lies in. An illustration is shown in Figure 3. The end result of the procedures
is the following pieces of information which are required to set up the discretization scheme
for the present method: (i) The interfacial cell in which each interface marker lies. (ii) The
interfacial marker, which is closest in distance to a computational point. (iii) The material in
which each computational point in the mesh lies. (iv) Several geometric details such as the
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shape of the resulting cut-cell, the locations where the interface cuts the cell faces and where
it intersects the cell center lines (the dotted lines shown in Figure 3). These details of a cell are
used in constructing the stencil for each interfacial cell. (v) A list of all interfacial cells. These
pieces of information regarding the interface and its relationship to the underlying grid are
computed only in a lower-dimensional set of interface cells. In summary, the computational
formulation tracks moving boundaries on a fixed underlying grid while striving to achieve the
following objectives:

1. The interface is tracked as a discontinuity and boundary conditions of the Dirich-
let/Neumann type are applied on the tracked fronts.

2. The discretization to include the embedded boundaries involves simple measures in the
vicinity of the interface. Such points are few compared to the overall grid size.

3. Based on truncation error analysis the discretization can be performed so that global
second-order accuracy in the field variable can be maintained.

4. The problem of stiffness of the interface evolution in curvature-drivendynamics [HLS94]
is surmounted by using an implicit formulation to couple the interface evolution with
the field equation.

5. The issue of change of material of a grid point when the boundary crosses over it is
dealt with by a simple analogy with purely Lagrangian methods.

This involves redefinition of the stencils in the points adjoining the interface to account for
the grid points that have changed phase. The various components of the solution algorithm can
easily be extended to 3D. It is demonstrated by [UMS99, YMUS99] that the field calculation is
second-order accurate while the position of the phase front is calculated to first-order accuracy.
Furthermore, the accuracy estimates hold for the cases where there are property jumps across
the interface.

Results and Discussion

2D computations were performed in a square domain of size 1mx1m as illustrated in Figure
4. As shown there the objects were placed some distance apart on the mesh and impact was
initiated by prescribing a velocity to one or both interfaces. Initially there is a region of void
between the two interfaces. This void disappears at the material- material interface. In Figure
5, we show the impact of a cylinder with a plane surface. Both surfaces are copper and the
material properties in the model correspond to that metal. In the figure, we show on the left
the contours of velocity magnitude in the impactor and the target along with the velocity
vectors in the flow domain. On the right we show contours of equivalent stress. Also shown
in each of the figures is the shape of the boundaries of the two materials. As can be seen
in these figures there is an abrupt transition in the corners from a material-material interface
to a material-void interface for each material. Appropriate governing laws and boundary
conditions are discussed in [UTS � 00]. Zero-gradient conditions are applied at the sides of
the domain assuming that the target has infinite extent in all except the +y direction. Figures 5
(a), (b) and (c) correspond to time instants

� @ � 7 � , � � 7 � and
� ��� 7 � after impact respectively.

The progression of the elasto-plastic waves and the formation of large gradients in the velocity
as well stress fields is evident from the figure. At the rim of the impactor, the interfaces are



SHYY 113

constantly in collision since the material-void interfaces are being pushed against each other
to form material-material interfaces. Thefore the rim of the impact region registers large stress
and correspondingly, strain values. Stress waves are propagated into the materials from this
point. In Figure 5(c) it can be seen that the velocity field is such as to continuously push
the impactor into the target leading to the production of an upswell in the target material
around the rim. This is also indicated clearly by the velocity vectors shown. Regions of
compression and tension are seen from the contours of stress. The current method has the
following capabilities:

1. The interface can be tracked through large distortions.

2. Accurate shock-capturing schemes can be implemented for Cartesian grids and ex-
tended in a straightforward manner to incorporate the presence of the moving interfaces.

3. Boundary conditions are developed for the 1D uniaxial strain case and 2D plane strain
case and these are applied at the exact locations of the boundaries.

4. Different regions of the boundaries can have different boundary conditions, i.e. the
material-material and material-void boundary conditions. These are applied at the in-
terface points identified to lie in regions where the interfaces are in contact and where
the interface is exposed to void respectively. These boundary conditions are physically
dictated or numerical boundary conditions. The suitability of the set of boundary con-
ditions is determined based on numerical experimentation. The singularity resulting
from an abrupt transition from a material-material to material- void boundary condition
at the interfaces is handled well.

A Moving-grid Method for Fluid-structure Interaction: Soft
Contact Lens

A soft contact lens is spherical in projected shape and has a diameter around 12 to 14 3 3 .
The optical power of the lens determines the lens posterior central radius (base curve radius)
and its thickness. Commonly used base curve radii range from 7.5 to 9.0 3 3 . Soft contact
lenses are made of hydrophilic polymers that have an elastic modulus varying with water
content. For example the “1-Day Acuvue” lens by Vistakon contains 58% of water and has an
elastic modulus of 0.36

� � � [WSB98]. A typical lens weighs about 10 mg. When placed on
the eye, a contact lens is separated from the eye surface by a thin tear film. The thickness of
the tear film beneath the lens is around

� � 7 3 . So, the aspect ratio between the lens diameter
and tear film height is very large, of the order of 1000. Figure 6(a) illustrates the lens-eye
profile. An eye-blink creates a force on the contact lens that causes the contact lens to move
and deform. Since the lens material makes the soft contact lens very flexible, the lens can
exhibit complex shape deformation characteristics.

Francois et al. [FSU99] have presented a computational capability to simultaneously
model the dynamics of a soft contact lens and fluid dynamics of the tear film flow. In the
present model, the deformable contact lens is considered to be an elastic membrane. A
schematic of the computational model is presented in Figure 6(b). Specifically, the main
features of their model can be summarized as follows: (1) the tear film is considered to be a
single layer, Newtonian fluid governed by the Navier-Stokes equations; (2) the soft contact
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lens is modeled as an elastic membrane whose tension is regulated by the membrane thick-
ness; (3) the lens is fixed at the edge; (4) the ambient pressure variation is responsible for
the lens movement and deformation; (5) the lens structural dynamics and the tear film are
modeled as a coupled system so that both the lens and the tear film characteristics, and their
interaction, can be investigated simultaneously; (6) the lens thickness is of variable profile
based on typical commercial design.

Governing Equations of Tear Fluid and Contact Lens

The governing equation of the soft contact lens considered is the equilibrium equation of an
elastic massless membrane in 2D [SS95, SURS96]. Figure 7 illustrates an elastic membrane
restrained at its both extremities. Here only the equilibrium lens equation in the normal direc-
tion is considered:

� C �c 	 � � � �c 	 �� � l �� � l
�
� � # � �� � + l � Q �


���
(1)

where � � is the outside or applied pressure, � is the pressure in the tear film beneath the lens,c
is the lens tension, which is taken to be proportional to the product of the lens elastic modu-

lus and the lens thickness and � � � �v are the space coordinates. The fluid flow computation is
based on a well-established pressure-correction type finite volume solver of the Navier-Stokes
equations, in body-fitted curvilinear coordinates, as detailed in [Shy94, SURS96, SS97].
Since the initial structure configuration and associated body-fitted grid do not correspond
to an equilibrium configuration a moving grid procedure is employed [SURS96, SS95, SS96]
wherein the grid is continuously updated during the course of computation, in response to the
shape change of the lens. Three key information items are required to facilitate the moving
grid technique, namely,

1. Kinematics conditions apply at the interface (moving boundaries).

2. The geometric conservation law is invoked [SURS96] to estimate the Jacobian of term
to enforce volume conservation.

3. The contravariant velocity components and Cartesian velocity components at the bound-
ary are computed to enforce mass conservation.

Results and Discussion

Results of the computations for three configurations with tear film aspect ratios (ratio of the
horizontal projected length between the center and the pinned end point to the tear film height
at the pinned location) of 10, 100, and 1000 are presented. It should be noted that, while
under practical wearing conditions the aspect ratio of the tear film is around 1000, we have
treated this aspect as a parameter to gain a more comprehensive understanding of the physics.
The computational domain and boundary conditions used are presented in Figure 6(b). The
overall geometry including lens, tear film, and cornea and the variable lens thickness pro-
file is illustrated in Figure 8. An externally imposed time-dependent pressure, modeling eye
blinking process, is represented in Figure 9. Figure 10 shows the maximum lens deflections
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normalized by the initial tear film height at the lens center, for the three cases with variable
thickness, in response to the imposed pressure variation. Figure 11 presents the maximum
pressure difference inside the tear film normalized by the applied pressure oscillation versus
time. From Figures 10 and 11, it is clear that the pressure variations and the lens deforma-
tion are correlated with each other. Accordingly, as shown in Figure 12, the tear flow rate is
influenced by such a correlation.

Francois et al. [FSU99] have also discussed the fluid physics of soft contact lens. First,
the tear fluid velocity, responding to the lens deformation, increases from the central region
toward the end of the lens. Second, the pressure gradient does not develop only along the
direction of the lens, as suggested by a typical thin film approximation. The reason is that the
lens movement is not slow and the tear film is not a simple parallel viscous flow. A straight-
forward application of the thin film theory without due consideration of the lens movement
can introduce large error in the analysis. Under the present condition, as illustrated in Fig-
ure 13, the Reynolds number increases as the aspect ratio increases, from negligibly small to
about 100. These observations indicate that common practices in the literature, with either
a straightforward application of the thin film theory, without an explicit consideration of the
lens movement, or a direct account of the structure dynamics with an assumed pressure field
are unsatisfactory.

Concluding Remarks

We have described the development of numerical techniques based on both fixed and mov-
ing grid to treat sharp interface for the simulation of moving boundary problems. Examples
arising from fast transient multi-material impact dynamics and soft contact lens are used to
illustrate the main features of each method. For the fixed grid method, computations of the
deformation process are carried to large distortions while the interfaces travel through the
mesh in a stable and robust manner. Such a technique has also been successfully applied to
treat problems arising from crystal growth [UMS99]. On the other hand, if the detail of the
interface characteristics can be smeared out, then a simpler treatment involving the immersed
boundary treatment [Pes77, UT92, UKSTST97, KUSTST98] can be highly effective. This
approach has tackled a variety of problems, especially for those related to multiphase and cel-
lular dynamics. For the moving grid method, the implications of the lens tension variations on
the lens response and the nonlinear interaction between the fluid flow and the soft contact lens
are demonstrated. When the interface does not exhibit substantial deformation, the moving
grid method can be highly effective. It can also be robust in terms of the size of the time steps.
This approach has been successfully applied to handle fluid-structure interaction problems
with high Reynolds numbers, including the effect of turbulence and laminar-to-turbulent tran-
sition [SS95, SS96, SJS97, HFS � 00]. No method is universally superior for treating moving
boundary problems. Depending on the nature of the problem and the goal of the computation,
an intelligent selection of an appropriate technique can help successfully address the physical
and numerical challenges.
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Figure 1: Comparison of Lagrangian and Eulerian methods for interface tracking. (a) Purely
Lagrangian method with a moving, boundary conforming grid. (b) Fixed grid Eulerian method
with a phase fraction definition of the interface.
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Figure 2: Illustration of interface properties. The normal to the interface and arclength coor-
dinate are shown.



SHYY 119

PSfrag replacements

Figure 3: Interfacial cell and bulk cell classification on a grid. With interface passing through
it. Also shown are interfacial cell properties.
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Figure 4: Impact of two objects in the 2D case. A plane strain problem is solved.
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Figure 5: Impact of a cylinder with a planar surface. The cylinder impacts the target with
a velocity of 2000 3 2 � directed downward. The figures on left show velocity contours and
vectors along with the interface shapes. The time after impact are indicated alongside the
figures. The figures on the right show stress contours.
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Figure 6: Schematic of contact lens and computational model.
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Figure 7: End constrained elastic structure.
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Figure 8: Schematic of the contact lens model and thickness profile.
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Figure 9: Time History of the applied external pressure � � 	 � � � ��� � � � � � � �t� �	 � �  .
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Figure 10: Maximum deflection versus time for three different aspect ratios 10, 100, 1000
with variable thickness.
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Figure 11: Maximum pressure difference inside the tear film.
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Figure 12: Variation of tear fluid volume going in/out of domain with time.



SHYY 125

PSfrag replacements

Figure 13: Averaged Reynolds number versus aspect ratio.
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11 Rate of Convergence for Parallel Subspace Correction
Methods for nonlinear variational inequalities

X.-C. Tai1, B. Heimsund2 and J. Xu3

Introduction

Given a reflexive Banach space
1

and a convex functional
� n 1 �� �

, we shall consider the
following nonlinear optimization problem

� � �
�����

� � �  � � � 1 @ (1)

The nonempty convex subset � is assumed to be closed in the strong topology of
1

. We are
interested in the case that the space

1
can be decomposed into a sum of subspaces

1 �
, i.e.

1 	 1 � � 1 l � � � � � 1 � 	 �B
� ��� 1 � @ (2)

This means that for any � , there exists � � / 1 �
such that �U	 � �� ��� � � .

After the decomposition of the space as in (2), there are two different ways to solve the
nonlinear problem (1). The first alternative is to decompose � into a sum of � � � 1 � � ��	
�*� �v� � � � � 3 , i.e.

� 	 � � � � l � � � � � � � 	 �B
� ��� � � �

and then solve a minimization problem over each subset � � in parallel or sequentially. The
convergence analysis and numerical experiments have been done in [Tai00].

For the second alternative, we only need to decompose the space
1

as in (2), but we do
not need to decompose the constraint set � , see the next section for the detailed algorithms.
Uniform linear convergence rate analysis for these algorithms is still missing in the literature.
The contribution of this work to give a mesh independent linear convergence rate estimate for
domain decomposition and multigrid methods for these algorithms. The techniques used in
the analysis are extensions of the techniques used in [TE98, Tai00, TT98, TX01].

We will find the proper assumptions on the decomposed subspaces to guarantee that the
algorithms will have a uniform linear convergence rate and then we verify that these assump-
tions are really valid for domain decomposition and multigrid methods.

1Department of Mathematics, University of Bergen, Johannes Brunsgate 12, 5007, Bergen, Norway. Email:
Tai@mi.uib.no and URL: http://www.mi.uib.no/� tai.

2Department of Mathematics, University of Bergen, Johannes Brunsgate 12, 5007, Bergen, Norway. Email:
bjornoh@mi.uib.no and URL: http://www.mi.uib.no/� bjornoh.

3Department of Mathematics, Pennsylvania State University, University Park, Pennsylvania 16802. Email:
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The algorithms and some assumptions

Algorithm 1 For a given 0�� / � and 	�/ � � � � 2 3  , compute � � ���� / 1 �
in parallel for� 	 �*� �v� � � � � 3 such that

� ����� 	 � � � � � �
� � � @ ) ���� � ��� �

� � � �  with
� � � � t	 � �D0 � � � � ^@ (3)

and then update

0 � ��� n 	 0 � � 	 �B
� ��� � �����

Algorithm 2 For a given 0 � / � and 	 / � � � �  , compute � � ���� / 1 �
sequentially for� 	 �*� �v� � � � � 3 such that

� � ���� 	 � � � � � �
� � � @ ) � � + �� ���

� � ��� �
� � � �  with

� � � � t	 � �D0 �� � + �� � � � m@ (4)

and update 0 �� �� n 	 0 � � � + �� � 	 � � ����

For the minimization functional
�

, we only need to assume that
�

is Gâteaux differen-
tiable (see [ET76]) and that there exists a constant � 5 � such that

� � � � �  � � � ���v � � � � � � ��k � � � k l � � 8 � � � / 1 @ (5)

Here
� � � � � is the duality pairing between

1
and its dual space

1 �
, i.e. the value of a linear

function at an element of
1

. Under the assumption (5), problem (1) has a unique solution, see
[ET76, p. 35]. For some nonlinear problems, the constant � may depend on � and

�
.

As in [TE98, TT98, TX01], we shall use two constants in the estimation of the rate of the
convergence of the algorithms. First, we assume that there exists a constant 5 � 5 � and this
constant is only related to the decomposition (2). With the constant 5 � and the decomposition
(2), it is assumed that for any � � � / � , one can find

	 � / 1 �
to satisfy

� � � 	 �B
� ��� 	 � � 	 � � � / � �

and

� �B
� ��� k 	�� k l � � �
 � 5 � k � � � k � @ (6)

In addition to the assumption of the existence of such a constant 5 � , we also assume
that there is a 5 l 5 � which is the least constant satisfying the following inequality for any� ��� / 1 � 0 � / 1 �

and � � / 1 �
:�B

� � � ��� ����
� � � � � ��� � 0 �  � � � � � ���  � � � � ���� � 5 l # �B

� ��� k 0 � k l � +
�
 # �B

� ��� k � � k l � +
�
 @ (7)

Later we shall show that these assumptions are valid for domain decomposition and multi-
grid methods. Moreover, the constants 5 � and 5 l are mesh independent.
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The convergence of the parallel subspace correction method

We shall only do the convergence analysis for Algorithm 1. For notation simplicity, we define0 to be the unique solution of (1) and for any � � � we define

0 � 	 �B
� ��� 0 �� � �0 � ��� 	 0 � � �B

� ��� � � ���� � � � 	 � �D0 �  � � �B0�^@ (8)

Theorem 1 Assuming that the space decomposition satisfies (6), (7) and that the functional�
satisfies (5). Then for Algorithms 1, we have� �D0 � ���  � � �B0�� �B0 �  � � �D0  � � � 	� � � � 5 � � � 5 �  l � (9)

with

5 � 	 # 5 l � ��5 � 5 l  l� �
+ �

� @ (10)

Proof. Since � � ���� minimizes (3), it satisfies (see [ET76])

� � � �D0 � � � � ����  � � � � � � ���� � � � � 8 � � / 1 �
satisfying � � � 0 � / ��@ (11)

Under the assumption of (5), it is known that (see [TE98, Lemma 3.2])� � �  � � � �  � � � � ���v � � � � � � � � k � � ��kml � � 8 � � � / 1 @ (12)

Using these results, we get that� �D0 �  � � �D0 � ��� t	 � �B0 �  � � # 0 � � 	 �B
� ��� � ����� +

	 � �B0 �  � � # �B
� ��� 	 �B0 � � � � ����  � � � � 	 3 �0 � +

� � �B0 �  � 	 �B
� ��� � �D0 � � � � ����  � � � � 	 3  � �B0 � 

	 	 �B
� ��� � � �D0 �  � � �D0 � � � � ����  

� 	 ��
�B
� ��� k � ����� k l � � using (11) and (12)) @ (13)

The argument used to get the above estimates is the same as the unconstrained case, see
[TX01]. For notational simplicity, we introduce for a given �

� �� 	 ������
����

� 0 � � �
�
� Q �B
� � � � � ���� � 8 $ / 6 ��� 3 � � � � 8 �

0 � � �B
� � � � � ���� � � Q � � � Q �B

� ��� � ����� � 8 $ / 6 3 � � � � � 3 8 @ (14)
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It is clear that
� �� depends on � . Moreover, we see that� �� 	 0 � � � � ���� �� �l 	 0 � � � � ���� � � � ����

��� �
...� �� 	 0 � � �B

� ��� � � ���� @
It is easy to see that

� � � 0 � � �B
� ��� � � ���� 	 � � � �B0 � � � � ���� t	 �B

� � l � � � �
� ��  � � � � � �� Q �  � @ (15)

From assumption (6), there exists
	 �� / 1 �

such that

0 � 0 � 	 �B
� ��� 	 �� � 	 �� � 0 � / � � # �B

� ��� k 	 �� k>l +
�
 � 5 � k�0 � 0 � k,@ (16)

We shall now use all of the above to estimate
� � � � �0 � ���  � �0 � ��� � 0 � 	 �B

� ���
� � � � �0 � ���  � � � ���� � 	 ����

�
�B
� ���

� � � � �0 � ���  � � � �B0 � � � ����  � � � ���� � 	 �� � � using (11) and (16))

	 �B
� ���

�B
� � l

� � � � � ��  � � � � � �� Q �  � � � ���� � 	 �� � � using (15))

� 5 l # �B
� ��� k � � ���� kml + �
 # �B

� ��� k � � ���� � 	 �� kml + �
 � using (7)) (17)

� 5 l � �B
� ��� k � � ���� k l � �
 #�# �B

� ��� k � � ���� k l + �
 � 5 � k 0 � 0 � k + � using (6), (8) and (16))

	 5 l �B
� ��� k � � ���� k>l � 5 � 5 l # �B

� ��� k � � ���� kml + �
 k�0 � 0 � k,@
The rest of the proof is the same as in [Tai00].

The general theory developed for (1) will be applied to the following obstacle problem in
connection with finite element approximations:

Find 0 / � �
such that � �D0 � � � 0  � � ��� � 0� � 8 � / � �

(18)

with � ��� � �  	 �
�
� � � � � � � , � 	�� � / 9q�� � �<>= � � �  � � � �  a.e. in � ! @ For the analysis,

it can be assumed without loss of any generality that
� 	��`@ (19)
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It is well known that the above problem is equivalent to the following minimization problem

� � �
�����

� ���v � � � �  	 �

� � ��� � �v � � ���v � (20)

assuming that
� ���v is a linear functional on 96�� � �< . For the obstacle problem (18), the mini-

mization space
1 	�9 �� � �< . Correspondingly, we have � 	 � for assumption (5).

Overlapping domain decomposition

In this section we apply our algorithms to the overlapping domain decomposition method.
For the domain � , we first partition it into a coarse mesh division � 
 � ! with a mesh size 9
and then refine it into a fine mesh partition � 
 � ! with a mesh size � 3 9 . We assume that
both the coarse mesh and the fine mesh are shape-regular. Let �,� � ! �� ��� be a nonoverlapping
domain decomposition for � and each � � is the union of some coarse mesh elements. Let� � � � � � � � �< and

� � � � ��� � �;�< be the continuous, piecewise linear finite element
spaces over the 9 -level and � -level subdivisions of � respectively. More specifically,

� � 	 p � / � ��� � �;� �  �� � = � � / � � �;� �  � 8 � u �� � 	 p�� / � � � � �;� �  �� ��=  / � � ��
� � 8 
 / 
 � u @
For each � � , we consider an enlarged subdomain � '� consisting of elements 
 / 
 � with

dist ��
 � � �  � 1 . The union of � '� covers �� � with overlaps of size 1 . Let us denote the
piecewise linear finite element space with zero traces on the boundaries ��� '� 
�� � as

� � � � '�  .
Then one can show that

� � 	 �B
� ��� � � �;� '�  and

� � 	 � � � �B
� ��� � � � � '�  @ (21)

For the overlapping subdomains, assume that there exist 3 colors such that each sub-
domain � '� can be marked with one color, and the subdomains with the same color will not
intersect with each other. For suitable overlaps, one can always choose 3 	 �

if
� 	 � � 3 � �

if
� 	 � � 3 � �

if
� 	 �

. Let � �� be the union of the subdomains with the � D � color, and1 � 	�� � / � � = � � � j	�� � � "/ � �� ! ��	 ����� � � � � � 3 @
By denoting subspaces

1 � 	 � � ,
1 	 � � , we get from (21) that

� m@ 1 	 �B
� ��� 1 � and


 ^@ 1 	 1 � � �B
� ��� 1 � @ (22)

Note that the summation index is from 0 to 3 instead of from 1 to 3 when the coarse mesh
is added.

Let � � � ! �� ��� be a partition of unity with respect to � � �� ! �� ��� , i.e. � � / 1 �
, � � � � and� �� ��� � � 	 � . It can be chosen so that

= � � � = � 5 2 1 � � � � �  	 � �
if � / 
 , distance � 
 � ��� ��  � 1 and 


� � �� �� on � 
*� �� @ (23)
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In the following, we shall give the definition of a nonlinear interpolation operator �
�
� n� � �� � � which was introduced in [Tai00]. Denote by � � 	 p � �� u � �� ��� all the interior nodes

for 
 � . For a given �
�
� , let �

�
be the union of the mesh elements of 
 � having �

�
� as one

of its vertices, i.e. � � n 	g� � 
 / 
 � � � �� / �

! @ Let p � �� u � �� ��� be the associated nodal basis

functions of
� � satisfying

� �� � � ��  	 1 � � , � �� � � � 8 � and � � � �� � � j	 � . It is clear that �
�

is
the support of

� �� . Given a nodal point �
�
� / � � and a � / � � , let � � � 	 � � � � � � � �  . The

interpolated function is then defined as

� �� � n 	 B� �� ����� � � � �  � �� � � ^@
From the definition, it is easy to see that

� �� � � � � 8 � / � � � (24)
� �� � � � � 8 � � � � � / � � @ (25)

Moreover, the interpolation for a given � / � � on a finer mesh is always bigger than the
corresponding interpolation on a coarser mesh due to the fact that each coarser mesh element
contains several finer mesh elements, i.e.

� �� � �
� � �� 
 �

� 8 � � � � l � � � 8 � / � � @ (26)

In addition, the interpolation operator also has the following approximation properties (c.f.
[Tai00]) k � �� � � � �� � � ��� �	� >k � � � � 9:= � � � = � � 8 � � � / � � (27)k � �� � � � k � � � � 9:= ��= � � k � �� � � � �� � k � � � � k � � � k � � 8 � � � / � � � (28)

where � � 	 5 if
� 	 � ; � � 	 5 � � � ��

����� � � ��
�
 	 if

� 	 �
and � � 	 5 � � � � �
 if

� 	 �
.

We first use decomposition (22.a) to decompose the finite element space
1 	 � � , i.e. the

coarse mesh is not used in the computations. Let � � be the Lagrangian interpolation operator
which uses the function values at the � -level nodes. In order to estimate constant 5 � , we take	 � 	 � � � � � � � � �   for any � � � / � . As � �� ��� � � 	 �

, thus � �� ��� 	 � 	 � ��� using the
linearity of � � . Moreover, 	 � � � 	 � � � � � ��� �	�  � � m@
Under assumption (19), it follows from the fact that � � / � � � �  and the convexity of � that	 � / � . It is easy to prove that the following estimate is correct and the proof is exactly the
same as for the linear unconstrained case [SBG96, Xu92]:

5 � � 5 � � � 1 Q �  � 5 l 	 � 3q@
If we shall use the coarse mesh, then the decomposition is as given in (22.b). The estima-

tion for 5 l is the same as for linear problems, we just need to find the biggest constant which
satisfies (6).

In order to show that assumption (6) is valid for decomposition (22.b), we first decompose
� � � into

� � � 	 ���
�
� � � ��� 	 � � � � � � � � �  � � � 	 � ��� � � � � � �v � (29)
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and then define
	 � / 1 � as 	 � 	 � �� � � ��� � � �� � � � � @

Under assumption (19), we see that � � � � � . From (24) and (25), it is true that

� � � �� � � � � � � � � � � � � � � � �� � � � � � � � � � � � and so
�	� � 	 � � �\@ (30)

Due to the special structure of the functions
� �

and
�
�

, it is in fact easy to prove that= � � � � = � � 5�= � � � = � � = � � � � = � � 5�= � � � = � � (31)

where the constant 5 only depends on the minimal angle conditions. From the above inequal-
ities and estimate (27), it is easy to see thatk 	 � � ��� �	� ek � � � � 9 � Q � = � �	� = � � �G	 � � � @
Taking 	 � 	 � � � � � � � � � � 	 �   � � 	 �*� �v� � � � � 3 �
we get by using the linearity of � � , the equality � � � 	 �

and (30) that

	 � �
�B
� ��� 	 � 	 � � � � 	 � � � � � � and

	 � � � 	 � � � � � ��� � 	 �  � � � � � �  �  � � @
Using the approximation properties (27)-(28), the following estimate is correct and the proof
is the same as for the linear unconstrained case, see [TX01]:� k 	 � k l � � �B

� ��� k 	 � k l � � �
 � �B3 � �  �
 � � � � � # 9 1 + �
 � = � �	� = � @ (32)

Thus it is shown that assumption (6) is valid for decomposition (22.b) with

5 � 	f�D3 � �  �
 � � � � � # 9 1 + �
 � @
Assumption (7) has been shown to be correct for the decomposition (22.b) with 5 l 	� 3 � � and 3 being the number of colors, see [TX01], see also [SBG96, DW94, Xu92].

Multigrid decomposition

A multigrid algorithm is built upon the subspaces that are defined on a nested sequence of
finite element partitions. We assume that the finite element partition 
 is constructed by a
successive refinement process. More precisely, 
 	 
 � for some

� 5 � , and 
 $ for, $ ���
is

a nested sequence of quasi-uniform finite element partitions, i.e. 
 $ consist of finite elements

 $ 	 � 
 �� ! of size � � such that � 	 � � 
 �� for which the quasi-uniformity constants are
independent of $ and 


�� Q � is a union of elements of � 
 �� ! . We further assume that there is a
constant

c 3 �
, independent of $ , such that � � is proportional to

c l � @
As an example, in the two dimensional case, a finer grid is obtained by connecting the

midpoints of the edges of the triangles of the coarser grid, with 
 � being the given coarsest
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initial triangulation, which is quasi-uniform. In this example,
c 	 � 2 � �

. We can use much
smaller

c
in constructing the meshes, but the constant 5 � is getting larger when

c
is becoming

smaller, see (35).
Corresponding to each finite element partition 
 $ , a finite element space

� �
can be

defined by
� � 	 � � / � ��� � �;�< n � = � / � � � 
  � 8 
o/ 
 $ ! @

Each finite element space
� �

is associated with a nodal basis, denoted by � � �� ! � �� ��� satisfying

� �� � � �� t	 1 � �
where � � �� ! � �� ��� is the set of all nodes of the elements of 
 � . Associated with each such a
nodal basis function, we define a one dimensional subspace as follows

�
�� 	 span � � �� ^@

It is easy to see that

�
� 	 �B

� ��� �
�B

� ��� �
�� @ (33)

Similar as for the two-level decomposition, we first decompose � � � for any � � � � �
as in (29). We then define

� �� 	 � �� �
� �
� �

,
� �� 	 � �� �

� �
�
�

for $�	 �����v� � � � � �
and

� �
� 	� � � �� 	 � . From properties (24)–(28) and the fact that � � � � � , it is true that

� � � �� � � �
� � � � � k � �� � � � k � � �� � � � Q �� = � �	� = � � �T	 � � � @

� � � �� � � �
� � � � � k � �� � � � k � � �� � � � Q �� = � � � = � � �T	�� � ���

where

�� � 	 �� � 5 � if
� 	 � �

5 � � � = � � � ��= �
  � if
� 	 � �

5 � Q �
 � if
� 	 � @

Define

	 � 	 � � � � � �� Q � � � �� Q � � 	 � 	 � �� � � �� Q � � � � �� � � �� Q �  � $U	 �����v� � � � � � � @
From (25) and (26), we see that

� �� � � �� Q � � � and
� �� Q � � � , we thus get

	 � � � � � �
� �� � � � $�	 �*� �v� � � � � � � � @ (34)

Similar argument shows that
	

� � � 	 � � � �� Q � � � �� Q � � � . The fact that � �� ��� 	 � 	 � � �is an easy consequence of the definitions of
	 �

. A further decomposition of
	 �

is given by

	 � 	 � �B
� ��� 	

��
with

	 �� 	 	 � � � ��  � �� @
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It is easy to see that

� � � 	 �B
� ��� 	 � 	

�B
� ��� �

�B
� ��� 	

�� @
From (34) and the fact that

� � � , it is true that

	 �� � � � � 8 � � $ which means that
	 �� � � / ��@

Using the approximation properties (27)–(28), the following estimate is correct, see [TX01,
Tai00]:

�B
� ��� �

�B
� ��� �� 	

�� �� l � 	 �B
� ��� �

�B
� ��� �� 	 � � �

��  �� l �� � �� �� l � � 5
�B

� ��� � � Q l� � �B
� ��� �� 	 � � �

��  �� l
� 5

�B
� ��� � Q\l� = 	 � = l� � �� �

�B
� ��� � Q\l� � l� Q � = � �	� = l � � �� � c Q l � = � � � = l � @

The estimation for 5 l is the same as for the unconstrained case [Tai00]. Thus for the
multigrid decomposition (33) we have

5 � 	 �� � c Q � � �
 	 �� � c Q � = ����� ��= �
 � 5 l 	 5 � � ��c �  Q � @ (35)

In the above,
c

is the mesh ratio for the multigrid method and
�

is the dimension for � � � � .
Thus the assumptions (6)–(7) are valid for the multigrid decomposition. Using Theorem 1,
we see that the convergence rate for Algorithm 1 is:� �B0 � ���> � � �D0 � �D0 �  � � �B0� � � � 	

� � �� � c Q\l � @
Some numerical tests

Numerical tests shall be done both for Algorithm 1 and Algorithm 2. However, we shall
only explain some of the implementation details for Algorithm 1. The implementation for
Algorithm 2 follows the similar techniques.

Define 0 � � �� 	 0\� � � � ���� for Algorithm 1. When decomposition (22.b) is used for the
finite element method, it can be seen that the subproblems we need to solve over each of the
subdomains is:

� ^@ �� � � C�0\�� �� �
�

in � �� �0 � � �� 	 0 � on ��� �� �0 � � �� � �
in � �� @ or


 ^@ �� � � C � � ���� �
� � C�0\� in � �� �

� � ���� 	 � on ��� �� �
� � ���� � � � 0\� in � �� @ (36)

It is better to solve (36.a) then get � � ���� 	 0 � � �� � 0\� . If we use (36.b) to get � � ���� , then
we must compute the residual

� � C�0�� over each subdomain. This does not require extra cost
for the parallel algorithm 1 as the residual is needed for the coarse mesh subproblem anyway.
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However, it requires extra cost for the sequential algorithm 2 and for the case when the coarse
mesh is not used. If the coarse mesh is used, we need to solve

� ����� 	 � � � � � �
� � ��� �

� � ��� Q @ ) � � � �  with
� � � � t	 � �D0 � � � � ^@

The unknowns for the minimization problem is the coarse mesh nodal values, but the con-
straint � � � � � 0\� is imposed over all the fine mesh nodes. This is not an easy problem to
solve. In our implementation, we have used the Augmented Lagrangian method to minimize
the functional and at the same time to impose the constraint over all the fine mesh nodes.

For the multigrid decomposition (33), each subproblem (3) is one dimensional. We just
need to solve

�� � ���� � � 	 � � � � � �
� �� ��� �� � ��� ��  with

� � � �� t	 � �D0 � � � ��  (37)

and then project the value above the one dimensional constraint, i.e.

� ����� � � � � �� t	 � � ��
�

support
'�� �� -

# �� ����� � � � � ��  � � � �  � 0 ��� � � �� � �  + @ (38)

The solving of (37) is the same as the unconstrained case. The only extra thing we need to do
is the projection given in (38).

For the test results, we shall solve the obstacle problem on ��	 6 � � � � � 8 � 6 � � ��� 8 with� 	 � . The obstacle is
� � � � �  	 	 � l � � l when � l � � l � � and

� � � � �  	 � � elsewhere.
This problem has an analytical solution [Tai00]. Note that the obstacle function

�
is not

even in 9q���;�< due to the discontinuity. Even for such a difficult problem, uniform linear
convergence has been observed in our experiments. In the implementations, the non-zero
obstacle can be shifted to the right hand side.

We will try both sequential and parallel domain decomposition. In the plots, �e� is the error
between the computed solution and the true FEM solution in the energy norm. In all the com-
putations, 0 � is taken to be

� � � � � . The domain decomposition solvers all use a two-element
overlap and the subproblems are solved by an augmented Lagrangian iterative method. The
mesh is discretized by letting ��	 � 2 � � and 9 	 � 2 �

. So there are 64 subdomains. The
convergence-results are shown in Figure 1. In the figure, we also compare the convergence
with the two corresponding algorithms of [Tai00]. It seems that the algorithms here has the
same convergence rate as the one of [Tai00]. However, the B-sequential algorithm, which
refers to Algorithm 2, seems to be slightly faster than the C-sequential algorithm which refers
to that of [Tai00].

For the multigrid method, we have only tested the sequential algorithms. We use a V-
cycle method. This is equivalent to repeat the one dimensional subspace once more in the
decomposition (33) and order them properly. The convergence for 5, 6 and 7 levels are shown
in Figure 2. The convergence rate is about 0.6 for all the three different levels.
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Figure 1: Domain decomposition. The B solver is Algorithm 2 and the C solver is the corre-
sponding algorithm of [Tai00].
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13 Discontinuous Hybrid Formulation turned to Domain
Decomposition
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Introduction

We consider a macro hybrid primal finite element formulation turned to domain decomposi-
tion which produces a completely discontinuous approximation. The key point of the frame-
work is an analogous of an argument already used in stabilization techniques for DDM with
non matching grids, [BFMR97]. The resulting approximation is conforming and the conver-
gence is established with no inspection of consistency error, nor inf-sup condition.

The finite element approximation of the second order elliptic equations has been investi-
gated using several different approaches (see e.g. [Cia78] and the references therein). Previ-
ous analysis in primal formulation of these problems has been done for three types of approxi-
mation schemes : one which produces a continuous piecewise polynomial approximation, one
which produces a piecewise polynomial approximation with a fixed number of continuous mo-
ments accross interelement edges (nonconforming approximation) and one which produces
completely discontinuous polynomial approximation (interior penalty methods) [Arn82]. All
these finite element methods have optimal order of convergence, assuming sufficient regular-
ity. More recently, there has been growing interest in methods which can produce a completely
discontinuous approximation for diffusion problems [JO98]. The motivation for developing
these methods was the flexiblity afforded by discontinuous finite element spaces. Another
advantage that has recently become apparent is the application of domain decomposition al-
gorithms for the solution of the discrete solution.

1 Macro hybrid formulation for the model problem

Let � be a simply connected polygonal domain of
� �

,
� 	 �

or
�
, and

�
its boundary. Let us

perform a non overlaping domain decomposition on � ,

��	 � �� ��� � �� � ! � � 	  � � � � "	 $ � � @
We assume that each subdomain � � is polygonal and set the following notations� ��� 	 ��� � !o��� � � for

� � � "	�$ � � �8 � / � ��� @>@e@ � � ! � � � 	���� � 
 �
1University Lyon 1, , 69622 Villeurbanne, France, agouzal@numerix.univ-lyon1.fr
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and
� 	��&3 	 ��� � $  � � � � "	 $ � � � such that meas �;� � � ! ��� �  "	�� ! @

We consider, for simplicity, the Dirichlet problem for the Laplace equation :
� C�0 	 �

in � � 0o	�� on � ��	 � @ (1)

where
� / � l �;�< .

First, we introduce the following functional spaces

� � 	�� � / 9 � �;� �  � � 0�\� � / � l � � �  and � � �
�
� � ? 	 � if meas �;��� � ! �  "	 � !

where
� 0�\� � is the outward normal derivative of 0 to the boundary

� � � ��	 �*� @e@>@ � � .
�� 	 �

� ��� � � �� 	�� � 	 � � � 	 � � ? �  � �
�

� � with � / 9 �� � �< ! �
For � � �0 � �  � � �� � �   / � ��

� �  l , we define the product bilinear form

�

� � � �0 � �  � � �� � �  t	 �B
� ���

� �
� ��0

� � � � � � � 3 � 0 ��\� � � � � � � � 5 � � ? � (2)

� 3 � � �� � � � 0 � � � � 5 � � ? � � 1 � �D0 � � � � � � � � � �  � � ? � (3)

(4)

For �q	 ��� @e@>@ � � , let 
 � � be a regular triangulation of the subdomain � � with triangular� � 	 �  or tetrahedral � � 	 �  finite elements whose diameters are less or equal than � �
and

� �
be a positive integer. We assume that the triangulation is uniformily regular near

���
.

We introduce the standard finite element space1 � � 	 � � � � / � � � � �  � 8 � / 
 � � � � � � �  / � � � ���H � � � �
�
� � ? 	 � if meas ����� � ! �  "	 � !

and we set
�� � 	 �

� ��� 1 � � @
Remark that

1 � � is a subspace of
� �

, and so
�� � is a subspace of

��
.

Let us now proceed with the squeleton; For all 3 	 � � � $  / �
, let 
 � � be a regular

subdivision � � 	 �  or triangulation � � 	 �  of
� � � � by finite elements whose diameters are

less or equal than � � and
� � be a positive integer. We introduce related finite element space

� �
� 	 � � � � / � � � � ���  such that 8 � / 
 � � � � � � / � � � � �H !

and we set the global related space
� � 	�� � � 	d� � �  � �

�
� � / � � 8 3 	d� � � $  / �A� � � � ? � � / � �

�
�
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and
� � � ? � � ? 	�� if meas � � � ! �  "	 � !

The discrete problem states then as,

Find � �0 � � � �  / �� � � � � such that (5)

�

� � � �0 � � � �  � � �� � � � �   	 �B
� ���

� �
�
�
� � � � � � 8 � �� � � � �  / �� � � � � @ (6)

(7)

The functional space
��
� �

is equipped with the norm

8 � �� � �  / ��
� � � k�� �� � � ek l 	 �B

� ��� � = � � = l � �
�
� � 1 � k � � � � � k l� � ? � ^@

In the sequel, 5 is a generic constant independent of
�

� 	d��� �  �� ��� and
�1 	 � 1 �  �� ��� .

Lemma The bilinear form
�

� is continuous and coercive with respect to the
��
� �

norm in
the following sense,8 � �� � � � �  / �� � � � � � �

� � � �� � � � �  � � �� � � � �  t	dk*� �� � � � � ek l �8 � � �� � �  � � �� � � � �   / � ��
� �  � � �� � � � �  ,

�

� � � � �� � �  � � �� � � � �   � 5�k�� �� � � � � ek �vk�� � �� � � >k>l � �B
� ���

�

1 � k ��� ��\� ��k>l� � ? � � �� � k � � � � � k>l� � ? � ! �
 @
�

If 0 is the weak solution of the model problem (1) and
� 	 � � � 	 0 � �

�
�  �� ��� . such that

�0o	 �B0 � n 	F0 �
�
�  �� ��� / ��

, then,

8 � �� � � � �  / �� � � � � � �

� � � �0 � �  � � �� � � � �  t	 �B
� ���

� �
�
�
� � � � @

It is a trivial consequence of Lax-Milgram lemma that the discrete problem (5) has the unique

solution � �0 � � � �  / �� � � � � . Moreover by standard arguments and for 1 � 	 �

� � , � 	 �*� @>@>@ � � ,
k�� �0 � �0 � � � � � � >k � 5 � ���'��� � � � � - � �	 � � � � � k*� � �0 � �� � � � ��� � >k>l � �B

� ��� � � k � �D0
� � � � � � � � k>l� � ? � ! �
 @

The main result states then as,

Theorem Let � �0 � � � �  / �� � � � � be the solution of discrete problem (2), 0 be the weak
solution of the model problem and

� 	f� � � n 	 0 � �
�
�  � �

�
� � / �

. We assume that
�0o	f�D0 � n 	
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0 �
�
�  � �

�
� � / � �� ��� 9 ) � �;� �  , � � 3 � � � � � � �*� ��	 ��� @ @ @ � � , and for all 3 	 � � � $  / �

,
� � n 	 � � � ? � � / 9 ) � � � ���  , �l � � � � � � � � . Assume moreover that8 3g	 � � � $  / �A� � � � 5 min ��� � � � �  �
and 8 ��	 ��� @ @ @ � � � 1 � 	 5

� ��@
Then the following estimate holds,

= = �0 � �0 � � � � � � = = l � 5 �
�B
� ��� � l ';) � Q � -� k 0 � kml) � �

�
� � B

� � ' � � � - ��� � l ) � Q �� k � � kml) � � ? � � ! @
�

The proof of the theorem requires the following technical lemma, given as an appendix.
Lemma Let � be a regular triangle (tetrahedron), and � an edge (face) of � . For all � /9q� � ) � �  with

� 2 � 3 � � �
, we have

�
�
 k � ��  � k � � � � 5 � � ) = � = � � ) �  � = ��= � �  ^@

Proof As usually, let
�� be a reference triangle (tetrahedron), and

� � �� j	 � �� � 
 , the affine
application defined from

�� onto � such that
� � �� j	 � . First, we have

k ����  � k � � � � k � ��k � � � �
then k ����  � k � � � � � meas � ��,

meas � �,  �
 k � Q � k k � �� k � � ��
with

���	 � �
�

and
�� 	 � Q ��� �, .

Using the trace theorem applied to � �� on
�� , we obtain

meas � �, �
 k ����  � k � � � � 5�k � Q � k�� = ���= ��� � � = ���= � � ) � � m@
Then

meas � �, �
 k ����  � k � � � � 5�k ��Q � k k � k = � � � � = Q �
 � = � = ���  � k � k ) � k �ok � = � � � � = Q �  � = � = � � ) �  
with � 	�� if

� 	 � and � 	 �

� otherwise.

Since � is regular, we obtain the required inequality,

�
�
 k � ��  � k � � � � 5 � � ) = � = � � ) �  � = ��= � �  ^@

�
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2 Application to heterogeneous domain decomposition

Let us turn now to the motivation of this study. This methodology has been first investigated
for the treatmant of models of elastic multi-structures. Consider the junction of two elastic
bodies ��� and � l � , with

� 3 3 �
. In � l � the model is a 2-dimensional model derived from a

thin 3-dimensional linearly elastic plate using variational methods [SA99]. In 2D the related
model reduces to a formulation on the union of a macro-element � � , a patch element

�
� and

a one-dimensional element
� l . Internal domain decomposition can be performed on each

element.

Since the methodology is intended for PDEs arising from general elastic multi-structures
models, we present it here for the Laplace equation.

We consider the two dimensional (a section) global model problem,���������
�������

�
� CE0 � 	 � � � ���s� � l �0 � 	 � � � � �� 0 �� � 	 � � � � � 
 � �0 	 � � � � ��� 0 �� � 	 � � � � � l � 
 � � � � � �� !

where
�

is no longer dependent on the � -variable in the domain � l � . The asymptotic problem
(the strategy) states as���

�

� � CE0 	 � � � ���0 	 � � � � �� 0�\� 	 � � � � �
� � ��� 	 � � � � l 	 � � � � � � � J	 �
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�

	 � � ��
� � � �  	 �

�
�

�
�

� 0�\� � �
Let us set the adapted hybrid functional framework : the space

�� 	�� �B0 � �  / 9 � �;� �  � 9 � � � l' � 0 � ? � 	 � � � � �  	 � � � 0�\� � �
�

/ �jl*� � �  ! �
equipped with the norm k*�B0 � � ek l' 	 � = 0 = l � �

�
� � � = � = l � � � 
 � 1 k 0 �	� � ��ekml� � �

�

and the bilinear form � ' � �B0 � �  � � � � 	   	 � �
� ��0 � � � � � �

�
� 

� � 	 � � � ��

�
�

� 0�\� ��� � 	 � ��  � � � �
�

�

����\� �B0 � � � ��  � � � 1 �
�

�

�B0 �	� � �� m��� � 	 � ��  � � @
And the adapted hybrid formulation states then as

Find �B0 � �  / ��
such that (8)

� ' � �B0 � �  � ��� � 	  j	 � �
�

�
� � � � � �

� 

� 	 � � 8 ��� � 	  / ��

(9)

Since
� / 9 l � � l  , if 0 / 9 ) ����� ���m � � 3 � � �

, the analysis carried in this context
with minor adaptation for a standard � � - finite element discretization as performed in the

previous section and 1 	 �

� � , gives the following error estimate,

k��B0 � 0 � � � �	� � >k ' � 5d� � � ) = 0 = � � ) �
�
� � � l = � = l � � 
 

with the constant 5 independent of
�
.

Since
�

is the opproximation of 0 � on � l � , it is clear that if the errork � � �� � 0 � � � � @  ek � � l � � � is small, then the error = 0 � 0 � = ���
�
� is also small. This is due to the

fact that �"	F0 � 0 � is the weak solution of the following elliptic equation�����
���

� � C � 	 � � � ���
� 	 � � � � �� ��\� 	 � � � � � 
 � �
� 	 � � �  � 0 � � � � @  � � � �

More precisely, we have = 0 � 0 � = ���
�
� � 5�k � � �  � 0 � � � � @  >k � � l � �

�

where 5 is a constant independent of
�
.

The following plots of the solution on the one dimensional subdomain
� l illustrate this re-

mark.
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Figure 1: Plots of the solution � and ��� �����
	�� for different values of  , on subdomain ��� .
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14 The Singular Complement Method

f. Assous1, P. Ciarlet, Jr.2, S. Labrunie3, and S. Lohrengel4

Introduction

In this paper, we propose a method, called the Singular Complement Method (latter referred to
as the SCM), which allows to solve PDEs, such as the Laplace problem, Maxwell’s equations,
etc., in a non-smooth and non-convex domain. In order to define the SCM, let us recall first
some basic ingredients of Domain Decomposition Methods (or DDM).

Consider the variational problem (with obvious notations)
find 0 / 1

such that

� �B0 � �vt	 � ���v � 8 � / 1 @ (1)

In order to solve it, one can use a DDM, which generally consists in splitting the Hilbert space1
into the sum of � subspaces 1 	 1 � � 1 l � � � � � 1

�
�

(2)

and then getting the solution 0 of (1), via some solves of subproblems such as find 0 � / 1 �
such that

� � �D0 � � � �  	 � � ��� �  � 8 � � / 1 � � � � � � � @ (3)

This can be achieved iteratively or not. The aim is primarily to reduce the overall amount
of work, necessary to compute a good numerical approximation of the solution. When the
discretization of the problem is achieved by a Finite Element Method (or FEM), one usually
obtains the splitting (2) with the help of a partition of the mesh.

The philosophy of the SCM is different, although the tools are similar: the idea is still to
split the space

1
, but with respect to regularity.

Indeed, elements of
1

belong to the scale of Sobolev spaces 9 � �;�< , or 9 � � �<E� , where� � � � is the computational domain, and 	
/ � � . Interestingly, for a given space
1

, the
supremum 	 ��
 � of all possible values of the exponent 	 , depends on the convexity of the
domain and on the smoothness of its boundary. Let 	 � be the supremum when the domain
is convex, or smooth. When the domain is non-convex and non-smooth, 	 ��
 � 3 	 � usually
holds.
Then, let

1 � 	 1 ! 9 � � �;�< (or
1 � 	 1 ! 9 � � � �<E� for vector fields) be the space of regular

elements. Assume that
1 �

is closed in
1

, and let1 	 1 � � 1 � (4)

1CEA-DAM/DIF, BP12 - 91680 Bruyères-le-Châtel, France.
2ENSTA, 32, boulevard Victor, 75739 Paris Cedex 15, France.
3Univ. Henri Poincaré Nancy I, 54506 Vandœuvre-lès-Nancy Cedex, France.
4Univ. de Nice Sophia-Antipolis, Parc Valrose, 06108 Nice Cedex 2, France.
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with
1 � the space of singular elements. The sum is direct; in addition, it can be orthogonal.

When the domain is convex or smooth, one has
1 � 	 � � ! by definition. Then, regular

elements are approximated by a Lagrange FEM, whereas elements of
1 � are computed in a

manner, which depends on the problem to solve: in other words, the idea behind the SCM is to
enlarge the space of test-functions. Basically, it is designed to achieve the following results:

- Improve the convergence rate (for the Laplace problem),
- Capture numerically the real solution (for Maxwell’s equations).

In what follows, we shall introduce, in Section 1, the SCM for the Laplace problem and
for Maxwell’s equations in a polyhedron. We describe the main theoretical results that are
required to solve electromagnetic problems and, in particular, we emphasize the strong links
between the singular elements for both problems. In Sections 2 and 3, we present the theory,
and the numerical tools, which we have developed, to solve the static, time-harmonic and
time-dependent Maxwell equations in a polygon of

� l , or in an axisymmetric domain of
� �

.

1 The problems in a polyhedron

Let � be a bounded, simply connected, Lipschitz polyhedron,
�

its connected boundary,� � �  � � � � � the set of faces, and  the unit outward normal to
�

.
The � l -scalar product is denoted by � � � �  � , the associated norm by k � k � . We shall use the
differential operators

� � �
, ��.GY�� and the related ’non-standard’ Sobolev spaces and norms

� l*� �< n 	 � 4 	d��� � � � l � � � � n � � / �jl*�;�< � � � � � � ! �k 4 k � n 	 � k � � k l� � k � l k l� � k � � k l� � � � l �

� � ����� � �< n 	 � 46/ � l �;�< n ��� � 40/ � l �;�< ! �k 4 k � � � 
 � n 	 � k 4 k>l� � k ��� � 4 k>l� � � � l �

� � �*.�Y�� � �< n 	�� 46/ � l�� �< n ��.GY��,40/ � l �;�< ! �k 4 k � � �	��
� n 	 � k 4 k>l� � k �*.�Y��,4 kml� � � � l �

� � �*.�Y�� � ����� � �< n 	 � � �*.�Y�� � �<�! � � � � � � �< �k 4 k � � �	��
� � � 
 � n 	 � k 4 kml� � k ��.GY�� 4 k>l� � k ����� 4 kml� � � � l � and

= 4 = ����
� � � 
 � n 	 � k �*.�Y�� 4 kml� � k ����� 4 kml� � � � l @
In addition, the usual Sobolev spaces for vector fields shall be written

� � �;�< , and
� � � �  .

Then, let us recall that fields of
� � � � � � �< (resp.

� � �*.�Y�� � �< ) have a normal trace (resp.
tangential components) on

�
, which belongs to 9 Q � � l � �  (resp.

� Q � � l � �  ); this allows to
define the subspaces with the vanishing corresponding trace, and

� n 	 � � � ��.GY�� � �<�! � � ����� � �< ��� n 	 � � �*.�Y�� � �<G! � � � ����� � �<m@
Let us state the WEBER inequality, which stems from the compact embedding results of Weber
[Web80].

Proposition 1 In
�

and
�

, the semi-norm = � = ����
� � � 
 � is a norm, which is equivalent to the
full norm.
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Last, let us mention that one can generalize what we state below, to the case of a Lipschitz
curvilinear polyhedron, by using the work of Costabel et al. [CDN99].

1.1 The Laplace problem

The model problem is, given
� / � l �;�< , solve

find
� / 9q�� �;�< such that

� C � 	 �
in � @ (5)

The regularity of the solution depends on the geometry of the domain [Gri85, Dau88]. Let us
call minimal regularity of the solution the supremum of the set

� 	0/ � n 8 � / �jl��;�< � � solution of (5) belongs to 9 � � �< ! @
Theorem 1 If � is convex, the minimal regularity is 	 � 	 �

.
If � is non-convex, the minimal regularity is 	 ��
 � 	 � 2 � � �

, with � 3 � 3 � 2 �
depending

on the geometry, i.e. conical angles at reentrant vertices, dihedral angles at reentrant edges.

In the non-convex case, by minimal regularity, we mean that all solutions
�

belong to 9 � � l � ) Q � �;�< ,
for any � 5 � , and that some do not belong to 9 � � l � ) � �< .

If one discretizes (5) with the � � Lagrange FEM, with � as the meshsize, there holds by
standard analysis

Corollary 1 If � is convex, the convergence rate in 90� -norm is in
� ���\ .

If � is non-convex, the convergence rate in 9 � -norm is in
� � � � � l � ) Q �  , 8 � .

Remark 1 Here, it is crucial to impose
� / � l �;�< . If

�
is only in 9 Q ���;�< , the regularity of�

can be as low as
� / 9 �,� �< , for � convex or not: the convergence rate is undetermined,

and there are no methods that allow to improve it.

To improve the convergence rate, one can think of: mesh refinement, the (Dual) Singular
Function Method, multigrid methods [Bre98], the SCM, etc.

The mesh refinement techniques are well-kwown [Wah91]. So are the (Dual) Singular
Function Methods (or (D)SFM), which work in 2d domains, see for instance [Gri85, Gri92].
They are based on the adjunction of test-functions, the (dual) singular functions, to the space
of FE.
The SCM is based on the same idea, as mentioned in the Introduction. Its origin (2d case) can
be traced back to Moussaoui [Mou84]. More precisely, let� n 	�� � / 9 �� � �< n C � / � l �;�< ! � and

� � n 	 � !o9 l �;�<^@
One has the

Theorem 2 In
�

, k � k � n 	 k C � k � is a norm, which is equivalent to the graph norm
� ��

� k � k l � � k C � k l� ! � � l . As a consequence, k � k � is equivalent to k � k l in
� �

.
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Proof : Thanks to the POINCARÉ inequality, the graph norm is equivalent to �v= � = l � � k C � k l� ! � � l 	k � Y���� � k � � �	��
� � � 
 � , with � Y���� � in
�

. Now, one infers from the WEBER inequality that it is
also equivalent to k C � k � .
To prove the other half, let

� / � �
. There holdsk � k>l� 	 = � Y���� � = l�	��
� � � 
 � 	dk � Y���� � � Y���� � >k>l� 	 = � = ll �

where the second equality has been obtained by Costabel et al [Cos91, CDN99], as � Y���� �
belongs to

� ���;�< and has vanishing tangential components on
�

. Finally, one can use the
first part of the Theorem to conclude.

Corollary 2 C � �
is closed in � l � �< .

Starting from this result, one can first define its orthogonal, called � :

� l � �< 	 C � � �� � �
(6)

and then
� � , the inverse image of � . By construction, both

� �
and

� � are closed in
�

and

so
� 	 � � �� � � , i.e. (4). Now, following [AC97], it is possible to characterize elements of� , and, as consequence, elements of

� � .

Theorem 3 An element � of � l �;�< belongs to � if and only if

C � 	�� in � � � � ?� 	 � in 9 Q � � l� � � � �  � � � � � � @
(Recall that 9 � � l� � � � �  n 	 � � / 9q� � l � � �  n � Q � � l�

� / � l � � �  ! , where � � denotes the

distance to the boundary of
� � ; 9 Q � � l� � � � �  is the dual space of 9 � � l� � � � �  .)

As for the numerical computation of elements of � and
� � , see the next Section for problems

in axisymmetric domains and
�
3.2 for problems in 2d. Let us mention that in the 2d case (see

[Mou84]), one gets results similar to those of the DSFM, that is, the recovery of an overall
convergence rate in

� ���\ in 9 � -norm.

Let us conclude this Subsection by some extensions.
The first one is the homogeneous Neumann problem, for which the same theory can be

developed in
� 2 �

, where� n 	�� � / 9q�,� �< n � � � � ? 	 � on
� � C � / � l � �< ! .

Another one is about the scalar wave equation which, given � 5 � , reads
find
� � �  / 9q�� �;�< such that� l �� � l � C � 	 �

in � � 8 � � �E6 � � � ��t	 � � @ (7)

The theory of Lions and Magenes [LM72] leads to

Theorem 4 Assume that
� / � l � � � � � 9q�� �;�<  and

� � / �
. Then, there exists one and only

one solution of the wave equation (7), with regularity

� / � � � � � � � � �! � � � � � � � 9 �� � �< m@
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Next, from (4) applied to
�

, there comes the continuous decomposition in time of the solution,
that is the

Corollary 3 One can write
� � �  	 � � � �  � � � � �  for all

�
, with� � � � � �  / � � � � � � � � � � � � m@

Finally, one could use the same kind of idea for a non-homogeneous boundary condition,
provided that the data is smooth enough on

�
, or for problems with jumps.

1.2 Mathematical tools for Maxwell’s equations

We consider the electromagnetic fields in vacuum, enclosed by a perfectly conducting mate-
rial. The electric permittivity and magnetic permeability are set to one. The electromagnetic
field is denoted by � � ���  . The sets of equations are :
The time-dependent Maxwell equations in � � ���  :����

��

� � D � � �*.�Y�� � 	 � � � � D � � �*.�Y�� �q	 � in � � 8 � � �E6 ���� � �q	 � � ����� � 	 � in � � 8 � � �E6 �� �  	 � on
� � 8 � � �E6 �� � �  	 � � ��� � ��s	 � � @ (8)

The time-harmonic Maxwell equations on � , a complex-valued field:�� � �*.�Y����*.�Y�� � � � l ��	 �
in � ������ � 	 � in � �

� �  	 � on
� @ (9)

The static Maxwell equations, with � being either the electrostatic or the magnetostatic field:�� � ��.GY�� �f	 	 in � ������ �f	�� in � �
� �  	�� on

� �
or �

�
 	 � on

� @ (10)

Unless otherwise specified, we consider that (10) is the electrostatic problem.

Let us say a few words on the existence and uniqueness of the solution of each problem
(cf. [AC00, BHL99, CZ97], in this order).

Theorem 5 The time-dependent problem.
Assume that

� / � ��� � � � � � � � � � � �<  ! 9 �,� � � � � � l � �<  and ��/ � ��� � � � � � l �;�<  . Then,
there exists one and only one solution � � ���  of (8), with� � ���  / � � � � � � � � � � G! � � � � � � � � � ����� � �< � � � ��� � � �< ^@
The time-harmonic problem.
Assume that

�
belongs to

� � ����� � �< , ����� � 	 � , and � 36� �  "	 � . Then, there exists one
and only one solution � solution of (9) in the ’complexified’

�
.

The static problem.
Assume that 	 belongs to

� � � ����� � �< , with
��� � 	 	 � , and that � is in � l �;�< . Then, there

exists one and only one solution � solution of (10) in
�

.
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Here, we considered that the data is � l -regular. Actually, this is equivalent to the assumption
that we made previously for the Laplace problem, i.e. that the Laplacian of the solution is in� l �;�< .

As for the regularity of the solution, one finds again that it depends on the geometry of the
domain [ABDG98]: let us consider, for instance, the static field � .

Theorem 6 If � is convex, the minimal regularity is 	 � 	 � .
If � is non-convex, the minimal regularity is 	 ��
 � 	 � 2 � � � .

In the case of Maxwell’s equations, we thus let

� � n 	 � ! � � �;�< � and
� � n 	 � ! � � �;�<^@

The original idea was to take advantage of the 90� -regularity of the field, when the domain is
convex [ADH � 93], to discretize it by the � � Lagrange FEM, instead of the ’usual’ edge FEM
[Néd80, Néd86]. As a matter of fact, the former includes two key ingredients, which the latter
lacks:

- For the time-dependent Maxwell equations, the mass matrix can be lumped, with no loss
in precision, thus leading to very inexpensive numerical schemes.

- The numerical electromagnetic field is continuous, so the method can be used in con-
junction with a particle-pushing scheme, to solve the coupled Vlasov-Maxwell system of
equations.

The question to be answered is: what happens when � is a non-convex domain? For that,
let us begin with the

Theorem 7
� �

(resp.
� �

) is closed in
�

(resp.
�

).
Therefore, when � is non-convex,

� �
(resp.

� �
) is not dense in

�
(resp.

�
).

Proof : The norm in
�

is = � = �	��
� � � 
 � . With the help of the formula [Cos91, CDN99]:� � Y�����. � � Y���� 4  � 	d� ��.GY���. � ��.GY��,4  � � � ����� . � ����� 4  � � 8�. � 4 / � � � � � � (11)

one gets that the norm in
� �

is equivalent to the
� � -norm, and thus

� �
is closed in

�
. As

a consequence,
� �

is dense in
�

iff
� � 	 �

. According to Theorem 6, this is not the case
when � is non-convex.
(The proof for

�
and its regular subspace is identical.)

The immediate consequence is that one can not capture numerically the solution of the
above problems, with the help of the Lagrange FEM only, if the solution is not in the regular
space. In particular, mesh refinement techniques do not work.

As a matter of fact, let us split
�

à la (4),
� 	 � � �� � � , with

� � 	 � ��
. Is is clear, from

the definition of
� �

, that any subspace of
�

generated by the � � Lagrange FEM is actually a
subspace of

� �
. Thus, with self-explanatory notations, (4) leads to

k � � � � k l � 	dk � � � � � k l � � k � � k l � � k � � k l � @
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Is there a hope of finding an intermediate solution, between the edge FEM, and the � �
Lagrange FEM? The answer is clearly ’no’, if one looks for a piecewise smooth FE (i.e. a FE,
whose restriction to each element of the triangulation is smooth), like the edge or Lagrange
FEMs. Indeed, it has been remarked by Hazard and Lenoir [HL96] that any

� � �*.�Y�� � ��� �  -
conforming FEM, with a piecewise smooth FE, is actually

� � -conforming.

Therefore, it is required that one adds the SCM (or the SFM) to be able to compute an ap-
proximation of the solution5. One discretizes the regular part with the � � Lagrange FEM,
which means a � � approximation component by component, and taking into account the
boundary condition. Evidently, this method can be applied to all three Maxwell problems:
time-dependent (8), time-harmonic (9) or static (10).
Now, how can one approximate the singular part? One possible idea, that we develop further
in the other Sections, is to relate the singular electric fields to singular elements of the Laplace
operator, i.e. to elements of

� � .
Let us conclude this Subsection by displaying this relationship. For that, we need a result,
obtained by Birman and Solomyak [BS87].

Theorem 8 Let � be a bounded Lipschitz domain. Then, for all . in
�

, there exist . � in
� �

and
� / �

such that. 	 . � � � Y���� � � = = . � = = l � � = = C � = = l� � 5�= = . = = l� � �	��
� � � 
 � @ (12)

Here, 5 denotes a nonnegative constant, which is independent of . .

In
�

, they proved the same result, provided that the domain has a piecewise-smooth boundary
[BS87, BS90]. As a consequence, one can prove the

Theorem 9 The following decomposition is direct and continuous

� 	 � � �
� � Y���� � � @

Proof : From (12), it is clear that
� 	 � � � � Y���� � � .

Then, let 4�/ � � ! � Y � � � � : by construction, 4
/ � �,� �<�! � Y���� �
, i.e. 4�/ � Y���� � �

.
Also, one infers from (4) applied to

�
that � Y���� �

can be split (in
�

) into � Y���� � � �

� Y � � � � . So, 4 	 � , and the sum is direct.
Last, the application

� � � � Y���� � � � �� 4 � � � Y���� � �  �� 4 	 4 � � � Y���� � �
is linear, continuous and bijective. Now, as

� � � � Y � � � � and
�

are Banach spaces, the open
mapping Theorem allows to conclude that the inverse of the application is also continuous.

Again, one can prove the same type of result on
�

. In other words, the singular electric or
magnetic fields are one-to-one with the gradients of the singular elements of the Laplacian.

5Another alternative is to use the edge FEM, possibly with a specifically designed SCM.
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2 Maxwell’s equations in an axisymmetric domain

Let � be the domain limited by a surface of revolution
�

; � and
c
� their intersections with a

meridian half-plane. One has
c n 	 � � 	 c � � c � , where

c � is the segment of the axis lying
between the extremities of

c
� .


is its unit outward normal, and 
 the unit tangential vector

such that � 
 �   is direct.
Moreover, it is assumed that

c
� is a polygonal line with edges � c �  � � � � � . The

� � are the
corresponding faces of

�
; the off-axis corners of

c
� generate circular edges in

�
, whereas the

extremities are conical vertices of
�

.

The natural coordinates for this domain are the cylindrical coordinates � 
 � � � 	  , with the
basis vectors � �  � ��� � ���  . A meridian half-plane is defined by the equation ��	 � � � , and � 
 � 	 
are cartesian coordinates in this half-plane.

Definition 10 For any vector field, the meridian and azimuthal components of . are resp. . � n 	
� � � .  n 	 0  �  � 0 ����� and .�� n 	 � � � .  n 	 0 �	��� .
We are interested in the case where the sources of the electromagnetic fields, and hence the
fields themselves, possess a symmetry of revolution. This fact means that the scalar (resp.
vector) fields are entirely characterized by their “trace” in � , i.e. the datum of their value in
a meridian half-plane (resp. by the trace of their cylindrical components). Obviously, this is
equivalent to the vanishing of all derivatives with respect to � of these fields or components.
In this Section, it is thus assumed that � � � 	�� .
Proposition 2 For any axisymmetric vector field . , the following identities hold: �*.�Y��*. � 	
� � � �*.�Y���.  � ��.GY���. � 	 � � � �*.�Y���.  � ��� � . � 	 ����� . � C . � 	 � � � C .  � C . � 	
� � ��C .  . Hence, if . is meridian ( � � � .  	 � ), �*.�Y���. is azimuthal and C . is meridian;
if . is azimuthal ( � � � . t	 � ), �*.�Y��*. is meridian, C . is azimuthal and

����� . 	 � ,
A similar property holds for the Jacobian of an axisymmetric vector field: there is a decoupling
of the meridian and azimuthal components.

Finally, as the meridian and azimuthal components of vector fields are mutually orthogo-
nal pointwise, the same is true in the sense of the

� l �;�< scalar product: for � . � 4  / 6 � l �;�< 8 l ,
there holds � . � � 4 �  � �

� 	 � . This property is also true for the curl and the vector Laplace
operators, or the Jacobian of a field, provided that they belong to

� l �;�< .
2.1 Reduction to two-dimensional problems.

Thanks to Proposition 2, it is possible to decouple each of the Maxwell systems (8, 9, 10) into
a couple of problems set in � � 8 � � �E6 , involving different components of the fields � and

�
.

Given the expression of differential operators in cylindrical coordinates, these problems read
as follows in � � 8 � � ��6 .
The time-dependent equations (8), split into a system of unknowns � 
 � � � �  :�� � � D 
 � � 
 Q � ��.GY�� � 
 � �  	 ��� � � � D � � � � � � � 
 � 	 � in � � 8 � � �E6 �
 Q � ����� � 
 
 � t	 � in � � 8 � � �E6 � 
 � �


 	 � on
c
� � 8 � � �E6 �
 � � �  	 
 � � � � � � ��t	 � � � @ (13)
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and a system of unknowns � � � � L �  :�� � � D � � � � � � � L � 	 � � � � � D L � � 
 Q � ��.GY�� � 
 � �  	�� in � � 8 � � �E6 �
 Q � ����� � 
sL � t	 � in � � 8 � � �E6 � L � �  	�� � � � 	�� on
c
� � 8 � � �E6 ��

� � ��t	 �
� � � L � � � t	 L � � @ (14)

The static equations (10), split into a system of unknown
� � :�� � � � � � � � 	 � � in �

�

 Q � ����� � 
 � �  	 � in �

�
� � �


 	 � on
c
�
�

or
� � �  	 � on

c
� @ (15)

and a system of unknown
 � :� 
 Q � �*.�Y�� � 
  � t	�� � in �

�
 � 	 � on

c
�
�

for the electrostatic problem only.
(16)

2.2 Sobolev spaces

We denote by a � the respective subspaces of axisymmetric vector fields in the various Sobolev
spaces, e.g. �

� l �;�< � �� ���;�< � �� � �*.�Y�� � ����� � �< � �� � �� � ; by k � k � �
�

the 9 � -norm, by k � k � � ����
� � � 
 � �
�

the 9b� �*.�Y�� � �����  -norm.

As pointed out earlier, elements of these spaces are characterized by their trace in � . We
refer to [BDM99] for their full description. For now, we only need the

Definition 11 For 	 / �
, let � l � � �  be the space of square-integrable functions in � with

respect to the measure 
 � � 
 � 	 , and 9 �� � �  , for ��/ �
, the related scale of Sobolev spaces,

with the canonical norms = = � = = � � � � � .

2.3 Closedness results.

The aim of this Subsection is to prove the analogue of Theorem 7. Because of the technical-
ities induced by the geometry [ACL00], it is necessary to distinguish between the inductive
proof for the electric field and the constructive proof for the magnetic field.

We shall now sketch these proofs; details are found in [ACL00].

Lemma 1 The following inequalities are equivalent:- 5 � � 8 .0/ � � � = = . = = � �
�

� 5 � = = . = = � � �	��
 � � � 
 � �
� �

(17)- 5 l � 8 � / � � � = = � = = l �
�

� 5 l = = C � = = � �
� @ (18)

Proof : For . 	 � Y���� � , (17) implies (18) by POINCARÉ’s and WEBER’s inequalities. Con-
versely, (17) stems from (18) and Theorem 8.

Theorem 12 (17) is satisfied in � if and only if all the conical angles at the vertices are
different from a prescribed value � 2 1 Q � � � ��� . This case excluded,

� �
is closed within

�
.
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Proof : (17) is equivalent to (18). The necessary and sufficient condition for (18) to hold has
been established by Dauge [Dau88].

In the following, when considering the electric case, we suppose that all conical angles are
different from � 2 1 Q .

Theorem 13 In ��
�

, the following estimate holds:- � � 8 .0/ ��
� � k�� . k l� �

�
� � � k �*.�Y��,. k>l� �

� � k � � � . k>l� �
�
� @ (19)

Hence, by POINCARÉ and WEBER’s inequalities, the k � k � �
�

and k � k � � �	��
 ��� � 
 � �
�

norms are

equivalent on this space, and ��
�

is closed within �� .

The equivalent of (11) in � reads (cf. [CD99]): for any � . � 4  / � � l �;�< � l ,� � . � � 4  � �
� 	d� ��.GY���. � ��.GY��,4  � �

� � � ����� . � � � � 4  � �
�
� 
 � . � 4  � � � . � 4  � (20)

where

 � � � �  and

� � � � �  are bilinear forms defined on the boundary. The term
� � . � 4  vanishes

when � . � 4  / 6 � ! � l �;�< 8 l . It is proven in [ACL00] that this space is dense within
� �

. So
one can extend

�
by 0 to

� �
.

All other terms in (20) are meaningful for � . � 4  / � � �,� �< � l : for an axisymmetric

domain � , the bilinear form

 � . � 4  is

� ?
 

 �D0 � � � � 0 � � �  � � . Hence (20) is valid for� . � 4  / 6 � � 8 l , with 0 � 	 � � 	 � on the boundary.

The inequality (19) is now equivalent, thanks to (20), to- � 3 ��� � 
 � . � .  � � k�� . k l� �
� @ (21)

Since � . � and � . � are
� l -orthogonal, and


 � . � .  depends only on . � , it is sufficient to

check (21)—or (19)—for .0/ � �� 	 Z .0/ �� �,�;�< n . k � � _ .

Lemma 2 The space 9 �Q � � �  is continuously imbedded into � l Q � � �  , i.e.- � � � 8 0 / 9 �Q � � �  � = = 0 = = = l� � Q � � � � � � = = � Y���� 0s= = l� � Q � � � @
This 2d Hardy inequality is obtained by localization and Fubini Theorem.

Proposition 3 The inequality (19) is satisfied for all .0/ ��
�

.

Proof : Let .0/ � �� and �U	 
�0 � . From the expressions of �*.�Y��*. � � � � . and � . in cylindri-
cal coordinates, it follows: k �*.�Y��*. k l� �

� � k ����� . k l� �
� 	 � � k � Y���� ��k l� � Q ��� � and k � . k l� �

� 	
� �

� k � Y � � 0 � k l� � ��� � � k�0 � k l� � Q ��� ��� . The latter norm is equivalent to k � Y���� ��k l� � Q � � � � k ��k l� � Q � � � .

Thus (19) stems from the above Lemma; it also proves that any azimuthal vector field in �
� � �*.�Y�� � ����� � �<

is in �� ���;�< .
2.4 A characterization of singular fields

This Subsection describes the relationship between the singular electric and magnetic fields
and scalar singularities of Laplace-like operators.
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Electric case. Let �
�

be the natural space of electric fields, and ��
�

its regular subspace. We
derive from Theorem 12 the direct and continuous decomposition

�� 	 ��
� �

� � Y���� �� � @ (22)

As the elements of �
� � are characterized by their Laplacian, we will study �� 	 C �� � . For

this purpose, we shall adapt the method of [ACS98, ACRS99] and the references therein, with
a specific treatment for the conical vertices. To that end, on any face

� � , let �90� � �  be the

axisymmetric subspace of 9 � � l� � � � �  .
Lemma 3 The application

c �� , which is the trace on
� � of the normal derivative, is continu-

ous and surjective from �� � onto �9b� � �  , and there exists a continuous lifting operator from
�9b� � �  to �� � .

This result allows to prove an integration by parts formula, between elements of �
� �

and
elements of the space � � C � �< n 	 � � / � l �;�< n C � / � l �;�< ! .
Lemma 4 Let � / � � C � �< and 0 / �� � . There holds� � ��� C�0 � 0 C �  � ��	 B� � � � �

�� ' ?� -�� � � � c �� 0�� �� ' ?  - @
The first characterization of �� follows from the above Lemmas.

Theorem 14 Let � / �� l �;�< : � belongs to �� if and only if

C � 	 � in � � � � ?  	�� in �90� � �  � � � � � � � @
In a meridian half-plane, the second characterization of elements of �� is then

Corollary 4 Let � / � l � � �  : � belongs to �� if and only if

C � � n 	 � l �� 
 l � �
 � �� 
 � � l �� 	 l 	 � in � �
� � i  	�� � � � � � � �
� / � � � � 
 � �  � for any neighborhood � � of

c
� @

The study of the Laplace-like operator C � is performed in [ACL01]. It extends Grisvard’s
work [Gri92] to the axisymmetric case:

Theorem 15 The space �� , and consequently �� � , is of finite dimension, equal to � � � � � ,
with � � the number of reentrant edges, et � � the number of vertices with conical angle larger
than � 2 1 Q .

Magnetic case. The natural space of axisymmetric magnetic fields is

�� 	 � 46/ �� n ����� 4 	�� ! � with norm = = ��.GY��,4 = = � �
� @ (23)
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Then, if ��
� 	 �� ! �� �,�;�< is the space of regular fields, we infer from Theorem 13 that ��

�
is closed in �� . Let �� � be its orthogonal, i.e.

�� 	 ��
� �

� �� � @ (24)

We had remarked in the proof of Proposition 3 that an azimuthal field is always regular; hence,
the singular fields are meridian. Moreover, elements of �� are determined via their curl. So,
given

� � / �� � , define � 	 �*.�Y�� � � :
� � is meridian, therefore � is azimuthal.

Now, let ��
�

be the space �*.�Y�� Q � �� �
of potentials of elements of ��

�
. The orthogonal-

ity, in the sense of (23), of
� � and elements of ��

�
becomes� � � C �  � �

� 	 � � 8 � / ��
�

as C�	 � �*.�Y����*.�Y�� � � Y���� ��� � . As � is azimuthal, it is enough to consider only elements
of �� �

� 	�� � / ��
� n � k ��� ! . So, we are left with a scalar problem, similar to the electric

case, and we obtain the two characterizations of �*.�Y�� �� � .

Theorem 16 Let � / �� l �;�< � ��k � � ; � 	 � � � � belongs to ��.GY�� �� � iff

C �d	�� in � � � � � ?� 	�� in �90� � �  � � � � � � � @
Corollary 5 Let � � 	 � 2 
 : � / � l Q � � �  is characterized as a solution of

C Q � n 	 � l �� 
 l � �
 � �� 
 � � l �� 	 l 	 � in �
�

� � i  	�� � � � � � � �
� 2 
 / � � � � 
 � �  � for any neighborhood � � of

c
� @

Again, the study of the operator C Q (cf. [ACL01]) gives the equivalent of Grisvard’s re-
sult [Gri92] in this case:

Theorem 17 The space defined by Corollary 5, and consequently �� � , is of finite dimension,
equal to � � , the number of reentrant edges.

Now, it is more convenient for numerical computations to use the variable � 	 � � . It
satisfies:

� / � l � � �  � C � � n 	 � l �� 
 l � � l �� 	 l � �
 ���� 
 � �

 l 	�� in � � � 	 � on

c @ (25)

2.5 Existence and uniqueness results.

If the data and initial conditions are axisymmetric, so are the solutions of (8) and (10), and,
under the hypotheses of Theorem 5

� / � � � � � � � ��  � � / � � � � � � � ��
m@
Then it follows from (22) and (24) that the electromagnetic field can be decomposed into
regular and singular parts continuously with respect to time:

� � � j	 � � � �  � � � � �  � � � � � � �  / � � � � � � � ��
�
� �� �  �

� � � t	 � � � �  � � � � �  � � � � ��� �  / � � � � � � � ��
�
� �� � ^@
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Moreover, as the projections � � and � � are smooth, each of the systems (13–16) admits
a unique solution in the relevant space; that of (13) and (14) depend continuously on time.
As a consequence, the decomposition (4) can be refined by using three subspaces: meridian
regular, meridian singular, azimuthal. (Recall that azimuthal implies regular.) Each of the
problems (3) then admits a unique and continuous solution.

2.6 Principle of the numerical method.

The SCM follows from the above decomposition. As the singular parts span a finite-dimensional
space, it is sufficient to find an approximation of a basis. The problems (3) amount to a classi-
cal FE formulation, for the regular parts, and a low-dimensional linear system, for the singular
parts.

Computation of bases of � and �� . We look for a basis of the spaces �� and � n 	� � satisfying � � �  ! , whose dimensions are given by Theorems 15 and 17. We have at hand
an approximate knowledge of these bases [ACL01].

- There is one basis function � Q� / � or � �� / �� associated to each relevant geometric
singularity � � as follows. In a neighborhood �

�
of � � , there holds �

�� = � � 	 � �� � � �� , where
the principal part � �� is just in � l � � � �  , and the remainder � �� is of 9 � -style regularity in � � .
In �

�� 	 � 
 � � , �
��

is of 9q� -style regularity.
- In �

�
, define local polar coordinates � � � � � �  centered at � � .

- If � � is a reentrant edge of opening � � 	 � 2 	 � ,
� 2 � 3 	 �
3 �

, one has � �� 	
� Q � �� � � � � 	 � � �  , for the electric and magnetic cases.

- (For the electric case only.) If � � is a conical vertex of opening � 2 1 � , � 2 � 3 1 � 3 1 Q ,
one finds � �� 	 � Q � Q � �� � � � � � � � � �  , where � � denotes the Legendre function and

 � / 8 � � � 2 � 6
is given by � � � � � � � ��� 2 1 �   	�� .

In the whole of � the function � �� 	 �
�� � � �� satisfies

� C � � �� 	 C � � �� � resp.
� C � � Q� 	 C � � �� in �

� � �� �� i 	 � � �� �� i on
c �

(26)

but, unlike in the cartesian geometry, it is not possible to compute it variationally: if � � is
an edge, neither � �� nor � �� is of 9q� -style regularity near the axis, and the problem (26) is
ill-posed. This hindrance can be overcome:

- either by multiplying � �� by the ’not-too-noisy’ cut-off function � � 
� 	 
 2 
v� � �  , i.e.
defining

�� � 	 � � � � � �� which is regular in the whole of � ;
- or by domain decomposition, computing � � in � � and � � in � �� , and enforcing standard

transmission conditions between �
�

and �
��

(à la
�
3.2.2).

Computation of bases of �� � and � Y � � �� � . Our task is now to compute
� � 	 �*.�Y�� � � C �  Q � � Q� ,

which is in �� � since ��.GY�� � � 	 � Q� ��� , and � � 	 � Y � � � � C �t Q � � �� . First, one solves vari-
ationally:

� C � � � 	 � Q� in �
� � � 	 � on

c �
� C ��� � 	 � �� in �

�
�
� 	 � on

c
� @
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One has:
� � 	 � �� � � � �

�
� � � �

�� � ��
, �

� 	 �

�
� � � � �

�
� � � � � �

� �� � �� , where:
- the

�
�
�

and �

�
�

are of 9 l -style regularity,
-
� �� 	 �

�� 	 � � �� � � � � 	 � � �  near a reentrant edge,
- �
�� 	 � � �� � � � � � � � � �  near a vertex of conical angle larger than � 2 1 Q .

The singularity coefficients �
�� � � ��

can be extracted by quadrature formulas [BDM99] or spec-
tral methods. In � � 	 � 
 � � � , � � and �

�
are regular. The corresponding decompositions of� �

and � � are:

� � 	 �*.�Y�� � �� � B� �
�

� � �
�
�� �*.�Y�� � �� � � � 	 � Y � � � �� � B� �

�
� � � � � �

� �� � Y���� � �� @
�*.�Y�� � �� and � Y���� � �� are of 9 � -style regularity and can be computed variationally, while�*.�Y�� � �� and � Y���� � �� are analytically known. In � � , the whole of

�
and � can be computed

variationally.

Finally, it is possible to orthogonalize the decomposition (22) by subtracting to � � its
orthogonal projection on ��

�
. This is no difficulty.
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Figure 1: Computed magnetic field: The SCM and Finite Volume techniques.

2.7 Numerical Results

As an illustration of the SCM in the axisymmetric case, one can compute the electromagnetic
field generated by a current. A top hat domain � ( � L-shaped) is considered, and a perfectly
conducting boundary condition is imposed. The initial conditions are set to zero. The electro-
magnetic wave is generated by a current

� �DA � � �	 � � ��� , � � 	 � � � � � � � �  , with a frequency� 2 � � 	 � � � @ � � � Hertz. The support of this current is a little disc centered at the middle
of the domain. Because it is impossible to provide an analytical solution, we compare our
results to the computations made by another code, based on Finite Volume (FV) techniques
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à la Delaunay [Her93]. The space and time discretizations of the SCM are detailed later on,
in Section 3.2.3. Figure 1 shows the isovalues of the magnetic field ( � � component after
1000 time steps), which have been computed by the two methods. The results obtained by
both methods are comparable, which shows the feasability of the SCM. Moreover, the SCM
provides a numerical solution which is less noisy.

3 Maxwell’s equations in a polygon

In what follows, it is assumed that both the data and the initial conditions do not depend on
the transverse variable

	
. Then the original problem can be identified with a problem posed

in a section of an infinite cylinder, which is a 2d polygon � , with boundary
c

, a set of edges� c �  � � � ��� , and a unit outward normal


. The notations are those of Section 1, except that
the Sobolev spaces are based on the scalar curl; also the 2d calligraphic spaces (

�
,
�

) and
unknowns ( � , etc.) are written in boldface, i.e.

V
,
�

,

 	d� � � � � l   , etc.

3.1 The time-harmonic Maxwell equations

This Section summarizes the results obtained in [BHL99] and [HL00], and we refer to these
papers for any detail.

We are looking for a numerical approximation of the solution



to� �*.�Y�� � � � � 
 � � l 
 	 �
in �

�


�

 	�� on

c @ (27)

For sake of simplicity regarding existence and uniqueness questions, we suppose that
�

is a
complex number with nonzero imaginary part (which means that we are concerned with the
electromagnetic problem in a homogeneous and dissipative medium) or, in order to include
stationnary problems, that

� 	�� . The vector field
�

is a datum that represents the impressed
current density. We assume that ��� � � 	�� in �

�
which amounts to saying that the electric charge density vanishes in the whole domain. The
singular field method is based on the fact that the solution of (27) can be found by solving
an equivalent regularized problem similar to the vector Helmholtz equation. Formally, the
regularized problem is given by �� � � C 
 � � l 
 	 �

in �
�



�

 	�� � � c ������ 
 	�� � � c @ (28)

Indeed, a solution of (27) is clearly divergence free and, thus, satisfies (28). Conversely, let



be a solution of (28). Its divergence � 	 ����� 

satisfies� � C � � � l � 	�� in �

�
� 	 � � � c �

which yields � 	 � (provided � is assumed regular enough).
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The Section is organized as follows: in a first part (
�
3.1.1) we make precise the functional

setting and give the corresponding variational formulation. In particular, we address the ques-
tion of equivalence between the classical and the regularized formulations of the problem. We
show that the latter can be set in two ’neighboring’ functional spaces whenever the domain �

has at least one reentrant corner. Of course, only one of them leads to the equivalence with the
classical formulation. The key of the method lies in the fact that the ’right’ functional space
can be written as the direct sum of a space of regular fields completed by a (finite-dimensional)
space of singular fields. We give two possible decompositions which lead to the singular field
method (SFM) and its orthogonal variant (OSFM) described in

�
3.1.2. In

�
3.1.3, the analysis

of the convergence of these methods is addressed. It turns out that both numerical schemes
have the same rate of convergence but the numerical applications presented in

�
3.1.4 clearly

show that OSFM yields far better results: we shall try to explain why.

3.1.1 Classical and regularized formulations

The variational interpretation of the classical problem (27) leads us naturally to seek



in the
space

� � � � � � �  . If we assume the datum
�

to belong to
� l � �  , the weak form of (27) is given

by

� � � � � � �  � � ����� 
 / � � � � � � � ����
	���������� � � � � 
 � � � � � 
 �  � � � l � 
 � 
 �  � 	f� � � 
 �  � 8 
 � / � � � � � � � m@
The sesquilinear form � � � � � 
 � � � � � 
 �  � � � l � 
 � 
 �  � being coercive on

� � � � � � �  (due
to condition � 36� �  "	 � ), we infer the existence and uniqueness of the solution of � � � � � � � 
from Lax-Milgram’s theorem.

Let us now consider the regularized problem (28). Its variational formulation involves
the functional space

V
and thus amounts simply to adding � ����� 
 � ����� 
 �  � in � � � � � � �  . We

therefore consider the problem

� � � � � � � � � � �  � � ����� 
 / V ���
	����������� � 
 � 
 �  	 � � � 
 �  � 8 
 � / V �
where � � 
 � 
 �  n 	f� � � � � 
 � � � � � 
 �  � � � � � � 
 � ����� 
 �  � � � l � 
 � 
 �  � .
For the same reason as above, � � � � � � � � �����  has a unique solution which coincides with
that of � � � � � � �  provided

� � � � 	 � . Indeed, choosing

 � 	 � Y � � � � with �

� / � � �  in
� � � � � � �  yields that the solution of � � � � � � �  is divergence-free. It thus belongs to

V
and

satisfies the variational equation of � � � � � � � � �����  , in other words it does coincide with the
solution of � � � � � � � � �����  .

We thus deduce that
V

is the appropriate functional frame for the regularized problem.
But the situation becomes more involved if we consider the following problem given on the
subspace of

V
of regular fields:

� � � � Y����  � � ����� 
 / V �
���
	����������� � 
 � 
 � t	d� � � 
 �  � 8 
 � / V � @

As mentioned in Section 1,
V �

is a closed subspace of
V

and hence, the form � � � � �  is
still coercive on

V �
. Whenever � has at least one reentrant corner,

V �
is strictly contained

in
V

, and the respective solutions to � � � � � � � � � � �  and � � � � Y����  are in general different.
In particular, an 9 � -conforming FE discretization can only provide an approximation of the
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non-physical problem � � � � Y����  .
In order to perform a method based on nodal (Lagrange) FE, which is able to capture the

singular behavior (and thus solves problem � � � � � � � � �����  ), we decompose
V

into a regular
and a singular part, V 	 V �

� V � @
Of course,

V � is not uniquely determined. Hereafter, we will give two possible choices,
leading to two different methods.

Notice that the above existence and equivalence results keep true in the stationnary case
corresponding to

� 	�� . In order to simplify the presentation, we will consider this case only,
and we thus set from now on

� � 
 � 
 �  n 	d� � � � � 
 � � � � � 
 �  � � � ����� 
 � � � � 
 �  � @
Let us set some notations. Without loss of generality, assume that � has exactly one

reentrant corner of measure � 	 � 2 	 ,
� 2 � 3 	 3 �

, at the vertex
�

. We use the local polar
coordinates � 
 � �� , and we fix a regular cut-off function � 	 � � 
� such that � � �

near
�

and
� � � near the other vertices. The function

� � 
 � �� 	 
 � � � � � 	 � 
belongs to 9 ��� �  
T9 l � �  as 	 3 �

and is called singular function at
�

. We finally introduce
the subspace of 9 �� � �  given by % 	 � � � � � � � ! @

Owing to Theorem 8 (see also [BHL99]), we have the direct decomposition:

Theorem 18 V 	 V � �
� � Y���� % @ (29)

An orthogonal decomposition can be deduced from (29) solving an auxiliary inhomoge-
neous variational problem, which is similar to � � � � Y � �  :
Theorem 19 V 	 V � �

� � � � � � � Y � � � �  � � ! (30)

where � is the solution of the problem
find � / � ��� �  such that

� � � � 
 � t	 � � 8 
 � / V � �
�
�

 	 � � Y���� � � 
 on

c @ (31)

Remark 2 Decomposition (30) is orthogonal in the sense that

� � � Y���� � �  � � � 
 � � t	 � 8 
 � � / V � @
Notice, however, that the above relation fails whenever

��"	�� . Nevertheless, in this case, the
remaining terms are of lower order and involve only the � l -scalar product of the sesquilinear
form.
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3.1.2 Description of the method

We give the algorithms of both SFM and OSFM which are based respectively on the decom-
positions (29) and (30). To this end, let ��
 �  � � � � � � , be a family of regular triangulations of
the domain � . We consider the � � Lagrange FEM:

� � n 	�� 
 � / � � � �  n 
 � �  � � � ��� � � 8 � � / 
 � ! @
Let � � �

!
be the set of nodal points of the triangulation and

� � n 	 � 
 � / � � n � 
 � � 
 >� � �  	�� � 8 � � / c !
the discretization space of

V �
. Let � � 	 � � � � � and ��� �  � ��� � ����� � � � be the basis functions.

Note that the discrete boundary condition � 
 � � 
 m� � � �	 � is ambiguous if
�

� is a vertex
of the polygon; in this case it should be understood as


 � � � �  	 � (i.e. both components of

 � � � �  vanish.)

The singular field method (SFM) Owing to (29), the discretization space is given byV � 	 � � � � Y���� % @
The matrix form of the discrete problem then reads as follows:#�� 55  � � + #��� �

� � + 	 #	�

$ � + �

(32)

where
-
�

and
�


respectively denote the stiffness matrix and the right-hand side corresponding to
the FE space

� � ,�
� � 	 � ��� �

� � �  � � � � 	 �*� @e@>@ � � � and



� 	f� � � � �  � � � 	 ��� @>@e@ � � � .
-
� � and $ � denote the matrix and the right-hand side of order

�
corresponding to the

singular field,� � 	 � � � Y���� � � �  � � Y���� � � �   and $ � 	f� � � � Y���� � � �   � .
- 5 is a matrix of order � � � � coupling the basis functions of FE-type to the singular

field, 5 � � 	 � � � Y���� � � �  � � �  � � � � � � � .

In order to preserve the advantages of the sparse matrix ���� in the resolution of (32), the
SFM consists in solving separately the two linear systems

� ���� 	 �
 � � � 	 5 �
and taking into account that (32) may be written as

� ��
� 	 � � �� � � � � � 	 � � � � � 	�$ � � 5  �� � @ (33)

The left equality clearly implies that
��
� 	 �� � � � � � . Substituting this identity into the right

one thus yields the singular coefficient � � . Thus,

 � 	 B� � � � � � � � � � � � � � �  � �

� � � � Y � � � � � m@
Notice the similarity of (33) with (3).
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The orthogonal singular field method (OSFM) This time, the discretization space is given
by

�V � 	 � � � � � � � � � Y���� � �  � � � ! �
where � � denotes the FE-approximation of problem (31).

In consequence, the matrix form of the discrete problem is the following:# � �� �� � + #��� ��
� � � + 	 # �


�$ � + �
where

�
and

�

take the same significance as before, and

�� � and
�$ � are respectively given by

�� � 	 � � � � � � �  � � � �$ � 	 � � � � Y���� � �  � � �  � �
taking into account that � Y���� � �  is curl- and divergence-free.

The algorithm of the OSFM is then straightforward.

Remark 3 Both methods can be extended to the case of � � reentrant corners:
�� � is a vector

of
� ���

, and 5 and
�

(for the SFM) are matrices of order � � � � � . See also
�
3.2.3, in which

algorithms are given in this case.

3.1.3 Error analysis

We state in this Section the main convergence results. All proofs may be found in [HL00].

Theorem 20 Let



be the solution of � � � � � � � � �����  and

 � its approximation by the SFM.

Assume that the regular part of



belongs to
� � ����� �  with � in 8 � � � 8 . Then, we havek 
 � 
 � k � � ��� �	� � � 
 � 	 � � � � 

for the error in the energy norm, andk 
 � 
 � k � 	 � ��� <  � 8 � 3 � � � 	 � �*�
in the � l -norm. Moreover, the error of the OSFM is of the same order as the one of the SFM.

3.1.4 Numerical results

In this Section, we present numerical tests of both methods in the case where the exact solu-
tions are known. The domain is formed by three quarters of a circle with center



and radius�

, the only reentrant corner being of measure � 	 � � 2 � ( 	 	 � 2 �
). We consider two families

of solutions, for � / � :a � � 
 � �� 	 � Y���� � � � 
� 
 � � � � � �M� 	 ��  and
� � � 
 � �� 	 �*.�Y�� � � � 
, 
 � � � � � �M� 	 ��  �a � and

� � have the same regularity depending on � :
a � / � � � �  , 8 � 3 � 	 . In particular,a � is of class

� � for � 5 � , whereas
a � has a non-zero component in any complementary

space of
V �

.
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Figure 2: FE-approximation of
a � .

Figure 3: The SFM for
� � , � 	 � � � 	 �

.

Both methods have been tested on four unstructured grids. The mesh parameter � varies
from � 	 � Q � to � 	 � Q 	 , the latter corresponding to roughly

� � � @ � � � degrees of freedom.
Notice that no particular mesh refinement has been done near the corner. The cut-off function
� is a piecewise polynomial function of class

� �
. The coefficients of the terms

�
,
�


and5 are calculated using a 7-point-quadrature formula (exact for polynomials up to order 5).
The coefficients

� � and $ � are calculated analytically. The implementation of the boundary
condition is realized via a rotation which maps the canonical basis on a local basis of the
normal and tangential vectors; in the latter basis the vector boundary condition is decoupled
and standard techniques apply. The linear systems occuring in the algorithms are solved by a
direct method based on Cholesky factorization. All tests have been realized with the FE-code
MELINA6.

It may be clearly seen on Figure 2 that the standard FEM fails for a singular solution field

6developed by O. Debayser (ENSTA, Paris, France) and D. Martin (IRMAR, University of Rennes 1, France) at
SMP, ENSTA, see [Mar97].



THE SINGULAR COMPLEMENT METHOD 179

(here, we represent the � -component of the FE-approximation of
a � ). Indeed, the condition


 �
�

 � i 	 � forces the FE-approximation to vanish at



whereas the exact solution tends to�

at the corner. Hence, we are not faced with an accuracy problem (which could be handled
alternatively by a local mesh refinement), but with the choice of the appropriated functional
frame: the FE-aproximation converges to the solution of � � � � Y����  which is globally differ-
ent from the physical solution.

Figure 4: the SFM/OSFM for
� � .

Figure 3 shows the discrete � l -error of the SFM,

k 
 � 
 � k � n 	 �� �� � B
� � �

�

= 
 � � �  � 
 � � � � e= l �� � � l �
in logarithmic scale for the regular fields

� l and
� �

.

The numerical values are in good accordance with the theory of
�
3.1.3. Figure 4 com-

pares the SFM- and OSFM-approximations of the singular field
� � . It turns out that the

OSFM yields the better results. This is probably due to the cut-off function � involved in
the implementation of SFM. Indeed, this numerical instability is known for singular func-
tion methods (see for example [BD82]) and leads to high values of the constant in the error
estimates, and thus to poor accuracy.

3.2 The time-dependent Maxwell equations

We are looking now for a numerical approximation of the 2d time-dependent Maxwell equa-
tions, (8) being rewritten as two decoupled sets of second order in time equations. In this
paper, we focus on the first one (the second one could be written in the same way [ACS98]).
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It can be written as follows:����������
��������

�
� l 
� � l � ��.GY�� � � � � 
 	 � � �� � � � l � �� � l � C � � 	 � � � � � in � � 8 � � �E6 �� � � 
 	 � in � � 8 � � �E6 �

�

 	 � � ��� ��  � �

�

 	 � on

c � 8 � � �E6 �
 � � t	 
 � � � � � ��t	 � � � �� 
� � � ��j	 �*.�Y�� � � � � � � � � �  � ��� �� � � ��t	 � � � � � 
 � @
(The second order in time system of equations is closed with the help of initial conditions on� D 
 and � D � � .)

As mentioned in Section 1, the � � component, as the solution of a wave equation, always
belongs to 9 ��� �  , even in a non-convex domain. As a consequence, we consider below only
the computation of the field



.

Remark 4 For the sake of simplicity, the problem will be written in the absence of charges:����� 
 	 � . The space of solutions becomes

� 	�� 46/ V n ��� � 4 	 � !
By using the Helmholtz decomposition, it can be proved that the singular space

V � of
V

is a
(strict) subspace of �*.�Y�� � � � � Y���� � � , where

� � is the space introduced in Section 1, and� � its counterpart for the homogeneous Neumann problem. Hence, the method described
here for

�
can be adapted to

V
.

3.2.1 Description of the method

We first introduce a variational form of the equations, i.e.
find


 � �  / � such that

� l� � l � 
 � �� � � � � � � � 
 � � � � � �� � 	 � �
��� � � � �� � 8 � / � �

with the same initial conditions. As in the 3d case (see Theorem 5), there exists one and only
one solution of this problem. Moreover, we have the following orthogonal decomposition of�

, analogous to the one previously obtained in
�

.

Theorem 21 The space
�

can be split in the orthogonal sum
� 	 � � �� � � .

From this splitting, we obtain a continuous (orthogonal) decomposition in time of the electric
field, that is


 � � t	 

� � �  � 
 � � �  @

By using again the relation between the singular solutions of Maxwell’s equations and those of
the Laplace problem, we obtain that the vector space

� � is finite dimensional, of dimension
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� � , the number of reentrant corners, defined by � � � � � � 	 � ( � introduced at (6)). For� 4 � �  � �
�

� � � a basis of
� � , we have


 � � t	 

� � �  � B� �

�
� ���

� � � �  4 � � �
where � � �  � �

�
� � � are � � functions at least continuous in time. With this decomposition, the

variational formulation becomes:
find



� / � � such that

� l� � l � 
 � � � �  � � � � � � � 
 � � � � � � � �  � 	 � �
� � � � � � �  �

� B� �
�

� � �
� � �� � � �� 4 � � � � �  � � 8 � � / � � � (34)

completed with � � equations, derived by using � 4 ��  � �
�

� � � as � � test functions. Thanks to
the orthogonality of regular and singular fields, one gets:

� l� � l � 
 � � 4 ��  � � B� �
�

� � �
� � �� � � m� 4 � � � 4 ��  � � � � � � m� � � � � 4 � � � � � � � 4 ��  � 	

�
�
��� � � � 4 ��  � � � � � � � � @ (35)

In order to compute numerically the solution, we have first to determine a basis of
� � , and

then to solve the time-dependent formulation.

3.2.2 Determination of a basis of
� �

For the sake of simplicity, let us assume that � � is equal to 1. To compute 4 � , a basis of
� � ,

the isomorphism between
� � and � is used. The framework of the algorithm is then:

- Compute a basis of � , i.e. a non vanishing element � � of � l� � �  , such that

C � � 	�� in �
� � � ��  	�� on

c � � � � � � � @
- Compute 4 � / � , the solution of

� � � � 4 � 	 � � in �
� ����� 4 � 	�� in � � 4 � � 
 	 � on

c @ (36)

Instead of solving (36), it is more practical to make use of another isomorphism, in the same
spirit as in Section 1: to 4 � / � � , there corresponds one and only one scalar potential� � / 9q�,� �  2 � such that

� C � � 	 � � in �
� � � ��  	�� on

c @
Now, as

� � is sufficiently smooth (i.e. with regularity 96� ), one can easily solve this problem
with the help of a variational formulation. The computation of 4 � / � � then stems from the
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identity 4 � 	 �*.�Y�� � � .

Computation of � � (
� � , 4 � ): first method

A partition of � into � � and �
�

is introduced, where �
�

stands for an open angular sector of
radius

�
centered at the reentrant corner, with an angle � 	 � 2 	 ,

� 2 � 3 	 3 �
, and where �

�
is the open domain such that �

� ! � � 	! and �
� � � � 	 � . Last, Let

c �
(resp.

c �
) denote the

boundary of �
�

(resp. �
�
), which is split in

� � �c � (resp.
� � �c � ), with the interface

� 	 c � ! c � .
The computation of � � (for instance) can be divided in three substeps (cf. [ACS98]).

1. The restriction of � � to � � , � �� , can be written using the polar coordinates,

�
�
� � 
 � �� 	 B� � Q � � � 
 � � � � � ��� 	 �� � with � Q � "	�� @

Every � � can be written as an integral of �
�
� � � over

�
.

2. Let
!�

denote the unit outward normal to �
�
. One then defines the capacitance operator� n � �� � � �� � � ���  � � � , by

� ��� �� t	� � ��� ��  � � 	 � Q �� � ��� � � � � 	 �  �
where � � ��� ��  	 � 	 l

� �
B� � � �

� � �
� �

�
� � � � � �  � � � �M� 	 � �  � � � � � � � �M� 	 ��^@

3. With the help of the transmission conditions: �
�
� 	 �

�
� and � � � � �� 	f� � � � �� on

�
, one

gets the missing boundary condition for the exterior problem (on the interface). Let �
denote the unit outward normal to �

�
, the exterior problem, written in a variational

form, reads
find �

�
� / 9 � � � �  2 � such that�

� � � �
�
�
� � � � � � � � � � ��� ��  � � � 	 � 	 � Q �� � ��� � � � � � � 	 �� � � � � 8 � / 9 � � � �  2 � @

Clearly, the bilinear form ��� � �� �� � � � � ���  � � � is symmetric positive. Thus, for a

given � Q � , the above exterior problem is well-posed.

The computation of
� � and 4 � can be carried out in the same way.

Computation of � � (
� � , 4 � ): second method

Instead of partitioning � into �
�

and �
�
, one can split � � the basis of � into

� � 	 �  ���� � � � � 
 � ��
where � � � 
 � ��j	 
 Q � � � � � 	 �� is the dual singular function (see Section 3.1) for the Neumann
problem, and �  ���� the regular part of the solution (that belongs here in 96��� �  ). To compute
� � , we have only to solve the problem in �  ����

� C �  ���� 	 C � � � 	 �� in � �� �  �����  	 � on �c � � � �  �����  	 � � � ��  on �c � @
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Remark 5 This second one only requires the knowledge of the dual singular function, which
is easier to get than the complete local solution, and should carry out to 3d problems. More-
over its implementation is simpler in the case of several reentrant corners.

3.2.3 Solution to the time-dependent problem

We consider here the case of � � reentrant corners. One proceeds first a semi-discretization in
space, by using the � � Lagrange FEM. Let ��� �  � � ��� ����� � � � be a basis of

� ��
, the FE approx-

imation space of
�
�

. The formulation (34) can be written equivalently as a linear system,
where

�
stands for the derivative in time:

�
�
�� � �� � �

�
��
� 	 � � � �
 � � B� �

�
� � �

� � �� � �  �� � � (37)

where
�
� is the mass matrix,

�
� is the curl matrix, and

�� �
(for a fixed $ ) the vector whose

components are � � �  � 	d� 4 � � � � �  � , � � � � � � .
We denote by

�� � �  the vector of
� � �

whose components are � � � �  . Starting from (35), we
obtain � �� �  � � ��� � �� � � ��� � �� 	 � � �� �  �
where

�� � and
�� �

are vectors of
� � �

, with components

� �� 	f� 
 � � 4 � �  � 	f� �� � = �� �  and
� �� 	f� � � 4 � �  � 	d� �
 = �� � ^@

� � and
� � are � � � � � matrices, defined by � � �  ��� 	 � 4 �� � 4 � �  � and � � �  ��� 	 ��� � � � � � �  � . By

plugging this expression in (37), one obtains

�
�
�� � �� � �

�
��
� 	 � � � �
 � � B� �

�
� ���
� � � Q � � � �� �  � �	� � �� � � �� �  � �  ! � �� � �

which is implicit in
�� � ��

. After a time discretization involving a second-order explicit (leap-
frog) scheme, the scheme reads

�
�
�� � ���� � B� �

�
� � �
� � � Q � � �� �  � ��� ! � �� � 	 �
 � @

Here the superscript � (resp. � ��� ) stands for a variable at time
� ��	 �?C �

(resp.
� � ��� ), and�
 � is a set of quantities known at time

� � . After a few elementary algebraic manipulations,
this expression can be written as� � �

� B� �
�

� � �

�� � �� �  �� ����� 	 �
 � � (38)

where
�� �

is a linear combination of the � �� �  � � � � � � :
�� � 	 � � � � � � � � � � Q �  � � �� � . It can

be solved (for instance) with the help of the following formula (see [Hag89] for a review),
�� �o� , � and  � � � �� � � ��   Q � 	 � Q � � � Q � � ��� �   � Q � �� Q �   � Q �
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that only requires (compared to the unmodified system, that is
�
�
�� � ���� 	 �
 � ) the additional

computation of the small � � �	� � matrix ��� �   � Q � �  Q � . This formula is applied here
for
� 	 �

� . Recall that the mass matrix
�
� is diagonalized thanks to a quadrature formula

(see [ADH � 93]), which preserves the accuracy. In this way, the linear system to solve (38)
appears as a slight modification compared to the one obtained without the SCM.

3.2.4 Numerical results

Results of the computation of a basis of
� � are similar to those shown in

�
3.1.4 and will not

be presented here. We refer the reader to [ACS00] for more detailed numerical examples.

k(t)=0
k(t)≠0
E  (t)≠0R

E(t)=0

t

t

ER(x0,t)

E(x0,t)

Figure 5: At a given point A � , comparison of


� �DA � � �  (top) and


 �DA � � �  (bottom) with
�

varying.

For the first case, one computes the electromagnetic field generated by a current, the space
and time characteristics of which are similar to those of a bunched beam of particles. An L-
shaped domain � is considered where perfectly conducting boundary condition is imposed.
The initial conditions are set to zero. The electromagnetic wave is generated by a current
� �BA � �  	 � � � � � l   , the support of which is bounded, with

� � 	 � , � l 	 � � � � � � � �  , for�
associated to a frequency of

�v� � @ � � � Hertz. This current generates a wave which prop-
agates both on the left and on the right. Physically, as long as the wave has not reached
the reentrant corner, the field is smooth. Let

� � be the impact time, then, if one writes

 �BA � � j	 


� �DA � �  � ��� �  4 � �BAG , �G� �  is equal to zero for all
�

lower than
� � , and so



� �DA � � 

and

 �BA � �  coincide. Now, on the one hand, for

�
greater than

� � , �G� �  "	 � , and the support of4 � being non local (in fact, the support of 4 � spans the whole of � ), one has �G� �  4 � �BAG "	 � ,
for all A / � and

� 5 � � . On the other hand, however, one wishes to reproduce the obvious
physical behavior, which is that for any point A and time

�
,

 �BA � � H	 � if

� 3 �
� , where

�
�

denotes the time at which the electromagnetic wave reaches A . One can check (see Figure 5)
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that


� �DA � �  takes non-zero values, and therefore that it ’compensates’ for ��� �  4 � �DAG , i.e.



� �DA � �  	 � ��� �  4 � �BAG . Thus,


 �BA � �  remains equal to zero while
� � 3 � 3 �

� .

0.0

1.00

10 4 V/m

-0.23

y
-
a
x
i
s

x-axisx-axis

Figure 6: Computed electric field: with and without the SCM.

The second example is a guided wave which propagates in a standard singular geometry, as
commonly studied devices such as hyperfrequency systems often include waveguides. This
case illustrates of the possibilities of the method, when it is used on a more ’complete’ formu-
lation, that is with different types of boundary conditions and several reentrant corners. An
incident wave enters in a step waveguide through the left boundary, and exits through the right
boundary. At the initial time, the electromagnetic field is equal to zero all over the guide.

The Figure 6 depicts the isovalues of the first component of the electric field after 1000
time-steps. the SCM provides a numerical solution which is precise especially in the neigh-
borhood of the corners. The result obtained via the classical nodal FE code (without the SCM)
shows a most unlikely approximation of the true solution (no singular behavior).

Conclusion

We proposed a method, called the Singular Complement Method, to solve PDEs in a non-
smooth and a non-convex domain. It is based on a splitting of the space of solutions

1
with

respect to regularity (cf. (4)), in a subspace
1 �

made of regular elements, which is equal to1
when the domain is smooth or convex, and a subspace of singular elements

1 � . Regular
elements are approximated by the � � Lagrange FEM, and test-functions are added to capture
numerically the singular part of the solution.

In 3d domains, for the Laplace problem as well as for Maxwell’s equations, the theoretical
aspects are under control, but there still remains to provide an effective approximation of the
singular part of the solution. Basically, two problems have to be overcome:

- The dimension of
1 � is infinite.

- The edge and vertex singularities are linked (cf. [Gri85]).



186 ASSOUS, CIARLET, LABRUNIE, LOHRENGEL

These difficulties are not really equivalent. Indeed, on the one hand, one usually deals
with infinite dimensional vector spaces: for instance, the space

1 �
is efficiently approximated

with the help of the � � Lagrange FEM. On the other hand, finding an approximation, which
takes into account the links between the two types of geometrical singularities, is much more
challenging.

In 2d (or in axisymmetric domains), the situation is well understood theoretically, and
numerical experiments are well under way and partial results are satisfactory. Moreover, the
SCM is easy to implement, as it can be included in already existing codes, without having to
rewrite them in their entirety; also, it generates a reasonable overhead (low additional memory
requirements, small cpu costs). So, all’s well that ends well, cf. [Sha98].
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15 Mortar spectral element discretization of Darcy’s
equations

Mejdi Azaı̈ez1, Faker Ben Belgacem2 Christine Bernardi3

Introduction

Darcy’s equations model the filtration of an incompressible viscous fluid in porous media.
However, exactly the same equations are involved in the mixed formulation of the Laplace
equation with Neumann boundary conditions and also in the projection–diffusion algorithm
of Chorin [Cho68] and Temam [Tem68] for solving the time-dependent Navier–Stokes equa-
tions. So proposing discretizations of this problem which are both accurate and efficient,
seems rather important. We first write its variational formulation, which involves the domain
of the divergence operator, and prove that it is well-posed. We describe a spectral discretiza-
tion of the problem that relies on the mortar domain decomposition technique introduced by
Bernardi, Maday and Patera [BMP94], since it combines the accuracy of standard spectral
methods with the advantage of handling complex geometries via the mortar algorithm. We
prove the convergence of the discrete solution towards the exact one and derive error esti-
mates.

Detailed proofs of the results presented in this paper can be found in [ABB03], and nu-
merical experiments are under consideration.

Darcy’s equations and their variational formulation

Let � be a bounded connected domain in � � � , � 	 �
or
�
, with a Lipschitz–continuous

boundary, and let  denote the unit normal vector outward to � . Darcy’s equations in this
domain write . � � Y���� � 	 7 � � � ������ . 	�� � � � � (1). �

 	�� � � � � �
where the unknowns are the velocity . and the pressure � . In order to write the variational
formulation of problem (1), we first consider the space9:� ����� � �<t	 p 40/ � l �;�< � � � � � 40/ � l � �< u � (2)

1Institut de Mécanique des Fluides de Toulouse (UMR C.N.R.S. 5502), Université Paul Sabatier, 118 route de
Narbonne, 31062 Toulouse Cedex, France.

2Mathématiques pour l’Industrie et la Physique (UMR C.N.R.S. 5640),
Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex, France.

3Analyse Numérique, C.N.R.S. & Université Pierre et Marie Curie,
B.C. 187, 4 place Jussieu, 75252 Paris Cedex 05, France.
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provided with the natural normk 4 k � ' � 
 � �
�
- 	 � k 4 k>l	 
 ' � - �

� k � � � 4 k>l	 
 ' � - � �
 @ (3)

We note that 9:� ����� � �< is a Hilbert space and we recall from [GR86](Chap. I, Thm 2.4) that
the space

� � �  � of restrictions of infinitely differentiable functions on � � � to � is dense in9b� ��� � � �< . As a consequence, the trace operator: 4 �� 4 �
 , defined from the formula8 � / 9 � �;�< � � 4 �

 � � � 	 � � � 4 �
� Y���� � � � ����� 4  � � �DAG � A (4)

is continuous from 9b� ����� � �< onto the dual space 9 Q �
 �����< of 9 �
 �����< . So, we can now
define the subspace 9 � � ����� � �<j	 p 46/ 9:� ����� � �< � 4 �

 	 � on ��� u � (5)

which is also a Hilbert space and is the closure for the norm defined in (3) of the space

� � �< �
of functions in

� � �� � with a compact support in � . Finally, we introduce the space

�jl� �;�<j	 p � / � l��;�< �

� � �v�DAG � A�	 � u @ (6)

The variational formulation of problem (1) now reads
Find � . � �\ in 9 � � ����� � �< � � l� � �< such that8\4 / 9 � � ����� � �< � � � . � 4  � 
 � 4 � �  	 � � 7 �DAG � 4 �DAG � A �8 � / � l� �;�< � 
 � . � ��j	 � � (7)

where the bilinear forms � � � � �  and

 � � � �  are defined by

� � . � 4  	 ��� . �DAG � 4 �BAG � A � 
 � 4 � ��t	 � � � � ����� 4 m�BAG �v�BAG � As@ (8)

From the density of

� �;�< � in 9 � � ����� � �< , it is readily checked that problem (7) is equivalent
to problem (1). Problem (7) is of saddle-point type, and the arguments for proving its well-
posedness are given in [GR86] (Chap. I, Thm 4.1). First, the bilinear forms � � � � �  and


 � � � � 
are continuous on 9 � � ����� � �< � 9 � � ����� � �< and 9 � � ��� � � �< � � l� � �< , respectively. Second,
let

1
stand for the kernel1 	 p 46/ 9 � � ����� � �< � 8 � / � l� �;�< � 
 � 4 � �� 	 � u � (9)

or, equivalently, 1 	 p 40/ 9 � � ����� � �< � ����� 4 	 � � � � u @ (10)

The following ellipticity property is then obvious8\46/ 1 � � � 4 � 4 j	 k 4 k l� ' � 
 � �
�
- @ (11)
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Third, the following inf-sup condition, for a constant �05 � ,8 � / �jl� �;�< � �����
��� � � ' � 
 � �

�
-


 � 4 � ��k 4 k � ' � 
 � �
�
- � � k � k 	 
 '

�
- � (12)

is derived by taking 4 equal to � Y���� � , where � is the solution of the Laplace equation with
data � and homogeneous Neumann boundary conditions. Combining all this leads to the fol-
lowing statement.

Proposition 1. For any data
7

in � l � �< � , problem � �  has a unique solution � . � �\ in9 � � ��� � � �< � � l� � �< .
Unfortunately, even for smooth data, the solution of problem � �  is not very regular. For
any data

7
in � l �;�< � such that ��.GY�� 7 belongs to � l �;�< l � Q � , the solution � . � �\ belongs to9 � � �< � for � 	 �l in the general case, � 	 � if � is convex and some � 5 �l if � is a polygon

or polyhedron (we refer to [Cos90], [Dau92] and [ABDG98] for these results).

Remark: Another variational formulation of problem (1) exists, where the spaces 9 � � ����� � �<
and � l� �;�< are replaced by � l �;�< � and 9q���;�<s! � l� �;�< , respectively. Then, the boundary
conditions in (1) are enforced in a variational way. However this second formulation does not
seem appropriate when Darcy’s system appears in the discretization of the Stokes problem,
since the pressure in this problem does not belong to 9 � �;�< in most cases when � is a non
convex polygon or polyhedron.

The mortar spectral element discrete problem

From now on, in view of applying the mortar element method to our problem, we assume
that � admits a disjoint decomposition into a finite number of (open) rectangles in dimension� 	 �

, rectangular parallelepipeds in dimension
� 	 �

:

� 	 ��
� ��� � � and � � !o� � � 	  � � � � "	 � � � � @ (13)

We make the further assumption that the intersection of each ��� � with ��� , if not empty,
is a corner, a whole edge or a whole face of � � . We denote by  � , � � � � � , the unit
normal vectors outward to � � . We introduce the skeleton

%
of the decomposition,

% 	� � � ��� ��� � 
<��� . According to the ideas in [BMP94], we choose a disjoint decomposition of
this skeleton into mortars:% 	 ��

� ��� c � and
c � ! c � � 	  � � � 3 "	F3 � � � �

(14)

where each
c � is a whole edge in dimension

� 	 �
, face in dimension

� 	 �
, of a subdomain� � , denoted by � � '*� - . To describe the discrete spaces, for each nonnegative integer � , we

define on each � � , resp. on each edge or face
�

of � � , the space � � � � � �  , resp. � � � � �  , of
restrictions to � � , resp.

�
, of polynomials with

�
, resp.

� � �
, variables and degree

� � with
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respect to each variable. The discretization parameter 1 is then a � –tuple �;� � � @e@>@ � � �  of
integers � � � �

. We first introduce the space
� ' � �< of discrete pressures:

� ' �;�< 	 p � ' / � l� � �< � � ' �
�
 / � � �  Q\l �;� �  � � � � � � u @ (15)

Next, in analogy with the standard definition of the mortar approximation of 9b���;�< [BMP94],
we define the discrete space

&
' � �< which approximates 9 � � ��� � � �< . It is the space of func-

tions 4 ' such that:
	 their restrictions 4 ' � �  to each � � , � � � � � , belong to � � �  � � �  � ,	 their normal traces 4 ' �  vanish on � � ,
	 the mortar function � being defined on each

c � ,
� � 3 � �

, by

� � i � 	 4 ' � �  � ��� �  � '*� - � (16)

the following matching condition holds on each edge or face
�

of � � , � � � � � , which is
not a mortar: 8 � / � � �  Q\l � �  � � ? � 4 ' �

�

�
 � � � m� 
  �j� 
  � 
 	 � @ (17)

Remark: The space

&
' is not contained in 9b� � � � � �< since the matching conditions on the

normal derivative through the interfaces are only enforced in a weak way. So the discretization
is nonconforming. Starting from the standard Gauss–Lobatto formula on 8 � ��� � 6 , we define
on each � � and in each direction:
	 the nodes �

��
and �

��
, and the weights �

�
� �� and � � � �� , � � � � � � , in the case of dimension� 	 �

,
	 the nodes �

��
, �
��

and
	 ��

, and the weights �
�
� �� , �

� � �� and �
� � �� , � � � � � � , in the case of

dimension
� 	 �

.
A discrete product is then introduced on each � � , according if

� 	 �
or
�
, by

�D0 ' � � '  �' 	 ���
�

� � � � ��� � � � ��� 0 ' � � �� � � ��  � ' � � �� � � ��  � � � �� � � � ��
� � � ��� � � � ��� � � $ ��� 0 ' � � �� � � �� � 	 �$  � ' � � �� � � �� � 	 �$  � � � �� � � � �� � � � �$ @ (18)

The global discrete product on � :

�B0 ' � � '  ' 	 �B
� ��� �B0 ' � � ' 

�' � (19)

coincides with the scalar product of � l �;�< for all functions 0 ' and � ' such that each product�B0 ' � '  � �  ,
� � � � � , belongs to � � l �  Q � � � �  . The discrete problem is now built from the

variational formulation (7). For any continuous data
7

on � , it reads
Find � . ' � � '  in

&
' �;�< � � ' � �< such that8 4 ' / & ' �;�< � � ' � . ' � 4 '  � 
 ' � 4 ' � � ' t	d� 7 � 4 '  ' �8 � ' / � ' �;�< � 
 ' � . ' � � ' t	�� � (20)

where the bilinear forms � ' � � � �  and

 ' � � � �  are defined by

� ' � . ' � 4 ' t	 � . ' � 4 '  ' � 
 ' � 4 ' � � ' t	 � � ����� 4 ' � � '  ' @ (21)
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Note however that, thanks to the exactness property of the quadrature formula, we have8\4 ' / & ' �;�< � 8 � ' / � ' �;�< � 
 ' � 4 ' � � ' t	 
 � 4 ' � � ' ^@ (22)

To check the wellposedness of problem (20), we first state the discrete analogue of the inf-sup
condition in (12), its proof combines the arguments in [ABG94] and [BBCM00]. It involves
the “broken” norm

k 4 k � ' � 
 � � �
�
 - 	 � �B� ��� k 4 kml� ' � 
 � �

�
 - 	 �
 @ (23)

Lemma 2. There exists an integer � � and a positive constant � � , both depending on the
decomposition of � but independent of 1 , such that, if all the � � are

� � � , the following
inf-sup condition holds8 � ' / � ' �;�< � ��� �

��� ������'
�
-


 � 4 ' � � ' k 4 ' k � ' � 
 � � �
�
 - � � � k � ' k 	 
 ' � - � (24)

Proposition 3. For any continuous data
7

on � and if all the � � are
� � � , problem � � �  has

a unique solution � . ' � � '  in

&
' �;�< � � ' � �< .

Proof: Problem (20) results into a square linear system, so that it has a unique solution if and
only if the only solution for

7 	 

is � 
 � �� . So we take

7
equal to



. Choosing 4 ' equal to . '

in (20) yields that � ' � . ' � . '  is zero and, since the weights of the Gauss–Lobatto formula are
positive, this imples that . ' vanishes in the ��� � � �  � nodes of a tensorized grid on each � � ,
hence is zero. Then,


 ' � 4 ' � � '  is equal to zero for all 4 ' in

&
' , hence � ' is zero due to (24).

A priori analysis

The main difficulty for evaluating the error on the velocity comes from the fact that the form� ' � � � �  is no longer uniformly elliptic with respect to the norm k � k � ' � 
 � � �
�
 - on the discrete

kernel 1 ' 	dp 40/ & ' � �< � 8 � ' / � ' �;�< � 
 ' � 4 ' � � ' t	 � u � (25)

since
1 ' is not made of exactly divergence-free functions. So the usual arguments for bound-

ing the error does not hold, and we must evaluate “by hand” the quantity k . � . ' k 	 
 ' � - � . It
involves three terms:
	 the approximation error, which is easy to evaluate in dimension

� 	 �
but requires some

further conformity assumptions in dimension
� 	 �

,
	 the error issued from numerical integration,
	 the consistency error, which gives rise to a term of type (here, 6 � 8 denotes the jump through
%

with the appropriate sign)

� ���
��� ������'

�
- � ���
��� ������'

�
-
� � ��� ' �  m� 
  6 � � � ' 8 � 
  � 
k � ' k � ' � 
 � � �

�
 - �

(26)

and it seems that using an inverse inequality is unavoidable to bound this term, which leads to
non optimal estimates. Once the error on the velocity is evaluated, the error on the pressure is
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derived from the inf-sup condition (24). Let 7 ' denote the maximal ratio � � 2 � � � for all pairs
of subdomains � � and � � � , � � ��"	 � � � � , such that ��� � ! ��� � � has a positive measure
in

%
.

Theorem 4. In dimension
� 	 �

, assume the data
7

such that each
7 � �  ,

� � � � � , belongs
to 9 )  �;� �  l , � � 5 � , and the solution � . � �\ of problem � �  such that each � . � �  � � � �   , � �� � � , belongs to 9 �  �;� �  l � 9 �  ���,� � �  , � � 5 � . If all the � � are

� � � , the following
error estimate holds between this solution � . � �\ and the solution � . ' � � '  of problem � � �� :k . � . ' k 	 
 ' � - 
 � k � � � ' k 	 
 ' � -

� �
�B
� ��� � 7 ' � �
 Q � � � k . k � �  '

�
 - 
 � k ��k � �  � � '

�
 -  (27)

� � Q ) � k 7 k � �  ' �  - 
 � @
This estimate is not optimal, however the same lack of optimality appears in several finite

element discretizations of Darcy’s equations (for instance, when Crouzeix–Raviart finite ele-
ments are employed for the approximation of the velocity). Moreover, if the parameter 7 ' is
bounded independently of 1 , the convergence of the method can be derived form this estimate
in all polygons, thanks to the regularity results stated in Section 1.

To conclude, we recall that the decomposition (13) of � is said to be conforming if the inter-
section of all � � � and � � � � , � � � 3 � � � � , if not empty, is a whole edge in dimension� 	 �

, a whole face in dimension
� 	 �

, of both � � and � � � . The mortar element method
does not require the conformity of the decomposition. However, if the decomposition is con-
forming, an approximation � ' of the pressure � can be constructed in

� ' � �<v! 9 ��� �< , which
means that the quantity in (26) vanishes for this � ' . So the error estimate is optimal in this case.

Corollary 5. If all assumptions of Theorem 4 hold and if, moreover,
(i) the decomposition � � �  of � is conforming,
(ii) in dimension

� 	 �
, for

� � 3 � �
, � � ';� - is

� � � , where
c � is the intersection of

this � � and � � '*� - ,
the following error estimate holds between the solution � . � �  of problem � �  and the solution� . ' � � '  of problem � � �� :k . � . ' k 	 
 ' � - �

� k � � � ' k 	 
 ' � -
� �

�B
� ��� � � Q � � � k . k � �  '

�
 - �
� k � k � �  � � '

�
 -  � � Q ) � k 7 k � �  ' �  - �

� @ (28)

Conclusion

As a conclusion, the mortar spectral element discretization of problem (1) is fully optimal
in the case of a conforming decomposition. It is not for a nonconforming decomposition,
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however estimate (27) can be improved in this case by taking into account the local properties
of conformity. It can also be noted that, for smooth data, the solution of problem (1) is regular
outside a neighbourhood of the corners and edges of � , so that enforcing the conformity of
the decomposition is more important in a neighbourhood of ��� than elsewhere.
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16 Substructuring techniques and Wavelets for Domain
Decomposition

Silvia Bertoluzza 1

Introduction

We consider in this paper a substructuring approach for preconditioning the linear system
arising from the reduction to the interface unknown of the discrete three fields formulation of
domain decomposition. In particular we concentrate on choosing the stabilization technique,
needed to circumvent the otherwise very restrictive inf-sup conditions required for stability
and convergence, in such a way that the stabilized method falls in the range for which the
estimate on the preconditioner holds. For such preconditioner to work, it is in fact necessary
that the stabilized bilinear form verifies continuity and coercivity with respect to the same
norm. This leads us to choose a stabilization technique based on adding a residual term
on the subdomain boundaries, measured in the natural norm of type 9 � � l . The 9 � � l type
scalar product can be cheaply realized in terms of a wavelet decomposition. Remark that
wavelets are employed here as a tool for implementing stabilization and they do not need to
be employed as discretization space.

A substructuring preconditioner for the three fields domain
decomposition method

Let � � � l be a convex polygonal domain. We will consider the following simple model
problem: given

� / � l � �< , find 0 satisfying

� C�0 	 �
in � � 0 	 � on ��� @ (1)

In this paper we consider the three fields domain decomposition formulation of such a
problem [BM94]. More precisely, considering for simplicity a geometrically conforming
decomposition �g	 � � � � , with � � quadrangles regular in shape,

� � 	 ��� � , and letting� 	�� � � � , we introduce the following functional spaces1 	 
� 9 � �;� �  � � 	 

� 9 Q � � l � � �  �
� 	�� � / � l � �  n there exists 0 / 9 �� �;�< � 0 	 � on

� ! 	 9 �� �;�<e= � �
respectively equipped with the norms:k�0 k l � 	 B

� k 0 � k l� � ' �  - � k � k l� 	 B
� k � � k l� + �	��
 ' ?  - �

1Istituto di Analisi Numerica del C.N.R. di Pavia, aivlis@ian.pv.cnr.it
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and (see [Ber00a])k � k l� 	 � ���@ � � �� '
�
- � @ � � on

� k 0sk l� � ' � - � B
� = � = l� �	��
 ' ?� - @

We remark that here and in the following we will use the notation � and 5 to indicate
several positive constants independent of any relevant parameter, like the mesh size or the
size of the subdomains. The expression � � � will stand for � � � � � 5 � .

Let �
� n 9q���;� �  � 9q�,� � �  � �

denote the bilinear form corresponding to the Laplace
operator:

� � � � � �v 	 � �

� � � �\@

The continuous three fields formulation of equation (1) is the following ([BM94]): find�B0 ���G� �  / 1 � � � �
such that

�����������
���������

�
8 � � 8 � � / 9q�,� � �  � 8 7 � / 9 Q � � l � � �  n
� � �B0 � � � �  � � ?� � � � � 	 �

�

�
�
� �

� � ?� 0 � 7 � � � ?� 7 � � 	 � �
and 8 � / � n

� � � ?  � � � 	 �`@
(2)

It is known that this problem admits a unique solution �D0 ���T� �  , where 0 is indeed the
solution of (1) and such that

� � 	 � 0 � 2 �  � on
� � , and � 	 0 on

�
, where

 �
denotes

the outer normal derivative to the subdomain � � . After choosing discretization spaces
1 � 	� � 1 �� � � � 9q���;� �  , � � 	 � � � �� � � � 9 Q � � l � � �  and

� � � �
, equation (2) can be

discretized by a Galerkin scheme. The linear system stemming from such an approximation
takes the form �� � �  �

� � 5 � 5 �
�� � �� 0 �� �

� �

�� 	 ��
�
��
�� �

(3)

( 0 � ,
� � , and � � being the vectors of the coefficients of 0 � ,

� � and � � in the bases chosen
for

1 � ,
� � and

� � respectively). By a Schur complement argument the solution of (3) can be
reduced to a system in the unknown � � , which takes the form

� � Q � �  � � 	 � � � Q � # �
� + � � 	46 � 5 8 � � 	 # � � 

� � + @ (4)

The matrix
� 	 � � Q � �  does not need to be assembled. The system (4) can rather be

solved by an iterative technique (like for instance a conjugate gradient method) and therefore
only the action of

�
on a given vector needs to be implemented. Multiplying by

�
implies the

need for solving a linear system with matrix
�

. This reduces, by a proper reordering of the
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unknowns, to independently solving a discrete Dirichlet problem with Lagrange multipliers
in each subdomain.

Existence, uniqueness and stability of the solution of the discretized problem rely on the
validity of two inf-sup conditions,

� ���< � � � �
� ���@ � ��� � �

� � ?� � �� 0 ��k�0 � k � k � � k �

� � � 5 � � � ���
� � � � �

� ���< � � � �

� � � ?� � �� � �k � � k � k � � k �

� � l 5 � (5)

respectively coupling
1 � with

� � , and
� � with

� � . Provided (5) holds, it is possible to prove
that the bilinear form � n � � � � � � �

corresponding to the Schur complement matrix
�

and defined by
� �B0 � � � �  	 �  � � 0 � �

is continuous and coercive with respect to the
�

norm:
� � � � � � �  � � � k � � k � k � � k � � � � � � � � �  � 	 � k � � k l� � (6)

(
� � and 	 � positive constants).

The problem arises then to precondition the Schur complement matrix
�

. This can be done
by a substructuring approach ([BPS86, Ber00b]). To this end we introduce a decomposition
of the skeleton

� 
H��� 	 � � � � as the disjoint union of
�

macro-edges � � , (each being the
edge of two adjacent subdomains), and we split the discrete space

� � as the direct sum of a
coarse space

� � of functions linear on each macro-edge of
�

,
� � 	�� � / 5 � � �  n 8 ��	 �*� @e@>@ � � �

� = � � / � � � � �  � � 	 � on ��� ! �
(
� � denoting the space of polynomials of degree at most one) plus some local spaces (one per

macro-edge)
� � � �� , � � � �� 	 � � � / � � n � � = � � � � 	�� ! �

consisting in those functions in
� � vanishing outside the macro-edge � � . Corresponding to

such a decomposition we will consider a block-Jacobi type preconditioner. More precisely, it
is possible to prove the following theorem.

Theorem 1 Let
�� � n � � � � � � �

and
�� � n � � � �� � � � � �� � �

be symmetric bilinear forms
satisfying�� � � � � � � �  � k � � kml� 8 � � / � � � and

�� � � � � � � �  � k � � k>l� � 8 � � / � � � �� �
and let

�� n � � � � � � �
be the bilinear form which, for � � 	 � � � � �� ��� � � � �� and

� � 	 � � � � �� ��� � � � �� , is defined by

�� � � � � � � t	 �� � � � � � � �  � �B
� ��� �� � � � � �

�
� � � � � �� ^@

Then for all � � / � � it holds

� k � � kml� � �� � � � � � �  � � � ��
#
� � ����� 9 �

� �
+ l k � � kml� �

where � � and 9 � are respectively the smallest mesh size of
� � = ?� and the diameter of the

subdomain � � .
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Thanks to (6), by a well known argument, Theorem 1 implies that we can derive the fol-
lowing corollary, where we denote by

��
the matrix corresponding to the Galerkin discretiza-

tion of the bilinear forms
�� , which has a block diagonal structure.

Corollary 1 If (5) holds, then

� " � � � �� Q � �  � � ����
#
� � ����� 9 �

� �
+ l @

Wavelet stabilization

The need for the two inf-sup conditions (5) to hold, leads to discard several otherwise de-
sirable choices for the three discretization spaces

1 � ,
� � and

� � . A possible remedy in
this direction is to advocate a suitable stabilization technique, allowing to circumvent one or
both inf-sup conditions. Several proposals have been made in this respect (see for instance
[BFMR97]). In this particular context, we want however to choose the stabilization technique
in such a way that the substructuring preconditioner briefly described in the previous section
still applies. Therefore, the bilinear form corresponding to the Schur complement matrix de-
riving from the stabilized method needs to satisfy (6). A choice that fulfills such requirement
is the wavelet stabilization proposed in [BK00]. This consists in introducing symmetric bi-
linear forms 6 � � � 8 � � l � � n 9q� � l � � �  ��9q� � l � � �  � �

satisfying the following bounds for all
� � � � � / � � = ?� and for two suitable positive constants 5 � and � � :6 � � � � � 8 � � l � � � 5 � = � � = � � � 
 ' ?  - = � � = � �	��
 ' ?� - � 6 � � � � � 8 � � l � � � � � = � � = l� �	��
 ' ?  - @ (7)

The stabilized three fields formulation of problem (1) reads: find 0 � ,
� � and � � such that�����������

���������

�
8 � � 8 � �� / 1 �� � 8 7 �� / � �� n
� � �D0 �� � � ��  � c 6 0 �� � � �� 8 � � l � � � � ?� � �� � �� � c 6 � � � � �� 8 � � l � � 	 �

�

�
�
�� �

� � ?� 0 �� 7 �� � � ?� 7 �� � � 	 � �
and 8 � � / � � n
� � � c 6 0 �� � � � 8 � � l � � � � � � ?  � �� � � � � � c 6 � � � � � 8 � � l � � 	�� �

(8)

where
c 5 � is a parameter independent of the choice of the discretization spaces. Such

formulation is consistent with the original continuous problem, that is by substituting in (8)
the solution �D0 ���T� �  of (2) at the place of �D0 � ��� � � � �  we obtain an identity. The linear
system stemming from such a problem takes this time the following form:��

�� �  ��c � � � 5 ��c � 5 c �
�� � �� 0 �� �

� �

�� 	 ��
�
��
�� �

(9)

with
��f	�� � c � , the matrices � ,

�
and

�
deriving from the stabilizing terms. Again, the

solution of (9) can be reduced to a system in the unknown � � , this time taking the form

��
� � n 	 � [ �� Q � [  � c � � � � 	 � [ �� Q � # �

� +
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with

�� 	 # �� � 
� � + � [ 	46 ��c � 5 8 @

Once again we let
�� n � � � � � � �

be the bilinear form corresponding to the Schur
complement matrix

��
�� � � � � � � t	 � �  ��

� � �
and, if the space

1 � and
� � satisfy the first of the two inf-sup conditions (5), also the bilinear

form
�� is continuous and coercive with respect to the

�
norm:

�� � � � � � �  � � � k � � k � k � � k � � �� � � � � � �  � 	 � k � � k l� @
Also for the bilinear form

�� , Theorem 1 yields then the corollary

Corollary 2 It holds

� " � � � �� Q � ��  � � ����
#
� � ����� 9 �

� �
+ l @

We need at this point to provide bilinear forms 6 � � � 8 � � l � � with the required characteristics.
Following the proposal of [BK00], these are designed by means of a wavelet decomposition.
For simplicity, let us assume that the subdomains are squares (otherwise we would need to
map them onto a square). Since the 96� � l � � �  seminorm is invariant under changes of scale,
we can rescale the subdomain in such a way that = � � = 	 � (that is 9 	 � 2�� ). For simplicity,
let us concentrate on the case in which the skeleton

�
is discretized by means of P1 finite

elements, and let us assume that on each macro-edge � � the grid is uniform, with � � elements,� � being a power of two:

� � 	 � � � for some $ � � �*�
so that for all

�
,
� � = ?� � 1 �

 � l , with $ � 	 � � � � � � � � � ?� � � � $ � , where, for $ 5 � , 1 � denotes
the space of 1-periodic P1 finite elements on the uniform grid with mesh size

� 2 � �
.

The sequence � 1 � ! � � � forms a so called multiresolution analysis of � l � � �  and it is
well known (see for example [CDF92]) that there exists several wavelet bases associated with
such a multiresolution analysis. More precisely there exist several P1 compactly supported
functions � / 5 � � �  defined on the uniform grid of mesh size

�
and integer nodes, such that,

if we define wavelets � � � � by � � � � 	 � �	��*� Q � � � � l � � � � � � � �G � �  � all functions � / 1 �
can be written as

� 	 � � �
� Q �B
� ��� l

�B
� ��� � � � � � � � � � � � constant

�
and such that

� / 1 � 	 � = � = l� �	��
 ' ?� - � � Q �B
� ��� l

�B
� ��� � � = � � � � = l�@
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If, for
� � � / � l � � �  , we express in terms of the wavelet basis � � � � � ! the respective� l � � �  projections

� � � �  and
� � � �  onto

1 �
 � l ,

� � � � j	 � � �
�
 ���B
� � � l

�B
� ��� � � � � � � � � � � � � �  	 � � �

�
 ���B
� ��� l

�B
� ��� � � � ��� � � � �

we can define the bilinear form 6 � � � 8 � � l � � as

6 � � � 8 � � l � � 	
�
 ���B
� ��� l

�B
� ��� � � � � � � � � � �'@

It is possible to prove ([BK00]) that the bilinear forms thus defined satisfies (7).
With this definition, the computation of 6 0 �� � � � � � �� � � � 8 � � l � � essentially reduces to

first computing the nodal values of
� �

 �B0 ��  , � �
v� � ��  , � �

 � � �  and
� �

v� � �  respectively
and then applying a Fast Wavelet Transform.

Numerical results

We will consider problem (1) with
� 	 �

and � 	 8 � � � 6 l . We consider an uniform decom-
position of � in � 	 � � � equal square subdomains of size 9 �69 , 9 	 � 2��

. In each
subdomain � � we take an uniform mesh composed by � � �6� � equal square elements of
size 1 � � 1 � , 1 � 	f9 2 � � 	 � 2 � � � �  . We then define

1 �� to be the corresponding space of
Q1 finite elements. The value of � � is randomly assigned in such a way that for about one
third of the subdomains � � 	 �

, for about another third � � 	 � � , and for the remaining
subdomains � � 	 � �

. The multiplier space
� �� is then defined as the trace on

� � of
1 �� .

With such a choice it is possible to prove that the spaces
� � and

1 � satisfy the first of the two
inf-sup conditions needed for stability. The space

� � is chosen to be a P1 finite element space
corresponding to a uniform grid on

�
with mesh size

� 2 � � � � �  . As
�

increases, the second
inf-sup condition – coupling

� � and
� � – fails. The consequent instability clearly appears

in Figure 1, where on top we plot the solution � � obtained by the unstabilized formulation
(2) for

� 	 �
(on the left) and

� 	 �
(on the right). On the bottom, we plot the solution

� � obtained by the stabilized formulation (8) for the same values of
�

and for
c 	 @ � � . The

stabilizing effect of the correction is evident. We next show, for different values of the sta-
bilization parameter

c
, the performance of the block Jacobi type preconditioner introduced

in Section ??, where the bilinear forms
�� � and

�� � are chosen according to [BPS86, Ber00b].
While the stabilized system is better preconditioned then the unstabilized one (first column
in the table), apparently the stabilization parameter influences its performance, so its correct
choice is important.
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Figure 1: Effect of the stabilization: on top we display the results of the plain formulation and
at the bottom the ones obtained by adding the stabilization term

� � c 	 � c 	 @ � � � � � c 	f@ � � c 	 @ � �
4 11 11 11 11
8 40 44 15 16
16 — 57 17 25
32 — 59 21 41

Table 1: Number of CG iterations needed to reduce the residual of a factor
� � Q � . For

c 	��
and

� � �
the conjugate gradient procedure did not converge in the maximum number of

iteration (which was set to
� ��� ).
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17 A Neumann-Neumann method using a finite volume
discretization

R. Cautrès 1, T. Gallouët 2, S. Gerbi 3, R. Herbin 4

Introduction

In this work, we present a non-overlapping domain decomposition method which is well
adapted to the discretization of convection-diffusion equations by the finite volume scheme.
The method which we shall consider is closely related to the so-called Neumann-Neumann
relaxation operator which was studied in the finite element framework by several researchers
among whom Glowinski et al. [BGLTV89] Dryja and Widlund [DW95] and Quarteroni and
Marini [MQ89].
The algorithm is first written in the continuous case and then its discrete counterpart is pre-
sented in the framework of a finite volume discretization.
For the sake of simplicity, we shall only consider here the classical Laplace equation:� � C�0 	 �

on � �0 	 � on ��� � (1)

where � is a bounded open subset of
� �

,
� 	 �

or 3, whose boundary ��� is Lipschitz-
continuous,

� / � l � �< . The generalization of the method to convection-diffusion equations
seems possible since the convection term is easily handled in the finite volume scheme. This
is the object of on-going work.

The Neumann-Neumann method

For the sake of simplicity, we shall consider here a non-overlapping domain decomposition
which is defined by two subdomains � � and � l of � , which are bounded open subsets of

� �
with Lipschitz-continuous boundaries such that ��	 � � � � l , and the interface

c 	 � � ! � l
has a non zero � � � �  -dimensional measure.
For �"	 �*���

, we denote by
� � 	 ��� � ��� � , and

� � 	 � �
�
� . We consider for �"	 �����

the
Hilbert spaces

1 � 	 � � � / 9q�,� � �  � -
� / 9q�� �;�< � �

� 	 � �
�
� ! equipped with the � l

norm of the gradient. Let 9 �
� � � c  be the space of traces of elements of 96�� � �< (or
1 �

) on
c

.
This space may be endowed with the norms of the harmonic lift in

1 �
on � � � k � k � � � �
�	� , for

��	 � or ��	 �
. It is well known that these norms are equivalent (see [QV99]). Hence there

exist 	 and �0/ � �� which only depend on � , � � and � l , such that

	 k � k ��� � �
�	�
� k � k l � � �
�	�

� � k � k � � � �
�	� @ (2)
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Definition 1
For any

� / 9 �
� � � c  , let 0 ' < -� , for � 	 �����
be the unique weak solution to the following

problem �� � � C�0 � 	 � �
on � � �0 � 	�� on
� � �

0 � 	 �
on

c � (3)

and
� � �  be the jump between the normal fluxes of the solutions 0 ' < -� and 0 ' < -l , namely

� � � j	 lB
� ��� ��0 ' < -�

� � � � (4)

where � � denotes the unit normal vector to the interface
c

outward to � � . We then define �
' < -�

as the unique weak solution to the following problem�� � � C � � 	�� on � � �� � 	 � on
� � �� � � � � � 	 � � �  on

c � (5)

and
� � � �  as the trace of �

' < -� on
c

. Finally, for �65 � , let � ��� � be defined from 9 �
� � � c  to9 �
� � � c  by � ��� � � �  	 � � � � � � � m@ Let us now present the Neumann-Neumann type domain

decomposition method. Let
� ' � - be a given function of 9 �
� � � c  . Assume that

� ' � - / 9 �
� � is
known for � � � . Then iteration � consists in :��������

������

�
� �  � Let 0 ' < � ) � -� / 9q�� �;� �  for �s	 ����� be the solution of (3) with

� 	� ' � - � and let
� � � ' � -  / �;9 �
� � � c   � be defined by Formula (4) @� �  � Let �

' < � ) � -� be the solution to (5) with
� 	 � ' � - and let� � � � ' � -  / 9 �
� � � c  be the trace of �

' < � ) � -� on
c @� �  � Set

� ' � ��� - 	� ��� � � � ' � - ^@
(6)

The following convergence result holds (the proof of which can be performed by a fixed
point theorem applied to the operator � � � � ) :

Theorem 1 There exists � � 5 � such that if � 3 � 3 � � then the sequence � � ' � -  � ���
converges in 9 �
� � � c  towards

� / 9 �
� � � c  as � tends to infinity, where
�

is the trace of the
unique weak solution 0 to Problem (1) on the interface

c
.

Furthermore if 0 ' � - denotes the element of 9 �� �;�< such that 0 ' � -� � � 	 0 ' < � ) � -�
, for �t	 �*��� , the

sequence �D0 ' � -  � ��� converges to 0 in 9 �� �;�< as � tends to infinity.

The cell centered finite volume scheme

We now assume that � � and � l are polygonal bounded open subsets of
� �

,
� 	 �v� �

and the
interface

c 	 � � ! � l is polygonal. The basic principle of the finite volume method is to write
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the balance equation associated with (1) over each discretization cell (or “control volume”) of
the mesh, and use the Stokes formula to obtain: �

� �
� ��0�@  � �  ��c � � �	 �

�

� � �  � � for any
cell � (  denotes the outward normal unit vector to � � ).

The finite volume method is known to be well adapted to the discretization of partial
differential equations under conservative form. It yields a good approximation of the diffusion
fluxes on the cell boundaries and it is quite easy to write and implement, thanks to the balanced
form of the equations which is used. Moreover it is well adapted for convection-diffusion
equations since the discrete solution satisfies the maximum principle with no condition on the
mesh size, see [TGV00]. Since we use here a cell centered scheme, we want to approximate
the fluxes

� �E0�@  on each edge (or face in 3D) of the mesh using the discrete unknowns�B0 �  � �� associated to the cells. Let 
 be a finite volume admissible mesh of � in the sense
of [REH00], that is roughly speaking (see [REH00] for a precise definition), a set of non
intersecting convex polygonals ��� / 
 ! which is such that there exists an associate family
of points � � � � � / 
 ! such that for any two neighbours � and � the edge (or face) between
� and � is orthogonal to the line segment � � � 	 . This condition is needed in order to define
a consistent approximation of the normal flux

� ��0�@  through any edge. Meshes satisfying
this condition include rectangular and triangular meshes satisfying the Delaunay condition,
Voronoı̈ meshes, and mixed meshes with triangular and rectangular cells of this type (see
[REH00] or [TGV00]).

Let 
 � be an admissible mesh of � � , for ��	 �*��� , such that 
 	 
 � � 
 l . We denote by
� � the edges of control volumes of 
 � , for � 	 �*��� .

� � 	 � � � � � � . We denote by � � � � the
Dirichlet edges of � � which are included in

� � 	����6! ��� � , for �t	 �*��� . Since 
d	 
 � � 
 l
is an admissible mesh of � , one has �q	 � � � � l . We denote by � i the edges of � which are
included in

c
and by � � � � � D the edges of control volumes of 
 � which are not included in ��� � ,

for � 	 ����� .
For any � / 
 and

� / � � we denote by
�
� � ) the Euclidean distance between � � and

�
.

For any
� / � , we define

� ) 	 �
� � ) � �

	 � ) if
� 	 � = � / � � � D (in which case

� ) is the
Euclidean distance between � � and � 	 ) and

� ) 	 �
� � ) if

� / � ��� D ! � � . For any
� / � , let


 ) 	F3 � � � � �  2 � ) if
� ) "	 � and 
 ) 	�� if

� ) 	�� .
Let

& ��
  be the set of functions from � to
�

which are a.e. constant over each control
volume of the mesh, and � � c  the set of functions from

c
to
�

which are a.e. constant over
each edge of the interface

c
. Let us denote by

� ) the value on the edge
�

of �vi of an element�
of � � c  . For a given set of values �D0 �  � �� , we shall denote by 0  the corresponding

piecewise constant function of

& ��
  defined a. e. by 0  � �  	 0 � if ��/ ��@ For all � / 

and

� / � � , we introduce some auxiliary unknowns, namely the numerical fluxes,
�
� � ) �B0  

and for all
� / � some approximation of 0 on edge

�
, denoted by 0 ) . The cell centered finite

volume scheme for the approximation of Problem (1) writes:B
) � � �

�
� � ) �B0  t	 3 � � � � �  � � � 8 � / 
 � (7)

where the discrete fluxes
�
� � ) are defined with respect to the discrete unknowns as follows:�

� � ) �B0  t	 � � 	 � ) �D0   � 8 � / � � � D � � � � 	 � = � � (8)�
� � ) �B0 � � �   � � � ) 	 � 3 � � � � � m�D0 ) � 0 �  � 8 � / � � � 8 � / 
 � (9)

0 ) 	 � � 8 � / � ��� D � (10)
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and or all � / 
 ,
�
� 	 �� � � ��' � - � � � � �  � � .

For � 	 �*� �
, let

� ��
 � � c  be the space of functions defined a.e. on � � � c
which are

constant on the control volumes of 
 � and on the edges of �vi . We then define on
� ��
 � � c  the

following bilinear form� 	 ' < -� �  � � 	 ' � -� �  �  � '  � � i - 	 � ) � � � � � ) � � ) � � � 	 
 ) � � ' < -� � � �	� ' < -� � 	 m� � ' � -� � � �	� ' � -� � 	 � � ) � � � � * 
 ) � ' < -� � � � � ' � -� � � � �� ) � � �


 � � ) � � ) � � ' < -� � � � � � m�B7 ) � � ' � -� � � � � �  � (11)

where
	 ' < -� �  � (respectively

	 ' � -� �  � ) is the element of
� ��
 � � c  defined a.e. on each � / 
 � and

each
� / � i by

	 ' < -� �  � � �  	 � ' < -� � � if � / � � 	 ' < -� �  � � �  	 � ) (resp. 7 ) ) if � / � @
The space � � c  is then endowed with the following inner products:� �G� 7G � � � ' i - 	 � 	 ' < -� �  � � 	 ' � -� �  �  � '  � � i - � 8 � / � � c  � 8 7 / � � c  � for �s	 �*� �v� (12)

where
	 ' < -� �  � (respectively

	 ' � -� �  � ) is the element of
� ��
 � � c  such that

	 ' < -� �  � � � j	 � ' < -� � � if � / � �
	 ' < -� �  � � � �	 � ) (resp. 7 ) ) if �0/ � �

and � � ' < -� � �  � �� � , � � ' < -� � )  ) � � � is the unique solution of the
following problem :

� � � ) 	 � 8 � / � � � � @ (13)

� � � ) 	 � ) � resp.
� � � ) 	F7 )  � 8 � / � i\@ (14)B

) � � �

�
� � ) � �  � t	 � � 8 � / 
 � (15)

where the numerical fluxes
�
� � ) � �  �  are defined as in (8)-(9).

The Euclidean norms k � k ��� � ' i - and k � k l � � ' i - are equivalent on the finite dimensional
space � � c  . Hence there exist 	  and �  / � �� depending on the open bounded subsets � ,� � and on the meshes 
 � , for �H	 �*� � such that 	  k � k � � � ' i - � k � k l � � ' i - � �  k � k � � � ' i -
for all

�
in � � c m@

Let us now define the discrete counterparts of the continuous operators of Definition 1.
Definition 2
For any

� / � � c  , let us define 0 ' < -� �  � / � ��
 � � c  for � 	 ����� such that 0 ' < -� � �  � �� � �B0 ' < -� � )  ) � � �

is the unique solution to the following problem:

0 � � ) 	�� � 8 � / � � � � @ (16)

0 � � ) 	 � ) � 8 � / � i\@ (17)B
) � � �

�
� � ) �B0  � t	 3 � � � � �  � � � 8 � / 
 � � (18)

Let us denote by
�  � �  / � � c  the jump between the numerical normal fluxes of the

discrete solutions 0 ' < - � and 0 ' < - 
 , that is
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�  � �  ) 	 lB
� ��� 
 � � ) � � ) � 0 ' < -� � � � � �  � 8

� / � i`@ (19)

Let �
' < - � / � ��
 � � c  such that � � ' < -��� �  � �� � , � � ' < -� � )  ) � � � is the unique solution of the following

problem

� ��� ) 	�� � 8 � / � � � � @ (20)�
� � ) ���  �  	 � �  � �  ) � 8 � / � i @ (21)B
) � � �

�
� � ) ���  � t	 � � 8 � / 
 � @ (22)

We define the discrete trace of �
' < - � a.e. on the interface

c
by

�
' < -� = i � �  	 � ' < -��� ) � 8�� / � � 8 � / � i � (23)

where �
' < -� � ) is defined by the equations


 � � ) � � ' < -� � ) � � ' < -� � � � � � t	 � � � � ) ��� ' < - �  	 �  � �  ) � 8 � / � i @ (24)

We define the function
�  � from � � c  to � � c  by

�  � � �  	 � ' < - � � ) @ (25)

Finally, for � 5 � , let �  � � � be defined from � � c  to � � c  by�  � � � � �  	 � � � �  � � � ^@ (26)

Let us now describe the discrete counterpart of the domain decomposition iteration (6).
Let

� ' � - be a given function of � � c  . Assume that
� ' � - / � � c  is known for � � � .��������

������

�
� �  � Let 0 ' < � ) � - � / � ��
 � � c  for ��	 ����� solution of (16)-(18) with

� ) 	� ' � -) � � / � and let
�  � � ' � -  / � � c  be defined by Formula � � � m@� �  � Let �

' < � ) � -� be the solution to (20)-22) with
� 	 � ' � - and let� � � � ' � -  / 9 �
� � � c  be the trace of �

' < � ) � -� on
c @� �  � Set

� ' � ��� - 	 �  � � � � � ' � - m@
(27)

Theorem 2 Let 
 be any admissible mesh of � , and 
 � � �o	 �*���
be an admissible mesh

of � � � ��	 �*���
such that 
 	 
 � � 
 � . Let � � ' � -  � ��� and �D0 ' < � ) � - �  � ��� be the sequences

defined by (27). Let 0  / & ��
� be such that �B0 �  � �� , �D0 )  ) � � is the unique solution to
Problem (8)-(7). Let 0  = i / � � c  be defined a.e on

c
by 0  = i\� �  	 0 ) � 8 � / � i @ Let0 ' � - / & ��
  be defined a.e. on � by 0 ' � - � �  	 0 ' < � ) � -� �  � � �  if � / � � for � 	 �*� � @

There exists � '  -� 5 � such that if � 3 � 3 � '  -� , the sequence � � ' � -  � ��� converges in
� � c  with either of the norms defined by (12), towards 0  � i as � � � �

and the sequence�B0 ' � -  � ��� converges to 0  in � l � �< as � � � �
.
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We do not give here the details of the proof of this theorem for reasons of space limita-
tion; we only mention that it is a discrete adaptation of the proof of Theorem 1 and refer to a
forthcoming paper for the details.
Let us mention that in a finite element discretisation, by using the inverse inequality, one can
prove that the convergence rate does not depend of the mesh size. This result is known as the
finite element uniform extension theorem (see, for instance [QV99] pp 105-106 and the refer-
ences therein). Such a result in the finite volume framework is not yet known. Nevertheless,
numerical results show that the convergence rate is still independent of the mesh size. It is the
goal of on-going work to prove this fact.

Numerical results

Let � 	 � � �*� �  ��� � � � �	 � � � � l � � � 	 � � �*� � @ �  � � � � �  . We consider a
� � � � �

rectangular regular mesh. We choose the right hand side of Problem (1) so that the exact
solution is: 0 � � � �  	 � � �t��� �  � � � � � �  . Let:

�
� �M�G�	 k � � ��� � � ��kk � � � � � Q � k 8 � 	 �*� � � D � and

� � � �	 # � � D����� �
� ���G + �) � �

where � � D is the total number of iterations performed. The optimal parameter � minimizes
the Lipschitz constant �G� �  of the discrete operator �  � � � defined by (26). In the proof of the
Theorem 2, we show that this Lipschitz constant is a polynomial of degree 2 in the variable � .
In order to automatically compute the optimal parameter, we use the golden section method
and approximate ��� �  by

�
� �M�G at iteration � .

We present a comparison between this ”relaxation” procedure and the method consisting
in solving the trace equation by a conjuguate gradient method presented in [LT94] which we
shall call ”the Schur complement method” int the sequel. Since our relaxation method has
a computational cost by iteration greater than the Schur complement method (because of the
number of unknowns), we present the error versus the CPU time in seconds, rather than the
number of iterations.

The plotted error is defined by the discrete � l norm of the difference between
� � and

� ��� � � D
. First, one can observe from Figure 1 that the relaxation method behaves as well as the Schur
complement method. Moreover, we can remark from Figure 2 that as in the finite element
discretization, the convergence rate does not depend on the mesh size.

We now consider a
� � � � � rectangular regular mesh and in Table 1 we present results

on a decomposition featuring more that
�

subdomains.
It is quite clear from Table 1 that even for this sequential experiment, the CPU time de-

creases very fast with respect to the mesh size, thanks to the fact that the local systems to be
solved decrease in size.

We finally present some results of a parallel implementation which was set up on a Sun
Ultra using up to 32 processors, using the PVM communication protocol. One processor is
assigned to one subdomain.

We give in Table 2 the parallel efficiency, i.e. the ratio of the CPU time for � processors
over the CPU time using 1 processor, using in both cases the � subdomains decomposition
method. One may observe a decrease of the efficiency due to fact that the communication
cost between processors increases faster than the CPU time decreases with the number of
subdomains.
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Conclusion

We have shown that the Neumann-Neumann method works well as a relaxation method in
the finite volume setting. It would then also be interesting to apply it as a preconditioner in a
conjugate gradient iteration. There also remains to prove the independence of the convergence
rate of the method with respect to the mesh, and to adapt the proof of convergence for the case
of a convection-diffusion equation.
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# subdomains 2 4 8 16 32
mesh by subdomains 80 � 40 40 � 40 40 � 20 20 � 20 10 � 20
cpu (s) 359.2 221.4 89.4 29.8 22.4

Table 1: CPU time for different numbers of subdomains
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# of processors 2 4 8 16 32
mesh by sub-domain

� � � � � � � � � � � � � � � � � � � � � � � � �
CPU 185.64 60.48 16.77 3.18 1.31
Speed-up 1.9348 3.66 5.3334 9.3572 17.102
Efficiency,

� $ � �  96.74 91.50 66.66 58.48 53.44

Table 2: CPU time and efficiency for several decompositions
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18 Nonmatching finite volume grids and the
nonoverlapping Schwarz algorithm

R. Cautrès1, R. Herbin2, F. Hubert3

Introduction

We consider the following diffusion-convection problem :� � C�0 � � � � � 4 0  � 
 0 	 �
on � �0 	�� on � � � (1)

where � is an open bounded polygonal subset of
�$�

,
� 	 �v� �

, 4:/ 5 �,�;� � ���  � 
 / � � �;�< ,
and

� / � l � � �< . The domain � is discretized with a grid which may feature some non-
matching cells, such as described in Figure 18. Our purpose is first to study a finite vol-
ume scheme for Problem (1) on such a mesh and prove an error estimate under adequate
assumptions on the unique weak solution to Problem (1). We only study here the case of ho-
mogeneous Dirichlet boundary conditions, but Neumann and Robin conditions may also be
considered with the technical tools developed in [TGV00].

We then consider the decomposition of � in two nonoverlapping domains � � and � l and
use a discrete version of the Lions adaptation [Lio90] of the Schwarz algorithm in order to
solve Problem (1): for a given 	 / �

� , choose 0 � / 9q�� � �< , and solve for each � � � and
for � 	 ����� :�����

���

� � C�0 ' � ��� -� � ����� � 4 0 ' ���� -�  � 
 0 ' ���� -� 	 � �
on � � �0 ' � ��� -� 	�� on

� � �
� � 0 ��\� � ' � ��� - � 	 0 ' � ��� -� 	 � 0 ��\� � ' � - � 	 0 ' � -�

on
c � $�	 �*� �v� � "	 $ � (2)

where
� � 	
��� � !o��� , � � is the normal unit vector to the interface

c 	 � � ! � l outward to� � and
� � 	 � �

�
� .

We present a finite volume version of this algorithm to which the proof of convergence of P.L.
Lions may be adapted.

The finite volume scheme

The finite volume method is known to be well adapted to the discretization of partial differen-
tial equations under conservative form. It yields a good approximation of the diffusive fluxes
on the cell interfaces and it is easy to implement. Our aim here is to study how the method
behaves in the presence of non-matching cells such as presented in Figure 18.

1University of Marseille, France, Rene.Cautres@cmi.univ-mrs.fr
2University of Marseille, France, Raphaele.Herbin@cmi.univ-mrs.fr
3University of Marseille, France, Florence.Hubert@cmi.univ-mrs.fr



214 CAUTRES, HERBIN, HUBERT

Let us consider a family 
 of grid cells or “control volumes” � , which are open polygonal
convex subsets of � such that the closure of the union of all the control volumes is � . In
[REH00], it is assumed that there exists a family � � �  � �� (see Figure 18) such that for
any two neighbouring cells � and � with common interface � = � , the line segment � � � 	 is
orthogonal to � = � . Here we shall relax this assumption on a number of “atypical cells”, the
set of which is denoted by 
 � . In the sequel, we shall use the following notations:

	 for any � / 
 , the set of the edges of � is denoted by � � . The set of the edges of
the control volumes of 
 is denoted by � , and the set of “interior” (resp. “exterior”) edges by
� 
 � � 	�� � / � �

� "� � � ! (resp. � � � � 	�� � / � �

� � ��� ! ).
	 for any � / 
 and

� / � , m � �  is the area (or volume in 3D) of � and m � �  the
length (or area in 3D) of

�
. For any � / 
 and

� / � � we denote by
�
� � ) the Euclidean

distance between � � and
�

.
	 for any

� / � , we define
� ) 	 �

� � ) � �
	 � ) if

� 	 � = � / � 
 � � and
� ) 	 �

� � ) if� / � � � � ! � � .

� �
� �� � � 	

� 	 � = �
�

��
�

� �

� 	

� 	 � = �

Figure 1: Example of “standard”(left) and ‘atypical” (right) control volumes in the 2D trian-
gular case.

Let

& ��
  be the set of functions from � to
�

which are constant over each control volume
of the mesh. We define a “discrete‘ 96�� �

norm on

& ��
  by:

k�0 k � �  	 � B
) � � m � �  � ) � � ) 0� ) El � �
 �

(3)

where, for any
� / 
 , � ) 0o	 = 0 � � 0 	 = if � / � 
 � � ,

� 	 � = � , � ) 0o	 = 0 � = if � / � ��� D ! � � ,
where 0 � denotes the value taken by 0 on the control volume � .

Let �D0 �  � �� be the discrete unknowns and let �B0 )  ) � � be a set of values which are
expected to be approximations of 0 on edge

�
, for all

� / � . The values 0 ) are auxiliary
since they may be eliminated from the resulting linear system.

The finite volume scheme is obtained by discretizing the balance equation associated to
(1), which writes :

� B
) � � �

�
) �E0

�
 � � ) � � � B

) � � �

�
) 0 4 �

 � � ) � � �
�
�


 0 � � 	 �
�

� � �
where  � � ) denotes the unit normal vector to ��� outward to � . Let us introduce a set of
discrete unknowns �B0 �  � �� , and discrete fluxes � � � � )  � �� which are the numerical ap-
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proximations of
�
) � ��0

�
 � � ) � � by a finite difference approximation. In order to discretize

the convection term
����� � 4 � � �0�� �   in a stable way, let us define the upstream choice 0 ) � of0 on an edge

�
with respect to 4 in the following way. For � / 
 and

� / � � , let  � � )
denote the normal unit vector to

�
outward to � and 4 � � ) 	 �

) 4 �
 � � ) � � .

If 4 � � ) � � and
� / � � then 0 ) � 	�0 � . If 4 � � ) 3 � , � / � 
 � � and

� 	 � = � then0 ) � 	 0 	 . If 4 � � ) 3 � and
� / � ��� D , then 0 ) � 	F0 ) .

Let
�
� 	 �m ' � - � � � � � and



� 	 �m ' � - � � 
 � � . Then with the notations defined

above, a discretization by a cell centered finite volume method yields the following scheme:B
) � � �

�
� � ) � B

) � � �

4 � � ) 0 ) � � 
 � m � �q�0 � 	 m � �q � � � 8 � / 
 � (4)

where:

�
� � ) �

� � ) 	 � m � � m�D0 ) � 0 �  � 8 � / � � � 8 � / 
 (5)

�
� � ) 	 � � 	 � ) � 8 � / � 
 � �

�
if
� 	 � = � � (6)

and

0 ) 	 � � 8 � / � ��� D @ (7)

Note that the unknowns �B0 )  ) � � may be eliminated by using (6) and (5).

Error estimate

We now present error estimates in the discrete 96�� norm under some regularity assumptions on
the solution to Problem (1). Some similar results are also in [ELV91] for rectangular meshes
and some recent work of F. Nataf et al with a different computation of the diffusion fluxes
on the atypical interfaces (see these proceedings). The analysis of the scheme is carried out
under the following assumptions:�������

�����

� � is a polygonal open bounded subset of
� � @� / � l � �<^@40/ 5 ��� � � ��� ^@
 / �$� �;�<m@�

� ��� � 4 � �  � 
 � �  � � � a.e. � / � @ (8)

Theorem 1 Under Assumptions (8) , let �B0 �  � �� be the solution to (6)-(4). Assume that
the unique variational solution 0 of Problem (1) satisfies 0 / 5 l � �� . Let �  / & ��
  be
defined by �  � � <	 � � 	 0 � � �  � 0 � a.e. �q/ � , � / 
 . Then, there exists 5 5 � , only
depending on 0 , 4 ,



,
�

and � , such that

k �  k ���  � 5
�� � � � �*��
U � � B

� �� �
� � �  � �


�� �
(9)
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where �
�

� ����
�t	 � ��� � � � � � � �q � � / 
 ! . Furthermore:

k �  k 	 
 ' � - � 5
�� � � � � ��
� � � B

� �� �
� � �q � �


�� @ (10)

If we now assume that the unique variational solution 0 to (1) only belongs to 9 l �;�< then

(9) and (10) still hold with 5 only depending on 0 , 4 ,


, � ,

�
and

� 	 � � �
� ��

� � �) � � �

�
� � )��� � � � �q � .

The proof of this theorem is an adaptation of the techniques used in the case of an admis-
sible mesh [Her95] (see also [REH00]) and will be presented in a forthcoming paper.

The main ingredients in the proof of convergence are the conservativity of the fluxes, i.e.�
� � ) 	 � � 	 � ) for two neighbouring cells � � � �j , and the consistency of the approximation

of the fluxes by finite differences. In the case of an atypical edge, the conservativity holds, but
the consistency is lost on the diffusion flux because of the missing orthogonality condition.
However, the approximation of the convective flux is still consistent.

If the number of “atypical” control volumes of 
 � is of order � � 
 � ��
U � � l (this is the case
for instance if the atypical cells neighbour a the interface between the subdomains of a given
domain decomposition), then Inequality (9) (resp. (10) ) yields an estimate of order �l for the
discrete 9q�� norm (resp. � l norm) of the error on the solution; numerical results (see section
5) seem to show that this estimate is not sharp. In fact for special examples of atypical cells,
we have been able to obtain an order 1.

The discrete algorithm

We shall consider here a nonoverlapping domain decomposition of � , under the following
assumptions����������

��������

�
� � and � l are polygonal bounded connected open subsets of

� � @� 	 � � � � l @
The interface

c 	 � � ! � l is polygonal and has a non zero
measure in

��� Q � @� � 	����q! ��� � � for � 	 �*� � @
For � 	 ����� � the mesh 
 � is an admissible mesh of � � which is the
restriction of the mesh 
 to � � @

(11)

For �H	 �*� � , the set of edges (resp. interior edges, resp. exterior edges) of the mesh 
 �
is denoted by � � (resp. � � �

��� D , resp. � � �
��� D ). We define � � � � 	 � � / � � � � � � � !

(Dirichlet
edges) and � i 	�� � / � � � � � c ! (interface edges), with � � �

��� D 	 � � � � � � i .
The discrete version of the algorithm defined by equations (2) is then:

Given 0 ' � - / & ��
  and assuming 0 ' � - / & ��
  for
� � � � � to be known, let 0 ' � - �

be the element of

& ��
 �  , defined for ��	 �����
by: 0 ' � - � � � o	 0 ' � - = � � � �  � a.e. � / � �

and 0 ' � -� � � 	 0 ' � - � = � for a.e. � / � �
for � / 
 � @ We compute 0 ' � ��� - / & ��
  defined by0 ' � ��� - � � H	 0 ' � ��� -� � �

�
for a.e. � / � , for any � / 
 � , � 	 �*� � , where

� 0 ' ���� -� � � 	
� �� � is
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the unique solution to the following problem:B
) � � �

� ' ���� -� � � � ) � B
) � � �

4 � � ) 0 ' � ��� -� � ) � � 
 � � � �q�0 ' � ��� -� � � 	 � � �q � � � 8 � / 
 � � (12)

with

� ' � ��� -� � � � ) �
� � ) 	 � � � � m�D0 ' ���� -� � ) � 0 ' � ��� -� � �  � 8 � / � � � 8 � / 
 � � (13)

� ' � ��� -� � � � ) 	 � � ' � ��� -� � 	 � ) � 8 � / � � � � � D � if
� 	 � = � � (14)

0 ' � ��� -� � ) 	�� � 8 � / � � � � � (15)

and

� � ' � ��� -� � � � ) � 	 0 ' ���� -� � � 	 � ' � -� � 	 � ) � 	 0 ' � -� � 	
� 8 � / � i � for $�	 �*� �v� $ "	 �R@ (16)

where for � / 
 � and
� / � � ,

� ' � -� � � � ) 	 � � �  0 ' � -) � 0 ' � -��
� � ) , and where 0 ' � ��� -� � ) � is defined by

the usual upstream scheme if
�

is an interior edge, and by the following upstream choice if� / � i lies on the interface:

if
� 	 � = � with � / 
 � and � / 
 � , $�	 �*���

, $ "	 � , we choose 0 ' � ��� -� � ) � 	0 ' � ��� -� � � if 4 � � ) � � and 0 ' � ��� -� � ) � 	F0 ' � -� � 	 if 4 � � ) 3 � .
Theorem 2 Under Assumptions (8) and (11), the sequence

� 0 ' � - 	 � ��� defined by the discrete

algorithm (14)-(12) converges in � l � �< towards 0  , the unique solution to Problem (6)-(4)

The proof of this theorem is an adaptation of the proof of Lions [Lio90] in a discrete finite
volume setting.

Numerical results

Let us first study the convergence of the finite volume discretization for a set featuring some
atypical cells. In Figure 2, the domain � is meshed with a coarse rectangular mesh on
the left and a fine rectangular mesh on the right; the set 
 � of atypical edges is such thatB
� �� �

36� �  � 5 � , thanks to assumptions on the mesh; hence for this case the result of The-

orem 2 is an estimate of order ��� � l where � is the maximum step size of the mesh. However,
the numerical results show that when the mesh step decreases (with constant ratio between
coarse and fine mesh), then the order of convergence behaves like 2 in the � l norm and 1 in
the discrete 9q� norm; this shows that the error estimate is non optimal.

In Figure 3, we show the influence of the parameter 	 on the convergence of the Lions
algorithm (12)-(15). The optimal parameter is roughly .85 and numerical results which are
not shown here because of space limitations show that it is independent of the mesh size.
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Figure 2: Convergence rate of the finite volume discretization
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The solution by a direct solve of the finite volume system (4)-(7) is presented on the grid.
Finally, Figure 4 shows the difference between the solution of the direct solve of system

refered to as “Direct Algorithm” and the solution by the domain decomposition algorithm for
a relative maximum error of

� � Q � . It is clear that the error is concentrated at the interface
where the atypical meshes are located.
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Figure 4: Error between domain decomposition and direct solve
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19 The Mortar Element Method for the Rotated
���

Element

Jinru Chen1, Xuejun Xu 2

Introduction

Many authors have made significant contributions to the so-called mortar element method
(see [4] [5] [7] [8] [10] [11], and references therein). The mortar element method is a non-
conforming domain decomposition method with non-overlapping subdomains. The meshes
on different subdomains need not align across subdomain interfaces, and the matching of dis-
cretizations on adjacent subdomains is only enforced weakly. This offers the advantages of
freely choosing highly varying mesh sizes on different subdomains and is very promising to
approximate the problems with abruptly changing diffision coefficients or local anisotropies.

The rotated
���

element is an important nonconforming element. It was first proposed and
analysed in [12] for numerically solving the Stokes problem. The rotated

���
element provides

the simplest example of discretely divergence-free nonconforming element on quadrilaterals.
Due to its simplicity, the rotated

���
element is used to simulate the deformation of martensitic

crystals with microstructure in [9]. Independently, it also was derived within the framwork of
mixed element method (see [2]). In [2] it was proven that Raviart-Thomas mixed rectangle
element method is equivalent to rotated

���
nonconforming element method.

The purpose of this paper is to study the rotated
� �

mortar element method. A mortar
element version for rotated Q1 element is proposed. By constructing some relations between
rotated

���
mortar element and bilinear element, the optimal error estimate for rotated

���

mortar element method is proven.
For convenience, the symbols � , � , and � will be used in this paper, and � � � � � ,� l � � l , and � � � � � mean that � � � 5 � � � , � l � � l � l , and � � � � � � � � 5 � � � for some

constants 5 � , � l , � � , and 5 � that are independent of mesh parameters. For any subdomain

� � � , we use usual � l inner product � � � �  � , Sobolev space 9 � � �  with usual Sobolev
norm k � k � � ' � - and seminorm = � = � � ' � - . If � 	 � , we denote the usual � l inner product by� � � �  , the Sobolev norm by k � k � and seminorm by = � = � , where � may be fractional (for details
see [1]).

Preliminaries

Consider the following model problem: find 0 / 9 �� �;�< such that

� �B0 � �vt	 � � �  � 8 � / 9 �� � �< � (1)

1Department of Mathematics, Nanjing Normal University, Nanjing, 210097, P.R. China, e-mail:
jrchen@pine.njnu.edu.cn. This work was supported by the national natural science foundation of China under grant
19901014.

2Institute of Computational Mathematics, Academy of Mathematices and System Sciences, Chinese Academy of
Sciences, P.O.Box 2719, Beijing 100080, P.R. China, e-mail: xxj@lsec.cc.ac.cn. This work was subsidized by the
special funds for major state basic research projects.
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where � �B0 � �vt	f� � 0�� � ����� ���
���	� � � � �������
 � l �� � , � is a rectangular or � -shape bounded domain.

Divide
�

into geometrically conforming rectangular substructures, i.e., �� � ��
����� �� � with�� ��� �� � being empty set or a vertex or an edge for � "� � . With each

�
� we associate a quasi-

uniform triangulation 
 �
��
� � made of elements that are rectangles whose edges are parallel to� -axis or � -axis. The mesh parameter � � is the diameter of the largest element in 
 �

���
� � . Let� � � denote the open edge that is common to

�
� and

�
� . Denote by

�
the set of all interfaces

between the subdomains, i.e.,
� � ��� � � 
 � � . Each edge inherits two triangulations made

of segments that are edges of elements of the triangulations of
�
� and

�
� respectively. In this

way each
� � � is provided with two independent and different one dimensional meshes, which

are denoted by 

��
� � � � � and 


��
� � � � � respectively. Let

�
��� � and

� � ��� � be the sets of vertices
of the triangulation 
 �

��
� � that are in

�
� and

� � � respectively.
For each triangulation 
 �

���
� � , the rotated � � element space is defined by&

�
��"! �#�%$'& 
)(#*+��"! �-,.&/, � �10 ��32 0 *��452 0�6�8792 0;: � � 4 *"< 7 * ���0�=� 
?> � @BA�C�DBA�E &F, A�E�G;H �JIK�MLFN 
POKQR�� ! ��STVUXW N � �YN * 
POKQR�� ! ���[Z T � N ��� � N * �]\+�_^a`Kbdc@Be &/, A�Cgf G�H � @Be &/, A�Cih G;HXj �

with norm and seminormk & k�l
f
mXn ERo�p � �rqC8s+t m n ERodp k & k

*l f n C�p � �Yu * �v, &/, l
f
mwn ERo�p � �xqC8s+t m n ERo�p , &F,

*l f n Cyp � �Yu *Xz
Introduce the global discrete space{ Q �� �	� �|! ���

{ Q ���"! ���
with norm

k & k ��� Q � � �}! ��� k & k *l
f
mwn E o p � �Yu * and seminorm , &/, �~� Q � � �}! ��� , &F, *l

f
mXn E o p � �Yu * .

Define one of the sides of
� !~�

as mortar denoted by �K� n ! p and the other as nonmortar
denoted by �'� n � p . Assume that the mortar for �K� n ! p �]�d� n � p � � !~� is chosen by the condition� !)� � �

, i.e., the fine side is chosen as mortar. Based on this assumption, the two elements
of the slave triangulation

O �Q � �'� n � p � that touch the ends of �'� n � p are longer than the respective
elements of the mortar triangulation

O !Q � �B� n ! p � . Define an auxiliary test space � Q�� � �d� n � p �
to be a subspace of the space

( * � � !~� � such that its functions are piecewise constants onO �Q � �d� n � p � . The dimension of � Q�� � �'� n � p � is equal to the number of elements on the ��� n � p .
For each nonmortar �'� n � p � � !~� , we define an

( *
-orthogonal projection � ��� ( * � � !~� ���� Q�� � �d� n � p � by � � � &i�������

h
n������ ��� p � � &R�Y�����

h
n������ ��� p ��L/� 
 � Q�� � �d� n � p � z (2)
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Now we define rotated � � mortar element space
� Q � $'& 


{ Q �� � , � � & � �]� � & ! ��L/�'� n � p �J��� n ! p � � j �
where & ! � &F, � � � o � and & � ��&/, ����� ��� . The condition of the equality of the

( *
-orthogonal

projection of traces onto the test space for each interface is called the mortar condition. The
rotated � � mortar element approximation of problem (1) is: find �

Q 
 � Q
such that0 Q � � Q ��& Q �#� ��� ��& Q ����L/& Q 
 � Q � (3)

where

0 QR� � Q �Y& Q �#� �q! ��� 0 Q � ! � � Q ��& Q ��� 0 Q � ! � � Q ��& Q ��� qC�s+t m n E o p
� � � Q � � & Q � C z

Some Technical Lemmas

In this section we present some auxiliary technical lemmas that are necessary to prove our
results.

Let
O Q u * �� ! � be the partition which is constructed by connecting midpoints of the oppo-

site edges of elements of
O Q ��� ! � , �� Q u * �� ! � be piecewise bilinear conforming element space

defined on
O Q u * ��� ! � , and ��

Q u *�
�� ! � be the subspace of ��

Q u * ��� ! � consisting of functions
with zero traces on

� � !
. Define operator �

! �
{ Q ��� ! �#�	��

Q u * �� ! � as follows:
Definition 1 Given & 


{ Q ���"! � , we define �
! & 
 ��

Q u * ���"! � by the values of �
! & at

the vertices of the partition
O Q u * ��"! � . The vertices are divided into four sets of points:
 If � is a central point of N , N 
PO Q ���"! � , then�
�
! &�� � ���#� �� qe


s+A�C �, \ = ,

@ e
 &
G;H S


 If � is a midpoint of one dege \ 
 � N , N 
)O Q ��"! � , then�
�
! &B� � ���#� �, \B, @ e &

G;H S

 If �


3� ! � Q�� � � ! � Q , then�
�
! &B� � ���	� �� q e  �, \ = ,

@ e
 &
G�H
�

where the sum is taken over all edges \ = with the common vertex � , \ = 
 � N = , N = 
)OKQR�� ! � ;
 If �

 � � ! � Q , then� � ! &�� � ���#� , \ � ,, \ � , 2 , \��+, � �, \ � , @ e � &

G�H � 2 , \ � ,, \ � , 2 , \��;, � �, \��+, @ e � &
G�H � �

where \ � 
 � N �8� � � ! and \ � 
 � N * � � � ! are the left and right neighbor edges of � , N � ,N * 
)OKQR�� ! � . If � is a vertex of
� !

, then N � �JN * .
The above operator �

!
has the following properties.
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Lemma 1 For any & 

{ QR�� ! � , we have, � ! &F, l

f
n E o p � , &/, l

f
mwn ERo�p �k � ! & k �

h
n ERodp � k & k �

h
n ERodp �@ A�E o

�
! & G;H � @ A'E o & G�H �k � ! & < & k �

h
n E o p � � ! , &F, l

f
mXn E o p �k � ! & < & k �

h
n�� p � � ��u *! , &F, l

f
mXn E o p �

where � is an edge of
� !

.

We now introduce a subspace

{
�Q �� !�� of

{ QR�� !��
for each open edge � of

� !
as follows:{

�Q �� !�� � $'& 

{ Q ��� !�� , @ e & G�H �JI � LF\ 
 � � ! � � j z

Define an operator � � ! �
{

�Q �� !�� � ��
Q u * ��� !��

by
Definition 2 Given & 


{
�Q ���"! � , we define � � ! & 
 ��

Q u * ���"! �
by the values of � � ! & at

the vertices of the partition
O Q u * ��"! � .
 If � is a central point of N or a midpoint of one edge of N , N 
 O Q ���"! �

, or �

�"! � Q � � �"! � Q , then

�
� � ! & � � � � � � � ! & � � � �

;
 If �

 � � ! � Q�� � , then

�
� � ! & � � � � �]I ;
 If �


 � � ! � Q � � , then�
� � ! & � � � � � , \ � ,, \ � , 2 , \��X, � �, \ � , @ e � &

G�H � 2 , \ � ,, \ � , 2 , \��X, � �, \��X, @ e � &
G�H �

�

where \ � 
 � N � � � � ! and \ � 
 � N * � � � ! are the left and right neighbor edges of � ,N � � N * 
)OKQi�� !�� . If � is a vertex of
� !

, N � �]N * .
Define the pseudo-inverse map

�
�
!���� � �� Q u * �� !�� �

{ QR�� !��
by�, \B, @Be � � ! � � &

G�H �1& � � �
� L/& 
 ��

Q u * ��"! � �
where \ 
 � N , N 
PO Q ��� !�� , � is the midpoint of \ . Obviously, we have�

�
! � �

�
! &5�J& � �

�
! � �

� � ! �]�1� � Li& 

{ Q ���"! �

� L/� 

{

�Q ��"! ��z
Using the discrete norms, we can prove the following Lemma holds.

Lemma 2 For any & 
 ��
Q u * ��"! �

, we have, � � !�� � &/, l
f
mXn ERodp � , &F, l

f
mXn Eio�p � k � � !	� � & k �

h
n E o p � k & k �

h
n E o p z

Let 

!

be a special set of edges which belong to
� � !

or are the edges of rectangles which
have one side on a mortar �K� n ! p . We introduce a special subspace

{ !Q �� !�� �
{ Q ��� !��

as
follows:

{ !Q ���"! � � $�& 

{ Q ��"! � , @Ke & G�H �]I � L/\ 
 


! j z
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Define a discrete harmonic part
� ! & of & 


{ QR�� !��
by0 Q � !�� � ! & � � � �]I � Li� 

{ !Q ��"! �

�@ e � ! & G�H � @ e & G;H � L/\ 
 

! z

Also we define a projection operator �
! �
{ QK��� !�� �

{ !Q ��� !��
by0 Q � ! � � ! & � � � �]0 Q � ! � & � � �

� Li� 

{ !Q �� !���z

Lemma 3 Let � �1�'� n ! p be a nonmortar edge of
� !

, and & be discrete harmonic in
� !

with�
e & G�H �]I for any \ 
 


!�� �d� n ! p . Then, &F, l
f
mXn E o p � k � � ! & k l

f
�
h

��� n������ o � p z
Let �d� n � p be a nonmortar edge of

� �
, �
Q �
�
� �d� n � p � be the continuous function space whose

elements are piecewise linear over all segments that have the midpoints of edges belonging to�d� n � p as their nodals and equal zero at the ends of ��� n � p . Let � �� n � p be the set of midpoints of

edges in
O �Q � �d� n � p � . Define an auxiliary operator

� � � ( * � �'� n � p � ���
Q��
�
� �d� n � p � as follows:�

� � & � � � � � � � � & � � � �
� L � 
 � �� n � p z

Lemma 4
k � � & k �

h
n������ ��� p � k & k �

h
n ����� ��� p , Li& 
)( * � �'� n � p � .

By interpolation estimate [6] and operator interpolation theory in Chapter 12 in [3], we
can derive the following result.

Lemma 5
k & < � � & k �

h
n������ ��� p � � ��u *� , &F, l

f
�
h
n ����� ��� p , Li& 
 � �Yu * � �d� n � p � .

Error Estimate

The following result is the well-known second Strang Lemma.

Lemma 6 Let � and �
Q

be the solutions of (1) and (3) respectively, if

A
�
A
�

)( * � � N �

, then

, � < � Q , l
f
mXn E p � Z c T	

s

 m , � < &F, l

f
mXn ERp 2������

s

 m , �q! ��� qC8s+t m n E o p

�
A�C A

�
A
� � G;H, �5, l
f
m+n ERp , z (4)

The first term in (4) is known as the approximation error, while the second term is called
the consistency error.

Using Lemmas 1-5, arguing as in [11], we can prove the following two Lemmas.

Lemma 7 Let � and �
Q

be the solution of (1) and (3) respectively. Assume ��, Eio � � *���� ! � ,
then we have

, �q! ��� qC�s+t m n E o p
@BA�C � ���� � G;H , � � �q! � � � * ! , ��, *l

h
n E o p � �Yu * , � , l

f
m+n E p � Li� � � Q z
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Lemma 8 For any � � � �� � � �
with ��, E o � � * ��� !�� , we have

Z�c T	
s

 m , � < &/, l

f
m+n E p � � �q! ��� � * ! , �8, *l

h
n E o p � �Yu * z

From Lemmas 6-8 we obtain the following optimal error estimate.

Theorem 1 Let � and �
Q

be the solution of (1) and (3) respectively, ��, E o � � * � � ! � , then

, � < � Q , l
f
m n ERp � � �q! ��� � * ! , ��, *l

f
n E o p � ��u *wz
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20 Overlapping Schwarz Waveform Relaxation for
Convection Reaction Diffusion Problems

D.S. Daoud 1, M.J. Gander 2

Introduction

Overlapping Schwarz waveform relaxation is a long name for an algorithm which simply
solves evolution problems in parallel. It got its name as follows: the distribution of the com-
putation is achieved by partitioning the spatial domain into overlapping subdomains, like in
the classical Schwarz method. However on subdomains, time dependent problems are solved
in the iteration and thus the algorithm is also of waveform relaxation type. Hence the name
overlapping Schwarz waveform relaxation. These algorithms have been introduced in [GK97]
and independently in [GZ97] for the solution of evolution problems in a parallel environment
with slow communication links, since they permit to solve over several time steps before com-
municating information to the neighboring subdomains. They are ideal when one wants to use
large existing networks of PC’s with a high latency network but reasonable throughput as a
super-computer. An earlier analysis for first order hyperbolic problems of the same type of
algorithm can be found in [Bjø95].

These algorithms stand in contrast to the classical approach in domain decomposition for
evolution problems, where time is first discretized uniformly using an implicit discretization
and then at each time step a problem in space only is solved using domain decomposition, see
for example [Meu91] and [Cai91, Cai94]. The main disadvantage of the classical approach is
that one is forced to use the same time step in all subdomains and thus looses one of the main
features of domain decomposition, namely to treat subdomains numerically differently. A
second disadvantage is that one needs to exchange information at each time step. Overlapping
Schwarz waveform relaxation is a remedy for both problems.

In this paper we study overlapping Schwarz waveform relaxation for space decomposi-
tions in all generality for the linear convection reaction diffusion equation in

�
dimensions.

We prove linear convergence of the algorithm on unbounded time intervals and state a theorem
about superlinear convergence on bounded time intervals. Both results hold at the continuous
level, which leads to algorithms that converge independently of the mesh size if the overlap is
held constant.

Problem Description

We are interested to solve parabolic partial differential equations in
�

dimensions on a parallel
computer with slow communication links. We consider as our guiding example the convection

1Dept. of Mathematics, Eastern Mediterranean University, Famagusta, North Cyprus Via mersin 10, TURKEY.
2Dept. of Mathematics and Statistics, McGill University, Montreal, QC H3A 2K6, CANADA.
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reaction diffusion equation on a bounded domain
� � � � with a smooth boundary

� �
,

� � �
� ��� < � ���� 2��	� � 2�
��� � 2�� � �

� ���
� � � � � � � I� � ��� �

�
���
� � � � �

���
� � � � � � � � I� � ��� �

�
���
� I � � � �

��� � � � � z (1)

We assume that the initial condition � �
��� �

and the boundary condition �
���
� � � are bounded

piecewise continuous and
� ���

� � � is continuous. This gives existence and uniqueness of a
solution to (1). In our analysis we will use the maximum principle satisfied by the solution
�
���
� � � of (1):

Theorem 1 (Maximum Principle) Assume that
� � �

��� I (
� � �

� � I ). Let � � �  �
E
�

( Z�c T E � ). Assume that � � � at some interior point
��� � � � � � � �

and that one of the
following holds:

1. � � I and � is arbitrary.

2. �
� I and � � I ( � � I ).

3. � � I and � is arbitrary.

Then � � � on �
����� I � � ��� .

Proof The proof can be found in [Lie96].
To distribute the computation, we partition the domain

�
into overlapping subdomains.

Such a partition can be obtained by first partitioning
�

into  non-overlapping subdomains!�#"
with boundaries

� !�#"
, $ � � �&% � zdz'z �  . We denote the boundaries of the subdomain

!�#"
interior to the domain

�
by
!� "

. Then we construct an overlapping decomposition
� "

with
boundary

� � "
by enlarging each

!� "
so that the boundaries of the new subdomains

� "
in-

terior to
�

are at least a distance � away from
!� "

. To solve the parabolic problem (1), the
overlapping Schwarz waveform relaxation iteration constructs iteratively �

! � �"
on each sub-

domain
� "

using as the boundary condition the values from the neighboring subdomains �
!�

at the previous iteration. To pass the boundary information, the boundary of
� "

is decom-
posed into disjoint subsets

� " �
, ' � � � z'zdz �  such that the Euclidean distance of

� � � " �
from the boundary of

� �
is at least � . This is possible because of the way the overlapping

decomposition was constructed: we simply use the solutions obtained in
� �

only within the
smaller region

!� �
. Doing this for each subdomain, we define a complete approximation to the

solution at step � on the whole of
�

which can be used at step � 2 � as boundary condition for
the next subdomain solves. We denote also by

� " � the part of the boundary that subdomain�#"
shares with the original domain

�
.

Linear Convergence for Unbounded Time Domains

For the convergence analysis, it suffices by linearity to consider the homogeneous problem,� ���
� � � �(�

���
� � � � � �

��� �
� I in (1) and to analyze convergence to zero. We first consider the

case where � �*) and hence restrict �
� I to have bounded solutions. On each subdomain
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� "
we solve at each step � 2 � of the overlapping Schwarz waveform relaxation iteration the

subproblem
� � �

! � � � � I � � � " � I� � ��� �
�
! � �" ���

� � � � �
!� ���

� � � � � � " � � I� � ��� �
�
! � �" ���

� � � � I � � � " � � I� � ��� �
�
! � �" ���

� I � � I � � � " �
(2)

for $ � � �&% � zdz'z �  , using the boundary information from the neighboring subdomains at step� . This corresponds to an additive Schwarz or Jacobi iteration which can be done in parallel.
One can also consider a multiplicative Schwarz or Gauss Seidel iteration which would need a
special coloring of subdomains to remain a parallel algorithm.

We define the integer distance quantity �
"

for each subdomain
� "

to be the least number
of subdomains one has to pass through to touch the boundary

� �
, and also the maximum� � ������� " � " . We further define the index sets

� � � � $�$ � � " � '
j

so that the index
set
� �

contains the indices of all the subdomains which are within distance ' of the boundary.
Defining for bounded functions �

���
� � � � � ��� I � ) � �	� the norm,�, � � � � � � ,�, 
 � � �� ��

sXE � �� � , � ��� � � � ,
we have the following

Lemma 1 The iterates of (2) satisfy for � ��) and �
� I the estimate

�����" , , � ! � � � *" � � � � � , , 
 � � � � � � � �����" ,�, � !" � � � � � ,�, 
 (3)

where � � � � � � is a number strictly less than one and independent of � .
Proof The idea of the proof is to construct a sequence of elliptic upper bounds on the iterates
and then to apply the convergence analysis based on the maximum principle for the elliptic
upper bounds in Lions [Lio88]. For � fixed we define �

! ��������� " , , � !" � � � � � , , 
 and note that

on each subdomain the solution ��
! � �"

of the elliptic problem

�	� ��
! � �" 2�
� � �� ! � �" 2�� �� ! � �" � I � � � " �

��
! � �" ��� �

� �
! � � � " � �

��
! � �" ��� �

� I � � � " � (4)

is an upper bound on the modulus of �
! � �"

. Now ��
! � �"

satisfies a maximum principle and for

$ � � � we have ��
! � �" ���

!
in the interior of

!� "
, since ��

! � �"
satisfies on part of the boundary

of
� "

a homogeneous boundary condition. Note that for $��� � � we have ��
! � �"

not necessarily

strictly less than �
!

since ��
! � �"

might have the value �
!

on all its boundaries and thus by the

maximum principle ��
! � �" � �

!
. Define

�
! � � ��� �  ��

s
�
E � � � s � � ��

! � �� � � � � � � � !
for some constant � � � � � �.� . Note that � � depends on the size of the overlap, but not on� since ��

! � �"
is a linear function of the boundary condition. Now for the next iteration by
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definition part of the boundary of subdomains
� "

with $ � � � lie strictly within
!� �

with' � � � and therefore for $ � � � the solution ��
! � *"

of the elliptic problem

� � ��
! � *" 2 
� � �� ! � *" 2 � �� ! � *" � I � � � " �

��
! � *" ��� �

� �
! � � � " � � ' �� � � �

��
! � *" ��� �

� �
! � � � � � " � � ' � � � (5)

is an upper bound on the modulus of �
! � *"

. Since �
! � � � � � � � � � ! we have by the maximum

principle ��
! � *" � �

!
in
!�#"

and defining �
! � *

similarly to �
! � �

before, we find �
! � * �

� * � � � � ! for some constant � � � � � � � * � � � � � independent of � . By induction we find at
step � 2 � 2 � for the iterate in the subdomains

� "
with $ � � � the elliptic upper bound

�	� ��
! � � � �" 2�
� � �� ! � � � �" 2�� �� ! � � � �" � I � � �#" �

��
! � � � �" ��� �

� �
! � � � " � � ' �� � � � � �

��
! � � � �" ��� �

� �
! � � � � � " � � ' � � � � � (6)

and ��
! � � � �" � �

!
in
!� "

. Defining �
! � � � � as before we find �

! � � � � � � � � � � � � � !
for some constant � � � � � � � * � � � � zdz'z � � � � � � � � � � independent of � . Now for the
next iteration step � 2 � 2 % all the �

! � � � *"
have boundary values less than or equal to

�
! � � � � � � � � � � � � � ! , since they come from iteration step � 2 � 2 � in the interior of

neighboring subdomains. Defining � � � � � � ��� � � � � � � � the result follows.

Theorem 2 (Linear Convergence) For �
� I the overlapping Schwarz waveform relaxation

algorithm (2) converges on unbounded time intervals
� � � I � � � )

�
at least at the linear

rate

�����" ,�, � ! n � � *
p

" � � � � � , , 
 � � � � � � � � � ! �����" ,�, � �" � � � � � , , 
 (7)

where � � � � � � �]� as in Lemma 1.

Proof The proof follows by induction from Lemma 1.
The convergence result we derived on unbounded time domains depends on the number of
subdomains, as one can see explicitly from the dependence of � on � . The more subdomains
one uses, the longer it takes for information to propagate from the outer boundary of

�
to the

inner subdomains. This is because the steady state solution is limiting the convergence rate,
and the steady state solution does not see the zero initial condition. This is different if the
algorithm is analyzed over a bounded time interval. This analysis, which is beyond the scope
of this short paper, leads to a superlinear convergence result for the algorithm. Defining for
bounded functions �

���
� � � � � ��� I � � � �	� the norm, , � � � � � � ,�, � ��� �����

sXE � ��� � � � , � ��� � � � ,
we have the following

Theorem 3 (Superlinear Convergence) For �
� I the overlapping Schwarz waveform re-

laxation algorithm converges superlinearly on bounded time intervals
� � � I � � � )

�
in the

infinity norm,

�����" , , � !" � � � � � ,�, � ��� % ��� U � ` � � �0 � � % �	� � � ��

!

erfc
� �K�
% � � �

�
�����" , , � �" � � � � � , , � z (8)
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There are two interesting facts to note about this theorem: first the convergence rate is inde-
pendent of the number of subdomains, there is no dependence on a parameter � related to
the number of subdomains as in Theorem 2. second the superlinear convergence rate is faster
than the superlinear convergence rate found for classical waveform relaxation algorithms. The
classical result gives a contraction governed by a factorial [MN87] with asymptotic expansion

� � � � !
��� �

� �
� %�� 2�� � � � � �	� \ � !�
 �F! � n � � 
 � n� � p p ! � fh 
 �/!�� \ � !�
 �F!

whereas the new result (8) gives a contraction with asymptotic expansion� !� erfc
� � * �
� �

�
��� � �� * � � 2�� ��� � * �	� \ ���

hh� ! h � 
 � n� f p ! � 
 �F!�� \ � ! h z
Numerical Experiments

We perform all our experiments on the two dimensional model problem� �� � � �	� � 2�
 � � � 2�� � � � 4�� � 4 * � � � I � � � ��� I � � � � � � � I � � � z (9)

The convection is chosen to be diagonal, 
 ��� � � � � � and the other parameters are � � I and� � �����'I . We decompose the domain into smaller squares with equal size and overlap both
in the 4�� and 4 * direction and simulate directly the error equations. In space we discretize
using central finite differences and in time using backward Euler. To see linear convergence
the problem is integrated over a relatively long time interval

� � � I � �'I � and to see superlinear
convergence the problem is integrated over a shorter time interval

� � � I � I z�� � . Our analysis
showed that for both the linear and superlinear convergence the convergence rate depends on
the size of the overlap as usual. Increasing the overlap, the error decays faster, as shown in
Figure 1 on the left for a long time interval and on the right for a short time interval. We used� � I z � and � � I z I�� for the overlap parameter and %

� % subdomains.
Theorem 2 shows for the linear convergence regime that the decay of the error depends

on the number of subdomains; the parameter � appears in equation (7), which is similar to
the results found for the heat equation in [GS98]. Thus for a long time interval, the over-
lapping Schwarz waveform relaxation algorithm does not scale with respect to the number
of subdomains. This is illustrated in Figure 2 on the left for 
 �

� � � � � , � � I , � � � � % I ,
overlap parameter � � I z I � and

� � � I � � � . Note how initially the algorithm does not ex-
hibit convergence, the information needs to be propagated first from the domains connected
to the boundary towards the interior, as we saw in the analysis. In the superlinear conver-
gence regime however for the same problem parameters and

� � � I � I z � � the convergence rate
is independent of the number of subdomains, as stated in Theorem 3. This is confirmed in
the numerical experiments shown in Figure 2 on the right and corresponds to the result found
earlier for the heat equation in [GZ97]. Note how the error reduction in the superlinear con-
vergence regime is considerably faster than the one in the linear convergence regime. Note
also that the error reduction in the superlinear convergence regime is considerably faster than
the one in the linear convergence regime.
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Figure 1: Two dimensional problem with four subdomains and different size of overlap for
a long time interval on the left, where the algorithm is in the linear convergence regime and
for a short time interval on the right, where the algorithm is in the superlinear convergence
regime.

Conclusions

We have shown that the overlapping Schwarz waveform relaxation algorithm for general lin-
ear convection reaction diffusion equations with very general domain decomposition exhibits
two different types of convergence regimes: on unbounded time intervals the algorithm con-
verges at least at a linear rate depending on the size of the overlap, the problem parameters
and the number of subdomains. On bounded time intervals however the convergence is su-
perlinear. The convergence rate depends on the overlap and the diffusion coefficient, but is
independent of the number of subdomains and the other problem parameters.

The main interest of the algorithm are the following three points:

1. The original problem is solved on subdomains in space-time and thus one can refine
both in space and time independently on each subdomain.

2. Communication is not necessary at each time step, each processor continues to solve
over a whole time window before it needs to communicate.

3. Theorem 3 shows that algorithm converges superlinearly and independently of the num-
ber of subdomains, so there is no coarse grid needed for scalability.

For a given hardware configuration, it remains to find the best length of time windows so that
the convergence speed of the algorithm is balanced with the communication cost. Longer time
windows lead to slower convergence, but they require less often communication which makes
them faster.
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21 Analysis of Two-Level Overlapping Additive Schwarz
Preconditioners for a Discontinuous Galerkin Method

Xiaobing Feng1, Ohannes A. Karakashian2

Introduction

The Schwarz method refers to a general methodology, based on the idea of divide-and-
conquer, for solving the systems of linear algebraic equations resulting from numerical dis-
cretizations of partial differential equations. In the past fifteen years extensive research has
been done on the method to solve different types of algebraic systems which arise from var-
ious discretizations of partial differential equations such as finite difference/element/volume
methods, spectral methods and mortar finite element methods (cf. [SBG96, Xu92] and refer-
ences therein). On the other hand, very few results on the Schwarz method have been known
in the literature for discontinuous Galerkin methods (cf. [FK01a, LT00, RVW96]). Discontin-
uous Galerkin methods use piecewise, totally discontinuous polynomial trial and test function
spaces, that is, no continuity constraints are explicitly imposed on the functions across the
element interfaces. As a consequence, weak formulations must include jump terms across
interfaces and typically penalty terms are (artificially) added to control the jump terms (cf.
[Arn82, DD76, Whe78]).

Discontinuous Galerkin methods have several advantages over other types of finite ele-
ment methods. For example, the trial and test spaces are very easy to construct; they can
naturally handle inhomogeneous boundary conditions and curved boundaries; they also allow
the use of highly nonuniform and unstructured meshes. In addition, the fact that the mass
matrices are block diagonal is an attractive feature in the context of time-dependent problems,
especially if explicit time discretizations are used. On the other hand, discontinuous Galerkin
methods would seem to be at a disadvantage in view of a relatively larger number of degrees
of freedom per element. Therefore, to offset this disadvantage, effective remedies must be
found at the level of solution of the systems of algebraic equations.

The objective of this paper is to develop some two-level overlapping additive Schwarz
preconditioners for a discontinuous Galerkin method for solving second order elliptic prob-
lems. In Section 2, the discontinuous Galerkin and some known facts about the method, as
well as a trace inequality and a generalized Poincaré inequality for discontinuous, piecewise� �

functions are recalled. In Section 3, some two-level overlapping additive Schwarz precon-
ditioners are proposed and analyzed for the discontinuous Galerkin method. The main result
is to show that the condition numbers of the preconditioned systems are of the order � � l � � ,
where

�
and � stand for the coarse mesh size and the size of overlaps between subdomains.

This paper is the second in a sequel devoted to developing Schwarz methods for discon-
tinuous Galerkin methods. [FK01a] contains non-overlapping Schwarz methods for discon-
tinuous Galerkin methods. The condition number estimates of the order � � l Q � are established
and numerical experiments are presented. In [FK01b], Schwarz methods are developed for
the discontinuous Galerkin method of Baker [Bak77] for the biharmonic problems.

1Department of Mathematics, The University of Tennessee, Knoxville, TN 37996, U.S.A. xfeng@math.utk.edu
2Department of Mathematics, The University of Tennessee, Knoxville, TN 37996, U.S.A. ohannes@math.utk.edu
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Preliminaries

Let
� � ��� � G � % ��� be a bounded domain. For the sake of simplicity, we restrict ourselves

to the following model problem: < � � �
�

in
�
� (1)

� � � on
� � z

(2)

We remark that although we only consider the above model problem, extension of our con-
struction and analysis of this paper to more general second order elliptic problems can be
easily carried out.

The discontinuous Galerkin method to be considered in this paper for discretizing problem
(1)–(2) is the one proposed in [Bak77, BJK90]. In this paper, we shall adopt the same notation
as that of [BJK90].

Let
OKQ

� $�� = ��� � � � % � � � � � � Q j be a family of star-like partitions (triangulations) of
the domain

�
parametrized by I � � � � . Note that

ORQ
does not have to be geometrically

conforming. We define� � = � the boundary of � = � � � = " � � � = 	 � � " � � � e= � � � = 	 � � �
 = � $��wS meas
� � � =� ��� I j � � = � diam

� � = � � � = " � diam
� � � = " � �� = " � � � if � � $RS � = " � I � if � � $ z

We shall refer to
OKQ

as the “fine” mesh and assume that it satisfies the following assumptions:

(i) The elements of
O Q

satisfy the minimal angle condition

(ii)
O Q

is locally quasi-uniform, that is if � " and �  are adjacent and meas
� � � "  ��� I � ,

then
� "�� �  .

Now define the “energy space” N by N � �
* � � � � � � * � � * � � � ��� � � * � � � m � and the

bilinear form 0 Q � � � � � on N � N as follows: For � � & � N ,

0 Q � � � & � � q����� E��� � � � � n " p � � & n " p � � � < q s�� � � " 
�! � � n " p� � � & n "

p < & n  p#" A � �%$
2  � & n " p� � � � n "

p <
� n  p " A � �&$ < � � � �" (' � n "

p <
� n  p � & n " p < & n  p*) A � �%$,+ (3)<  � � n " p� � � & n "

p#" A �.-� <  � & n " p� � � � n "
p�" A �.-� 2 � � � �" ' � n "

p
� & n "
p ) A �.-�0/

Here � n "
p

denotes the restriction of � to the element � " and
� � � � � �1� the

( *
integral over � " ;' � n "

p
� � n  p ) A � �&$ is the

( *
integral over the interface

� � "  of the traces of � n "
p

and � n  p . The
terms including � are the so-called penalty terms.

The bilinear form 0 Q � � � � � induces the following norm on the space N
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k & k � � Q � E � �� q� � � E �� � ,�, � & n " p ,�, *� � � � 2 q s�� � � " 
� � " �����

� & n " p� � ����
*
� � A � �%$

2 � � �"  , & n "
p < & n  p , *� � A � �%$�� 2 � " ����

� & n " p� � ����
*
� � A �.-� 2 � � �" , & n "

p
, *� � A �.-� / �

fh z
(4)

The weak formulation of (1)–(2) is defined as seeking � � N 	 � � � � � 	 � *
loc

� � �
such

that

0 Q � � � & � ��� � & � � Li& � N 	 � � ��� � 	 � *
loc

� � �
� (5)

where

� � & � � � �
� & � < qA �.-� � A�E  � � � & n

" p� � < � � � �" & n " p " A �.-� z
For any integer 	 � % , let � � � � ��
 �

denote the set of all polynomials of degree less than
or equal to 	 < � on



. Define the finite element space

�
Q

as
�
Q
� � � � � � � � � � � � � � � � * � � ��� � � � � � � � � � m ��z

Clearly,
�
Q
� N � ( * � � �

. But
�
Q�
� � � � � �

. The coercivity and continuity of 0 Q � � � � � with
respect to

k � k � � Q � E norm is summarized in the following lemma.

Lemma 1 (cf. [BJK90]) There exists � � � I , which only depends on 	 , such that for � � � �, 0 Q � � � & � , � � � 2 � � k � k � � Q � E k & k � � Q � E � L � � & � N z (6)0 Q � & � & � � � k & k * � � Q � E � Li& � � Q z (7)

The discontinuous Galerkin method based on the weak formulation (6) is defined as fol-
lows: find �

Q � � Q such that

0 Q � � Q � & Q � ��� � & Q � � L/& Q � � Q z (8)

We refer to [BJK90] for a detailed exposition on this particular method.
We conclude this section by introducing two inequalities, a trace inequality and a gener-

alized Poincaré inequality, for totally discontinuous piecewise
� �

functions generalizing two
well-known inequalities for

� �
functions. These inequalities play a key role for the conver-

gence analysis in the next section.
Let



be a bounded, simply connected star-like domain with diameter

�
in
� �

,

G
� % �,�

(cf. [BJK90, FK01a]), and
O��

be a family of partitions (triangulations) of



parameterized
by I� � � � . Let

� �
be the space of all piecewise, totally discontinuous

� �
functions overO �

. For a given number
� � � � � � , let


 � denote the boundary layer of



with the width� . That is,

 � � $ 4 � 
 S dist

� 4 � � 
 ��� � j . For simplicity, we assume that the boundary� 
 � of

 � is aligned with

O �
.
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Lemma 2 (cf. [FK01a]) For any � � �
�

, there holds the following trace inequality, ��, *� � A � � � � � � � k � k *� � � 2 � , �8, * � � Q � � � � (9)

where , �8, * � � Q � � � q� s+t � k � � k *� � � 2 q
���  �����	� � � � � , � n = p < � n " p , * A �  � z (10)

Lemma 3 (cf. [FK01a]) For any � � � �
, the following generalized Poincaré inequality

holds. k � k *� � � 
 � � � � � � � k � k *� � � 2 � � � 2 � � , ��, * � � Q � � � z (11)

The overlapping Schwarz method

Formulation of the additive Schwarz preconditioners

Let
O l

denote a coarse partition (triangulation) of
�

with the mesh size
� � I and

� l
denote the discontinuous Galerkin finite element space of order 	 < � associated with the
mesh

O l
. Suppose that

O Q
is obtained as a refinement of

O l
and its members are star-

like. Let
�
� ��" � � � " be an overlapping decomposition of

�
, where each

� "
satisfying

diam
� � " � � �

is a star-like open subdomain of
�

and is aligned with
ORQ

. Moreover, we
assume there exist nonnegative

� 
 -functions $�� " j �" � � such that

�q"
� � � " ��� in

�
� �

"
� I in

� � � "
� k � � " k ��� � �� z (12)

We also assume that there exist two positive constants
� � and

� � such that
� � � � � �� � � . Let  

� 4 � denote the number of subdomains which contain 4 . We assume that  �� ��������
sXE
 
� 4 � is a constant which is independent of

� � � ��� and � . Recall that the parameter� measures the amount of overlaps among the subdomains $ � " j . For the construction of
� "

,
we refer to [SBG96] and the references therein.

Introduce the notation� " � � �#" 	 � � � � " � � � �#" 	 � � �
 =" � $!� � 
 " S � � "  � � = j � 
 =" � $!� � 
 " S � � "  � � = � for some
� = �
j
�� �" � $ 4 � �#" S 4 �� � � for all

� �
� $
j
�

� �" � �#" � � �" z
It is well-known (cf. [SBG96, Xu92]) that the first step towards constructing the additive

Schwarz preconditioners is to have a valid subspace decomposition of the finite element space�
Q
. For the discontinuous Galerkin method considered in this paper, since

�
Q
� ( * � � �

and
no continuity constrain is imposed for the functions in

�
Q
, it is easy to construct such a space

decomposition.
We define the subspace $ � Q" j �" � � associated with the subdomain $ � " j �" � � by

�
Q" � $�& Q � � Q Sy& Q � I in

� � � " j
� $ ��� �&% � � ��� ���

z
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In addition to
�
Q� � � � � � � Q� , we now introduce a coarse subspace

�
Q
� corresponding to

O l
.

Let the integer 	 � be chosen satisfying %
� 	 �

� 	 . Let

�
Q
� � |� s+t

�

� � � � � ��
 ��z
(13)

It is easy to see that
�
Q
� is a subspace of

�
Q
. Also, our (theoretical) estimates are valid

independent of the choice of 	 � . Clearly,
�
Q
� � � l

when 	 � � 	 .
It is easy to check that the following space decomposition holds.

�
Q
� �

Q
� 2 � Q� 2 � Q* 2 ��� ��2 � Q� z (14)

Having obtained the above space decomposition, the second step requires the construction
of a subdomain bilinear form (or a subdomain solver) on each subdomain. To this end, we
define 0 = � � � � � on

�
Q
= � � Q= to be the restriction of 0 Q � � � � � on

� "
for �� � �&% � ��� � ��� , and0 � � � � � � � 0 Q � � � � � . Notice that, 0 � � � � � � differs from 0 l � � � � � only in the choice of the penalty

parameter � on
�
Q
�
� � Q� .

Now we are ready to define the additive operator

� � � � 2 � � 2 ��� ��2 � � � (15)

where �
"

is a projection operator from
�
Q

to
�
Q"

which is defined by

0 " � � " � � & � � 0 Q � � � & � Li& � � Q" � $ � I � � � % � � � � ��� z (16)

The additive Schwarz method is defined by replacing the discrete problem (9) by the
equation (cf. [SBG96])

� � �(� � ��
�q"
� � �

"
� (17)

where �
"
� �

"
� is defined as the solution of

0 " � � " � & � ��� � & � L/& � � Q" � $ � I � � � % � ��� � ��� z (18)

Condition number estimate for the additive Schwarz method

To estimate the condition number of � , we will use the abstract convergence framework of
Schwarz methods given in [SBG96]. To this end, we need some preliminary lemmas, includ-
ing the decomposition lemma (see Lemma 7).

Let �
l
� � � �� � � �

be the standard � � conforming finite element space associated with
the coarse mesh

O l
. Trivially, �

l
� � �

Q
� . We recall the following approximation property

of the finite element space �
l
� .
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Lemma 4 (cf. [Cia78]) For any
� � � * � � � 	 � �� � � �

, the following estimate holdsZ�c T	
s � �� 0 Q � � < & � � < & �

f h
� Z c T	
s � ��

k � � � < & � k � � E � � � k � k * � E z (19)

Next, for any function � � �
Q
, we define � l � to be the projection of � into �

l
� with

respect to 0 Q � � � � � , that is, 0 Q � � l � � & � � 0 Q � � � & � L/& � � l� z (20)

The operator � l satisfies the following stability and approximation properties.

Lemma 5 There exists a positive constant
�

, which is independent of
� ��� � � and

�
, such

that 0 Q � � l � � � l � � � 0 Q � � � � ��z (21)k � < � l � k � � E � � � 0 Q � � � � � fh z (22)

To save space, we omit the proof and refer to [FK01a] for a proof of similar type.
For each � � O Q , let

� � denote the usual interpolation operator to the polynomial space
� � � � � � �

as defined in the conforming finite element methods. Define the interpolation oper-
ator

�
Q ��� � m" � � � � � � " � < � �

Q
by

�
Q��

� � � � in � � L0� � OKQ � L � � � m|"
� � � � � � " � (23)

For any � � �
Q
, we introduce the following decomposition of �

� � � � 2 � �82 � � ��2 � � � �
" � �

Q"
� (24)

where

� � � � l � � �
"
� �

Q �
�
" �
�
<
� l � � � � $ ��� �&% � � ��� ���

z
(25)

We emphasize that the operator � l is only needed in the analysis and does not contribute to
the construction of the computational method.

Lemma 6 For any � � �
Q
, let �

" � �
Q"

be defined as above. Then there is a positive constant�
which is independent of

� ��� � � and
�

such that

0 = � � = � � = � � � � k � < � l � k * � � Q � E  2 �� * k � < � l � k *� �
E


�
� � ��� �&% � � ��� ��� � (26)

Proof: Let � � � < � � . Since � = � I in
� � � = , � = � I on every

� � "  � � � = � � � . By
the definition of 0 = � � � � � and the Schwarz inequality we have

0 = � � = � � = � � � q� � � E  �� � k � � n "
p
= k *� � � � 2 q s�� � � " 

�� � "  �����
� � n " p=� � �����

*
� � A � �%$

2 � � �"  , � n "
p
= <

� n  p= , *� � A � �%$ � 2 � " �����
� � n " p=� � �����

*
� � A �.-� 2 � � �" , � n "

p
= , *� �

A �.-�	� 
� z (27)
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Let � = " be the average of � = over an element � " � � = . It is known that (cf. [SBG96])

k � = < � = " k � � n ��� p � � � � " � � � L � " � � �= �I L � " � � �= z (28)

For each term on the right hand side of (27) we have the following estimate.k � � n "
p
= k *� � ��� � k � � n "

p
� k *� � ��� 2 � � � *" k � � � � � � = < � = " � � n "

p
� k *� � ��� (29)� k � � n "

p
� k *� � � � 2 � � � � * k � n " p k *� � � � if � " � � �= �I if � " � � �= z

, � n "
p
= <

� n  p= , *� � A � �%$ � , � � �%$ � � = � � n " p < � n  p � � , *� � A � �%$ � � , � n " p < � n  p , *� � A � �%$ z (30)

�����
� � n " p=� � �����

*
� � A � �&$ � �����

� � n " p=� � �����
*
� � A � �%$ 2 � � � �" k � � � � � � � = < � = " � � n "

p
� k *� � � � (31)

� �����
� � n " p=� � �����

*
� � A � �&$ 2 � � � � �" � � * k � n " p k *� � ��� if � " � � �= �I if � " � � �= z

�����
� � n " p=� � �����

*
� � A �.-� � � ��

�����
� � n " p=� � �����

*
� � A �.-� 2 � � �" � � * k � n "

p k *� � � ���� z (32)

��� �
n " p= ���
*
� � A �.-� � ���

� �.-� � � = � n "
p
� ���
*
� � A �.-� � � ��� �

n " p ���
*
� � A �.-� (33)

Finally, the estimate (26) follows from (27), (29)–(33) and the definition of
k � k � � Q � E  .

The following lemma follows directly from applying Lemma 6 and Lemma 3 on each
� "

.

Lemma 7 For any � � �
Q
, let �

" � �
Q"

be as in (25). There is a positive constant
�

which
is independent of

� ��� � � and
�

such that

�q"
� � 0 = � � " � � " � � � � � 0 Q � � � � ��z (34)

It is trivial to show the next lemma (cf. [FK01a]).

Lemma 8 There holds the following identity.0 Q � & " � & " � � 0 " � & " � & " � � Li& " � � Q" � $ � I � � � � ��� ��� z (35)

Using a coloring argument (cf. [SBG96]), it is easy to show the following lemma.
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Lemma 9 Let � and � = be as in (25). Let I � � = " � � to be the minimal values such that

, 0 Q � � = � � " � , � � = " 0 Q � � = � � = �
fh
0 Q � � " � � " �

fh
� � � $ ��� � % � � � � ���

z
(36)

Then there holds the following estimate

�
�

�
�"�

 � 2 �
z

(37)

We are now ready to establish the main theorem of this paper.

Theorem 1 There exists a positive constant
�

which is independent of
� ��� � � and

�
such

that there holds the estimate

cond
�
�
�#� � � % 2  � � � � � � z (38)

Proof: The estimate (38) follows immediately from Lemma 7–9 and Lemma 3 of Chapter
5 of [SBG96] with

� *� � � � � � � � � , � ��� and �
�

�
�
� � 2  � .
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22 Optimized Schwarz Methods for Helmholtz Problems

M. J. Gander 1

Introduction

The classical Schwarz algorithm has a long history. It was invented by Schwarz more than a
century ago to prove existence and uniqueness of solutions to Laplace’s equation on irregular
domains. It gained popularity with the advent of parallel computers and was analyzed in depth
both at the continuous level and as a preconditioner for discretized problems (see the books by
Quarteroni and Valli [QV99] and Smith, Bjørstad and Gropp [SBG96] and references therein).
The classical Schwarz algorithm is however not effective for Helmholtz problems, because the
convergence mechanism of the Schwarz algorithm works only for the evanescent modes, not
for the propagative ones. Nevertheless the Schwarz algorithm has been applied to Helmholtz
problems by adding a relatively fine coarse mesh in [CW92] and changing the transmission
conditions from Dirichlet in the classical Schwarz case to Robin, as done in [DJR92], [BD97],
[Gha97], [dLBFM

�
98], [MSRKA98] and [CCEW98]. The influence of the transmission

conditions on the Schwarz algorithm for the Helmholtz equation has first been studied for
a nonoverlapping version of the Schwarz algorithm in [CN98] and for the overlapping case
in [GHN00]. We begin this paper by recalling the optimal transmission conditions which
lead to the best possible convergence of the Schwarz algorithm and which even work without
overlap. These optimal transmission conditions are however non local in nature and thus not
ideal for implementations. One therefore approximates the optimal transmission conditions
locally. A first result we present is that no matter how one approximates, the new optimized
Schwarz method has a better convergence rate than the classical Schwarz method. Then we
present a new second order optimized transmission condition for a nonoverlapping variant of
the optimized Schwarz method with better asymptotic performance than the one presented in
[GMN01]. If

�
denotes the mesh parameter, then the new method has a convergence rate of

�
< � � � � u : � whereas the best optimized Schwarz method so far for the Helmholtz equation

had a convergence rate of �
< � � � � u * � , as given in [GMN01].

Classical Schwarz for the Helmholtz Equation

We consider the Helmholtz equation in two dimensions,� � 2 �

* � �
�
�
�
�
� in

�
� �

*
� (1)

with Sommerfeld radiation conditions at infinity. We apply the Schwarz algorithm with two
overlapping subdomains

� � � � <
) �
( � � � ,

( � I and
� * � � I � ) � �

� which leads to the
Schwarz iteration

� & � � � 2 �

* & � � � �
�
� in

� � �& � � � � ( � 7 � � � � � ( � 7 � � 7 � � (2)

1Dept. of Mathematics and Statistics, McGill University, Montreal, QC H3A 2K6, CANADA.
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and

� � � � � 2 �

* � � � � �
�
� in

� * �� � � � � I � 7 � � & � � I � 7 � � 7 � � z (3)

To analyze the convergence rate of this algorithm, we use Fourier analysis. By linearity it
suffices to analyze the homogeneous problem,

� � 4 � 7 � � I , and show convergence to the zero
solution. Applying a Fourier transform in the 7 variable with Fourier parameter

�
leads to the

ordinary differential equations� * �& � � �� 4 * 2 � �

* < � * �
�& � � � � I � 4 � ( � � � � �

�& � � � � ( � � � � �� � � ( � � � � � � � �� * �� � � �� 4 * 2 � �

* < � * �
�� � � � � I � 4 � I � � � � �

�� � � � � I � � � � �& � � I � � � � � � � z
Solving the second equation at step

�
and inserting the result into the first one we find after

evaluating at 4 � I
�& � � � � I � � � � \ � * � � h ��� h � �& � � � � I � � ��z

Hence the convergence rate of the classical Schwarz method is

� �
�
� � � \ � * � �

h
���
h
� z

(4)

This shows the main problem of the classical Schwarz method when applied to a Helmholtz
problem: while evanescent or high frequency modes,

� * �
�

*
, converge as in the case of

Laplace’s equation, the propagating or low frequency modes,
� *

� �

*
, do not converge at

all, , � � � � , � � for those modes. Figure 1 shows the error in a numerical experiment for an
example on a domain

�
�
� I �&% � � � I � � � split into two subdomains in the 4 -direction and

� � � I . The error on the left subdomain is shown as the iteration progresses and one can see
that the classical Schwarz algorithm has problems converging because of the low frequency
modes, whereas the high frequency modes introduced at the interface by the initial guess are
reduced effectively. Figure 2 shows on the left the corresponding convergence rate (4) for this
example as a function of the frequency parameter

�
.

Optimized Schwarz for the Helmholtz Equation

We consider again the Helmholtz equation (1) in two dimensions and we apply a Schwarz
algorithm with the same overlapping subdomains

� � � � <
) �
( � � � ,

( � I and
� * �� I � ) � �

� as before. But this time we do not use Dirichlet transmission conditions, but more
general ones,

� & � � � 2 �

* & � � � �
�
� in

� � �� � � 2�� 	 � � & � � � � ( � 7 � � �
� � � 2�� 	 � � � � � ( � 7 � � � 7 � � (5)

and

� � � � � 2 �

* � � � � �
�
� in

� * �� � � 2�� � � � � � � � � I � 7 � � �
� � � 2�� � � � & � � I � 7 � � � 7 � � z (6)
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Figure 1: Error in iterations 1, 2, 3 and 8 on the left of the two subdomains of the classical
Schwarz algorithm applied to a Helmholtz equation. Clearly the low frequency modes are not
effectively reduced by the method.

The operators � 	 in (5) and � � in (6) are linear operators in the 7 direction along the interface
which we will try to determine to obtain optimal performance of the Schwarz algorithm. Us-
ing Fourier analysis like in the case of the classical Schwarz algorithm and setting

� � 4 � 7 � � I ,
we obtain the iteration in the Fourier transformed domain� * �� � � �� 4 * 2 � �

*"< � * �
�� � � � � I � 4 � ( � � � � �� � � 2�� 	 � � � � � �� � � � � ( � � � � �

� � � 2�� 	 � � � � � �� � � ( � � � � � � � � �� * �� � � �� 4 * 2 � �

* < � * �
�� � � � � I � 4 � I � � � � �� � � 2�� � � � � � � �� � � � � I � � � � �

� � � 2�� � � � � � � �� � � I � � � � � � � � z
Solving the second equation at step

�
and inserting the result into the first equation we find

after evaluating at 4 � I
�� � � � � I � � � � � 	 � � � < � � * < � *� 	

� � � 2 � � * < � * � � � � � � 2 � � * < � *� �
� � � < � � * < � * \ � * � �

h
� �
h
� �� � � � � I � � �
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and hence the convergence rate of the new Schwarz method is

� ��� � ��� � 	 � � � < � � * < � *
� 	
� � � 2 � � * < � * � � � ��� � 2 � � * < � *� �

��� � < � � * < � * \ � * � �
h
� �
h
� � (7)

where we can choose the symbols � 	
� � �

and � �
� � �

of the linear operators � 	 and � � along
the interface to influence the performance of the new Schwarz method.

An Optimal Schwarz Method

There is a best choice for the free parameters in the convergence rate (7) of the new Schwarz
method: choosing � 	

��� �
� � � * < � * and � �

� � �
�
<
� � * < � * , the convergence rate be-

comes zero for all values of the frequency parameter
�

and hence the method converges in
2 iterations. In addition for this choice the convergence rate is independent of the overlap,
the exponential factor in (7) is irrelevant and hence the Schwarz method can be used without
overlap as well. One can show that this result generalizes to convergence in  iterations if  
subdomains in strips are employed [NR95]. But for real computations, we do not want to de-
pend on Fourier transforms, we want to do the computations as usual on a given finite element
or finite difference mesh. Hence we need the inverse transform of the optimal transmission
conditions, � 	 �

��� �
� � �

� * < � * . Unfortunately, this inverse transform leads to nonlocal
operators � 	 � in the 7 variable, because of the square root in their symbol. Even though
such non-local operators can be implemented by using a convolution on the boundary, it is
much more cumbersome than to implement local transmission conditions. If the symbol of
the optimal transmission conditions was a polynomial in

�
however, then the operator in real

space would be local, because a polynomial in
�

transforms into derivatives in real space, and
derivatives are local operators. Therefore, instead of using the best possible transmission con-
ditions, we introduce local approximations to those conditions which are easy to implement.
One can either choose a Taylor expansion about a low frequency to improve the low frequency
behavior of the algorithm or, even better, optimize the approximation for the performance of
the algorithm by making � ��� � , the natural measure of performance, as small as possible. This
leads to the new class of optimized Schwarz methods.

Optimized Schwarz Methods

We introduce local approximations of the best transmission operator,

� 	 � 2 � � ��2�� � � * � � and � � �
< �
� * 2�� * � * � �

where �
"
� �
" �	� , $ � � � % . Note that we do not include a first order term because the

Helmholtz operator is symmetric. For non-symmetric problems one would include the first
order term as well. The case �

"
� I leads to Robin transmission conditions and gives us four

coefficients to optimize the performance (two complex numbers � � and �
*
). If �

" �
� I we

obtain transmission conditions including second order tangential derivatives which gives us
eight coefficients to optimize the performance of the algorithm. In the sequel we restrict our
analysis for simplicity to the special case where � � � � * � � and � � � � * � � , for which
the convergence rate of the optimized Schwarz method can be simplified to

� ��� � � � � 2�� � * < � � * < � *� 2�� � * 2 � � * < � * �
*
\ � * � �

h
� �
h
� z

(8)
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Figure 2: Comparison of the convergence rate of classical Schwarz on the left with optimized
Schwarz using Robin transmission conditions in the middle and second order optimized trans-
mission conditions on the right.

This cuts the number of optimization parameters in half and simplifies the optimization, at
the cost of not finding the best possible second order transmission conditions. For symmetric
positive definite problems the difference is investigated in [Gan00] and is found to be signifi-
cant.

Theorem 1 If
� � � � ���

�
�
�
� �
�
�
�
���
�
�
� � I then the optimized Schwarz method always con-

verges faster than the classical Schwarz method.

Proof We have to show under the conditions of the theorem that � ��� � � � � given in (8) is smaller
or equal to � �

�
�
� � �

given in (4) for all
�

. The only difference between the two convergence
rates is the additional factor in front of the exponential in (8). But the modulus of this factor
is � � � � � 2 � � �

� � * < � � � � * < � * � � * 2 � � � � � 2 �
�
�
� � * <

�
� � � * < � * � � *� � � � � 2 � � �

� � * 2 � � � � * < � * � � * 2 � � � � � 2 �
�
�
� � * 2 �

� � � * < � * � � * � �

if the real and imaginary parts of � and � are non-negative, which completes the proof.
This indicates that one should not use the classical Schwarz method any longer, whatever

one does to the coefficients in the transmission conditions, the optimized Schwarz method
will work better than the classical Schwarz method. Figure 2 shows a comparison of the con-
vergence rates of the classical Schwarz method and optimized Schwarz methods with Robin
and second order transmission conditions as a function of the frequency parameter

�
. Note

that for optimized Schwarz methods the low frequency modes converge as well, not just the
high frequency ones. Only at the resonance frequency

� *
� �

*
the convergence rate equals

one for optimized Schwarz methods. This is however not a problem when optimized Schwarz
is used as a preconditioner for a Krylov subspace method, since such a method easily corrects
one bad mode in the spectrum.

An Optimized Schwarz Method without Overlap

We optimize now the coefficients � and � in (8) for the case of no overlap,
(
� I . For the

continuous problem we would need to optimize for all frequency parameters
� � � which
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would lead to convergence problems as
� < � � ) . But in a numerical computation, the

frequency range is bounded, from below by the smallest frequency
�
���
�

relevant to the sub-
domain and from above by the largest frequency

�
����� supported by the numerical grid. The

largest frequency
�
����� is of order � � � . We therefore have to solve the optimization problem

� Z�c� � � s �
��

������
s n �
	��  � ��� p � n ��� � �
	���� p �����

� 2 � ��� < � � � < � �
� 2 � � � 2 � � � < � � �����

�
�� (9)

where � � and �
�

are parameters to be chosen to exclude the single mode with convergence
rate one at the resonance frequency

� �
� �

�
. We have the following asymptotic convergence

result

Theorem 2 There exist parameters � � � � �
such that the asymptotic convergence rate of

the optimized Schwarz method is

� ��� � � �
< � � ��

G
�

� % �

< G
�

� � � u : � � u : 2 � � � � u � �
where

G
� ��� �

� <
� � �

<
� � .

The proof of this result is beyond the scope of this short paper, since it involves the asymptotic
solution of the min-max problem (9). But it is important to notice that the classical Schwarz
method does not converge without overlap, not even in the symmetric positive definite case.
If the overlap is of order

�
, then the convergence rate of classical Schwarz is �

< � � � � in the
symmetric positive definite case. The optimized Schwarz method without overlap converges
even for the indefinite case at the much better rate of �

< � � � � u : � except for the resonance
mode. The numerical results in the next section show that the optimized Schwarz method used
as a preconditioner for a Krylov methods exhibits a convergence rate of nearly �

< � � � � u�� � ,
gaining almost the expected square-root from Krylov acceleration.

Numerical Results

We chose the model problem of a tube,

� � 2 �

�
� �

� I� 4 � 7 � � �
� � I I� 4 � � � 7 � I � � �A

�
A
�
< � � � � I 4 � I � I � 7 � � �< A �A

�
< � � � � I 4 ��� � I � 7 � �

z
and two nonoverlapping subdomains

� � � � I � � � % � ��� I � � � , � � � �
� � % � � �

��� I � � � . For ex-
periments with overlap, see [GHN00]. Table 1 shows the number of iterations required to
converge to a desired tolerance � IX\ < � using optimized Schwarz as a preconditioner for GM-
RES and compares this to a non-optimized local approximation of the optimal transmission
conditions using a Taylor expansion for low frequencies.

Figure 3 shows the asymptotic convergence rate in
�

achieved by the optimized Schwarz
method. Note how Krylov acceleration gives almost the additional square-root, � ��� � �
�
< � � � � u�� � as one can expect in ideal situations. It would have been interesting to do the

experiment for
� � � � � �XI+I , but the case

� � � ���XIXI shown constitutes already a complex
linear system with 640’000 unknowns and is at the limit of current workstation capacities.
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1/50 1/100 1/200 1/400 1/800

Taylor Order 2 25 32 38 46 57
Optimized Order 2 10 10 10 11 13

Table 1: Optimized Schwarz second order transmission conditions compared to a simpler sec-
ond order Taylor approximation of the optimal transmission conditions for low frequencies.
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Figure 3: Asymptotic convergence rate of the second order optimized Schwarz method with-
out overlap.

References

[BD97]Jean-David Benamou and Bruno Deprés. A domain decomposition method for the
helmholtz equation and related optimal control problems. J. of Comp. Physics, 136:68–82,
1997.

[CCEW98]Xiao-Chuan Cai, Mario A. Casarin, Frank W. Elliott Jr., and Olof B. Widlund.
Overlapping Schwarz algorithms for solving Helmholtz’s equation. In Domain decomposi-
tion methods, 10 (Boulder, CO, 1997), pages 391–399. Amer. Math. Soc., Providence, RI,
1998.

[CN98]Philippe Chevalier and Frédéric Nataf. Symmetrized method with optimized second-
order conditions for the Helmholtz equation. In Domain decomposition methods, 10 (Boul-
der, CO, 1997), pages 400–407. Amer. Math. Soc., Providence, RI, 1998.

[CW92]Xiao-Chuan Cai and Olof B. Widlund. Domain decomposition algorithms for indefi-
nite elliptic problems. SIAM J. Sci. Statist. Comput., 13(1):243–258, January 1992.

[DJR92]Bruno Després, Patrick Joly, and Jean E. Roberts. A domain decomposition method
for the harmonic Maxwell equations. In Iterative methods in linear algebra (Brussels,
1991), pages 475–484, Amsterdam, 1992. North-Holland.

[dLBFM
�

98]Armel de La Bourdonnaye, Charbel Farhat, Antonini Macedo, Frédéric
Magoulès, and François-Xavier Roux. A non-overlapping domain decomposition method
for exterior Helmholtz problems. In Domain decomposition methods, 10 (Boulder, CO,



252 GANDER

1997), pages 42–66, Providence, RI, 1998. Amer. Math. Soc.
[Gan00]Martin J. Gander. Optimized Schwarz methods for symmetric positive definite prob-

lems. in preparation, 2000.
[Gha97]Souad Ghanemi. A domain decomposition method for Helmholtz scattering prob-

lems. In P. E. Bjørstad, M. Espedal, and D. Keyes, editors, Ninth International Conference
on Domain Decomposition Methods, pages 105–112. ddm.org, 1997.

[GHN00]Martin J. Gander, Laurence Halpern, and Frédéric Nataf. Optimized Schwarz meth-
ods. In 12th international conference on domain decomposition methods, 2000.

[GMN01]Martin J. Gander, Frédéric Magoulès, and Frédéric Nataf. Optimized schwarz meth-
ods without overlap for the helmholtz equation. SIAM J. Numer. Anal., 2001. to appear.

[MSRKA98]Lois C. McInnes, Romeo F. Susan-Resigna, David E. Keyes, and Hafiz M.
Atassi. Additive Schwarz methods with nonreflecting boundary conditions for the paral-
lel computation of Helmholtz problems. In Domain decomposition methods, 10 (Boulder,
CO, 1997), pages 325–333. Amer. Math. Soc., 1998.

[NR95]Frédéric Nataf and Francois Rogier. Factorization of the convection-diffusion operator
and the Schwarz algorithm. � 6 ��� , 5(1):67–93, 1995.

[QV99]Alfio Quarteroni and Alberto Valli. Domain Decomposition Methods for Partial Dif-
ferential Equations. Oxford Science Publications, 1999.

[SBG96]Barry F. Smith, Petter E. Bjørstad, and William Gropp. Domain Decomposition:
Parallel Multilevel Methods for Elliptic Partial Differential Equations. Cambridge Univer-
sity Press, 1996.



Thirteenth International Conference on Domain Decomposition Methods
Editors: N. Debit, M.Garbey, R. Hoppe, J. Périaux, D. Keyes, Y. Kuznetsov c

�
2001 DDM.org

23 Optimized Schwarz Algorithms for Coupling Convection
and Convection-Diffusion Problems

M.J. Gander1, L. Halpern2, C. Japhet3

Introduction

When solving the compressible Navier-Stokes equations in an exterior domain, it is of inter-
est in the computation to select regions where the viscosity is small and to solve the Euler
equations instead in these regions, since the Euler equations are less costly computationally.
In recent years, fundamental work has been done to study the range of applicability of this ap-
proach. Error estimates have been developed for small viscosity, coupled problems have been
formulated and more recently iterative algorithms have been developed to solve the coupled
problems (see [Dub93], [GQL90]).

For problems in fluid mechanics new domain decomposition methods with optimized
transmission conditions based on artificial boundary conditions [Hal86] have been introduced
[CQ95, NR95]. In particular, it was proposed for the convection-diffusion equation to use
transmission conditions such that the rate of convergence can be optimized [Jap98]. These
transmission conditions lead to very fast convergence, and the convergence rate is nearly in-
dependent of both the physical and the discretization parameters.

Here we extend these transmission conditions to the case of the coupled convection and
convection-diffusion problem. We consider the convection-diffusion equation

� � � � � � � < �	� � � div
� 
 �

� � � � �
�

in
�

,� � �
�

� � on
� �

,
(1)

where
�

is a bounded open set of �
�
, and

�
is a linear operator such as the identity or the

normal derivative. Here �
� I is the viscosity, �

� I is a constant and 
 �
���
��� � � ��� 
 � � � � �

is the velocity field with div 
 �
� 
 ��� �

and div 
 � �
� � � I . This ensures that the problem

is well-posed, because it can be associated with a continuous and coercive bilinear form.
We suppose that the diffusion process is only physically relevant in a subregion

�
� of�

. Let
�
�
�
� �

� �
with

�
� 	 � � �	� . We denote by

�
the common interface between�

� and
� �

and by 
 the unit outward normal for
�
� . To solve the original problem (1),

we want to use the fact that the diffusion is only relevant in
�
� . We therefore couple the

convection-diffusion equation

� � � � � � ��� � � � � div
� 
 � � � � � �

�
in
�
�

with the convection equation

� �
� � � �

div
� 
 � � � � � � �

in
� �

with
�

imposed on
� � � 	 � � and

� � � 	 � �
and with suitable transmission conditions on

�
.
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2LAGA, Université Paris XIII, Avenue J-B Clément, 93430 Villetaneuse, France
3LAGA, Université Paris XIII, Avenue J-B Clément, 93430 Villetaneuse, France
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We first present the optimized Schwarz algorithm for
�
� �

�
to show the link between

transmission conditions and artificial boundary conditions. We consider both inflow into the
purely convective region, 
� 


� �
, and outflow of the purely convective region, 
� 
(� �

.
Then we present the optimized Schwarz algorithm for an arbitrary velocity field. We recall
error estimates for small viscosity and compare in numerical experiments the new optimized
Schwarz method for coupled problems to an earlier coupling algorithm in [GQL90].

Inflow into the Purely Convective Region

Let
�
� �

�
,
�
� � � �

�
� ,
� � � �

� �
� and

� ��� ��� ���
�
��� � � �

�
� I j . In the case of

inflow into the purely convective region, the coupling on
�

needs both a condition on � and a
condition on � . Let �

�
be the Dirichlet to Neumann operator of the left half plane defined by

�
� � �

�
�
� �� � where � solves

�� � � � � � � � � I in
�
� ,

� � � on
�

,
� bounded at infinity.

If the coefficients of
� � � are constants, we can compute the symbol of �

�
using a Fourier

transform in the � direction. The symbol is given by the root with positive real part of the
characteristic polynomial � � � � � �

� � � � � � � � � � � � � � I z
Then

�
AA
�
�
�
� �

is the transparent operator on
�

for the convection diffusion problem in
�
�

(see [Hal86]). If we consider the Schwarz algorithm� � � � � � � � � � in
�
�� �

�
� � � � � �

� � � � � � on
� � � �

� � � � � � in
� ��

AA
�
�
�
� 
 � � � � � �

AA
�
�
�
� 
 � � � � � � on

� (2)

then, because the transmission operators are the transparent operators for
�
� and

� �
, we

have the following optimal convergence result.

Theorem 1 The algorithm (2) converges in 2 iterations to the solution of the coupled problem� � � � � � � �
�

in
�
� , � � � on

�
,� �

� � �
�

�
on
� �

,

A
	
A
� �

A
�
A
� on

�
.

(3)

Note that the coupling conditions satisfied at convergence in (3) are the coupling conditions
satisfied by the original viscous problem in both subdomains. The continuity of both the
values and normal derivatives in the coupled solution seems to be important, since we neglect
the diffusion term only for computational purposes, not because the diffusion is physically
zero in one subdomain. This is an important distinction from the transmission conditions
derived in [GQL90] from a mathematical point of view, which led to a coupled solution with
jumps in the the normal derivatives across the artificial interface.

The transmission condition for
� �

in the optimal Schwarz algorithm (2) involves a non-
local operator, which requires a convolution along the interface in a numerical implementa-
tion. To avoid this, we replace the non-local operator �

�
by a local approximation given by a

differential operator in the � variable, which leads to the new transmission condition

� � �
�� � �

�
�
�
�� � � � � �� � �
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where �
� I , � � I and the coefficients � , � and � are chosen to optimize the convergence

rate of the Schwarz algorithm as it was done for convection-diffusion problems in [Jap98].
The optimized Schwarz algorithm for the coupled problem is therefore given by� � � � � � � � � �

in
�
�� �

�
� � � � � �

� � � � � � on
� � � �

� � � � � �
in
� �

� � � � � � � � � � � � � � � on
� (4)

Remark 1 Note that on the interface,

A
� �
A
� can be replaced by

�
�
� � � � � � � �

A
� �
A
�

�
using the

convection equation in
� �

.

A priori estimates show the well-posedness as in [GQL90] and [NR95].

Theorem 2 Let
� � � � ��� � � � � � � � � ��� � � � ��� � � � � � � � j

. Then the algorithm (4) has a
unique solution

�
� � � � � � in

� � � � � � � � � � � � � ��� � �
.

Because the transmission condition for
�
� is still transparent for � � we have

Theorem 3 The algorithm (4) converges in 3 iterations to the solution of the coupled problem
(3). More precisely we have �

�
� � , ��� � � .

Outflow of the Purely Convective Region

In this case only one transmission condition can be imposed and we choose here to impose
the continuity of the function values, � � � , on

�
. Note that one could also choose continuity

of the normal derivatives or a linear combination. The boundary conditions imposed on the
purely convective region

� � 	 � � �
are such that � is uniquely determined by

� �
� � �

�
�

in
� �

without information required from the other subdomain (see [GQL90]). With the solution � ,
the solution � on the other subdomain is then defined by� � � � � � � �

�
in
�
� �

� � � on
�

and there is no need to iterate.

The Case of Mixed Inflow and Outflow

We define
� � � � � � � � � � 
� 
 � �

j
and

�	� � � � � � � � 
� 
 � �
j

with
�
� � 	 � � � � � �

and
�
� � � � � � � � � as shown in Figure 1.

We propose the optimized Schwarz algorithm�� � � � � � � � � � �
in
�
�� �

�
� � � � � �

� � � � � � on
�
� �

� � � � � � � on
� ��� �

� � �
� � � � � �

in
� �

� � � � � � � � � � � � � on
�	� � (5)

Again, a priori estimates lead to the following
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Figure 1: A problem with both inflow and outflow along the artificial interface.

Theorem 4 The algorithm (5) is well-posed in
� � � � � � � � � � � � � ��� � �

.

We do not yet have a convergence proof of algorithm (5), but numerical experiments show that
the iterates

�
� � � � � � of the optimized Schwarz method (5) converge to the solution

�
� � � �

of
the coupled problem� � � � � � � �

�
in
�
� , � � � on

�
,� �

� � �
�

�
on
� �

,

A
	
A
� �

A
�
A
� on

�	� � .

Estimates for Small Viscosity

Let
�
� �

�
,
�
� � � �

�
� ,
� � � �

� �
� and

� � � ��� ���
�
� � � � �

�
� I j . Let� be the solution of the convection-diffusion equation in �

�
. Dubach [Dub93] obtained for
� 
 �

� � I and the problem�� � � � � � �
�
�

�
� I �� � � � � � � � �

�
�

� � I �� � � � �� 
 � � � �
� � �

�
� I �

the estimatesk � � � � �
� k �
h
n��
h
�
p
� I � � � � and

k � � � �
�
� k �
h
n��
h
�
p
� I ��� � � ���

h
��z

For the problem� � � � � � �	� � �
�
�

�
� I � � � � � at

�
� I ,� � � � �

�
�

� � I � � � � � � � � � at
�
� I ,

he obtained the estimatesk � � � � �
� k �
h
n��
h
�
p
� I � � � � ���

h
�

and
k � � � �

�
� k �
h
n��
h
�
p
� I ��� � � �

fh
�

which will be verified by our numerical experiments.
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Numerical Experiments

We discretize the global convection-diffusion problem and the subproblems in the optimized
Schwarz method by upwind finite difference schemes. We call the solution of the global
convection-diffusion problem the viscous solution. We use the mesh size

� � � � % IXI and both
the viscous solution as well as the subdomain solutions are obtained by a direct solver. We
first consider an inflow problem into the purely convective region of the domain and then a
rotating velocity. We compare the results obtained with the optimized Schwarz method to the
results obtained with the algorithm from [GQL90].

Inflow into the Purely Convective Region

We solve the coupled problem on the unit square using the optimized Schwarz method (4)
with � � � I � � , 
 � � I z � � I z � � and � � � I � � . The boundary conditions we use are given in
Figure 2 and the interface is located at

�
� I z % .
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Figure 2: Convection field and boundary conditions for inflow into the purely convective
region.

On the left in Figure 3 we compare the viscous solution and the solution obtained by the
optimized Schwarz method for the coupled problem on the line � � I z I � after 2 iterations.
On the right of Figure 3 we show the results obtained using the algorithm and transmission
conditions from [GQL90] obtained by letting � go to zero. They are given by� � � �

AA
 � 
� 




� � � � � 
� 


� � � � � on
� �� � � � � � � on
�
� � (6)

and do therefore not satisfy continuity of the derivatives across the interface, as one can see
in Figure 3.

A Rotating Velocity

We use the optimized Schwarz method to solve the problem with � � � I � � , 
 � � I z � � � � I z � �
and � � � I � � and boundary conditions as given in Figure 4 on the unit square. The interface
is again located at

�
� I z % . We compare the solution obtained by the optimized Schwarz

method after 3 iterations to the viscous solution. Figure 5 shows both solutions on the line� � I z � � (inflow into the purely convective region) and on the line � � I z � (outflow of the
purely convective region). The computed solution is continuous on the interface and also its



258 GANDER, HALPERN, JAPHET

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

viscous solution  
optimized Schwarz 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

viscous solution   
coupling with (7)

Figure 3: Result for constant velocity, the solid line denotes the viscous solution, the dashed
line on the left the coupled solution obtained by the optimized Schwarz method and the dashed
line on the right the solution from the algorithm proposed in [GQL90]. Note the discontinuity
in the derivative on the right at

�
� I z % .
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Figure 4: Convective field and boundary conditions for the rotation velocity case.
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Figure 5: Result for rotating velocity on the left at � � I z � � with a zoom on
� I � I z�� � � � I � I z � � ,

on the right at � � I z � . The solid line denotes the viscous solution, the dashed line the
optimized Schwarz solution.
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derivative is continuous on
� � � . On

� � � � there is a small jump in the normal derivative of
the solution because only one condition can be satisfied, as we have seen in the analysis. In
Figure 6 we show the results obtained with the transmission conditions (6) from [GQL90] after
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Figure 6: Same graphs as in Figure 5 but for the algorithm with transmission conditions (6)
from [GQL90].

3 iterations. Note that on
� � � there is a jump in the normal derivative, whereas on

� � � � there
is a jump in the function value and in the normal derivative. The size of these discontinuities
diminishes however with diminishing viscosity. Nevertheless as a physical solution to the
original viscous problem, the solutions obtained by the optimized Schwarz methods seem to
be preferable.

Finally we show in Figure 7 the error on the interface as a function of decreasing viscosity.
The results confirm the asymptotic results from [Dub93].
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24 Domain decomposition and virtual control for fourth
order problems

P. Gervasio1, J.-L. Lions2, A. Quarteroni3

Introduction

In this paper we consider domain decomposition strategies for fourth order operators featuring
a dominant second order component. More specifically, given an open and bounded domain� � �

�
with continuous and Lipschitz boundary

� �
, the fourth order problem we consider

reads: �
�

� � �
�
� � � �

�
in
�

� �(� � 
 ��� � � � on
� � (1)

where � � ��� �
H
� z

and the functions
�

, � and
�

are assigned with sufficient regularity, while
 is the unit outward normal vector on
� �

.
We will partition

�
into several subdomains (overlapping or not) and consider different

ways to formulate (1) at the subdomain level. In particular, we are looking for suitable control
problems, the control variables being faced on the subdomain interfaces. Furthermore, we
address the so-called heterogeneous case, i.e. a situation in which the coefficient � is set
to zero on a subregion of

�
. Our control approach is then devised in order to handle the

coupling between the original fourth order problem and the second order one that is obtained
when dropping � out. A similar heterogeneous coupling has been previously investigated for
a second-order advection diffusion problem with dominant advection (see [GLQ00]).

An outline of the paper is as follows. First the overlapping decomposition and the hetero-
geneous coupling are considered: a natural choice for the cost functional is introduced and
it has been proved that its minimization leads to a unique solution for the coupled problem.
After, the non overlapping decomposition is taken into account and both homogeneous and
heterogeneous coupling are considered. Numerical results are shown for both overlapping
and non-overlapping decompositions.

The overlapping situation

For the sake of exposition we consider the case of decompositions by two subdomains
� � and� �

, which satisfy

�
�
� �
� � � �

� � �
� � 	 � � �� � � � � � � z

We define
� � � � � � 	 �

and
� � � � � � � � �

, for � � � � % . Then
� � � � � � � . Further we

define the differential operators� � � � � � � � � ��� �

� � � � � z
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Figure 1: An overlapping decomposition of
�

in two subdomains.

The heterogeneous coupling by means of virtual control is formulated as follows:�� � � � � � � �
in
� �

� � � � on
� �

� � � � � on
� � �� � � � � � �

�
in
� �

� � �(� � 
 ��� � � � � on
� �

� � � � � � 
 � � � � � ��� � on
� � (2)

where
� � � � � � � � � � for � � � � % (see Figure 1) and 
 � is the unit outward normal vector on

� �
.
The functions � � � � � and �

�
are the virtual controls. They are chosen in such a way that

� � and � � “adjust” in the best possible way on the overlap
� � 	 � � . To this aim we introduce

the cost functional

�
�
� � � � � � � � � � �

%
@ E f D�E h �

� � � � � � � � � � � � � � � � � � G � �
and consider the minimization problem:Z c T�

f � � h � � h � � � � � � � � � � ��z (3)

This problem has a unique solution. Indeed, let us rewrite the solutions � � and � � of (2)
as

� � � � � � � � � � � � � � � � � � � �
where � � � depends on the data

�
and � , � � � depends on

�
� � and

�
, � � depends on ��� , � �

depends on �
�

and �
�
, and satisfy:� � � � � � � in

� � � � � � �(� on
� � � � � � � I on

� � �� � � � � I in
� � � � � � I on

� � � � � � � � on
� � � (4)

and � � � � � �
�

in
� � � � � � �(� � 
 � � � � � � � on

� � �
� � � � I � 
 � � � � � � � I on

� � �� � � � � I in
� � � � � � I � 
 � � � � � I on

� � �
� � � � � 
 � � � � � ��� � on

� � z (5)

Then

�
�
��� � � � � � � � � �%

�
�
��� � � � � � � � � � � ��� � � � � � � � �
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where the quadratic functional
�

is given by

�
�
� � � � � � � � � � @ E f D�E h � � � � � � � � G � �

while
�

is an affine functional. Consequently, if the functions �
�

and �
�

are smooth enough,
one can define a semi-norm

� � � � � � � � � � � � j � � � � �
�
�
� � � � � � � � � � � u � � (6)

on the space of � � � � � � � � � j .
Actually, this is a norm. Indeed if

�
�
� � � � � � � � � � I , then � � � � � � � in

� � 	 � � . ¿From
(4) we know that � � � I in

� � 	 � � , and � � I on
� � � ��� � 	 � � � 	 � � . Moreover, from

(5) we obtain that 
 � � � � I on
�

too. Thus by the continuation theorem it follows that
�
� I in

� � 	 � � . Then ��� � � � � � � � I which leads to the conclusion that (6) is a norm.
Therefore, if all data are smooth enough, Z c T � � � � � � � � � � � admits a solution in the space

of � ��� � � � � � � j obtained by completion for the norm (6).

Numerical results for the overlapping heterogeneous decomposition

In order to approximate the fourth order problem by Galerkin method with Lagrangian poly-
nomials, we consider a mixed formulation of problem (1). For the sake of simplicity we
consider homogeneous boundary data, that is � � I and

� � I . The mixed formulation we
have adopted reads as follows. Given

� � � � � � �
, find

�
� � � � � � ��� � �� � � � � � � � � � �

� � � � � ��� �
E �

�

� � � � ��� � E � � �
� � �
E L � � � �� � � �

�

� � � � � �
� E � � � � � � E � I L � � � � � � �

� (7)

where
� � � � �

E
denotes the

� �
inner product in

�
.

Remark 1 Let us set



�
� � ��S � � � � � � � � � ��� �

E �
�

� � � � ��� � E � �

� � � � � �
� E � � � � � � E z


 is continuous over the space
�

and is positive over the space
� �� � � � � � � � � �

. In fact


�
� � ��S � � � �

� k � � k ��
h
n ERp � k � k ��

h
n ERp . Then, if the solution of (7) exists, it is unique. On

the other hand, the weak form of problem (1) reads: find � � �
�
�
��� �

such that:

�

� � � � � � �
� E � � � � � � �

� E
�
� �
� �

� E L � � � �
�
� � ��z

Existence and uniqueness of � follows by Lax-Milgram Lemma. Moreover, � � ��� � � �
(if
�

is regular enough) and the couple
�
� � � � � � �

�
is a solution to problem (7).

In order to formulate the mixed heterogeneous problem we define:�� � � � �� � � � � � � � ��� � �
,
�� � � � �� ��� � � , � � � � �� h � � � � � � � � � � �

, � � � � �� f � � � � where
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� ��  ��� � � � � � � � � ��� � � � � � �  � I j . Then we solve the minimization problem (3) where
� � � � � ,

�
� � � � � � � � � are the solutions to the following problem��������
������

�
� � � � � ��� �

E h �
�

� � � � � ��� � E h � � �
� � �
E h L � � � �� ��� � �

�

� � � � � � �
� E h � � � � � � � E h � �

@
�

h
�
� �
G;H L � � � � � � � �

� � � � � ��� � E f � � �
� � �
E f L � � � �� ��� � �

� � � ��� on
� � � � � � � � on

� �

(8)

The minimization problem (3) is solved by the BFGS Quasi-Newton method with a mixed
quadratic and cubic line search procedure ([JS96]), while we use a Galerkin approximation
by conformal spectral elements to solve the associated problem (8).

We have considered the following domain and its decomposition:�
�
� �
� � �

� �
�
� � � � �

� �
z � � � � �

� � �
�
�
� � �

� I � � � � � � � � � ��z
The right-hand side and the boundary data are chosen so that the analytical solution is �

���
� � � ���� � �

�
� \ � � � � � � �

� \ � z
In
� � we have considered � � % equal spectral elements, while in

� � % � % equal spectral
elements. If not otherwise specified, the polynomial degree has been set  � � .
In order to assess numerically the above theory, we consider the following error terms, that
we show in Table 1. The minimum value attained by the functional �

�
� � � � � � � � � : �� ; the

maximum interface errors and the
� �

-norm errors for � ��� � % :H
� ��� k � � � � � k ��� n �  p � �

�
�
� � � � �  � � � �

h � �  �
� � �

�

h � �  � � �
�
���

� � �
k � � � � � k l

h
n E  pk � � k l

h
n E  p � (9)

where � is the analytical solution of the global fourth-order problem (1), � � are the numerical
solutions of the virtual control problem (3) and � � is the spectral element solution of the
discretized global fourth order problem (1).

�

H � H
� �

� �
�
�
� � �

�
�
� � �

�
� �

� � �
�
� �

� �
1 1.90e-1 9.92e-2 6.58e-4 1.95 2.02 1.96 2.02

� I � � 3.64e-4 2.97e-3 1.47e-7 1.04e-3 3.08e-2 2.74e-4 3.08e-2
� I � � 1.28e-6 1.23e-6 6.36e-14 1.02e-3 6.96e-4 3.33e-6 3.62e-6
� I � � 1.25e-6 1.13e-6 6.18e-14 1.02e-3 6.96e-4 3.33e-6 1.06e-6

Table 1: Numerical results for the heterogeneous coupling with overlap.

We note that the minimum value attained by the functional � � tends to zero when the
coefficient � tends to zero, as well as the jumps of the solution across the interfaces. The� � �

norm errors are bounded from below by the discretization error, which depends on the
spectral polynomial degree  .

The non overlapping situation

We consider now a decomposition by two disjoint subdomains
� � and

� �
and a unique inter-

face
� � � � � 	 � � � . Again,

�
� � � � � 	 � �
for � ��� �&% (see Figure 2).
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PSfrag replacements � � � �
� � � ��


 �

Figure 2: A partition of
�

in two disjoint subdomains.

The homogeneous coupling for the fourth order problem (1) would read as follows: we
look for � , � on

�
which solve the minimization problemZ�c T� � � � � � � � � � � � � � � � � � � � � (10)

where � � and � � satisfy:�� � � � � � � �
in
� �

� � � � � 
 ��� � � � � on
� �

� � � � � 
 � � � � � � � on
�

�� � � � � � �
�

in
� �

� � �(� � 
 � � � � � � on
� �

� � � � � 
 � � � � � ��� on
� �

(11)

and 
 � is the unit normal vector on
�

directed from
� � to

� �
.

The most natural choice of the cost functional is

� � � � � � � � �%
@
�

� �
� � � � � � � � � � � �� � � � � � �� � � � � (12)

� � � � � � � � � � � � � � � � �� � � � � � � �� � � � � � G�H
where both � � and � � depend on the virtual controls � and � and

� � � � � stands for 
 � � � .

Remark 2 The choice of the functional � � is justified by the fact that the global solution of
problem (7), which annihilates the right hand side of (12), is looked for in

� �� � � � � � � � � �
.

Another possible choice for the cost functional is obtained by looking at the mixed for-
mulation of problem (11) that we are going to introduce. For � � � � % we define

�� � �� �� � � � � � � � � � � �
and

� � � � ��  � � � � � � � ��� � �
. The mixed approach for the homogeneous

coupled problem (11) reads: find
�
� � � � � � � � � for � � � �&% such that:� � � � � ��� � � E/f � �

� � � � � ��� � � Eif � � �
� � � � E/f L � � � � �� ��� � � (13)

�

� � � � � � � � � Eif � � � � � � � � Eif � �

@
�
� � � L � � � � � ��� � � (14)

� � � � � ��� � �
ERh �

�

� � � � � ��� � � E h � � �
� � � �

ERh L � � � � �� ��� � � (15)

�

� � � � � � � �
� E h � � � � � � � � E h � �

�

@
�
� �

� L � � � � � ��� � �
(16)

� � � � � � � on
� � (17)



266 GERVASIO, LIONS, QUARTERONI

and the virtual controls � and � are determined by the minimization problem (10).
The choice of the functional is made based on the following observation. Taking � and � �� 
� ��� �

in (7) we obtain by integration by parts� � � � � � � � � � �
a.e. in

�
(18)�

� � � � � � I � �
a.e. in

� z
(19)

To be more general, let us assume that � takes two different values � � in
� � and �

�
in
� �

.
Then let � � � � u �� � � � � and denote by �� � an extension of � in

� �
such that �� � � � � � � � �

,

�� � � �  � I , �� � � � � � , � � � � % . Then, taking

� � �
�� � in

� �
��
�

in
� �

in (7) and using (18) we deduce that@
�

� � � �� � � �
� � � � �� � � � �

� @
�

� � � �� � � � �
� � � �� � � � � � IvL � � � � u �� � � � ��z (20)

Proceeding in a similar way in the second equation of (7), this time using (19), we obtain that@
�

�
� � � � �� � � � �

� � � �� � � � � � I L � � � � u �� � � � ��z (21)

This latter condition is implicitly guaranteed by having chosen the same multiplier � in (14)
and (16). On the other hand, since problem (13)-(17) guarantees neither the continuity of� across the interface nor the transmission condition (20), we look for these properties by
choosing the following cost functional

� �
�
� � �

�
� �
%
@
�

� � � � � � � � � � � � � � �� � � �
�

� � �� � � � � � � � �� � � � �

� � �� � � � � � +
In Table 2 we show the numerical results obtained by the minimization of functional � � , versus
the coefficient � . The quantities

H � � ,

H
� and

H � � stand for the maximum norm of the jumps
of
� � � � � � , � and

� � � � � � on
�

, respectively, while
�
� � is the minimum value achieved by

the cost functional � � . Moreover
�
�
�
� �

and
�
�
� �

� �
(for � � � �&% ) are the errors defined in

(9). The jump of � on
�

is not reported since it is always of the same order of the machine
precision.

�

H � � H
�

H � � �
� � �

�
�
� � �

�
�
� � �

�
���

� � �
�
���

� �
�
z

3.71e-5 2.85e-5 4.73e-4 5.88e-08 9.80e-4 6.97e-4 6.21e-6 3.80e-6
� I � � 9.81e-7 2.72e-5 1.54e-5 2.22e-10 9.79e-4 6.96e-4 1.55e-7 1.20e-7
� I � � 2.03e-8 5.12e-7 2.26e-6 1.01e-12 9.79e-4 6.96e-4 1.20e-6 8.44e-7
� I � � 8.00e-5 1.47e-7 2.26e-8 3.41e-09 9.79e-4 6.96e-4 1.17e-6 8.23e-7

Table 2: Numerical results for the homogeneous coupling without overlap. Minimization of
the functional � � .
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�

H � � H
�

H � � �
� � �

�
�
� � �

�
�
� � �

�
���

� � �
�
���

� �
�
z

2.15e-5 2.83e-5 2.10e-4 1.20e-08 9.79e-4 6.96e-4 2.49e-6 2.47e-6
� I � � 3.31e-6 3.98e-6 2.07e-4 7.51e-12 9.79e-4 6.96e-4 1.31e-6 9.18e-7
� I � � 4.62e-6 5.32e-6 2.23e-6 1.12e-11 9.79e-4 6.96e-4 1.07e-6 7.49e-7
� I � � 8.00e-5 2.92e-7 2.27e-8 3.41e-09 9.79e-4 6.96e-4 1.18e-6 8.27e-7

Table 3: Numerical results for the homogeneous coupling without overlap. Minimization of
the functional �

�
.

�

H � � H
�

�
� �

�
�
�
� � �

�
�
� � �

�
� �

� � �
�
� �

� �
�
z

8.28 2.47e-4 1.76e-02 1.82 1.78e-1 1.82 1.78e-1
� I � � 1.50e-1 8.62e-5 5.89e-05 1.13e-3 3.08e-2 5.63e-4 3.08e-2
� I � � 1.60e-5 3.08e-7 6.83e-09 9.79e-4 6.96e-4 1.13e-6 3.41e-6
� I � � 2.68e-7 2.69e-7 7.05e-13 9.79e-4 6.96e-4 1.19e-6 8.31e-7

Table 4: Numerical results for the heterogeneous coupling without overlap. Minimization of
the functional � � .

Remark 3 When the functional � � is replaced by a simpler functional in which the terms
depending on � � are dropped, similar results to those of Table 2 are obtained.

In Table 3 we show the numerical results obtained by the minimization of functional �
�
.

The heterogeneous coupling for non overlapping situations reads as (8), where we use the
virtual controls � instead of �

�
and a single control � instead of � � and �

�
and then we solve

the minimization problem (10). In this case we choose the following cost functional:

� �
�
� � �

�
� �

%
@
�

� � � � �� � � � � � �� � � � �

� � �� � � � � � �
�

� � �� � � � � � G�H z
Note that through the minimization of � � we are enforcing the fulfillment of the matching
conditions (20) and (21) where, this time, we have taken � � � I .

In Table 4 we show the numerical results obtained by the minimization of functional � �
on the heterogeneous coupling without overlap. In particular we define

H
� � k � � � � � � � �� � � � � � � � � � � � � � � � k � � n � p .

As for the overlapping case, we note that the minimum value attained by the functional � �
tends to zero when the coefficient � tends to zero, as well as the jump of the normal derivative
of � across the interface

�
. Again, the

� � �
norm errors are bounded from below by the

discretization error, which depends on the spectral polynomial degree  .
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25 Building preconditioners for incompressible Stokes
equations from saddle point solvers of smaller dimensions

L. F. Pavarino1, O. B. Widlund2

Introduction

Balancing Neumann-Neumann methods are introduced and studied for incompressible Stokes
equations discretized with mixed finite or spectral elements with discontinuous pressures. Af-
ter decomposing the original domain of the problem into nonoverlapping subdomains, the
interior unknowns, which are the interior velocity component and all except the constant pres-
sure component, of each subdomain problem are implicitly eliminated. The resulting saddle
point Schur complement is solved with a Krylov space method with a balancing Neumann-
Neumann preconditioner based on the solution of a coarse Stokes problem with a few degrees
of freedom per subdomain and on the solution of local Stokes problems with natural and
essential boundary conditions on the subdomains. This preconditioner is of hybrid form in
which the coarse problem is treated multiplicatively while the local problems are treated ad-
ditively. The condition number of the preconditioned operator is independent of the number
of subdomains and is bounded from above by the product of the square of the logarithm of
the local number of unknowns in each subdomain and a factor that depends on the inverse of
the inf-sup constants of the discrete problem and of the coarse subproblem. Numerical results
show that the method is quite fast; they are also fully consistent with the theory. This work is
described in much more detail in [PW02], which contains a full proof of our result as well as
many more references to the literature.

The Stokes System and Discretizations

We consider the incompressible Stokes equations on a polyhedral domain
� � � � � G � % �,� ,���������

�������

�
� @BE � � � ��� G � � @�E � Z�� ��� G � �

@�E�� �	� G � L � � � � �� � � � � � �
� @ E � Z�� ��
 G � � I L 
 � � �� � � �

�
� � � � �� �

(1)

where
� � � � � � ��� � � �

, � �
� � � u � � � � � � � � and

�
A�E
� � 


G�H
� I . We discretize this system

with any pair of stable Stokes elements with discontinuous pressures, such as
� � � � � � � � � � �

and
� � � � � � � � � � � mixed finite elements (see Brezzi and Fortin [BF91]), or

� �
� � � � �

mixed spectral elements (see Maday, Meiron, Patera, and Rønquist [MMPR93]). This last

1Università di Milano, pavarino@mat.unimi.it
2Courant Institute of Mathematical Sciences, widlund@cims.nyu.edu
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choice is not uniformly stable, since the inf-sup constant of the discrete problem decays as
� � � � � � n � � fh p .

The discrete system obtained has the form� � �
��� � � � � �� I � � ���� � ��� I � z (2)

Substructuring for Saddle Point Problems

The domain
�

is decomposed into open, nonoverlapping quadrilateral (hexahedral) subdo-
mains

� �
, of characteristic size

�
, and the interface

� � i.e.,�
� � �� � � � � � � z

Here
� �	��
 �� � � � � �� � � � z Each

� �
typically consists of one, or a few, spectral elements of

degree
�

or of many finite elements. We denote by
� Q

and
� � Q

the set of nodes belonging to
the interface

�
and

� �
, respectively. The starting point of our algorithm is the implicit elim-

ination (static condensation) of the interior degrees of freedom, i.e., the velocity component
that is supported in the open subdomains and the interior pressure components with zero av-
erage over the individual subdomains. This process is carried out by solving decoupled local
Stokes problems on each subdomain

� �
with Dirichlet boundary conditions for the velocities

given on
� � �

. We then obtain a saddle point Schur complement problem for the interface
velocities and a constant pressure in each subdomain. This reduced problem will be solved
by a preconditioned Krylov space iteration normally the preconditioned conjugate gradient
method.

In order to eliminate the interior degrees of freedom, we reorder the vector of unknowns
as ���� � �� �

� �
� �

����� interior velocities
interior pressures with zero average
interface velocities
constant pressures in each

� � z
Then, after using the same permutation, the discrete Stokes system matrix can be written as�� � � � � �� �� � � � � � �� �

���� � � � � �� � � �� � I� � � I � � � I
� � � � �� � � � � � ��I I � � I

� ��� z
Eliminating the interior unknowns � � and � � by static condensation, we obtain the saddle

point Schur complement system

�
� �	�
� � � � � �� I �

where
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� � � � � � � � � � � �� � � �� � �
�
� � � � � ��� � I � � � � � � � �� �I I � � � � � � �� �� � � I � � � � � �� � I� � � I �

�
� � � � ��� � I � �

and � �� I � � � � �I � � � � � � � �� �I I � � � � � � �� �� � � I � � � � � �I � z
One can show that

� � is positive definite. By using a second permutation that reorders the
interior velocities and pressures subdomain by subdomain, we note that � � �� � represents the
solution of  decoupled Stokes problems, one for each subdomain and all uniquely solvable,

in parallel, with Dirichlet data given on
� � �

, i.e., � � �� � � G � � � � � n � p� � � � � .
The Schur complement

�
does not need to be explicitly assembled since only its action

� � on a vector � is needed in a Krylov iteration. This operation essentially only requires
the action of � � �� � on a vector, i.e., the solution of  decoupled Stokes problems. In other
words,

� � is computed by subassembling the actions of the subdomain Schur complements
� n � p defined for

� � � given by

� n � p � � n � p� � � � n � p� � � � n � p� � � � � � n � p �� � �

�
�
� n � p� � n � p ��� n � p� I + z

Once

� � �
� � � is known,

� � �
� � � can be found by back-substitution.

This substructuring procedure can be described in terms of a space decomposition of the
discrete spaces, in the spirit of the standard Schwarz framework; cf. [PW02].

A Neumann-Neumann Preconditioner

We will solve the saddle point Schur complement problem

�
� �	�
� � � � � � � � ��� � I � � �
�� � � � � �� I �

by a preconditioned Krylov space method such as GMRES or PCG. We note that this Schur
complement problem is positive definite on the benign subspace where the constraints hold.
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We are therefore able to use the PCG because we will start and keep the iterates in the benign
subspace

� � � � � �M\ 	 � � � � .
Our balancing Neumann-Neumann preconditioner is based on the solution of a coarse

Stokes problem with a few degrees of freedom per subdomain and of local Stokes problems
with natural and essential boundary conditions on each subdomain. This preconditioner is
of hybrid form in which the coarse problem is treated multiplicatively while the local prob-
lems are treated additively; cf. [SBG96, p. 152]. It is closely analogous to the balancing
Neumann-Neumann preconditioner for the positive definite case, except that the coarse and
local problems are saddle point problems. For previous work on Neumann-Neumann methods
for elliptic problems, see [Man93], [MB96], [LT94], [TMV98], [DW95], and the references
in [PW02].

The matrix form of the preconditioner is

� � � l � � � � � l � � �q
� � � � � � � � � � l �

�

where the coarse operator
� l

and local operators
� �

are defined below. The preconditioned
operator is then

� � � � � � � �
� � � � �

� �q
� � � � � � � � � � � �

where � � � � l � and � � � � � � .
Coarse solver: Given a residual vector 	 , the coarse term

� l 	 is the solution of a coarse,
global Stokes problem with a few velocity degrees of freedom and one constant pressure per
subdomain

� �
:

� l � � �l � � �� � l �
where

� l � � � �� II � � �
and

� � � � l � � �l � � � �� � � � � � �� � ��� � � � I � z
We will consider three choices for the matrix

� � , resulting in the coarse velocity spaces
� �� � � �� , and

�
�
� , respectively. Some of the columns of

� � are always defined in terms of
the Neumann-Neumann counting functions �

�
associated with each subdomain

� �
: �
�

is zero
at the interface nodes outside

� � �
while its value at any node on

� � �
equals the number of

subdomains shared by that node. Its pseudo inverse �
�� is the function � � � �

� � �
for all nodes

where �
� � � � �� I � and it vanishes at all other points of

� Q � � � Q z
We note that we use the

function �
�� in all or almost all of the subdomains and for each velocity component. Then the
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columns of
� � are defined by one of the following three choices:I � the inverse counting functions �

�� �
�
�

the �
�� and the continuous coarse piecewise bi- or tri-linear functions �

% � the �
�� and the continuous coarse piecewise bi- or tri-quadratic functions

z
In order to avoid linearly dependent �

�� functions, and hence a singular coarse space problem,
we might have to drop all of the components of these functions for one subdomain, depending
on the coarse triangulation.

Local solver: The local operators
� �

will only be applied to residuals of velocity fields
in the benign subspace

� � � � and thus the second residual component will vanish. Each local
operator

� �
is based on the solution of a local Stokes problem on

� �
with natural boundary

condition. These local problems are nonsingular for all subdomains
� �

the boundaries of
which intersect

� �
, but they are singular otherwise, i.e., for the floating subdomains. To

avoid possible complications with singular problems, we modify the local Stokes problems
on the floating subdomains, by adding � times the velocity mass matrix to the local stiffness
matrix � n � p . It can be shown that after the coarse correction, that follows the local solvers,
the iterates will be independent of the pressure field computed locally.

Given a residual vector with a first component 	 � and a zero second component,
� � 	 is

the weighted solutions of a local Stokes problem on subdomain
� �

with a natural boundary
condition on

� � � � � �
:

� � 	 � � � �� 
 � �� II I � �
� n � p� � �

� n � p ��� n � p� I + � � � 
 � �� � � II I � � 	 �I � z
Here

� �
are I � � restriction matrices mapping 	 � into 	 �  and


 �
are diagonal matrices repre-

senting multiplication by the counting functions �
�
. Moreover,

� n � p
� �

�
� n � p� � �

� n � p ��� n � p� I +
is the local saddle point Schur complement, associated with subdomain

� �
, of the regularized

local stiffness matrix

� n � p� �

������ � n �
p
� � � �

� n � p �� � � n � p �� � � � I� n � p� � I � n � p� � I
� n � p� � � �

� n � p �� � � n � p� � � �

� n � p ��I I � n � p� I
� ����� �

where
� n � p

� � � n �
p
� � � n �

p z
� is a positive parameter, and � n �

p
is the local velocity mass matrix.

This balancing Neumann-Neumann preconditioner can be associated with a subspace de-
composition of the interface space; cf. [PW02]. Our main result in that paper is:
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Theorem 1 On the benign subspace
� � � �

�
� � the balancing Neumann-Neumann operator� is symmetric positive definite with respect to the

�
bilinear form and

��� �
G �
�
�#� � � � � �

� �
� �
�
� � �

where

� � �� � �
� � � U�� � � � � � � � for finite elements
�
� � � U�� � � � for spectral elements �

� � and � are the inf-sup constants of the coarse problem and the original discrete Stokes
problem respectively.

We note that
� �� results in a poor constant � � , while we can prove that

�
�
� results in a constant

� � uniformly bounded away from 0.
� �� also gives satisfactory results.

Numerical Results with
� ��� � � � % Spectral Elements in the

Plane

We report, in this last section, results of some numerical experiments, carried out in Matlab
5.3 on Unix workstations, for a model Stokes problem on the unit square and with homoge-
neous Dirichlet boundary conditions. The problem was discretized with

� �
� � � � � spectral

elements and the domain
�

divided into �  
� �  square subdomains. After the implicit

elimination of the interior unknowns, the saddle point Schur complement is solved iteratively
by PCG, starting and keeping the iterations in the benign subspace

� � � �

�
� � . The initial

guess is always zero, the right hand side is random and uniformly distributed, and the stopping
criterion is

k 	 � k � � k 	 � k � � I � � , where 	 � is the residual at the
� �

th iterate. The singularity
of the local Neumann solves for the floating subdomains is avoided by shifting the diagonal
of the local velocity stiffness matrices by � ��� I ��� z

The iteration counts are reported in Figure 1. These results show that PCG with our
balancing Neumann-Neumann preconditioner is quasi-optimal and scalable, except with the
first choice of coarse space

� �� . In fact, we have found the
� �� coarse space not to be inf-sup

stable and the iteration counts of PCG seem to grow linearly with  in that case.
The maximum eigenvalue of � is reported in Figure 2 (it can be established that the

minimum eigenvalue is always close to 1). The left panel of Figure 2 shows the corresponding
results for Poisson equation. We note that the iteration counts for the Stokes case are just
slightly worse than for the Poisson case; see [PW02] for more complete results.
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26 Multigrid for the Mortar-type Nonconforming Element
Method for Nonsymmetric and Indefinite Problems

Zhong-Ci Shi 1, Xuejun Xu 2, Jinru Chen3

Introduction

The mortar finite element method has been used to deal with non-overlapping domain de-
compositions. It can handle the situation where the mesh on different subdomains need not
align across interfaces, and the matching of discretizations on adjacent subdomains is only
enforced weakly. In [2], Bernardi, Maday and Patera introduced basic concepts of general
mortar elements, including the coupling of spectral elements with finite elements. Recently,
many works have been done in constructing efficient iteration solvers for the discrete system
resulting from the mortar element method. In [4], Gopalakrishnan and Pasciak presented a
variable V-cycle preceonditioner, while Braess, Dahmen and Wieners [3] established another
kind of W-cycle multigrid based on a hybrid formulation which gives rise to a saddle point
problem. However, there are only few papers that are concerned with nonconforming ele-
ments, e.g. Marcinkowski [5] presented a � � nonconforming mortar element, but only for
symmetric and definite problem. Meanwhile, an optimal multigrid for this method was given
in [7].

The purpose of this paper is twofold. First, a mortar-type nonconforming element method
is suggested for nonsymmetric and indefinite problems together with optimal error estimates.
Second, a multigrid algorithm is proposed for the mortar element method which gives an
optimal convergence rate, independent of the mesh size and mesh level. Finally, we describe
the construction of the basis of the mortar-type nonconforming element space.

A model problem and the mortar element method

Consider the following model problem� � � � � � � ��� � � � � � � �
� �
G
� �

� Z�c �
�

� � I U c � � � (1)

where
� � � �

is a bounded polygonal domain,
� � � �

�
��� � " �

is a uniformly symmetric
positive definite tensor on �

�
,
� � " � � � � � � � �� �

, �
��� � � � � � � �� � � �

,

G ��� � � � � � �� �
, and

� �� � � � �
.
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The variational form of (1) is to find � � � �� ��� �
such that� �

� � �
�
�
� �
� �

� L � � � �� � � �
� (2)

where the bilinear form� �
� � �

�
�
��� � � � � �

� � � � � � � � �
� � �

�
G
� � �

�
�

where �
G
�
G � � � � .

Assume problem (1) has the following regularity.
(H1). For any

� � � � ��� �
, it holds thatk � k � � � k � k � z

We now introduce a mortar finite element method for solving (1). First, we partition
�

into nonoverlapping polygonal subdomains such that

�
�

��
� � � � � � c � � � 	 � " ��� � � �� $ z

They are arranged so that the intersection of
� � 	 �#"

for � �� $ is either an empty set, an edge
or a vertex, i.e., the partition is geometrically conforming. The interface

� � ��
� � � � � � � � �

is broken into a set of disjoint open straight segments � � � � � � � � �
(that are the edges of

subdomains) called mortars, i.e.

� ����� � � �� � � � � 	 � � ��� � Z T � �
� �

z
We denote the common open edge to

� �
and

� "
by � � . By �B� n � p we denote an edge of

� �
which is a mortar and by �'� n " p an edge of

� "
that geometrically occupies the same place

called nonmortar.
Let
O �� be the coarsest triangulation of

� �
with the mesh size

� � . The triangulation gener-
ally does not align at the subdomain interface. Denote the global mesh

� � O �� by
O � . We refine

the triangulation
O � to produce

O �
by joining the mid-points of the edges of the triangles inO � . Obviously, the mesh size

� �
in
O �

is
� � � � � � % . Repeating this process, we get the ' -time

refined triangulation
OB�

with mesh size
� � � � � % � � � � � ' � � �

z z z
�
� �

. Let CR nodal points
denote the nonconforming nodal points, i.e. the midpoints of the edges of the elements inO��

. Moreover, on each level ' , the sets of CR nodal points belonging to
� �

,
� � �

and
� �

are
denoted by

� ��� � � ,
� � ��� � � and

� � ��� , respectively.
Define 	 ��� � � � �

E
 � � � ��� � � � L � � � �

z z�z
�  � � � I U c � � j z

On each level ' , we define the P1 nonconforming element space locally and introduce the
space

� � � � � � � � whose functions are piecewise linear on each triangle of
O ��

and are continuous
at the CR nodes of

� ��� � � � � � ��� � � , and equal zero at the CR nodes of
� � ��� .
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Let

��
�
�

�|
� � � � � � � � � �

�
� �
�
�
E
 � �

� � � � � � � � j z
Of course, we have

�� � �� � � �
�
� �� � z

Moreover, the P1 linear continuous finite element space over the triangulation
O ��

is denoted
by �

� � � � whose functions have zero trace on
� �

. Let

��
�
�

�|
� � � � � � � �

for all ' ��� �
z z�z
�
� z

Obviously,
�� � � � � � � �� � z

and
��
�
� ��
� z

For any interface � � � �B� n � p � �d� n " p � � � � � � , there are two different and inde-
pendent 1D triangulations

O � � �B� n � p � and
O � � �d� n " p � . Moreover, there are two sets of CR nodes

belonging to � � : the midpoints of the elements belonging to
O � � �B� n � p � and to

O � � �d� n " p � de-
noted by � ��� � � n � p and � ��� � � n " p respectively. Additionly, we need an auxiliary test space

�
� � �d� n " p �

which is defined by

�
� � �'� n " p � �� � ��� � � � � � �d� n " p � � c � � Z � � Z b � b��"Z � b � U c � ^ � c;^U c9^a`Kb b � b � bdc;^ UwT ^a`Kb c U c � U+W ^ � W ^ W Z � c �  � � ^aZ U c O � � �'� n " p � j z

The dimension of
�
� � �'� n " p � is equal to the number of midpoints on the ��� n " p , i.e. the number

of elements on �'� n " p .
For each nonmortar �'� n " p , define an

� �
-projection operator

�
� � ����� � � � � � � � � � � �

� � �'� n " p �
by �

�
� � ��� � � � � � � � �

h
n�� ��� � � p � �

� � � � �
h
n�� ��� � � p Li� � � � � �'� n " p � �

where
� � � � � �

h
n������ � � p denotes the

� �
inner product over the space

� � � �d� n " p � .
Now we can introduce the following mortar finite element space for P1 nonconforming

element on each level ' :
� � � � �

�
� �
� � ��

�
� �
� � ����� � � � � � � ����� � � � � � � � ��� � � � � � � � � ���  � � � TVUXW LR� � � ��� n � p � �d� n " p � � j z

Define k � k � � � �� q� s+t � @ � � � ��� � G � L � � � � � � �
and let k � k �� �� �q

� � � k � k �� � � z
We know that

k � k � is a norm over the space
� �

(see [5] for details).
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Then the mortar element approximation of the problem (2) is to find �
� � � � such that� � �

�
�
� �
� �
�
� �
� �
� � L � � � � � � (3)

where � � �
�
�
� �
� �
�
�

�

� �
�
�
� �
� � � � � � � � � � � ��

�

� �
�
�
� �
� �
�

�q
� � � q� s+t � ��� � � � � � � � � �

� � � � � � � � � � �q
� � � q� s+t � � � � � � � � � � � � � � �

�
G
�
�
� �
� ��z

we can prove the following result.

Theorem 1 Assume that � is the solution of (2), and �
� � � �

is the solution of (3). Then if
� �

is sufficiently small, we have

k � � � � k � � � � �q
� � � � �� � � k � k �� � E  �

fh z
Proof. We only give a brief sketch. First we can provek � � � � k � � � � k � � � � k � � Z�c T	

� s 
 � � k � � � � k � � k � � � � k � j
� �  ��
� s


� � � � � � � � � � � � � � � � � �k � � k � � � j z

Then we can show that there exists an element �
� � � � such thatk � � � � k � � � � �q

� � � � �� � � k � k �� � E  � � u � �k � � � � k ��� � � �q
� � � � �� � � k � k �� � E  � � u � �

�  ��
� s 
 � �

� � �
� � � � � � � � � � � � �k � � k � � � � � � �q

� � � � �� � � k � k �� � E  � � u �Xz
Finally, using the idea of Schatz in [6], we can complete the proof.

Multigrid method

Due to the nonnestedness of the mesh spaces, we first introduce an intergrid transfer operator
in this section. Based on this operator, a multigrid iterative method is suggested for solving
(3). Some preliminary results are given in this section, which will be used to derive the
convergence results of the multigrid. In the following, we always assume that the mesh sizes
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similar mesh parameters.

Define the operator
�
� � � � � � �

as:�
�
�
� � � �

�
� � �
� � � � L � � � � � ��z

and � �� � � � � �
�
�

�

� �
� � � � L � � � � � ��z� � � � � � �

� � � � � � � � L � � � � � ��z
It is easy to check that

�
�
� ��

� � � ��z
Then (3) can be written as

�
�
�
�
�
� �
�

where
� � �
� �

�
�
� �
�
�
� L � � � ��z

Before describing the algorithm, we must define a suitable intergrid transfer operator for
the nonnested mesh space

� �
. First, we give an operator �

�� � � � � � � � � �
� � � (see [7] for

details) as follows:

 Case 1. If � �

� ��� � � � � , �
�
��
�
� �
�
�
� �

�
�
��z


 Case 2. If � �
�
�
� � � � � ��� � � � � and �

�
� � � ,

�
�
��
�
� �
�
�
� �
 
�
�
� q �  � � �  � � �

where
�
�
� � � is the set of the vertices of the triangulation

O ��
that are in �

� �
and the sum is

taken over all triangles � � � O �� with the common vertex � and  
�
�
�

is the number of
those triangles.


 Case 3. If � � � � 	 � � �� � � , then �
�
��
�
� �
�
�
� I �

where
� � �� � � is the set of the vertices of the triangulation

O ��
that are in

� � �
.

Remark 1 Note that for different � , the value of  
�
�
�

may be different. For example,
if � is the vertex of triangular substructure

� �
(see Fig.1 in [7]), then  

�
�
�
� � and if � ��

�
� � � � � � ��� � � � � , but �

�
� � � �� � � , then  

�
�
�
� � , and if � � � � �� � � , but is not the vertex of

substructure
� �

and �
�
� � � , then  

�
�
�
� � (see Fig. 1. in [7] for details).

For the operator �
��
, we have[7]

Lemma 1 For � � �
�
� � � � , it holds that�

�
��z k � �� � k � � � � � k � k � � � � � z� % ��z k � �� � � � k � � � � � k � k � � � � � z� � ��z k � �� � � � k � � ��� � � � � u �� k � k � � � � � z

where � � is an edge of
� �

.
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Proof. Please refer to [7] for details.
Based on the operator �

��
, we define an intergrid transfer operator �

� � �� � � � � ��
�

as
follows:

For any � �
�
� � � z�z z z � � � � � ��

�
� � ,

�
�
� �

�
� �� � � � z z z ��� �� � � � � ��

� z
Moreover, the operator

�
� � ����� � � � �� � � ��

�
is defined by

�
�
� � ����� � � � � � � � � � � � � �

�
� � ����� � � � � � � � �  � � � � ��� � � � � � � � � � � � � � ��� � � n " p �I U ^a`Kb W �"Z � b z

Based on above preparation, we now define an intergrid transfer operator
� � � �� � � � � � �

which will appear in the following multigrid algorithm. For any � � ��
�
� � ,

� � � � �
�
� � �q� � � � � � � � � � � � � � � � � � ��z

Lemma 2 For the operator
� �

, we have�
�
��z k � � � k � � � k � k � � � S� % ��z k � � � � � k � � � � � k � k � � � � L � � � ��z

Proof. Please refer to [7] for the proof.
Similar as in [1], we now describe an ' -level scheme. The ' -level iteration with initial

guess � � yields � �
�
' � � � � �

�
as an approximation solution to the following problem:

Find � � � � , such that� � � � � � � � �
�
�
� L � � � � � �"`Kb W b � � ���� z

For ' � � , � �
�
� � � � � �

�
is the solution obtained by a direct method. For '

�
� ,� �

�
' � � � � �

�
� � � � � � 
 � � where � � � � � is constructed recursively from � � and the equations

� � � � � � � � � � �� �
�
�
�
� � � � � � �

� � � � �
where �

�
is the largest eigenvalue of the operator

��
�
. The coarse grid correction 
 � � �

�
� � is

obtained by applying the ' � � -level iteration � times (�
� % )


 � � I � 
 � � � �
�
' � � � 
 � � � � ��

�
� �

� � � � �
where �� � � �� � � is defined by

��
�
�
�
�� �

� � � � � � � � � � � � � � � � L � � � � � � z
Note that 
 � � �

�
� � is the approximation of �


�
� � � � � � � which satisfies� �

� � � �
 � � � � � � � ��
�
�
�
� L � � � � � � z

The main result of this paper is the following theorem
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Theorem 2 Let �
� % . If the number of the smoothing steps is large enough, and the coarsest

mesh size
� � is sufficiently small, then there exists � � � I � � � , independent of ' , such that ifk �
 � � � � 
 � k � � � � � � � k �
 � � � k � � � �

then k � � � �
�
' � � � � �

� k ��� � k � � � � k ��z
Proof. Here we also only provide a brief sketch. First we introduce a projection �

�
� � �� � � � � � � defined by� �

� � � � � � � � � � �
�
� � �
� � �
� � �

� L � � � � � � � � � � � z
Then we can prove k � � � � � � � � � k � � ��� � � � k � � � k � � L � � � � � (4)k � � � � � k � � � � � � � k � k � � � � L � � � ��z (5)

Note that \ � � � � \ � � � � 
 � , we havek \ � � � k � � � � k \ � � � � �
 � � � k � � � � k � � � �
 � � � � 
 � � k � � � � N � � N � �
where �


�
� � � � � � � \ � .

Finally, using Lemmas 1-2 and (4)-(5) we can get

N � � � �� � u � � � � � � � � � � k \ � k � �N � � � � � � � � � � � � � k \ � k ��z
Therefore, we can choose � � � I � � � , and obtain the desired result for sufficiently small

� � .
Construction of the basis

Let � � �� j denote the CR nodes of
O �

. Define operator �
� � � � 	 � ��

�
by

�
� � � �� � � �� � � � �

�
� � ����� � � � �� �� �

�� � ��
� � � � �� � � Z T � �� � �'� n " p � � �I � U ^Y`Kb W �"Z � b �

where �� �� and �� � �� denote the restriction of �� �
	

on mortar �K� n � p � � and nonmortar�d� n " p � � respectively. It is easy to see that if �� is in ��
�

then � � �� � }
�
s
� �
� � � �� is an element

of
� �

.
Let � �

� �� � � ��� � ��� � � � 
� j

be the basis of
� � � � . Then the basis of

� �
consists of functions of

the form � �� � �
� �� � q

�
s
� �
� � � � �� �� ��z
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27 Recent development on Aitken-Schwarz method

J. Baranger, M. Garbey, F. Oudin-Dardun 1

Introduction

The idea of using Aitken acceleration [Hen64] [SB80], on the classical Schwarz additive
domain decomposition method has been introduced in [GTD99]. For an elliptic operator with
constant coefficient on a regular grid, this method is called Aitken-Schwarz procedure, and is
a direct solver. This method has shown very good numerical performances, and has been used
in more complex situations [GTD01].

In this work, we extend Aitken-Schwarz procedure to the case of a 2-D cartesian grid, not
necessarily regular. The key idea is the replacement of the 1-D Fourier transform used on
the regular space step discretization of the artificial interface grid by a transform using the
eigenvectors of a suitable 1-D operator. For simplicity, this presentation is limited here to
the Laplacian operator and to two subdomains. However, our method can be applied to the
Helmholtz operator for example and one-dimensional domain decomposition with an arbitrary
number of subdomains.

In section 2, we recall the basic idea of Aitken-Schwarz method on a regular grid. In
section 3, we describe two extensions of the method on a general cartesian grid : one using all
the eigenvectors, the other a limited number of them. Numerical experiments are described
and analyzed in section 4.

Aitken-Schwarz method on a regular grid

We first recall the basic ideas of Aitken-Schwarz method as described in [GTD01].
Let us consider a linear problem� �

� � �
�

in
�
� � �
A�E
� I z (1)

We partition the domain
�

into two overlapping strips :
�
�
� � � � � ;

� � (resp.
� �

) denotes
the part of the boundary of

� � (resp.
� �

) which is not included in
� �

(boundary of
�

). The
additive Schwarz algorithm is :� �

� �
� �� � �

�
in
� � � � � � �� � � f � � �� � � f � (2)

� �
� �

� �� � �
�

in
� � � � �

� ��
� �
h
� � � � � � h z (3)

We observe that the operator � , defined by :

� � � � � � � � h � � � � h � � �� � � f � � � � f � � �
� �

� �� � � h � � � � h � � � � ��
� �
f � � � � f �

1MCS-ISTIL - University Lyon 1, 69622 Villeurbanne, France�
baranger, garbey, foudin � @mcs.univ-lyon1.fr
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is linear.
Let us consider first the one-dimensional case

�
�
� I � � � ; then, we have the following

linear (affine) relation : � � �
� �� � � h � � � � h � � � � � �� � � f � � � � f � �

� �
� ��
� �
f � � � � f � � � � � � � � � h � � � � h � � (4)

where � � (resp. � � ) is the amplification factor associated to the operator
�

in subdomain
� �

(resp.
� �

). Consequently :� �
� � � � h � � �� � � h � � � � � �� � � f � � � � � � f � �
�
��
� �
f �

� �� � � f � � � � � �� � � h � � � � � � h ��z (5)

So, except if the initial boundary conditions � � � � � h or � � � � �
f

matches with the exact solution �
at the interfaces

�
�
, the amplification factors � � and � � can be computed from (5). Then, if� � � � ���� , the limit � � �  , � � � �&% , is obtained as the solution of the linear system (4).

The Aitken acceleration procedure gives the exact limit of the sequence on the interface�	�
based on two successive Schwarz iterates � �� � �  , � � � � % , and the initial condition � � � � �  .

An additional solve of each subproblem (2), (3) with boundary conditions � 
� � �  , gives the
solution of (4). The Aitken acceleration thus transforms the additive Schwarz procedure into
an exact solver regardless of the speed of convergence of the original Schwarz method.

Let us consider now the 2-D Poisson problem � ��� � � � � �
�

in the square
�
�
� I � � � � ,

with Dirichlet boundary conditions.

We introduce the regular discretization in the � -direction : � � �
� � � �

� �
,
� � �

 �
� ,

and central second-order finite differences approximation of the � � � derivative.
Let us denote by

�� � (resp.
�� �

) the coefficient of the sine expansion of � (resp.
�

). The Pois-
son problem decomposes then into  independent semi-discretised equations corresponding
to sinus waves � Z c � � � � , � � � �

z z�z
�  :

�� � � ��� � � � � � � Z�c � � � � � � % � �� � � �� � z
(6)

These  problems are linear, 1-D and independent. We can apply to each of them the Aitken
acceleration procedure described above. Then, the algorithm becomes :


 step 1 : compute two iterates of Schwarz algorithm with solver of 2-dimensional sub-
domain problem of choice;


 step 2 : compute the sine expansion of the traces on the artificial interfaces, for the two
iterates and the initial condition ; apply Aitken acceleration separately to each wave
coefficients ; re-compose the trace ;


 step 3 : compute an other iteration of Schwarz algorithm.

This method gives satisfactory results. Its parallel implementation share the same communi-
cation pattern than the parallel CFD test case [ETL99]. The analysis of its parallel efficiency
is therefore well known. However, this method is limited to grid with constant space step in� -direction. We proceed then with a generalization of this method to arbitrary space step grid
in y direction.
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Method on a general cartesian grid

Let us consider the Poisson problem � � � � � � � �
�

in the square
�
�
� I � � � � , with Dirichlet

boundary conditions. We consider a � � finite element approximation on the triangles obtained
by cutting each element of the cartesian mesh of

�
:�

� � � � " � � � " �
where � � � " � � � � � � � � � � � � � " � � � � " � , and

� � � � � � � � � � , � " � � " � � " � � .
Let � �

"
be the � � basis function associated to the node

��� � ��� " � ; then, the finite element
approximation of � is defined by :

�
Q
�
q
� � " � �

"
� �
"
�

where the unknowns � �
"

satisfied the following equations :� � �� � � � � � " � � �� � � �� � � � � � � " � �� � � � � � � � " � � " � � " � �
% �� � �� " � � " � � � � �� " � �� " � � � � � " � �� " � � � � " � � � � � � � � � �
% �

� � " � (7)

for � � � �
z z z
�  and $ � � �

z�z z
� � , with boundary conditions. Let us define the vector � � ��

� �
" � "

; these equations appear in matrix form:

� �� �!� � � � � � ��� �� � � �� � � � � � � � � � � � � �% � �
� �
� �� � � � � � � � � � � � �

where the matrix � and � are defined by : � �
G � � � � �� " � �� " � � � and � � � 	 � G � � � � � �� " � � �� " �

�� " � � � � � �� " � � � .
Remark 1 : In the case of a uniform mesh :

� � � � "
� � , the equations (7) becomes:�

� � � � " � � � � � " � � � � " � � � " � � � � � " � � � � � " z
If we consider the sine expansion of � �

"
:

� �
"
� �q� � � �� � � � Z c � � $ � � �

and if we notice that : �
q"
� � � Z�c ��� $ � � � Z c � ' $ � � � � � �

% � � � , then we obtain the discrete ana-

logue of (6) : � �� � � � � � �� � � � � � G � �� � � � �� � � � (8)

for � � � �
z z z
�  , ' � � �

z z�z
� � and with

G �
� % � � � % � Z c � � ' � � % � � . So the Aitken procedure

must be applied separately on each mode 
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For a general cartesian grid, coming back to (7), we define in place of the Fourier transform
as in Remark 1, a new transformation based on vector

� �
to be chosen later:

� �
"
� �q �

� � �� � � � � " z
For technical reasons, which will be clear later, we introduce weights

G
�
; by multiplication

of each line of equations (7) by
� %� " � � " � � G �" � � " � and summation on the parameter $ , we

obtain :

�q �
� � �� � � � �� � �� � � � � � �� � � � �� � � � � � � �� � � �� � � � � �� � � � �q" � � G " � � " G " � � "
� �� �

� � � � � � � �
% �q"

� � G " � � �� " � � " � � � �� " � � � � " � � � � �� " � �� " � � � � � " � %� " � � " � � G " � � " � 
�
� �q"

� � %� " � � " � � � � " G �" � � " z
(9)

We use the following notations (with


�
G � � � � G " � ) :


 ��
� � � �q"

� � G " � � " G " � � " � ��
 � � � 
 � � �
;


 �
G � � � �q"

� � G " � � �� " � � " � � � �� " � � � � " � � � � �� " � �� " � � � � � " � %� " � � " � � G " � � "
�
� 


�� � � � 
 � � �
�

where
� z
�
z �

denotes the discrete scalar product,
� � � � � � " � "

and

�� � � 	 � G � � � � � %� " ��� " � � " � � � � %� " � " � � � � %� " � � � � " � � " � � � � .
In order to obtain an uncoupled system for the unknowns vectors

��
�
�
�
�� �
� � � � � ������� � � ,

we need to diagonalise simultaneously the matrices
�
��
� � �

and
�
�
G � � �

. The matrix �� is non
symmetric, but the choice G "

�
� � " � � � � "� � � � � (10)

implies that the matrix


�� 
 � � is symmetric.

We now choose the vectors

 � �

as the orthogonal family of eigenvectors of the matrix

�� 
 � � , and denote by �

�
the eigenvalue associated to


 � �
:


�� 
 � � ��
 � � � � � � 
 � � z
(11)

Then :

��
� � � �


 � � � � � � � (12)
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and :

�
G � � � � � � 
 � � � � � � � z (13)

We can now state :

Theorem 1 With

G "
defined by (10) and

�
�
�
� �
� �

defined by (11), the system (9) is uncoupled
in
��
�

: � � �� � �� � � � � � �� � � � �� � � � � � ��� �� � � �� � � � � � � � � � � � �% �
� �
�� �
� �

�

 � � � � �

�q"
� � %� " � � " � � � � " G �" � � " �

for � � � �
z z�z
� � .

Each small system in
��
�

is the analog for the general grid of the discrete version of (6) for
the regular grid that is (8).

We denote by
�� �
f �

(resp.
�� �
h �

) the transformed unknowns corresponding to the boundary� � (resp.
� �

) ;
�
�� �
f � � �

and
�
�� �
h � � �

satisfy a relation analogous to (4). Aitken acceleration
procedure is applied to each of them.

Finally, we remark that :
� 

� � �

 � � � � q � �� � � ��
 � � � 
 � � � � �� � � � 
 � � � � �

which allows to compute the ' -component of � � for the decomposition into the vectors basis� �
. We can now summarize the Aitken-Schwarz algorithm extended to grid in y direction

with arbitrary space step:
Algorithm 1


 Step 1 : computation of the matrix



and


�� 
 � � ;


 Step 2 : research of an orthogonal family of eigenvectors of


�� 
 � � , noted

�
�
� � �

;


 Step 3 : decomposition in the base
� � � ���

(with
� � � 
 � � � � ) of � �

f
and � �

h
(which

compute vectors
�
�� �
f � � � and

�
�� �
h � � � ) ;


 Step 4 : acceleration of all modes, using (3) and (4) ;


 Step 5 : recomposition of the trace, using � �  �
q � �� �  � � � ( � ��� � % ).

We notice that in case of Poisson solve with multiple right-hand sides as in Pressure solve for
the time integration of the unsteady Navier Stokes equation with the projection method, Step
1 and 2 can be done once for all. The arithmetic complexity of the method is then dominated
by the subdomain problem solves. Otherwise the arithmetic complexity of step 1 and 2 is of
order  � � and therefore slightly higher than a fast Poisson solver. But such fast Poisson solver
does not work anyway with tensorial product grid exhibiting an arbitrary space step in one of
the spatial direction.
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We can improve the efficiency of our method by accelerating only the � first modes ( � �� ) corresponding to the � smallest eigenvalues. The efficiency of this method depends then
on how small is the damping factor for the remaining higher order modes, and how good is
the truncated representation of the trace on the interface. All these question are well known
for the Fourier case, but less clear for grid with arbitrary space steps.

This second algorithm writes:
Algorithm 2


 Step 1 : computation of the matrix



and


�� 
 � � ;


 Step 2 : research of an orthogonal family of � eigenvectors (corresponding to the �
first eigenvalues) of



�� 
 � � , noted

�
�
� ���
� � ������� � � ;


 Step 3 : decomposition in the base
� � � � � � � ������� � � (with

� � � 
 � � � � ) of � �
f

and � �
h

(which compute vectors
�
�� �
f � � � and

�
�� �
h � � � ) ;


 Step 4 : acceleration of the � first modes, using (3) and (4) ;


 Step 5 : recomposition of the trace, using :

� �  �
�q �
� � �� 
�  � � � � �q�

� �
� � �� ��  � � � � � � � �&% �

(where
�
�� 
� 
� ���

denotes the accelerated vector, and
�
��
�
� 
� ���

, the last iterated vector).

The level of truncation � should be decided adaptively, comparing for example acceler-
ation with � modes and � � � modes. We proceed now with few numerical experiments
illustrating the method.

Numerical results

We consider, on the domain
�
� � I � � � � � I � � � , the Poisson problem :

� �
� ��� � � � �

�
�
�
� with

� � � on
� �

, such that the exact solution is : �
� �
� � � � �

� I � ��� � �
� � � � � �

� � � � � � %
��z

We
use a cartesian grid of

�
with � � � � � elements, uniform in x, randomize in y, (see Figure 1)

and an overlap on one element.
The algorithm using all the modes gives the error and residue shown in Figure 2. The

error is then of order � I � � � after one Aitken acceleration. However, one can apply the method
twice to reduce this error to machine precision level. Figure 3 show compares the performance
of Algorithm 2 depending on the number of modes that are accelerated. Several cycles of
Schwarz Aitken acceleration are applied. We are using a direct solver for the subdomains
problems and � has then a marginal impact on the number of flops. For �

� % I , further cycles
of Aitken Schwarz acceleration does not improve the situation because the higher modes left
out from the acceleration process are the limiting factor of convergence.
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Figure 1: Mesh

Conclusion

We have shown a generalization of the so-called Aitken-Schwarz algorithm to the Poisson
problem discretised on tensorial product grid with arbitrary space step in each direction. The
arithmetic complexity of the method is slightly more expensive than in the case of constant
space step. We expect that the Steffensen-Schwarz analogue of this method will be numeri-
cally efficient for nonlinear problem that are perturbation of the Laplace operator as the Bratu
problem. However the generalization of this method to fully unstructured grid remains the
interesting challenge.
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28 Ahpik: A Parallel Multithreaded Framework Using
Adaptivity and Domain Decomposition Methods for Solving
PDE Problems

A. Ben-Abdallah1, A.S. Charão2, I. Charpentier3, B. Plateau4

Introduction

Domain decomposition methods are a valuable approach when solving partial differential
equation (PDE) problems on parallel computers. In this paper, we focus our attention onto
parallelization strategies for these numerical methods when dealing with irregular applica-
tions, more specifically when adaptive refinement techniques [Ver96] are applied to PDE
problems involving unstructured meshes. A parallel object-oriented framework called AH-
PIK [CCP00] has been developed to cope with such irregular behaviors of simulations relying
on domain decomposition. It provides general abstractions that are suitable for solving PDE
problems on distributed memory machines using finite difference or adaptive finite element
discretizations, along with overlapping or nonoverlapping, synchronous or asynchronous do-
main decomposition methods. One of the main features of AHPIK is the use of multithreading
techniques on distributed memory machines (thus scalable) together with a message passing
library (MPI). This offers a degree of freedom for traditional parallel solvers, where subdo-
main computations are scheduled in the context of heavyweight processes which are assigned
to a given processor once for all. The use of multiple threads leads to programs that are flexible
in terms of data exchange, facilitating a task scheduling with potential for masking commu-
nication overhead. Moreover the object-oriented techniques used in AHPIK make reusability,
flexibility and expressiveness of source code easy.

Our goal in this paper is to show the efficiency of AHPIK concepts by comparing an AHPIK

implementation with an original MPI code which solves an unsteady incompressible Navier-
Stokes problem. The impact of our parallel strategy is investigated in two situations : we first
consider a well-balanced distribution of the subdomains, then we induce an irregular parallel
behavior by adding adaptive mesh refinement to the original code. This paper is organized
in three sections: in the first one, domain decomposition methods and adaptivity techniques
are discussed from a parallelism point of view. The second section presents the multithreaded
framework AHPIK, while the third one provides performance results and analysis after a brief
introduction to our trial application.

1Laboratoire de Modélisation et Calcul, IMAG, Grenoble, Adnene.Ben-Abdallah@imag.fr
2Laboratoire Informatique et Distribution, IMAG, Grenoble, Andrea.Charao@imag.fr
3Laboratoire de Modélisation et Calcul, IMAG, Grenoble, Isabelle.Charpentier@imag.fr
4Laboratoire Informatique et Distribution, IMAG, Grenoble, Brigitte.Plateau@imag.fr
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Mathematical Methods

Domain decomposition methods (DD)

AHPIK can be used for a large variety of domain decomposition methods. In this paper, we
describe its basic design ideas for the resolution of the Laplace equation by a dual Schur
complement method.

In a bounded two-dimensional polygonal domain
�

, we consider the Laplace problem (1):
Find � � � �� � � �

such that � � � � �
�

in
�
�

� � I on
� z (1)

We denote by
�

the boundary of the domain and
�

is assumed to be square integrable. In
the sequel, functions are supposed to belong to well chosen spaces, that is, the PDE problems
have a unique solution.

Let choose a nonoverlapping domain decomposition �
�
�
j
� � � ����� � � of

�
such that� �

� � � � � ����� � � � � ��
� 	 � � � � � L � � � ' � � � � �

z z
� � j � � � �� ' � (2)

We denote by
� � and � � � the boundaries of

�
� that are respectively included in

�
and inter-

faces with other subdomains ( ' ��� �
z�z
� � � ' �� � �

such that

L ��� � ' � � � � �
z�z
� � j � � � �� ' �

� � � � � � � � 	 � � � �� � � � � � 	 � � z (3)

A PDE problem is then defined on each subdomain and boundary conditions are prescribed
on � � � � � � � ' � � � � �

z�z
� � j � � � �� '

�
to satisfy continuity constraints. A Lagrange multiplier

(4) allows to write the variational formulation of the local PDE problem as:
Find � in the appropriate space such that�����

���

� �q
� � � @ E o� � � z � � � G � � @ E o� � � G � � L � � in the appropriate space,@
�
o �
�
�
� �

�
�
� � G�H

� IvL � � � � u � � � � � � � L � � � ' � � � � � z�z � � j � � � �� '
z (4)

Problem (4) may be solved using Uzawa’s method. Let
�
� be the restrictions of function

�
to

domains
�
� , � � be the outer normals to

�
� and �

� � � ����� � ' � � � � �
z z
� � j � � be initial data. The

knowledge of �
� �
�

at iterate
�

allows to compute � � � and �
� � ��
�

as solutions of (5) and (6):

L � � � � �
z�z
� � j � ���

�

� � � � � � �
�
� in

�
� �� � � �� � � � � � �

�
on � � � L ' � � � �

z z
� � j � ' �� �

�
� � � � I on

� � � (5)

� �
� ��
� � �

� �
� �� � � � � � � � �

�
� � �

�
� �
� �
� � �
�
� L ��� � ' � � � � � z�z � � j � � � �(' ��

parameter � has to be determined
��z

(6)
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The trace operator appearing in (6) is defined with respect to the domain decomposition
method. The previous description then applies to both the dual Schur method when the global
mesh is conform and the mortar method [BMP94] when meshes differ from one side of the
interface to the other.

This iterative process may be seen as a composition of computational tasks �
E o

(
� �

� � �
z z
� � j ) that solve local PDE problems (5) in domains

�
� and computational tasks � �

o �
(
� �
� '
� � � � �

z�z
� � j � � �� ' ) that update the Lagrange multiplier (6) corresponding to interfaces� � � . The decomposition of DD algorithms into separate tasks is generic. It is already coded in

AHPIK for the Schwarz overlapping method [Sch90][Lio88] (note that interface computations� �
o �

are empty in this case), the Schur and dual Schur complement methods and the mortar
method. This approach is clearly extensible to the Dirichlet-Neumann method [MQ89]. This
also applies when coding asynchronous algorithm (see for example [BT89]).

Adaptation of the discrete space

Standard a priori error estimates are sufficient to choose a discrete space convenient with
respect to a desired accuracy. Nevertheless, in some cases, solutions may contain singularities,
for which a priori estimates induce the refinement of all the domain for computing accurate
solutions. Adaptivity is an alternate solution. It basically consists in an iterative method that
computes local a posteriori estimates [Ver96] related to the solution at an iteration. They
indicate the part of the mesh that need to be refined, thus allowing to compute a more accurate
solution at a lower cost than if global refinement was used.

When solving a PDE problem in parallel via domain decomposition methods, the use of
adaptive mesh refinement techniques leads to load imbalances among cooperating proces-
sors. The result is an important loss of efficiency since processors solving local PDE problem
on coarse meshes may be idle, waiting for processors working on refined meshes. This is
all the more true as soon as the chosen domain decomposition method is implemented with
synchronous process. An interesting way to cope with this problem consists in assigning sev-
eral subdomains to each processor, and let the computations be scheduled upon availability
of the data they depend on. Doing so, idle times due to communications may be masked
with computations. This approach can be coupled with load balancing strategies which al-
low to perform a new repartition of the subdomains over the processors. One can eventually
“move” subdomains from one processor to another during the simulation if needed. As the
management of such dynamic parallel behavior is usually cheaper with lightweight processes
(threads) than with classical operating system processes, we propose to use the first ones. For
a thorough discussion on the advantages of using threads for parallel irregular applications
see, for example, [Chr96] and [BT98].

Overview of AHPIK

The AHPIK framework is basically composed of C++ classes that provide abstractions for
developing PDE solvers based on domain decomposition methods. Two key abstractions in
AHPIK are internal tasks and interface tasks. Internal tasks perform local computations, i.e.,
computations that require only local data within a subdomain. Tasks �

E o
identified in the

previous section are examples of internal tasks: they solve local PDE problems, what usually
needs solving the sparse linear equation system associated to each subdomain. Interface tasks,
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on the other hand, carry out computations or updates over interface degrees of freedom. They
require data from neighboring subdomains, as well as results of local computations performed
by internal tasks. Tasks � �

o �
identified in the previous section are examples of interface tasks.

Most domain decomposition methods can be described as an iterative process composed by
interactions between these two types of tasks. The methods differ in terms of actual operations
performed by internal and interface tasks and in the manner these tasks communicate and
synchronize their execution.

Based on these ideas, AHPIK programming interface offers C++ classes which encap-
sulate various communication and synchronization patterns for internal and interface tasks.
This includes synchronous and asynchronous algorithms, combined with different conver-
gence control mechanisms. Writing a new domain decomposition solver then involves “fill-
ing in” the internal and interface tasks with computations, as well as specifying interface data
objects that must be exchanged between processors solving neighboring subdomains. Actual
communications are thus hidden from the user. Such high-level approach is achieved through
object-oriented programming, which is employed in AHPIK as a means of providing strong
separation between programming interface and parallel, multithreaded implementation.

Internally in AHPIK, each task is performed by a specialized thread. Additional sender/receiver
threads are employed to carry out communication of boundary data needed for solving each
interface problem. Threads are scheduled by the operating system upon availability of data.
When a subdomain has more than one interface, interface computations can be performed in
parallel by different threads as soon as their input data are available. Several subdomains can
be assigned to each processor by multiplexing the set of threads performing internal and inter-
face tasks. One can also solve uncoupled problems in parallel over the same subdomain. This
is particularly interesting to efficiently exploit symmetric multiprocessor (SMP) architectures
that are widely available nowadays. On such platforms, the different threads composing a par-
allel program can run simultaneously on different processors. Without multithreading, solving
different problems at the same time over the same subdomain usually implies replicating some
data. Multithreading techniques are currently used by other frameworks addressing the de-
velopment of parallel PDE solvers, for example in [RHC

�
96] and [BBD

�
98]. Among these,

AHPIK is distinguishable by combining multithreading with message-passing on distributed
memory machines, and by being specially targeted to domain decomposition methods. The
reader will find in [Cha01] a detailed description of the AHPIK framework as well as the basic
ideas that have oriented its design and implementation.

Numerical Experiments

Our trial simulation model is a nonstationary incompressible flow around a cylinder with a
circular cross section at Reynolds number

� \ � � IXI . This case corresponds to the 2D case
of Schäfer and Turek’s benchmark [ST96]. The flow is governed by the Navier–Stokes equa-
tions. The problem is solved using a parallel projection scheme based on mortar decomposi-
tion method, and a conjugate gradient method is used to solve the interface problem. Details
are given in [Abd98].

The domain is divided into � � � % nonoverlapping subdomains. A regular � � -iso- � � � � �
mixed finite element triangulation is defined on each subdomain. One notices that we do not
require the grids of each subdomain to match; the weak continuity through the subdomain
interfaces is enforced by mortar functions. One of the particular points of this application
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is that viscosity and incompressibility of the fluid are treated within two separate steps, and
components of the velocity field can be computed in parallel.

Our first experiment consists in comparing the original implementation with AHPIK im-
plementation in a case where the workload is well distributed over the subdomains. Such
comparison is carried out over two different platforms : a PC cluster composed of unipro-
cessor nodes, and a SMP PC cluster comprising 2-processor nodes. Both clusters are homo-
geneous, but we notice that processors in the SMP PC cluster have higher clock speeds than
the cluster of uniprocessor PCs. We use 22 nodes for each parallel execution and most nodes
have 4 subdomains to solve. Figure 1 shows the duration of one iteration for both MPI-based
original code and AHPIK implementation.

Figure 1: Results for a well-balanced distribution of the subdomains.

We see that the AHPIK version slightly decrease the performance as compared to the
original implementation on uniprocessor. This can be explained by the good workload dis-
tribution that characterize this experiment. Indeed, when processor utilisation rate is high,
using threads introduce overhead. In a multi-processor node, the AHPIK version produces
better performance than the original implementation for identical execution parameters. We
see that AHPIK implementation mixing threads and message passing automatically adapts to
the multi-processor machine, while the original code keeps using only one processor.

Our second experiment consists in adding adaptive mesh refinement to either MPI-based
original application and the AHPIK application. This introduces load imbalances as the num-
ber of degrees of freedom vary from one processor to another during the time iterative exe-
cution. To simplify implementation, we always refine a whole subdomain, thus we achieve
the final mesh configuration within few adaptations. Figure 2 show results obtained when
running the adaptive codes on each PC cluster platform. While results on the SMP cluster re-
produce the behavior observed in the first experiment, results on the PC cluster composed of
uniprocessor nodes show that, as long as the workload is unbalanced, the AHPIK implemen-
tation can reach or slightly surpass the performance of the MPI-based adaptive code. One can
notice that this experiment reproduces a worst case situation as subdomain computations are
coarse-grain and the interface solution scheme requires frequent global synchronizations. We
expect better performance of the multithreaded version if synchronisation could be relaxed.
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Figure 2: Results for the adaptive case.

1 Conclusion

In this paper we have introduced an object-oriented framework which uses multithreading
combined with message-passing as a parallel implementation strategy for domain decompo-
sition methods. The object-oriented approach provides general abstractions that are suitable
for a variety of domain decomposition methods, including overlapping and nonoverlapping,
synchronous and asynchronous methods. Such abstractions compose a programming inter-
face where communication and synchronization details do not need to be hand-coded as in
MPI-based applications.

We have investigated the performance of AHPIK compared to MPI-only domain decompo-
sition implementation for an unsteady incompressible Navier-Stokes problem. Results show
that multithreading associated to message-passing introduces more flexibility in parallel PDE
solvers relying on domain decomposition, as subdomain computations are dynamically sched-
uled upon availability of data, and the resulting codes automatically adapt to different parallel
architectures. This approach offers a potential for overlapping communication with com-
putations when dealing with irregular applications, however the benefits of such technique
are limited by the globally synchronous behavior of some numerical methods. In this sense,
one of the important contributions of AHPIK rely on its support to multiple synchronization
schemes that can be easily manipulated in the parallel code. This allows for an easy experi-
mental evaluation of different numerical algorithms with different synchronization behaviors
for solving a given problem.

These considerations lead us to conclude that the AHPIK approach offers a good com-
promise between performance and flexibility for implementing parallel PDE solvers based
on domain decomposition. In a near future, we plan to use multithreading combined with
message-passing to implement and evaluate dynamic load balancing strategies for adaptive
PDE computations.



AHPIK: A PARALLEL PROGRAMMING TOOL FOR DD METHODS 301

References
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décomposition de domaine. PhD thesis, Institut National Polytechnique de Grenoble, 2001.

[Chr96]Nikos Chrisochoides. Multithreaded model for dynamic load balancing parallel adap-
tive PDE computations. Applied Numerical Mathematics Journal, 6:1–17, 1996.

[Lio88]Pierre-Louis Lions. On the Schwarz alternating method. I. In Roland Glowinski,
Gene H. Golub, Gérard A. Meurant, and Jacques Périaux, editors, First International Sym-
posium on Domain Decomposition Methods for Partial Differential Equations, pages 1–42,
Philadelphia, PA, 1988. SIAM.

[MQ89]Luisa D. Marini and Alfio Quarteroni. A relaxation procedure for domain decompo-
sition methods using finite elements. Numer. Math, (5):575–598, 1989.

[RHC
�

96]John V. W. Reynders, Paul J. Hinker, Julian C. Cummings, Susan R. Atlas, Sub-
hankar Banerjee, William F. Humphrey, Steve R. Karmesin, Katarzyna Keahey, Marikani
Srikant, and Mary Dell Tholburn. POOMA: A Framework for Scientific Simulations of
Paralllel Architectures. In Gregory V. Wilson and Paul Lu, editors, Parallel Programming
in C++, chapter 14, pages 547–588. MIT Press, 1996.

[Sch90]H. A. Schwarz. Gesammelte Mathematische Abhandlungen, volume 2, pages 133–
143. Springer, Berlin, 1890. First published in Vierteljahrsschrift der Naturforschenden
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29 Efficient Schwarz Methods for Elliptic Mortar Finite
Element Problems

P.E. Bjørstad1, M. Dryja2, T. Rahman3

Introduction

In this paper we investigate an additive and a hybrid Schwarz method for solving systems of
algebraic equations resulting from the approximation of second order elliptic boundary value
problems with (highly) discontinuous coefficients. The discretization is obtained by using the
mortar finite element method on nonmatching meshes, a technique which was first introduced
by Bernardi-Maday-Patera [BMP94]. Several efficient iterative methods have thereafter been
developed for the mortar element, see for example [CW96, Dry96, Dry97, AMW99, CDS99,
BDR00, BDW99, GP00, WK01], and the references therein. The work of this paper is a con-
tinuation of the work done in [BDR00], where two variants of the additive Schwarz methods
were proposed, the average method and the coarse reformulated average method. The refor-
mulated variant is obtained from the average variant by simply replacing its coarse space by
the sum of two special coarse spaces, one associated with the subdomains and the other one
defined on the skeleton of the partition of the domain. This results in an algorithm which is
very well suited for parallel computation and at the same time retains the necessary conver-
gence behavior of a good scalable additive type Schwarz method. In this paper we improve
its parallel feature a step further by splitting the skeleton coarse space into two subspaces, as-
sociated with the set of vertices and the set of mortar nodes, respectively. Experiments show
that this modification does not change the convergence behavior. In this connection, we also
introduce a hybrid version of the method for the problem. Both methods are insensitive to
jumps in the coefficients.

The remainder of this paper is organized as follows. In the next section we recall the
mortar finite element method for the elliptic problem. Then, in the following two sections, we
present our Schwarz methods, and in the last section, we show some preliminary numerical
examples.

The Discrete Problem

Let
�
� � �� � � � � be the partition of the computational domain in two dimensions, where

each
� �

is a polygonal subregion (subdomain), and the subregions are nonoverlapping. We
consider the following differential problem: Find � � � � �� ��� �

such that
� �
� � � �

�
�
� �
�
�
� � � � �� ��� �

� (1)
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where

� �
� � �

�
�

�q
� � � � � � � � � � � �q

� � � � �
� � � � � �

� �
h
n E  p �

and

� �
�
�
�
@ E �
�

G �
�

�q
� � � @ E  � � G � �

with � � being positive and constant in each subregion. We remark that the proposed methods
can be used as preconditioners for the problem when the coefficients � � depend on

�
and are

discontinuous only across the boundary of
� �

. In which case, the constant � � can be taken as
an average of � �

� � �
over

� �
.

We consider only the geometrically conforming case, i.e., the intersection between the
closure of two different subdomains is either empty, a vertex, or a whole edge. The subdo-
mains together form a coarse triangulation of the whole domain

�
with the mesh parameter� ������� � � � , where

� �
is the diameter of

� �
. In each subdomain

� �
, we use triangular ele-

ments. We assume that the triangles touching the subdomain boundary
� � �

are quasi-uniform,
having a mesh size of order

� �
. We do not put such restriction on the interior triangles. We

also assume that the coarse triangulation of
�

and the fine triangulation in each
� �

are shape
regular in the sense of [Cia78]. The resulting triangulation can be nonmatching across subdo-
main interfaces.

Let

{
� ��� � �

be the finite element space of piecewise linear continuous functions defined
on the triangulation of

� �
and vanishing on

� � � 	 � �
, and let

{ Q ��� �
�
{ � � � � � � { � ��� � � � � � �

{
�

� �
�

��z
In order to describe the discrete problem, we need the following auxiliary notations and finite
element spaces. Let

�
� "
be an open edge common to

� �
and

� "
, i.e.,

�
� " � � � 	 � "
, and

let �
Q
 � �	� " �

and �
Q � � �
� " �

be the restrictions of

{
� ��� � �

and

{
" � � " �

onto
�
� "

, respectively.
Note that each interface

� � "
inherits two different discretizations from its two sides. We select

one side of
�
� "

as the master side, called the mortar, and the other side as the slave side, called
the nonmortar. Define the skeleton

� �
� � � � � � � � �

as follows:
� � � � � � � and � � 	 � � � � if �

�
� � �

where each � � denotes an open mortar edge. We write � � as �B� n � p if it is an edge of
� �

,
i.e., �B� n � p � � � �

. Let � � � �'� n " p � � � "
be the corresponding open nonmortar edge of

� "
that occupies the same geometrical space as � � n � p , i.e., �B� n � p � �	� " � �d� n " p . See Fig. 1 for
illustration, where a thick line is drawn on the mortar side of an interface. The thick dots are
used to represent the end points of a mortar or a nonmortar. We say that a function on a mortar
is nonzero if the corresponding thick line is black and zero if the edge is light gray. The same
applies to the end points.

As a general rule for choosing the mortars and the nonmortars, we let �R� n � p be the mortar
and �'� n " p the corresponding nonmortar if � �

�
�
"
. This is necessary for our Schwarz methods

to have a rate of convergence which is independent of the jump of the coefficients. We define
by � � and � � respectively the set of vertices and the set of mortar nodes (nodes on open mortar
edges) of

� �
.
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Since the triangulations on
� �

and
� "

may not match on their interface
� � "

, the func-
tions in

{ Q ��� �
can be discontinuous across the interface

� � "
. A weak continuity is therefore

imposed across the interface using a condition called the mortar condition. Let �
Q �

{ Q
,

where �
Q
� � � �

j
�� � � . A function �

Q �
{ Q

satisfies the mortar condition on ��� n " p , if, for all
functions

� � � Q � � �d� n " p � ( ��� n � p � �d� n " p � � � " ),@ ��� � � � � � � � � � �  � � � " � ��� � � � � � G;H � I z (2)

Here the space � Q � � �d� n " p � is a subspace of �
Q � � �'� n " p � , with functions being constants on

elements touching
� �'� n " p . � Q is a subspace of

{ Q
of functions which satisfy the mortar

condition for all � � � �
. The discrete problem has the form: Find � �

Q ��� � �
j
�� � � � � Q such

that � �
� �

Q
� �
Q �
�
� �
�
Q �
� L � Q � � Q (3)

where

� �
�
Q
� �
Q �
�

�q
� � � � � � � � � � � � � �q

� � � � �
� � � � � � � �

� �
h
n E  p �

and �
Q
� � � �

j
�� � � � � Q . � Q is a Hilbert space with an inner product defined by

� �
�
Q
� �
Q �

.
This problem has a unique solution and its error bound is known, see [BMP94].

Let �
�
�
j

be the set of basis functions of
�
Q

so that
�
Q
�
H
�
� � �

�
�
j
. These basis

functions are associated with the subdomain interior nodes (
� � Q

), the vertices ( � � ) and the
mortar nodes ( �B� n � p Q , �B� n � p � � � �

), which are not on the boundary
� �

. The values on the
nonmortar nodes are determined by the mortar condition. We use

� � � � � � � " � to denote the
values on the nonmortar side ��� n " p , where the values of � � on the corresponding mortar side
and the values of �

"
�

A ����� � � are given.

For the rest of the paper we use the following notations.
� n � p� is the local representation

of the node
�
� , indicating that the node belongs to

� �
. � n �

p
� denotes the standard nodal basis

function associated with the node
� n � p� .

The Additive Schwarz Method

In this section we introduce the additive Schwarz method for the problem (3). The method is
defined using the general framework for the additive Schwarz methods, see [SBG96], i.e., in
terms of a decomposition of the global space

�
Q

into subspaces and the bilinear forms defined
on these subspaces.

The decomposition of the finite element space
�
Q

takes the form

�
Q
� � n � � p � � n � � p � � n � p � �q

� � � � n �
p
� (4)

where
� n � p � � � � � ��� � �  , is a subspace of

�
Q

restricted to the subdomain
� �

with zero values
on

� � �
and the remaining subdomains. The subspaces

� n � � p , associated with the vertices,
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and
� n � � p , associated with the mortar nodes, are defined as follows.

� n � � p � � � � �
Q � � ��� � � I � � � � � � � � � � � Q ��� �� n � � p � � � � �
Q � � ��� � � I � � � � � � � � � � � Q ��� z

The sum
� n � � p � � n � � p equals the skeleton coarse space of the reformulated variant (cf.

[BDR00]). Note that the basis functions on an interface have nonlocal supports on the non-
mortar side, which results in a very dense coupling between the vertices and the mortar nodes
in the skeleton coarse stiffness matrix. The idea of the above splitting of the skeleton coarse
space is to eliminate the effect of such coupling in the algorithm, and, thereby, improving the
computational complexity and the parallel property of the algorithm. The space

� n � p is the
same as the space

� n � p of the reformulated variant. We restate its definition here, but first,
some definitions and notations.

Let � � , associated with the subdomain
� �

, be the piecewise linear continuous function on
the triangulation of

� �
, defined by its nodal values at

� � � � Q . For each such node
�

,

� �
��� �

� �} " �
" � � � �

where the sum is taken over the subdomains that
�

is connected to. We say that a node
�
� is

connected to the subdomain
� �

if
�
� � � � Q . If the node

�
� � � � n � p Q (

�
� � � � n � p Q ) then

�
�

is said to be connected to both
� �

and
� "

if �B� n � p � �d� n " p ( �d� n � p � �B� n " p ). Note that for
� � � �

"
��� , � � is 1 at

� � � � Q , �� at
� � � � � � Q � � � � and

�
� at

� � � � .
We associate with each subdomain

� �
the sets � � and

� �
containing the indices of its

neighboring subdomains defined as follows. � � contains the index of a neighbor
� "

if it
shares an edge

�
� "
(
�	� " � � � 	 � "

) with
� �

.
� �

contains the index of a neighbor
� "

if� � 	 � "
is a crosspoint, there is a subdomain

�
� such that

� � � (
� � � � �

� 	 � � ) and
� " �

(
� " � � � " 	 � � ) are the two edges of

�
� which intersect at that crosspoint, and

� � � is a
mortar in

�
� , cf. Fig. 1(c).

We are now ready to define the coarse space
� n � p which is given as the span of its basis

functions,
� � � � � � � � � � �  , i.e.,

� n � p � H � � � � � � � � ��� � � ��� �  
j z

(5)

Each function
� �

, associated with the subdomain
� �

, is a function in the finite element space�
Q
.
For an interior subdomain

� �
(
� � � 	 � � � � ), the function

� �
is constructed in three

steps. We define
� �

first (i) on
� �

, then (ii) on
� "

for � � �
"
, and then (iii) on

� "
for � � � " .

(i)
� �

on
� �

is given as

� � ��� � � �� � � �
� � � � Q �

� � � �
��� �
�

� � ��� n � p Q � � � �
� ��� � � � " � � � � � � � � � � �d� n � p Q � �d� n � p � �B� n " p z (6)

(ii)
� �

on
�#"

, where � � �
"
, we have two cases to consider. For the first case, let

� � " ��d� n " p � ��� n � p , see Fig. 1(a). Then, on
� "

,

� � � � � � �� � � ��� � � � � � � " � ��� � � � � � � n " p Q � �d� n " p � �B� n � p �� � � � � � � � � n " p Q � � � � n " p 	 � �d� n " p �� � �I � at all other
�

in
�#" Q z (7)
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PSfrag replacements

(a) (b) (c)

� n " p� � n " p� � n � p��#"�#"�#"

� �� �� �

�
�

���
� �
�

���
� �
�

���
� �
�

�d� n " p �d� n � p

Figure 1: Illustrating
� �

on
�#"

, where � � �
"

((a) and (b)) and � � � " ((c)). Here
� �

is the
basis function associated with the interior subdomain

� �
.

For the second case, let
� � " � ��� n " p � �'� n � p , see Fig. 1(b).

� �
on
�#"

is then given as

� � � � � � �� � � � �
" � � �

�
� � � � n " p Q � ��� n " p � �d� n � p �� ��� � � � � � � n " p Q � � � � n " p 	 � ��� n " p �� � �I � at all other

�
in
�#" Q z (8)

For the function
� � � �

in (7) and (8), we assume there is no vertex which is a cross point of
exactly three subdomains.

� � � �
is then given as

� ��� � � � � �
" ��� n " p� � � �

� I � � n " p� �
� (9)

where
� n " p� � � " (cf. figures 1a-1b).

(iii)
� �

on
�#"

, where � � � " , is given as follows. Let
� � � and

� " � be the two edges such

that
� " � � � � n " p � � � n � p and

� n � p� � � � � � 	 � � " � � � � , (cf. Fig. 1(c)). We have then

� � � � � �
�

� � � �
� � n � p� � � �

�
� n �
p
� � I � � � � � � n " p Q �I � at all other

�
in
� " Q z

(10)

On the remaining subdomains,
� � � I . This completes the definition of

� �
for an interior

subdomain
� �

.
If
� �

is a boundary subdomain (
� � � 	 � � �

� � ) then the function
� �

is defined as above
but by imposing �

" ��� �
� I at

� � � � " Q 	 � � Q for all
� " �  � . The values of

� �
on some

nonmortar edges touching
� �

will be different, for details see [BDR00].
A somewhat similar but simpler coarse space defined in terms of discrete harmonic func-

tions in the context of substructuring algorithms for mortar finite element problems can be
found in [Dry97].

We use the exact bilinear form for all subproblems, i.e., for � � � % � ��� � �  and � � � �� n � p , we define � n �
p
� z
�
z � � � n �

p
� � n � p � � as � n �

p
�
� � �

�
�
� �
� � �

��z
The projection like

operators � n �
p
� � Q � � n � p are defined in the standard way, i.e., for � � � % � � ��� �  and

� � �
Q
, � n �

p
� � � n �

p
is the solution of

� n �
p
�
� n �
p
� � �

�
�
� �
� � �

�
� � � � n �

p z
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The additive Schwarz operator is then given as � � } �� � � � � n �
p
, which can be written im-

plicitly as
� �

, where
�

is the additive preconditioner. If we define
� n � p as � n �

p
� � n � p � ,

then the action of
�

on a function 	 can be calculated as � � } �� � � � � n � p 	 . We have the
following estimate for � � � � , the proof follows from [BDR00].

Theorem 1 For � � �
Q
,

� � �� � �
� � �

� � � �
� � � �

�	� � � � � � � � � � (11)

where both � � and � � are positive constants independent of the mesh parameters
� � Z c T � � �

and
� ������� � � � and the jumps of the coefficients � � .

The Hybrid Schwarz Method

We introduce the hybrid method by replacing the additive preconditioner by the following
hybrid preconditioner

�
. The action of

�
on 	 is now calculated in three steps as

� �

� � n � � p � � n � � p � � n � p � 	
� � � � � n � p � 	 � � � � � � ��� � � ��� �  
� � � � � � n � � p � � n � � p � � n � p � � 	 � � � ��z

The last step is necessary for symmetrizing the preconditioner. Note that the subdomain solves
in the second line can be done completely in parallel since we only have nonoverlapping
subdomains. Basically, for this method, in each iteration, we need two extra calculations
of the residual, and one extra solving of each coarse problem as compared to the additive
method. The residual updates are, however, not expensive since we only need nearest neighbor
communication among the subdomains (processors or virtual processors). Due to the special
coarse spaces, it is very cheap to calculate the first residual update, and also, in this case, it is
possible to avoid communication among the subdomains as only the values at the subdomain
interior nodes are needed in the subdomain solves. The analysis of this method can be done
using the general theory for Schwarz methods, see [SBG96], resulting in Theorem 1 for � �� �

where
�

is now the hybrid preconditioner.

Numerical Examples

We now present some numerical results using the Schwarz methods of this paper, as pre-
conditioners for the conjugate gradient method. We compare the results with those of the
reformulated average method introduced in [BDR00].

For simplicity, we let our model elliptic problem have zero boundary values. The force
function

�
has the form

� ��� �
� % � � � Z c � � � � � � Z�c � � � � � , and the domain is the unit square.

The coefficients � � are picked uniformly from the interval
�
� I � � � � I � � and then distributed

randomly among the subdomains.
The test results are presented in Table 1. Each column of the table corresponds to a

method, showing the iteration counts and the condition number estimates (in parentheses) for
different partitions of the domain. The ratio

l Q
remains fixed in all tests.
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Subdomains Additive method Hybrid method
Reform. variant Modified reform.� � �

28 (13.36) 31 (16.07) 15 (4.18)
�
�
� 32 (13.75) 35 (16.19) 17 (4.21)

Table 1: The number of iterations required to reduce the residual norm by � I � � and a condi-
tion number estimate for each test.

The additive Schwarz method of this paper (“Modified reform.”) shows condition number
estimates (iteration counts) which are close to those of the original reformulated variant (“Re-
form. variant”). The former method, however, needs less computation per iteration than the
latter one. This is due to the splitting of the skeleton coarse space, which, in addition, makes
the modified variant simpler and more suitable for parallel computation.

In the third column, we see a very substantial reduction in the condition number for the
hybrid method. Thus, the hybrid method needs approximately half the number of iterations
compared with the additive methods, but this is partially offset by more computation per
iteration. So far, we have not made any comparison between these two methods considering a
more detailed model of their computational complexity and parallel performance, this remains
to be checked. The results show that the methods are all insensitive to jumps of the coefficient
� � across the subdomain boundaries.

We believe that this work extends and complements the work in [BDR00] and that a
detailed computational study as well as experiments with realistic applications should follow
in the future.
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30 Uniform Domain Decomposition for a
Convection-Diffusion Problem

I. Boglaev1

Introduction

In this paper, for solving a singularly perturbed parabolic problem with a convection-dominated
term, we present a finite difference domain decomposition algorithm based on a classical up-
wind difference approximation in a spatial variable and on the piecewise equidistant mesh of
Shishkin-type [MOS96]. These meshes allow us to decompose a computational domain into
subdomains outside boundary layers and inside them as well, and possess load balancing. This
property is very important for implementation of iterative algorithms on parallel computers,
since it avoids loss of efficiency due to one processor being idle. Our purpose is to construct
and analyse a domain decomposition algorithm based on decomposition of boundary layers.
We use a modification of the Schwarz alternating method proposed in [DDD91], in which
the computational domain is partitioned into many nonoverlapping subdomains with interface�

. Small interfacial subdomains are introduced near the interface
�

, and approximate bound-
ary values computed on

�
are used for solving problems on the nonoverlapping subdomains.

Thus, this approach may be considered as a variant of a block Gauss-Seidel iteration (or in the
parallel context as a multicoloured algorithm) for the subdomains with a Dirichlet-Dirichlet
coupling through the interface variables. This modification of the Schwarz method has been
applied in [Bog98] for solving singularly perturbed reaction-diffusion problems.

In [Mat98], for singularly perturbed parabolic problems with convection-dominated terms,
uniform convergent properties of some Schwarz-type methods based on continuous multido-
main decomposition (i.e. without resort to discretization in the subdomains) have been stud-
ied. Here, we construct more accurate estimations of a contraction factor for the multidomain
decomposition algorithm in a discrete form and additionally investigate this algorithm when
the subdomains located inside the boundary layer.

We consider the following singularly perturbed parabolic problem:

��� � � � � � � � � � � � � � � �
� ���

� � � �
�
�

� �
� � � � � �

� � � I � � � � (1)�
� � � � I � �

� �

j
� �

� I � � � � � � � � � � � I � �
���
� I � � � � ��� � � � � � �

where � is a positive parameter, functions �
���
� � � � � � � � � � �

�
and � �

��� �
are sufficiently smooth.

We assume that

� ��� � � � � � � � const
� I � � � � � � � I � ��� � � � � � � � � � � ) � � ) ��z

Under suitable continuity and compatibility conditions on the data a unique solution �
���
� � � of

(1) exists. For � � � problem (1) is singularly perturbed and characterized by an exponential
layer at

�
� I .

1Institute of Fundamental Sciences, Massey University, Private Bag 11-222, Palmerston North, New Zealand,
i.boglaev@massey.ac.nz. This work was supported in part by Marsden Fund MAU809 of the Royal Society of New
Zealand.
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Undecomposed Algorithm

Consider an implicit two-level time difference scheme which possesses an uniform in the
perturbation parameter � convergence.

On set �� introduce a rectangular mesh �
� Q �

�
�
�

, where

�
� Q

� � � � � � � I � � � z'zdz �  � � � � I � � � � � � � � � � � � � � � �
j
�

�
�
� � � � � � � � � � � I � � � zdz'z �  � �  � � � � j z

For a mesh function �
� �
� � � we use the following classical implicit difference scheme

� �
� �
� � � � � � � � � ��� � � � � � ��� � � � � � � � � ���

� � � �
�
�
���
� � � � �

Q � �
� � (2)

�
� I � � � � � � � � � � � I � � � �

�
� � �

� �
� I � � � � ��� � � � � �

� Q
�

where � �
� �
� � � is defined by

� �
� �
� � � � �


 � 
 � � ��� � � � � � ��� � � � 
 � �
���
� � � �
 � 
 � � ��� � � � and


 � �
���
� � � are the central and forward difference approximations to the

second and first derivatives in the
�

-direction, respectively.
The piecewise equidistant mesh of Shishkin-type from [MOS96] is formed by dividing

interval �
�

into two parts
� I � � � � � � � � � � and in each part we use a uniform grid with  � % � �

mesh points. The step sizes of the mesh are defined by� � � � � � % �  � � � � � I � � � zdz'z �  � % � � � (3)� � � � � % � � � �

�
 � � � � �  � % � z'zdz �  �

�
z

The transition point � from [MOS96] is determined by � � � Z c � % � � �&% � � � ��

� c  j z If � �
� � % , then  � � is very small relative to � . This is unlikely in practice, and in this case the
difference scheme (2) can be analyzed using standard techniques. We therefore assume that

� � % � � � ��

� c  � � � � � � � � ��  � � � c  �  � � � � � %  � � z (4)

We note here that the size of the boundary layer is of order � � � � � c � � � . Thus, for �
�
 � � ,

the transition from the layer to the outside region is determined by the transition point � which
is located inside the boundary layer.

Theorem 1 Let u(x,t) be the solution to problem (1). Then the solution of the difference
scheme (2) on the mesh (3), (4) converges � -uniformly to �

���
� � � :

�����n � � � p�s �E m�� �E � � � ��� � � � � � ��� � � � � � � �  � � � c  � � � �
where  is the number of mesh points in the space direction, � is the time step-size and
constant

�
is independent of � �  and � .
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Domain Decomposition Algorithm

We consider decomposition of domain �
�

into � nonoverlapping (adjoining) subdomains�
� � � � ��� �

zdzdz
� � :� � � � � � � � � � � �

� �
� � 	 �

� � � � � � � � � � � I � �
�
� �
z

Additionally, we consider � �
� interfacial subdomains � � � � ��� �

z'zdz
� � �

� :

� � � ���
�� � �

e
� �
� � � � � 	 � � � � �

�
�� �

� � �
�
e
� z

On �
� � � � � � �

zdz'z
� � and �� � � � � � �

z'zdz
� � �

� we introduce meshes �
� Q� , and ��

Q� ,
respectively, where

�
� Q� ��� � � � � � � I � � � zdz'z �  � � � � � � � � � � � � ��� � � � � � � � � � � � � � � � � � � j � (5)

��
Q� ���

{
� � � � � I � � � zdz'z �  � � � { � � � �

�� �
{
� ��� � �

e
� � � � � �

{
� � � � � �

{
� � j �

and suppose that �
� Q

� 
 �
� Q� , and the mesh points in ��

Q� � � ��� �
zdzdz

� � �
� coincide with

the mesh points in �
� Q

.
On each time-level

� � , we shall implement
� � iterative steps of a domain decomposition

algorithm. On each iterative step, firstly, we solve problems on the nonoverlapping sub-
domains �

� Q� � � � � �
zdzdz

� � with Dirichlet boundary conditions passed from the previous
iterate. Then Dirichlet data are passed from these subdomains to the interfacial subdomains

��
Q� � � � � �

zdz'z
� � �

� , and problems on the interfacial subdomains are computed. Finally,
we impose continuity for piecing the solutions on the subdomains together.

On subdomains �
� Q� � � ��� �

z'zdz
� � , introduce mesh functions �

n � p� ���
� � � � � � ��� �

zdz'z
� �

(here the index
�

stands for a number of iterative steps, and
� ��� �

zdzdz
� � � ) satisfying the fol-

lowing implicit difference schemes

� � n �
p

� � �
� � � � � � � � � � � � n � p� ���

� � � � � � � � � � � � � � � � � � � � � � � � n � p� ���
� � � � � � � � �

Q� � (6)

� n � p� ���
� � � � � � n � � � p � � � � � � � � � � � � � � � � � � n � p� � I � � � � � I � � n �

p
�
�
� � � �

�
� I z

On the interfacial subdomains ��
Q� � � ��� �

zdzdz
� � �

� , we solve the difference problems

� � n �
p

� � �
� � � � � � � � � � � � n � p� ���

� � � � � � � � � � � � � � � � � ��� � � � � � n � p� ���
� � � � � � � � �

Q� � (7)

� n �
p

� ���
�� � � � � � � n �

p
� � �

�� � � � � � � n �
p

� ���
e
� � � � � � � n �

p
� � � ��� e� � � � ��z

The mesh function
� n � p � � � � � � is determined in the form

� n � p ��� � � � � � � � n �
p

� ���
� � � � � � � � Q� � � �

Q� � � � �

Q� �
� � � � �

zdz'z
� � S� n �

p
� � �

� � � � � � �
�

Q� � � � � �
zdz'z

� � �
� � (8)

where we introduce the following notations

� � � � � � � � � n � �
p
���
� � � � � � n � p ��� � � � � � � � � � � � � � � � � � � �

� � � � I � � � � ��� � � � � �
� Q z
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Algorithm (6)-(8) can be carried out by parallel processing, since on each iterative step�
the � problems (6) for �

n � p� ���
� � � � � � � � �

z'zdz
� � and the � �

� problems (7) for� n �
p

� ���
� � � � � � ��� �

zdz'z
� � �

� can be implemented concurrently.
On a mesh �

� Q
� � � � � � � � I � � � zdzdz �  � S � � � �

� �
�
� � �

�
�

j
� consider the difference

problems

� � �

��� � � � � � � �

��� �
� I � � � � Q � � H ��� � % � (9)

� � � � � � � � � � � � �
� �

�
� I � � � ��� � � � I � � � � �

� �

�
���
z

Introduce the notations


 �� � � �� ��� �� � � � �� ��� �� �
� 

e
� � � �� � � ��� e� � � � �� � � � � e� �

� � � � �
z'zdz

� � �
� �


 � � 
 �� � �� � � ��� � � � 

e
� � �� � � ��� � �

� � ��� �
zdz'z

� � �
� �

where
� � � �� ��� �

and
� � � �� � � ��� � are the solutions to (9) on �

� Q� and ��
Q� , respectively.

Theorem 2 Algorithm (6)- (8) on mesh (3), (4) converges to the solution of (1) with the
following rate:

�����n � � � p s �E m � �E � � � � � � � � � � ��� � � � � � � � �  � � � � � c  � �
� �
 � � � c  � � � 
 � � � �


 � �������� � �

�
� � 
 � � (10)

where the contraction coefficient 
 �
� I � � � and constant

�
is independent of � ,

�
, � and 
 .

Theorem 2 guarantees that the domain decomposition algorithm (6)- (8) converges for any
initial guesses. From Theorem 2, it follows that asymptotically one would expect to choose
the number of mesh points  in the space direction such that  

�
 � . If  

�
 � , then we

conclude the following estimate

�����n � � � p�s �E m � �E � � � ��� � � � � � � � � � � � � � �  � � � c  � � � 
 � � � �
where constant

�
is independent of � ,  , � and 
 .

Estimates on Rate of Convergence

The interfacial subdomains outside the boundary layer. Consider algorithm (6)- (8) with
the interfacial subdomains �

Q� � � � � �
zdzdz

� � �
� , located outside the boundary layer.

Suppose for simplicity that the centre of the discrete interval ��
Q� is located at

� � , i.e. in (5)� � � � � � � �  � � � % � � � . For sufficiently small values of � , we can approximate 
 in (10)
uniformly in � by


 � b � � � � � � � c � � � � � � � �
� � � � � � � � � � � �����n � � � p s �� � ��� � � ��z
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We compare this estimate with the convergence rate of the Schwarz alternating method ob-
tained in [Mat98]:

�����n � � � p � � n � � �
p
�
� �
�
�
 �����n � � � p � � n �

p
�
� � � �
 � b � � � � � G � � � u � � � (11)

where � n �
p

is the Schwarz iterate,

G � I measures the overlap between two subdomains and
�
� I is independent of � . Outside the boundary layer

G
� � � � � � � , the contraction factor

�

is approximated by �
 � b � � � � �� � � � � � � u � � �
where ��

� I . From Theorem 2, one would expect to choose � � �
, and asymptotically we

get

 � b � � � � � � � c � � � � � �� �

� � � �
 � b � � � � �� � � � � u � � � � � � � I � � � �  � % � � � � z
It follows that the estimate of the convergence rate from [Mat98] is impractical.

The interfacial subdomains inside the boundary layer. Suppose that  is divisible by % �
and � is even, we decompose the boundary layer

� I � � � and the region outside the layer
�
� � � �

into � � % equal subdomains, respectively, where � from (4). We note that each subdomain�
� Q� contains the same number of mesh points % � � � � � �  �

� % � �
. From (5), we have

�
� Q� � � � � � � � � � � � � � � � � � � � � � I � � � zdz'z �&% � j � (12)� � � � � % � � �

�
� � � � � � � � �

z'zdz
� � � % �

�
� Q� ��� � � � � � � � � � � � � � � � � � � I � � � zdz'z � % � j �� � � � � � � % � � � � � % � �

� � � � � � � � % � � �
zdz'z

� � �
where

�
,
� � are the uniform step sizes outside and inside the boundary layer. We choose the

interfacial subdomains in the following forms:

��
Q� ���

{
� � �
{
� � � �

�� � � � � � � � I � � � zdz'z �&% � � j ��
�� � � � � �

�
� � � � � � �

z'zdz
� � � % � � �

��
Q
�
u � � �

{
�
u � � � �

{
�
u � � � � �

�

�
u � � � � � � � � I � � � zdzdz � � � S{

�
u � � � � � � � � � � � � � � � �

zdzdz
� % � �

j
��

�

�
u � � �

� �
�
� � �

��
Q� � �

{
� � �
{
� � � �

�� � � � � � � I � � � zdzdz � % � � j ��
�� � � � � �

�
� � � � � � % � � �

zdz'z
� � �

�
z

Here the interfacial subdomains ��
Q� � � � � �

zdz'z
� � �

� contain the same number of mesh
points % � � � � , and the centre of the discrete interval ��

Q� is located at
� � . We suppose

�
� �
�
� �

, such that �

Q� � � 	 �

Q� � � � � � % � z'zdz � � �
� . On this domain decomposition,

we can approximate the contraction factor 
 in (10) by

 � � � � � � � � � % � � % � � % � � �

h
� � b � � � � � � � c � � � � � �� �

� � � � �
�
 
� % � � � � z

If in (11)

G
� � � � � � � � , then

�
 is approximated by
�
 � b � � � � �� � � � � � � � u � ��z In the case

of the maximal size of the interfacial subdomains
�
� �  

� % � � � � , we get
�
 � b � � � � �� � � c  � � � � � � � ��z

Again, we conclude that the estimate of the convergence rate from (11) is impractical for the
proposed domain decomposition.
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Numerical Results

As a test problem, consider the following problem

� � � � � � � � � � � I � ��� � � � � � I � � � � � I � � � �
�
� I � � � � � � �

�
� � �

�
� I � � � � � I � � I z

with �
���
� � � � � . Note that in the new variable ��

���
� � � � �

� �
� � � � � � �

�
�
, this problem

becomes (1) with
� ���

� � � �
�
� � and � �

��� �
�
� �

� .
On each time-level, we implement

� � iterates of algorithm (6)-(8) to satisfy the stopping
criterion ������

s
�

E m � � n � �
p
���
� � � � � �

� �
� � � � � � � � � ��� ��� �  � � � c  � � � �

where �
���
� � � � is the solution of the undecomposed algorithm (2) at time-level

� � .
Consider the domain decomposition (12) with the interfacial subdomains inside the bound-

ary layer. In Table 1, for � � � I � � � � � � I � � � � I � � and various values of � � � , we give the
average (over ten time-levels) number of iterations

� � with  � � � and the maximal size of
the interfacial subdomains

�
� �  

� % � � � � . From the data, it follows that for � fixed,
� � is

a monotone increasing function with respect to the time mesh spacing � , and for �
�
� I � � ,� � is independent of the perturbation parameter. We notice that the number of iterations

approaches � as � � I . These results substantiate the theoretical convergent estimates.� � �
2 2; 2; 2 1.4; 1.4; 1 1; 1; 1
4 2; 2; 2 1.4; 1.4; 1 1; 1; 1
8 2; 2; 2 1.4; 1.4; 1 1; 1; 1
16 2.4; 2; 2 1.4; 1.4; 1 1; 1; 1
32 8.2; 5; 2 1.4; 1.4; 1 1; 1; 1
� 0.1 0.01 0.001

Table 1: Average number of iterations
� � for  � � � , � � � I � � � � � � I � � � � I � � .

� � �
2 2 2 2 2 2
4 2 2 2 2 2
8 7.2 3.7 2.5 2 2

16 11.2 5.6 3.8 3 3�
� 1 2 3 4  

� % � � � �
Table 2: Average numbers of iterations

� � for  � � % � � � ��� I � � � � ��� I � � .
In Table 2, for various numbers � and sizes

�
� of the interfacial subdomains, we repre-

sent the average number of iterations with  � � % � � � � � I � � � � � � I � � . Note that the last
column in the table corresponds to the interfacial subdomains with the maximal size. The av-
erage number of iterations as a function of the size of the interfacial subdomains is a monotone
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decreasing function, and this is in agreement with our theoretical estimates. Another notable
feature is that this function varies very quickly for small values of

�
� , and relatively small

sizes of the interfacial subdomains are needed to essentially reduce the number of iterations.

Conclusion

We summarise our discussion concerning the theoretical results and numerical experiments.
1. We emphasise here the domain decomposition algorithm (6)-(8) on the piecewise uni-

form mesh (3), (4) possesses uniform in the perturbation parameter convergence. Thus, the
proposed algorithm keeps the main property of the most effective undecomposed algorithms
for singular perturbation problems.

2. In the context of parallel computing, the proposed uniform decomposition (12) guaran-
tees us load balancing of a multiprocessor computer.

3. The numerical experiments confirm effectiveness of the proposed domain decomposi-
tion algorithm. Algorithm (6)-(8) requires few iterations on each time-level and sufficiently
small sizes of the interfacial subdomains and still maintains stable approximation.
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31 Domain decomposition methods for solving scattering
problems by a boundary element method

Y. Boubendir1, A. Bendali2

Introduction

Integral equation methods are widely used for the numerical solution of scattering problems.
Among their advantages, we mention direct and simple dealing with the radiation condition,
accuracy and reduction of the mesh only to the boundary. As a counterpart, this method
generates large dense complex matrices and in the case of dielectric layers may need some
extra auxiliary unknowns, namely the equivalent magnetic currents. Also, the repetition of
some geometrical patterns can drastically increase the size of the final system to be solved in
an artificial way. The aim of this paper is to show how these difficulties can be overcome by
a suitable use of a nonoverlapping domain decomposition method while however keeping the
advantages of the boundary integral equations solutions.

The main technique used to decompose the solution domain into smaller domains consists
in expressing the usual matching of the Cauchy data of the problem (the equivalent currents as
they are generally refered to in computational electromagnetics) in terms of some equivalent
boundary conditions of impedance (also called Robin) type.

The method also applies to a conductor covered by a dielectric layer with now two advan-
tages. First, at each step, the problem to be solved has for unknown the electric current only
whereas the direct solution also involves the magnetic current as a supplemental unknown.
Moreover, at each step, unknown interior and exterior currents are completely uncoupled.

Another interesting aspect of this method is to couple a finite element and a boundary ele-
ment method. This approach has been investigated by several authors (e.g., [JN80], [Cos87],
[dLB95], [Lan94], [HW92]). However, the resulting final system is generally large and diffi-
cult to solve because it involves equations coming both from the FEM and BEM formulations.
On the contrary, the method proposed in this paper uncouples completely the two solution
procedures.

1UMR MIP INSA-CNRS-UPS, Cerfacs, France, boubendi@cerfacs.fr
2UMR MIP INSA-CNRS-UPS, Cerfacs, France, bendali@gmm.insa-tlse.fr
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Figure 1: A typical geometry

Nonoverlapping domain decomposition method

To be specific, we consider the following problem related to the scattering of an TE wave by
a coated perfectly conducting cylinder�������������

�����������

�
find a sufficiently smooth � such that

�*� � �� � �
� � � � � �

� � � I in
� � �

� � �
� �
� � I in

� � ��  � � � I on
� �

� � � � � � � � � �  � � � � �  � � � on
� �

� Z �� � � � � 
 �
�
� � u � � � � � � � � � � � � �� � � � � � � � � � � � � � � � I �

(1)

where 
�� and 
�� are respectively the unit normal to
�

outwardly directed to
� � and to

� �
(fig. 1),

�
is the wave number,

�
and � , respectively the index and the relative permittivity

of the dielectric medium filling
� � . Superscript 1 and 0 indicate respective limits on

�
from

within
� � and

� � .
To uncouple the exterior problem solution in

� � and the interior one in
� � , we use the

methods initiated by P.-L. Lions [Lio90] and later developed for wave propagation problems
by B. Després [Dep91] to write the transmission conditions on

�
in the following equivalent

form � � � � �  f � � ��� � � � � � �  � � � ��� � � � on
� ��  � � � �	� � � � � �

� � � �  f � � ��� � � � on
�
z

(2)

where
�

is positive self-adjoint inversible operator,
� � � � � ��
 � �� �

with

 � I and

�
� I . Therefore, the computation of the solution consists in solving the following two

problems separately at each step
��� � � � � �� � �
n � � � p� � � � � � �

� �
n � � � p� � I in

� � ��  f � n � � � p� � I on
� � (3a)

�
�
�  f � n � � � p� ��� � � n � � � p� � � �  � � n � p� ��� � � n �

p
� on

� � (3b)
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Figure 2: A circular geometry

���
�

� � � n � � � p� � � �
� n � � � p� � I in

� � �
� Z �� � � � � 
 �

�
� � u � � � � � n � � � p� �

� �
�
� � �

�
�
�
�
� � � � � n � � � p� �

� �
�
� � � � I � (4a)�  � � n � � � p� �	� � � n � � � p� � � �

�
�  f � n � p� ��� � � n �

p
� on

�
z

(4b)

It is well-known (e.g., [CZ92]) that both problems (1), (3) and (4) are well-posed in an appro-
priate functional setting. Observe that the direct solution of problem (1) requires the determi-
nation of the following coupled Cauchy data � � � � � � � � on

�
, � � � � � � �  f � � � �  f � �

on
�

and � � � � � on
�

(e.g., [BS94]), whereas, the solution of problem (3) requires the
determination of �

n � � � p� and �
n � � � p� and that of problem (4), the determination of �

n � � � p�
only.

Convergence of the domain decomposition method

For
� � � � � I , i.e. � � I , the theoretical convergence of the algorithm (3) and (4) is well

known [Dep91], [CGJ00]. However, plots of the residual in figure 3 clearly indicates that the
discrete version of the algorithm converges for �

� I only. It seems that only variational
schemes like finite element methods can keep the convergence properties of the algorithm at
the discrete level (e.g., [Dep91], [dLBFM

�
98]). Boundary element method is not based on

such a principle and thus results in a non convergent scheme for � � I .
For �

� I , the proof of convergence seems to be out of reach for the general case.
This is probably due to a lack of a suitable way to handle propagative and evanescent parts
of the solution separately. However, for all cases when a decomposition of the solution in
propagative and evanescent modes can be done, we are able to prove that the algorithm with
�

� I has a better behaviour than with � � I . The following example rather strikingly
illustrates this claim.

For a circular geometry (fig. 2) with
� � � � � � �

� S �
�
�
� �

j
�

� � � � � �
�
� S � � � �

�
� � �

j
� we can decompose the error in modes from a Fourier-Hankel series



322 BOUBENDIR, BENDALI

0 50 100 150 200 250 300 350 400
10

−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Χ=0.5
Χ=0

Figure 3: Behaviour of the residuals

expansion and analyze separately the convergence of the propagative and evanescent parts of
the wave. Setting

� �
� 	 � � � � � 
q� � � 
 � n �

p
�

� 	 � \ � � � � � � � 	 � � � � � 
q� � � 
 � n �
p� � 	 � \ � � � � (5)

problems (3), (4) are reduced to the following one-dimensional problems���
�

� �	 � � � 	 � � � n �
p

�
� � � �

	 � � n �
p

� � � �
� n �
p

� � I � 	 � � �
� Z �� � � 
 	 � u � � � � � n �

p
� � � � � n � p� � � I � (6a)

� � � � n � p� �	� � � � n �
p

� � � n �
p

� � 	 � � � (6b)

�� � �	 � � � 	 � � � n �
p� � � � �

	 � � n �
p� � � �

� n �
p� � I � � � � 	 � � �� � � � n � p� � I � 	 � � � � (7a)

� � � � � � n � p� ��� � � � n �
p� �(� n �

p� � 	 � � z
(7b)

We have assumed that the operator
�

is diagonal relatively to the Fourier series expansion.
Solutions to problems (6), (7) are respectively obtained by � n �

p
� � � � � n � p� � � 	 � and � n �

p� �
� �  � � � � 	 � where

� n � p� represents the Hankel function of the first kind and  � � � � 	 � is a
solution of the Bessel equation of order � which can be expressed by a linear combination
of the Bessel � � and Neumann

� � functions of order � such that  �� � � � � � � � I . The
iteration operator is characterized by the matrices

� � � I � n � p�
� n � p� I

�
� (8)
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where
� n � p� et

� n � p� are defined by

� n � p� � n �
p

� � �
� � % �

� � � n �
p

�
� � �

� � n � p� � n �
p� � �

� � % �
� � � n �

p� � � ��z
(9)

First, we give a criterion characterizing the convergence of the algorithm.

Theorem 1 The domain decomposition algorithm converges if and only if for all � �
�

� � �
�

� , �
�

� � �
being the spectral radius of matrix

� � .

Proof Let � �
�
� � � � � � � . One possible definition of the norm in

� � �

�
�
� � � � �

�
�
�

is

given by
k � k � � � � } � 
� 


�
� � �

� � � � �� � n �
p
��
�
� where � n �

p
is defined by � � } � 
� 
 � n �

p
\ � � �

and � n �
p
�
�
� n �
p

� � � n �
p� � �

. The convergence of the method will be established if we can show
that

� Z � � � � 
 k � � � k � � � I withk � � � k � � � �
� 
q
� 


�
� � �

� � � � ���
�

� � � � � n �
p
���
� z

(10)

If it exists � � such that �
�

� � � � �
� , clearly the method does not converge. So, we can

restrict the discussion to the case where �
�

� � �
� � for all � . The matrix

� � has two distinct

eigenvalues � � � �
�

� n � p� � n � p� . So, it can be put in a diagonal form by
� � � � � 
 � � � �� ,
 � being a diagonal matrix. Therefore, we obtain

��� � �� � n �
p
���
� k � � k9k � � �� k9k � n �

p k � �
�

� � � � � z
The most important point in the proof is that the condition number

k � � k)k � � �� k
of matrix

� � remains uniformly bounded. Elementary arguments then permit to end the proof.
The previous characterization establishes that the method converges if � � n � p� � n � p� � � � for each� to obtain the convergence of the method. Solving problems (6), (7), we get

� n � p� �
��� � � � � 
 � �� �
� � � � ��
 � �� � � � n � p� �

��� � � � ��
 � �� �
� � � � ��
 � �� � � (11)

where
� � � � n � p �� � � � �

�
� � � n � p� � � � �

�
� � � �  �� ��� � � �

�
� �  � ��� � � �

� which are well
defined because both the two problems are well posed.

Proposition 1

- For both evanescent and propagative modes, � � n � p� � � � .

- If � corresponds to an evanescent mode, that is, �
� � � , for � � large enough, then

� � n � p� � � � .

Proof Let
� � � � � � � � � � . Clearly, it is enough to show that

� � and � � are both
� I

to prove that � � n � p� � � � . Signs of
� � and � � are respectively that of �

� � n � p �� � � � � � n � p� ��� � � �

and
� � � � n � p �� � � � � � n � p� ��� � � �

. From [CK92], it is well-known that �
� � n � p �� � � � � � n � p� ��� � � �

is equal to the Wronskian �
�
� � � � � �

� � � ��� � � �
� % � � � � . Since

� � � I , from [CK92] we
get that � � � I . The property

� � � I uses a more difficult argument. First, we remark that
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� � � n � p �� � � � � n � p� � � � � � � � � � �� � � � n � p� � � � �
� �
�� � � � . Using Nicholson’s formula [Wat22], we get

that function � � n � p� ��� � �
�
�

is a strictly decreasing function, so the quantity
� � � n � p �� � � � � � n � p� � � � � �

is negative and then
� � � I . We conclude that for all


 � I and �
� I , � � n � p� � � � .

For the problem in the bounded domain, the previous sign determination can be more eas-
ily obtained from coerciveness estimates. Let

� � � � � � � � � � . The variational formulation
of problem (7) gives

� � � � n � p �� � � �
� n �
p� � � � � � @ �� f � 	 � � n �

p
�� �
� � � � �

	 � � � � � � � � � n � p� �
� 	 � G 	 �

and then if � is large enough, using coerciveness property, we get that

� � � � n �
p

�� � � �
� n �
p� � � � � � I z (12)

Definition of � n �
p� and

� � yields
� � � I . Since we have considered that the material filling� � is without losses ( �

� � � � I ) and perfectly reflecting boundary condition on
�

, we are led
the most severe case � � � I . Indeed, in this case

� n � p� �
�
�
� � � � � � 
�

� � � � � � � 
 z
For � � I (Despré’s algorithm [Dep91]) � � n � p� � � � and so � � n � p� � n � p� � � � . The algorithm
converges as expected from the study for the general case [Dep91]. Observe however that
parameter

� n � p� has no influence upon the convergence of the algorithm and
� n � p� gives a less

effective damping of the evanescent modes. The interesting point is that taking �
� I also

gives � � n � p� � � � for all � except a finite number generally corresponding to propagative
modes. But since for � � I � � n � p� � n � p� � � � , it is sufficient to tune � for each of these
exceptional mode to obtain a maximal value for � insuring the convergence of the algorithm.

Numerical results

At each step, problem (4) in the unbounded domain
� � has been solved by a boundary element

method [BBC00] and problem (3) in the bounded domain
� � by an usual nodal finite element

method. The exterior problem in
� � is solved by a BEM following the approach introduced

in [Ver99]. The solution is represented as a superposition of a single- and a double-layer
potentials

� �
��� �

� � �
�
� � @

�
�
� �
� � � � � � �

G
�
� � � � @

�

�  
� �
���
��� � � � � �

G
�
� � � � (13)

where the unknown densities � and � are linked by the following relation induced by the
impedance condition

� ��� � � I z (14)
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Figure 4: Coupling FEM and BEM

The boundary condition can then be expressed variationnally as@
�

� �  � � � � � � � � � � � G � � @
�
� � � �

G
� � (15)

with � � and �
�

are linked by the same relation that � and � . Formulating these constrains
through a Lagrange multiplier, both the latter and the magnetic currents � and � � can be
eliminated at the element level when all the unknowns are approximated by a � � -continuous
BEM, (see [Ver99] for more details).

Plots in figure 4 give the residual and comparison between exact and computed electric
current on

�
. The incident wave is a plane wave propagating along the x-axis.

The interesting point is that now, with �
� I , the discrete algorithm converges using

either a nodal finite element or a boundary element method.
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32 On the use of iterative Schwarz algorithms in the
solution of an optimal control problem

A. Bounaı̈m1

Introduction

We present two methods for solving an optimal control problem governed by a partial differ-
ential equation. Our methods combine optimal control techniques and Schwarz algorithms
using an overlapping domain decomposition at each step of the minimization process. We
design parallel algorithms based on the iterative Schwarz methods used either as solver or
as preconditioner. Numerical results are presented to show the behavior of the optimization
solver with respect to some parameters related to domain decomposition.

As a model problem, we consider a boundary control problem of which the state variable
is the solution of an elliptic partial differential equation:���

�

� � � � � � � �
�

in
�
�� � � � � I on
�
�
� � � �� � � � �� � � � on

� C � � � z (1)

The control � is taken on the east and west boundaries of a rectangular 2D domain
�

whereas
the observations � � are distributed over the whole domain

�
. The solution of such a problem

involves the techniques of a cost function � that minimizes, in a least-square formulation, the
quadratic distance between the solution of the state equation

�
�
�

and given observations:

�
�
�
�
� �%

� @ E
� � � � � � � � � � G � � � @ � � � ��� � ���

� G
�

��z
And we set the optimal control problem as:�

�
� Z�c T	

s
��� � � � � � � �

�
�
�
� � ��� � � �

where � � � is a set of admissible controls. The solution of
�
�
�

is commonly based on descent
methods [Lio68]: At the

�
th iteration, from the known � � , we compute successively the

direct state �
�
� �

�
and the adjoint state �

�
� �

�
. We then get the value of �

�
� �

�
and the gradient� � � � �

�
which is an expression of �

�
� �

�
and � � (See [Lio68]). A minimization step is shown

in Figure 1.

Discretization and numerical framework

The domain
�

is meshed by a uniform grid �
�
� � � � � � �

�
� � (  is the number of points

in the � -direction). A finite difference scheme is used to discretize the direct state �
�
� �

�
. The

discrete adjoint state �
�
� �

�
is then deduced from the transpose system of �

�
� �

�
with the ap-

propriate right hand side.
1Department of Informatics, University of Oslo, Norway, aichab@ifi.uio.no
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Figure 1: One minimization step: calculation of the cost function and its gradient.
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Figure 2: Profiling of the sequential code on the whole domain,  � � � .

The resulting linear systems are solved by a Krylov solver: Bicgstab (Stabilized bi-conjugate
gradient). The minimization phase is carried out by the quasi-Newton method with the BFGS
formula 2[GL89].
For the numerical tests, we have the following:�
� � I � � � � � I � � � is the domain of computation, and for

���
� � � in

�
:� � �

��� � � % � � � � � � � � � � � � � �� � ��� ��� � �
��� � � � � � � � � � � � � � �

z
Remark. The computation of the discrete gradient of the cost function is the main step of the
minimization process, since the precision of the descent method depends on the precision of
the discrete gradient calculation.

Motivation

When we solve sequentially the optimal control problem
�
�
�

on the whole domain, we find
that most of the CPU time required for the minimization process is related to the scalar and

2The M1QN3 code is developped in the MODULOPT project of INRIA by J.-C. Gilbert and C. Lemaréchal. We
have used its double precision version: N1QN3.
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Figure 3: CPU time versus the number of processors. Effect of the overlap size on the behavior
of N1QN3 with multiplicative Schwarz method.  � � � .
matrix-vector products that are the base in the calculation of the cost function and its gradient.
Figure 2 shows the time percentage of each code part. We need � I iterations to achieve the
given precision � � � � � n � � p �

� � � n � � p � ��� I � � in N1QN3.
So, we propose to implement efficient algorithms for parallel architectures using a load allo-
cation of the solvers of both the discrete direct and adjoint states.

Domain decomposition techniques

The main idea of the proposed domain decomposition method consists in using iterative
Schwarz methods either as solver or preconditioner for the direct and adjoint linear systems
required at each step of the minimization algorithm. In contarst, the minimization instead
remains global over the domain of calculation, i.e., the control in N1QN3 is not decomposed.
All the results are given for the parallel machine CRAY-T3E using the message passage inter-
face library MPI.

The Schwarz algorithm as a solver

Description

We consider an overlapping decomposition of the domain
�

and using the multiplicative
version of the Schwarz algorithm with Dirichlet boundary conditions to solve the direct state
so that we get on each subdomain

� �
:

� � � �
� �� ��� � � � � � � � � �� ��� �" �

A�E

D�E � ��z (2)
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Figure 4:
� �

error,  � � � , � � � � . Behavior of N1QN3 with multiplicative Schwarz method
as solver.

The discrete adjoint state is then computed by transposing the � �
� �� -local system

� % � such that
we get formally the � �

� �� system:
� � � � � � �� � � �

� � �
� �� � � � � � � � �" � A�E  D�E � � (3)

Analysis of numerical results

The tests were carried out on a mesh of
�  

�
 nodes where  � � � and for a stopping

criterion � � � � � n � � p �
� � � n � � p � � � I � � in the minimization method N1QN3. The local linear systems

are solved by the Bicgstab method.
We study the behavior of the N1QN3 “minimizer” with respect to different parameters such as
the overlap size, the type of the decomposition and the number of processors. Furthermore, to
make the implementation possible on the parallel machine, we have used a coloring technique
such that neighbouring subdomains have different colors.

¿From Figure 3, it is shown that the CPU time drops when the overlap gets large (in
fact, we consider in the figures the relative overlap � � which is linked to the real overlap �
between two subdomains by � � % � � � ). This reflects one of the properties of the multiplicative
Schwarz method [SBG96].

In addition, to show the effect of the multiplicative Schwarz method mixed with the
N1QN3 otpimizer, we present in Figure 4 the

� �
-error between the computed solution (the

direct state associated with the computed optimal control) and the analytical solution against
the number of iterations in N1QN3. For different numbers of processors and with a relative
overlap equal to

�
, it is shown that it is only from the

�
th iteration that the precision deterio-

rates.
The number of iterations in the optimiser also varies slightly (in fact, N1QN3 needs only � I
iterations for the whole domain). Thus, the best result is obtained with 2 processors but for
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more processors the precision is almost lost. One can conclude that this is due to the “oscilla-
tions” of the precision quantity of N1QN3 within the communications between subdomains.

The Schwarz algorithm as a preconditioner

Let
� � , � , �

�
� � � be given

refresh news
��� � �

� � � � ��� � � , � ����� I , � � � � � � � �

While
Global

k � � k �
Global

k � � k � �
� and Global

k � � k � � �
�
� � � Do

� � Global
� � � � � �

� � � � � � � � , � � � �

��� � � �
�
�
�

� �
�

Solve ��������
refresh news

�
��
�

� � � ��
� � � � � Global

� � � � �
�

	 � � � � �
Solve ��
 � 	
refresh news

�


�

� � � 

� � Global

� � � 	 �

Global
� � � � ��

�
� � � �� � �
� � 	 � �

�
Endwhile

Figure 5: Partitioned Bicgstab algorithm

Description

It is well known that when used as a preconditioner of a parallel Krylov solver, the overlapping
domain decomposition methods allow us to improve the convergence rate of such iterative
linear system solvers and to limit the time of communications needed for their implementation
on parallel architectures. In the preconditioning step of the distributed Bicgstab (Figure
5), we first extend the local contribution of s or p to the subdomain enlarged by the overlap
in the four cardinal directions. Then, on each subdomain, we solve exactly the local problem
with Dirichlet boundary condiditons. And finally, the global solution �� or z is deduced from
the projections of the solution of each local problem. We have used the same notations as in
[KA98] (see also [KST95]).
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Figure 6: CPU time(s) on Cray-T3E versus the number of processors.  � � � . Effect
of the decomposition type on the CPU time of N1QN3 algorithm used with preconditioned
Bicgstab.
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. Effect of the

decomposition type on the behavior of N1QN3 with preconditioned Bicgstab.
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error versus the iterations number of N1QN3.  � � � , � � � �
. Behavior of

N1QN3 with Bicgstab preconditioned versus the number of processors.

Analysis of numerical results

We first remark that the cpu times are better than those obtained with the multiplicative
Schwarz method as a solver. On Figure 6, we observe that for � � � � , the cpu time is halved
when the number of processors goes from 4 to 8. From Figure 7, we observe that the cpu times
are small when � � � �

and the computations are done on � � processors. We observe in the
same figure the important effect of the decomposition type on the behavior of the optimiser
N1QN3: with � band-disposed processors, we need more iterations than the grid disposition
of the processors (in this case, we have

�
processors in

�
-direction and % in � -direction) to

reach the given precision in the optimiser. Obviously, in the case of a small size of the prob-
lem, a grid decomposition involves more communication than a band one.
From this test series, the relative overlap � � � �

should be an optimal one for the precondi-
tioned distributed Bicgstab since the behavior of N1QN3 is not affected by the number of
processors (Figure 8).

Conclusion

The methods presented mix minimization algorithms and iterative Schwarz methods (solver
or preconditioner). In both cases, the optimal control is computed for a given stopping crite-
rion and the influence of the decomposition parameters on the behavior of the minimization
method is shown.
The multiplicative Schwarz method used in the solution of an optimal control problem yields
a robust but time consuming method, whereas the additive method used as a preconditioner at
each step of the minimization process is less time consuming. The best results are obtainded
for a relative overlapping of %

�
�

. Moreover, we have compared this method with the direct
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Figure 9: CPU time (s) on Cray-T3E versus the number of processors,  � � � . Effect of
the overlapping on the behavior of N1QN3 with Bicgstab preconditioned by the additive
Schwarz method.

parallelization of Bicgstab [Bou99] and it is expected (from the curved look of the Figure
9) to be more competitive for a large number of degrees of freedom since the minimizer is
only slightly affected by the second method.
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33 RASHO: A Restricted Additive Schwarz Preconditioner
with Harmonic Overlap

X.-C. Cai1, M. Dryja2, M. Sarkis3

Introduction

A restricted additive Schwarz (RAS) preconditioning technique was introduced recently for
solving general nonsymmetric sparse linear systems [BGMS97, CFS98, CS99, FS01, GKK+00,
LSHF01, SK00, QV99]. The RAS preconditioner improves the classical additive Schwarz
preconditioner (AS), [SBG96], in the sense that it reduces the number of iterations of the iter-
ative method, such as GMRES, and also reduces the communication cost per iteration when
implemented on distributed memory computers. However, RAS in its original form is a non-
symmetric preconditioner and therefore can not be used with the Conjugate Gradient method
(CG). In this paper, we provide an extension of RAS for symmetric positive definite prob-
lems using the so-called harmonic overlaps (RASHO). Both RAS and RASHO outperform
their counterparts of the classical additive Schwarz variants. Roughly speaking, the design of
RASHO is based on a deeper understanding of the behavior of Schwarz type methods in the
overlapping regions, and in the construction of the overlap. Under RASHO, the overlap is
obtained by extending the nonoverlapping subdomains only in the directions that do not cut
the boundaries of other subdomains, and all functions are made harmonic in the overlapping
regions. As a result, the subdomain problems in RASHO are smaller than those of AS, and
the communication cost is also smaller when implemented on distributed memory computers,
since the right-hand sides of discrete harmonic systems are always zero which does not need
to be communicated. We will show numerically that the RASHO preconditioned CG takes
fewer iterations than the corresponding AS preconditioned CG. An almost optimal conver-
gence theory will be presented for the RASHO for elliptic problems discretized with a finite
element method.

Recall that the basic building blocks of classical Schwarz type algorithms are the opera-
tions of the form

� � �� � � � � �� � � � � �� , where
� �� is the subdomain matrix and

� �� is the restriction
operator for the extended subdomain (formal definitions will be given later in the paper). The
multiplication of the such an operator with a vector, � , is realized by solving the linear system

� �� � � � �� � (1)

on each extended subdomain. The key idea of RAS is that equation (1) is replaced by

� �� � � � � inside the unextended subdomainI in the overlapping part of the subdomain.
(2)
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Note that the solution of (2) is discrete harmonic in the overlapping part of the subdomain,
and therefore carries minimum energy in some sense. In this paper, we further explore the
idea of “harmonic overlap” and at the same time keep the symmetry of the preconditioner.

The algorithm to be discussed below is applicable for symmetric positive definite prob-
lems. In order to provide a complete mathematical analysis, we restrict ourselves to the Pois-
son problem discretized with a finite element method. We consider a simple variational prob-
lem: Find � � � �� � � �

� such that� �
� � �

�
�
� �
�
�
� L � � � �� ��� �

� (3)

where � �
� � �

�
�
@ E � � � � � G � and

� �
�
�
�
@ E �
�

G �
for

� � � � � � ��z
For simplicity, let

�
be a bounded polygonal region in

� �
with a diameter of size � � � � . The

extension of the algorithm and results to
� � can be carried out easily. Let

O Q ��� �
be a shape

regular, quasi-uniform triangulation, of size � � � � , of
�

and
�
��� � � � �� ��� �

the finite element
space consisting of continuous piecewise linear functions associated with the triangulation.
We are interested in solving the following discrete problem associated with (3): Find � � � �
such that � �

� � � �
�
�
� �
�
�
� L � � � z (4)

Using the standard basis functions, (4) can be rewritten as a linear system of equations
� � � �

� z
(5)

For simplicity, we understand � �

and
�

both as functions and vectors depending on the situa-
tion.

Notations

Let
�

be the total number of interior nodes of
O Q � � �

and � the set of nodes. We assume
that a node-based partitioning has been applied and resulted in  nonoverlapping subsets
� �� � � � � �

z'zdz
�  , whose union is � . For each � ��

, we define a region
� �� as the union

of all elements of
O Q ��� �

that have all three vertices on � �� � � �
. We denote

�
as the

representative size of the subregion
� �� . We define the overlapping partition of � as follows.

Let � � �� j
be the one-overlap partition of � , where � ���� � ��

is obtained by including all
the immediate neighboring vertices of the vertices in � ��

. Using the idea recursively, we can
define a � -overlap partition � � 
 �� � � � �� z � � is approximately the extend of the extension.

We next define a subregion of
�

induced by a set of nodes of
O Q � � �

as follows. Let
	

be
a subset of � . The induced subregion, denoted as

� � 	 �
, is defined as the union of: (1) the set	

itself; (2) the union all the open elements (triangles) of
O Q � � �

that have at least one vertex
in
	

; and (3) the union of the open edges of these triangles that have at least one endpoint as
a vertex of

	
. Note that

� � 	 �
is always an open region. The extended region

� �� is defined as� �
� �� � . We introduce the subspace

� �� � � 	 � �� ��� �� � extended by zero to
� � � �� z
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It is easy to check that
� � � �� � � �� � ��� � � � �� z

This decomposition is used in defining the classical one-level additive Schwarz algorithm
without a coarse space [SBG96]. Let us define � �� � � � � �� by� �

� �� � � � � � � �
� � �

�
� L � � � � L � � � �� z (6)

Then, the classical one-level additive Schwarz operator has the form

� � � � �� � � � � � � �� z
Let
� �� � � � �� � � � ; i.e., the part of the boundary of

� �� that does belong to the Dirichlet
part of the boundary. We define the interface overlapping boundary

� � as the union of all
� �� ;

i.e.,
� � � � �� � � � �� . We then define the following subsets of � :


 � � 
 � � 	 � � (interface nodes)


 � � 
� �
� � 
 	 � �� (local interface nodes)


 � � 
� � � � � � � 
 	 � ��
(local internal interface nodes)


 � � 
� � � � � � � � 
� �
� � 
� � � � (local cut interface nodes)


 � �� � ��	 � � �
� �� � � � 
� � 	 � 
 " �� � � �" � (local overlapping nodes)


 � �� � � � � � � �� � � � � 
� � � �� � � 	 � � (local nonoverlapping nodes)


 � �� � � � � � �� � � � � � � � 
� � � � (internal nodes)

We note that the notions of subdomains, harmonic overlaps, the classification of nodal
points can all be defined in terms of the graph of the sparse matrix.

We frequently use functions that are discrete harmonic at certain nodes. Let
�
� � �

be a mesh point and
�
�

o ��� � � � the finite element basis function associated with
�
� ; i.e.,�

�

o ���
�
�
� � , and

�
�

o � � " �
� I � $ �

�
�

. We say � � � is discrete harmonic at
�
� if� �

� �
�
�

o �
� I . If � is discrete harmonic at a set of nodal points

	
, we say � is discrete

harmonic in
� � 	 �

.
Our new algorithm will be built on

!� �� defined as a subspace of
� �� .

!� �� consists of all
functions in

� �� that vanish on � � 
� � � � � and discrete harmonic at the nodes � �� � ��	 � . Note that the

support of the subspace
!� �� is

�� �� � � �� � � � 
� � � � �
and, since the values at the harmonic nodes are not independent, they can not be counted
toward the degree of freedoms. The dimension of

!� �� is

G � � � !� �� � � � � �� � � � � z Let
!� �� � � � �� �� �

be the induced domain. It is easy to see that
!� �� is the same as

� �� but with cuts. We have then!� �� � � 	 � �� � !� �� � and discrete harmonic on
� �� � � 	 � � � � � �� � ��	 � � . We define

!� � � � � as

!� � � !� ���� ��� � � !� �
� �
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which is a direct sum. We remark that functions in
!� � are, by definition, the sum of functions

� � � !� �� , � � � � � ��� �  . Functions in
!� � can, in fact, be characterized easily as in the

following lemma.

Lemma 1 [CDS01] If � � � and � is discrete harmonic at all the overlapping nodes, i.e., on� �� � � � �� � ��	 � , then � � !� � .
RAS with Harmonic Overlap

Let
!� �� � !� � � !� �� be a projection operator satisfying� � !� �� � � � � � � �

� � �
�
� L � � !� � � L � � !� �� z (7)

The RASHO operator can be defined as
!� � � !� �� � � � � � !� �� z (8)

Note that the solution � �

of (5) is not, generally speaking, in the subspace
!� � , therefore, the

operator
!� � can not be used to solve the linear system (5) directly. We will need to modify

the right-hand side of the system; see Lemma 2. We will also show that the elimination of the
variables associated with the overlapping nodes is not needed in order to apply

!� � to a vector
� � !� � .

We now introduce the matrix form of (8). We define the restriction operator, or a matrix,!� �� as follows. Let � �
�
� � � z'zdz � � � � � be a vector corresponding to the nodal values of a

function � � � ; namely for any node
� � � � , �

� � �
��� � �

. For convenience, we say “ � is
defined on � ”. Its restriction on

�� �� ,
!� �� � , is defined as

� !� �� � � ��� � � � �� � � � if
� � � �� ��

I otherwise.
(9)

The matrix representation of
!� �� is given by a diagonal matrix with � for nodal points

in
� � �� and zero for the remaining nodal points. We remark that, by way of definition, the

operator
!� �� is symmetric; i.e.,

� !� �� � � � !� �� . Use this restriction operator, we define the
subdomain stiffness matrix as

!� �� � !� �� � � !� �� � � �
which can also be obtained by the discretization of the original problem on

� � �� with zero
Dirichlet data on nodes �

� � � �� . The matrix
!� �� is block diagonal with blocks corresponding

to the structure of
!� �� and its inverse is understood as an inverse of the nonzero block. A

matrix representation of
!� �� denoted also by

!� �� is equal to

!� �� � � !� �� � � � �
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and !� � � � � !� � � � � � � � � � � � !� �
�

� � � � � z
(10)

The next lemma tell us how to modify the system (5) so that its solution belongs to
!� � .

Lemma 2 [CDS01] Let � �

and
�

be the exact solution and the right-hand side of (5), and

� � �q
� � � � !� �� � � � !� �� � � (11)

where
!� ��

is defined by (9) with � � I . Then, we have
!� � � � �

� � � !� � is the solution of
the modified linear system of equations

� !� � �
� �

� � � !� z
We remark that RASHO has several advantages over the classical AS. Let us recall AS

briefly. Let

� � �� � 
 � � � � � �� � � � if
� � � � ��

I otherwise.
(12)

Then the AS operator takes the following matrix form

� � � � �
� � � � � � � � � � � � � � �

� �
�

� � � � �
�



� � (13)

where
� �� � � �� � � � �� � � . We remark that the size of the matrix

� �� is � � �� � , which is bigger
than the size of the matrix

!� �� , which is �
�� �� � . In a distributed memory implementation, the

operation
� �� � involves moving data from one processor to another, but the operation

!� �� �
does not involve any communication. In RASHO, if � � !� � , then it is easy to see that!� �� � � � !� �� � � � � � � (14)

where
!� �� � � � is defined as

� !� �� � � � � � ��� � � � �� � � � if
� � � � �� � � �I otherwise.

(15)

Therefore, for functions in
!� � , we can rewrite

!� � , as in (10), in the following form

!� � � � � !� � � � � � !� � � � � � � ��� � � � !� �
�

� � � !� �
� � � � � � z (16)

Although the operator (16) does not look like a symmetric operator, it is indeed symmetric
when applying to functions in the subspace

!� � . The form (14) takes the advantage of the
fact that the operator

!� �� � � � is communication-free in the sense that it needs only the residual

associated with nodes in � � 
� � � � � � � � .
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We make some further comments on how the residual
� � can be calculated in a distributed

memory environment, for a given vector � � !� � . In a typical implementation, the matrix
�

is
constructed and stored in the form of � !� �� j , each processor has one or several of the subdo-
main matrix

!� �� . Similarly � is stored in the form of � � �
j
, where � � � !� �� . We note, however,

that to compute the residual at nodes � � 
� � � � some communications are required. The processor
associated with subdomain

� �� needs to obtain the local solution from the neighboring subdo-
mains at nodes connected to � � 
� � � � . It is important to note that the amount of communications
does not depend on the size of the overlap since only one layer of nodes is required. This
shows that, in terms of the communication cost, RASHO is superior to AS and RAS.

Main Results

The algorithm presented in the previous section is applicable for general sparse, symmetric
positive definite linear systems. The notions of subdomains, harmonic overlaps, the classifi-
cation of nodal points, etc, can all be defined in terms of the graph of the sparse matrix. The
following theorem provides a nearly optimal estimate of the condition number of the RASHO
operator

!� � in terms of the fine mesh size
�

, the subdomain size
�

, and the overlapping factor� for a Poisson equation discretized with a piecewise linear finite element method. We note
that because we do not include a coarse space, the constant will depend on the subdomain size�

.

Theorem 1 [CDS01] The RASHO operator
!� � is symmetric in the inner product

� � � � � � , non-
singular, and bounded in the following sense� � �� � �

� � �
�	� � � !� � � � � �	� � � � � � � � � L � � !� � z (17)

Here� �
� � � � �

� � � U�� � � � �
� � �

� � � U�� � � � � � � �� � �
� � � U�� � � � �

� � �� % � � �
� � � � z

The constants
� � � � � I are independent of

�
,
�

, and � .
We remark that the corresponding convergence rate estimate for the regular one-level AS

[DW94], in terms of the constant
� � , is� �
� � � �

� � �� � % � � �
� � � z

The lower bound
� �
� of RASHO is theoretically slightly worse than the lower bound of

AS in the case of large overlap, but roughly the same for the case of small overlap. On the
other hand, the upper bound

� � of RASHO is better, since the overlap bewteen subspaces
!� ��

is generally smaller than the overlap between subspaces
� �� . Because of the smaller upper

bound, the numerical performance of RASHO presented in the next section is better than
that of AS. It is interesting to point out that, for the case of generous overlap, our estimate
is equivalent to the estimate for the iterative substructuring algorithms [DSW94] without a
coarse space. We also remark that the results of the paper is for only one-level Schwarz
algorithms. Because of the “harmonic overlap” requirement, the extension of the algorithm to
multiply levels is not as trivial as the multilevel AS.
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Table 1: RASHO and AS preconditioned CG for solving the Poisson equation on a � % �
�
� % �

mesh decomposed into %
� % � �

subdomains with overlap = � � ' � . The AS/CG results are
shown in

� �
. The “+1” is for the preprocessing step needed for RASHO.

� � ' � iter cond max min
0 42 (42) 129.(129.) 1.98 (1.98) 0.0154 (0.0154)
1 24+1 (28) 48.4 (86.3) 1.94 (4.00) 0.0402 (0.0464)
2 20+1 (23) 33.3 (51.8) 1.91 (4.00) 0.0574 (0.0773)
3 18+1 (20) 27.2 (37.0) 1.89 (4.00) 0.0694 (0.1081)

Table 2: RASHO and AS preconditioned CG for solving the Poisson equation on a � % �
 � � � � % �


 � � mesh decomposed into

 � � � 
 � � subdomains with overlap = � .
 � � �
 � � iter cond max min% � % 19+1 (20) 26.8 (43.7) 1.89 (4.00) 0.0708 (0.0916)� � �

39+1 (42) 86.9 (145.) 1.95 (4.00) 0.0225 (0.0276)
�
�
� 75+1 (78) 328. (550.) 1.97 (4.00) 0.0060 (0.0073)

� � � � � 147+1(156) 1295(2168.) 1.98 (4.00) 0.0015 (0.0018)

Numerical Experiments

We present some numerical results for solving the Poisson equation on the unit square with
zero Dirichlet boundary conditions. We compare the performance of RASHO/CG and AS/CG
in terms of the number of iterations and the condition numbers. We pay particular attention to
the dependence on the number of subdomains and the size of the overlap.

In order to use RASHO/CG, we need to modify the linear system by forcing its modified
solution to belong to

!� � . To do so, we use (11). The stopping condition for CG is to reduce
the energy norm of the initial residual by a factor of � I � � . The exact solution of the equation
is taken to be �

���
� � � � \ � n � � �

p
� Z�c � � � � � Z c � � � � . All subdomain problems are solved exactly.

The iteration count (iter), the condition number (cond), the maximum (max) and minimum
(min) eigenvalues of the preconditioned matrix are summarized in Table 1, and Table 2. It
is clear that the newly introduced RASHO/CG is always better than the classical AS/CG in
terms of the iteration counts and the condition numbers. Although we do not have any parallel
results to report at this point, we are confident that RASHO/CG would be even better than
AS/CG on a parallel computers with distributed memory since much less communication is
required.
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34 A Nonlinear Additive Schwarz Preconditioned Inexact
Newton Method for Shocked Duct Flows

Xiao-Chuan Cai1, David E. Keyes2, David P. Young3

Introduction

A nonlinearly preconditioned inexact Newton algorithm (PIN) was recently introduced, in
[CK00], for solving large sparse nonlinear system of equations arising from the discretization
of nonlinear partial differential equations. In PIN the nonlinear system � � � � � I is trans-
formed into a new nonlinear system

�
�
�
�
� I , which has the same solution as the original

system. For certain applications the nonlinearities of the new function
�
�
�
�

are more bal-
anced and, as a result, the inexact Newton method converges more rapidly. In this paper,
we shall use the nonlinear additive Schwarz algorithm as the preconditioner and focus on the
performance of PIN for a compressible shock tube problem, which is known to be a difficult
test case for inexact Newton type algorithms.

A motivating problem

We consider a one-dimensional compressible flow problem described by the full potential
equation in a variable-area duct [BBH+93]. The problem is to determine the solution potential
�
��� �

satisfying �
� � � �

�
� � I � (1)

for I � �
� % and �

� I � � I and �
� % � � � � given. The duct area

� � �
� � �

� I z � � I z � ��� � �
� �
�

and the density � is given by

� � �
�
�
�
�
� � � � � u n � � � p � �

� � � � �
%

�
�
�
�
� � � � u n � � � p z

Here � � � � is the velocity, � � �
z �

is the ratio of specific heat and � is the speed of sound.
The flow is supersonic at each point of the interval

� I �&% � where the Mach number � � � ��� � �
exceeds 1. We use a standard finite difference method to discretize (1) on a uniform meshI � � � �

� � � � ��� �
�
� �

�
� � � � % z
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Let �
Q
�
�
�
Q � � z'zdz � � Q� � � be the solution vector of the finite difference problem, and

� � �
�
�
Q
� � � � � Q� � � � � � � � � � � ��z

The discrete nonlinear problem is of the form:
�
"
��
"
�
"
� �

" � � �� " � � � " � � � $ ��� �
z'zdz
� � � (2)

where
�
"

denotes the midpoint value
�
��� � " � � " � � � � % � , and ��

"
is an approximation of �

"
�

�
��� " �

defined using the so-called first order density biasing [BBH+93, HMS78],

��
"
� �

" �
�
" � � �

"
�

where � � denotes the undivided upwind difference operator, i.e., � � �
"
� �

" �
�
"
� � , and

where the switching function �
"

is defined as

�
"
� �����"

� � � � � " � � ����� � I � � � �
�
�� �" / z (3)

In (3), � " is the local Mach number at
� �	" � �	" � � � � % and � � is a given cutoff Mach number

taken to be I z � � in this paper.
�

is the level of the switching function, which is taken to be %
in our numerical experiments. This means that �

"
is replaced by the maximum of the 5 values

centered around
� "

. The switching function �
"

controls the amount of artificial viscosity. At
points where � " � � � , no upwinding is applied therefore ��

"
� �

"
. As � " increases above� � , ��

"
provides an increasing amount of upwinding. In the following discussion, we denote

the nonlinear system (2) in the form of a standard equation:

� � � �

�
� I � (4)

where � �
� � � � zdz'z � � � � � , � � � � � � � � � z'zdz � � � � , and we drop the superscript

�
and simply

use � �
�
� � � zdzdz � � � � � to denote vectors in the space

� �
. The problem looks rather simple;

however, it is quite a challenging equation for the inexact Newton algorithm (IN), which
is commonly used for solving such systems ([DS83, DES82, EW94]), and can briefly be
described here. Suppose � n �

p
is the current approximate solution; a new approximate solution

� n � � � p can be computed through the following steps: Find the inexact Newton direction � n �
p

such that k � � � n �
p
� � � � � � n �

p
�
� n �
p k � � � k � � � n �

p
� k � (5)

and then the new approximate solution

� n � � � p � � n � p � � n � p � n � p z
Here

� � is a scalar that determines how accurately the Jacobian system needs to be solved
using, for example, Krylov subspace methods [BS90, BS94, EW94, EW96]. � n �

p
is another

scalar that determines how far one should go in the selected inexact Newton direction [DS83].
IN has two well-known properties. First, if the initial guess is close enough to the desired
solution then the convergence is very fast. Second, such a good initial guess is generally
very difficult to obtain, especially for nonlinear equations that have unbalanced nonlineari-
ties [LRW96]. The step length � n �

p
is often determined by the components with the worst

nonlinearities, and this may lead to an extended period of stagnation in the nonlinear residual
curve; see Fig.2 for a typical picture and more in the references [CGK+98, GKM+00, JF95,
PCS+99, YMB+90, YMB+91].
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Descriptions of algorithms

Let us recall the nonlinearly preconditioned inexact Newton algorithms [CK00]: Find the
solution � � � � � of (4) by solving a preconditioned system

�
�
� �

�
� I z (6)

Note that
�

and � may have different forms, but we require that they have the same solution.
In general,

�
is a function of both � and � , and we do not expect to know explicitly how

�

depends on � or � . As an example,
�

may take the form of a composite function

�
�
� �

� �
�
� � � � �

� �
�

which makes � look like a preconditioner and some desirable properties of � include:

1. If �
��� �

� I , then
�
� I .

2. �
� � � � in some sense.

3. �
� � � � � �

is easily computable for � � � � .

4. If a Newton-Krylov type method is used for solving (6), then the matrix-vector product�
�
� � � � � � �

� � should also be easily computable for � � � � � � .

As in the linear equation case, the definition of a preconditioner can not be given precisely,
nor is it necessary. Also as in the linear equation case, preconditioning can greatly improve
the robustness of the iterative methods, since the preconditioner is designed so that the new
system (6) has more uniform nonlinearities. Note that the Jacobian of the preconditioned
function can be computed, at least in theory, using the chain rule; i.e.,

� �
�
�
�
�
� �� � � �� � z (7)

If � is close to � � � in the sense that �
� � � � � � �

� , then

A
�

A
	

A
�

A
�

� �
, i.e.,

� �
�
�
� � �

.
In this case, the algorithm converges in one iteration, or few iterations, depending on how
close is � to � � � . Most of the current research has been on the case of linear � ; see, for
example, [CGK+98, GKM+00, PW98]. In this paper, we shall focus on the case when � is
the single-level nonlinear additive Schwarz method [CD94, DH97].

Let
� �

�
� �
zdz'z
� �

�
be an index set; i.e., one integer for each unknown � � and � � . We

assume that
� � � z'zdz � � � is a partition of

�
in the sense that

� �� � � � � � � � and
� � � � z

Here we allow the subsets to have overlap. Let
� �

be the dimension of
� �

; then, in general,} �� � � � � � � z Using the partition of
�

, we introduce subspaces of
� �

and the corresponding
restriction and extension matrices. For each

� �
we define

� � � � � as

� � � � ��� � � �
� � � zdz'z � � � � � � � � � � � � I � if

� �� � � j
and a

� � �
restriction (also extension) matrix

� �  whose
�

th column is either the
�

th column
of the

� � �
identity matrix

� � � � if
� � � � or zero if

� �
� � � . Similarly, let

H
be a subset
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of
�

; we denote by
�

� the restriction on

H
. Note that the matrix

�
� is always symmetric and

the same matrix can be used as both restriction and extension operator. Many other forms
of restriction/extension are available in the literature; however, we only consider the simplest
form in this paper.

Using the restriction operator, we define the subdomain nonlinear function as

� �  � � �  � z
We next define the major component of the algorithm, namely the nonlinearly preconditioned
function. For any given � � � � , define � �

�
�
� � � � as the solution of the following subspace

nonlinear system

� �  � � � � � � � � � � I �
for � � � �

zdz'z
�  . We introduce a new function

�
�
�
�
�

�q
� � � � � � � � � (8)

which we will refer to as the nonlinearly preconditioned � � � � and the corresponding algo-
rithm additive Schwarz preconditioned inexact Newton method (ASPIN).

We remark that the evaluation of the function
�
�
�
�
, for a given � , involves the calculation

of � � , which in turn involves the solution of nonlinear systems on
� �

. If the overlap is zero,
then this is simply a block nonlinear Jacobi preconditioner. Assuming that all the subdomain
problems are uniquely solvable, it is proved in [CK00] that the nonlinear systems (4) and (6)
are equivalent in the sense that they have the same solution.

If (6) is solved using a Newton type algorithm, then the Jacobian is needed in one form or
another. Let

� ��� � � � � � �� � " � � � � and � �  �
� � � �� � � 

�
� � �

be the Jacobians of the original nonlinear system and subdomain nonlinear system, respec-
tively. Then, as shown in [CK00], the Jacobian of the preconditioned nonlinear system can be
approximated by

�
� �q
� � � � � ��  � z (9)

(9) is an extremely interesting formula since it corresponds exactly to the additive Schwarz
preconditioned linear Jacobian system of the original un-preconditioned equation. This fact
implies that, first of all, we know how to solve the Jacobian system of the preconditioned
nonlinear system, and second, the Jacobian itself is already well-conditioned. In other words,
nonlinear preconditioning automatically offers a linear preconditioning for the corresponding
Jacobian system.
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Numerical experiments

We show a few numerical experiments in this section using ASPIN. In all the experiments,
the subdomain Jacobian matrices � �  are formed using a finite difference scheme. The im-
plementation is done using PETSc [BGM+01] on a cluster of workstations. In the tests, we
always set � � � �

z
�
�

and the corresponding Mach distribution of the solution is given in
Fig.1. The level number

�
in the switching function is set to % .

We stop the global ASPIN iterations ifk �
�
� n �
p
� k � � I � � � k �

�
� n �
p
� k z

The global linear iteration for solving the global Jacobian system is stopped ifk �
�
� n �
p
� �

� �
�
� n �
p
�
� n �
p k � � I � � k �

�
� n �
p
� k z

At the
�

th global nonlinear iteration, nonlinear subsystems

� �  � � n �
p

� �
� I �

have to be solved. We use the standard inexact Newton with a cubic line search for such
systems with initial guess � n �

p
� � � � I . The local nonlinear iteration in subdomain

� �
is stopped

if
k � �  � � n �

p
� � � � k � � I � � k � �  � � n �

p
� � � � k .

For comparison purposes, we first solve the problem using the regular inexact Newton’s
method. The Jacobian problems are solved with GMRES, and the nonlinear residual history
are shown in Fig.2 for two mesh sizes

� � � � � % � and
� � � � %

� � . It can be seen clearly the
convergence degenerates as the mesh is refined. In general, The finer the mesh, the longer the
plateau period lasts. This happens no matter how accurately one solves the Jacobian problems.
We next solve the same discrete nonlinear systems using ASPIN. We use 8 subdomains with
the overlapping size equals to

� �
. The numbers of ASPIN iterations are shown in Fig.1. The

iteration numbers are much smaller than that of the regular inexact Newton’s method (Fig.2),
and the nonlinear iteration numbers do not change that much as we refine the mesh from� ��� � � % � to

� � � � %
� � to get a better resolution of the shock wave.
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Figure 1: Mach distribution and the shock location.
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35 Fictitious domain based solvers for particulate flows

D. Dashevski1, R. Glowinski
�
, Yu. Kuznetsov

�
, K. Lipnikov

�

Introduction

In this article we discuss the application of fictitious domain methods to the numerical simu-
lation of incompressible viscous flow with suspended moving particles. The model coupling
the Navier-Stokes equations from fluid dynamics with the Newton equations for the particle
motion has been extensively studied in the literature (see e.g. [GPH

�
98, GPH

�
00]). Among

the problems for its practical application are fluidized beds, sedimention, a blood flow around
artificial heart valve, etc.

The solution method discussed here combines finite element discretizations in space,
time discretization by a projection scheme and the method of characteristics [GP92] for the
treatment of the convection term. The key points of our method are locally refined locally
adapted grids for space discretization and efficient iterative solvers based on fictitious do-
main methods. The methodologies we follow in this paper were proposed and studied in
[Ast78, GK98, MKM86]. We shall show in Section 4, that the concrete choice of the optimal
domain embedding is strongly governed by the computational domain topology. Therefore,
we focus in our research on simulations with a few solid particles to investigate in details the
behavior of iterative solvers for the case of particle collisions.

Formulation of the particulate flow problem

Let
� � � �

,
� � I , be the union of a few solid particles suspended in an incompressible viscous

fluid occupying the fixed domain
�

. The fluid velocity � and pressure � are solutions of the
Navier-Stokes equations�

�� � � � � � �
� � � �

� �
�
� � � � in

� � � � �
� � � � I in

� � � � � (1)

with initial and boundary conditions

� � � � in
� � I � �

� � � � on
� � � � ��z (2)

Here
� � � � � � �

�� � � � is the domain occupied by the fluid, � is the fluid density, � is the
kinematic viscosity and � is the gravity. Without loss of generalization, we assume that the
fluid-particle system is at rest at

� � I , i.e. � � � �
and � � � �

. For
� � I , the particle motion

1Department of Mathematics, University of Houston, Houston, TX, 77204, USA, e-mail: ddl@math.uh.edu,
roland@math.uh.edu, kuz@math.uh.edu, lipnikov@math.uh.edu
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satisfies Newton’s law:

� �
G
� �G
� �

@A
�  n � p�� ���

G;H
� � � � �GG

� ��� ��� �
�

�
@A

�  n � p
��	 ��
 � � � � � ��� � G�H

� � � � �
zdz'z

�  � (3)

where
� �

,
� �

, � � ,
� �

and

 �

are translational and angular velocities, mass, inertia tensor and
centroid of the � -th particle, respectively,

� � � �
� � �

� � � �
� �
�
�

is the stress tensor and �
is the unit normal vector on the particle boundary

� � � � � �
pointing outward. We assume that

the no-slip boundary condition on
� � � � � �

holds, namely:

�
��	
� � � � � � � � � � ��	 ��
 � � � � � � �

zdzdz
�  
z

(4)

Problem approximation

We use the Galerkin finite element formulation for the space discretization and finite differ-
ences for the time discretization.

Time discretization scheme

Let � � denote the time step,
� � � � � � ,

� � �
� � � � �

, and �
�

, � � ,
� ��

,
� ��

, � � � �
z'zdz

�  , be
approximations of the continuous solution at time

� �
. The discretization scheme for problem

(1)-(4) includes five steps:

Convection step. For any
	 � � � , we compute the characteristics

� �	 � � � , � � � � � � � � � � � ,
ending at

	
and set �

� � � u � ��	 �
� �

� � �	 � � � � � � � .
We use a first order Runge Kutta integration scheme. In the case when the characteristic
leaves the domain

� �
, a special numerical procedure is used to estimate

� �	 � � � � � � .
Diffusion step. Using the convected field �

� � � u �
, we approximate the total time derivative

by the first order implicit Euler scheme:

�� �
� � �

�
� � � u �

� �
� �	� �

� � � � �
�
� � � � � in

� � �
�� �

� � � �
�

on
� � � z (5)

Projection step. The computed field �� �
� �

is projected onto a space of divergent-free func-
tions by solving a Poisson equation for � �

� � � � � :

�
� � � � �� �

� � � � �
�
� � � � � � � � � � in

� � �
� � �

� � � � I in
� � �

with the Dirichlet boundary condition �
� � � � �

� � � u �
on

� � �
.
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Particle motion step. Using the computed solutions �
� � �

and � �
� �

and the first order Euler
scheme, we discretize the motion equations:

� � � �
� �� � � ��
� � �

@A
�  n � � p � � � �

G;H
� � � � �

� � � �
� �� � � ��
� � �

@A
�  n � � p

�	 ��
 �� � � � � � ��� � G;H � � �� � � �� �� �

 � � �� � 
 �� � � �� � �

In the case of a few moving particles, a collision strategy based on the physics of solid
bodies is used [GPH

�
00].

Interpolation step. The new particle positions define the domain
� � � �

for the next time
step. We use the finite element interpolation to compute the fluid velocity �

� � �
and

pressure � �
� �

in the new domain.

Local adaptive locally fitted grids

The time-discretized problem is approximated by a finite element method. It is quite clear that
the meshes used for space discretization are as important as the time discretization schemes
and iterative solvers. Indeed the mesh determines the size of the algebraic problem and ac-
curacy of the approximation. Taking this into account leads strongly to choose structured
Locally Refined Locally Adapted (LRLA) meshes (see Figure 1).

A LRLA grid is built in three steps. First, a locally refined fully hierarchical grid is
constructed in the domain

�
to satisfy requirements on the mesh size imposed by the geometry

and the discretization. Second, the locally refined mesh is adapted to the particle boundaries
to provide the second order of the discretization. Finally, the LRLA grid

� Q
is restricted to

the computational domain
�

.
The hierarchical structure of the grid allows the use of advanced preconditioners like

multigrid methods and provides natural tree data structure which can be used for effective
implementation of the interpolation step.

Space discretization

Let
� � Q

be a triangulation of the domain
� �

. A triangulation
� � Q u � is obtained from

� � Q
by one

level of uniform refinement, i.e. by splitting every tetrahedron in
� � Q

into 8 smaller tetrahedra.
Let

� � � � � ��� � Q �
be the space of piecewise linear functions with a zero mean value defined

on triangulation
� � Q

. Similarly, let
� � �

� � � ��� � Q u � � � � be a space of vector piecewise linear
functions defined on triangulation

� � Q u � . We denote by
� � � a subspace of

� � of functions
vanishing on

� � � Q
.

The Galerkin finite element formulation of the Diffusion step (5) is to find �� �
� �Q � � � ,

�� �
� �Q � �

� Q
on

� � � Q
, such that@E

� m
� ��	� � �� �

� �Q � �
Q � � �� � � �Q � � �

Q � G �
�
@E
� m � � �

Q G � L �
Q � � � � � (6)
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Figure 1: The trace of a LRLA grid on the particle boundaries

where
� � �

�
�

� � �� � �
� � � u �Q � �

�
� � � Q � .

The weak formulation of the Projection step is to find a pair of functions
�

�
� � �Q � � �

� �Q � �
� �

� � � , �
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� � �Q G �
� I L � �

Q
� 

Q � � � � � � � � � (7)

where
� � �� �

� �Q � � �
�
� � � Q .

Fictitious domain method

Both problems (6) and (7) can be solved by fictitious domain methods (FDM). For simplicity
of presentation we omit upper indices for unknown variables and computational domain, and
assume that the flux satisfies the homogeneous Dirichlet boundary condition. Additionally,
let the particles be spheres of the same radius

�
. We embed

�
into domain

� � in such a way
that the triangulation

� Q
is a part of a triangulation

� � Q . Technically, both
� Q

and
� � Q are

traces of the fully hierarchical grid
� Q

.
A concrete choice of the domain

� � depends on the topology of
�

. We assume that� � � � � �
and parameter � characterizes the value of embedding. In other words it will be

the thickness of a spherical layer
� � � � � � 	 � � , i.e., I � � � � . Thus

� � �
�

and
� � � �

.
Let � � � � � � � � be a part of the boundary

� � � living inside particles. Note that � � �
when � � � .
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FDM with distributed Lagrange multipliers

Following [GK98] we replace (6) by the equivalent saddle point problem with distributed
Lagrange multipliers: find

�
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Q � � � � � � � :@
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where � � � � � � � � � � � � � and � � � � � � � � � �� Q � � � are subspaces of piecewise linear
functions vanishing on

� � � and � , respectively. In algebraic form it reads:� � � � �� I � � �
�

�
� � �

I �Jz
(8)

By dividing the components of the solution � into separate groups denoted by � � and � �
we obtain a useful block representation of the stiffness matrix. The subvectors � � and � �
corresponds to the mesh nodes from the mesh domains

� Q
and

� � Q � � Q , respectively. By
reordering the vector � according to this partitioning the linear system (8) can be written in
the block form �

�
� � � � � � � I
� � � � ��� � ��
I � � I �
	�

�
�
� � �
� �
�

�
	� �
�
�
� � �II �
	� z (9)

One of the main results of [GK98] is that the subvector � � is the solution to (6). Indeed, the
matrix

� �
is symmetric and positive definite. Thus, eliminating � � � I from the first block

equation, we end up with an algebraic problem equivalent to (6). It turns out that the linear
system (9) can be solved much more easily than the reduced system. By introducing the new
variable �� � � � � , we simplify (9):

�

�
�
� � �
� �
��

� 	� � �
�
� � � � � � � I
� � � � ��� � �
I � � I � 	�

�
�
� � �
� �
��

� 	� �
�
�
� � �II � 	� � (10)

where
� �

is the identity matrix. This problem can be solved iteratively with a preconditioner�
proposed in [GK98]:

� �
�
�
� � � � � � � I� � � � ��� II I � � � 	� � � � � II � � � z

Lemma 1 (Glowinski, Kuznetsov (1998)) Let
� � be spectrally equivalent to

� � �� (
� �

�
� � �� ). Then

�
� ��� � � � � � � �� � � � � � � � � � � and

�
�
� � �

.
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Note that
� � is a matrix form of the operator

� � � �
� � � in

� Q
with Dirichlet boundary

conditions. One of the possible choices for
� � is a multigrid preconditioner, for example,

the BPX preconditioner [BPX90]. It is most efficient when the grid is fully hierarchical.
Recall that the construction of

� Q
is already based on a fully hierarchical grid

� Q
. From this

viewpoint we have to take
� � � �

. On the other hand spectral properties of
� �

depend
on � and may be deteriorated for larger values of � . The maximal embedding guaranteeing
independence with respect to � is determined by the particle radius

�
and the distance

G
between two neighboring particles. Let � � � � � � � � � � be a norm given by

� � � �
Q
� � �
� � � � � @ � � ��	� � � �

Q
�
� � � � �

Q
�
� � G � z

Let � � Q and �
� Q

be finite element counterparts of subvectors � � and � � , respectively. Given
a function �

� Q
we define its norm-preserving extension � � Q in such a way that � � Q � �

� Q
on � . The following quantity plays the crucial role in the general theory of fictitious domain
methods (see, for example, [MKM86]):

� � � ���
�

h m �� � � Z c�

f m � � � � � Q � � � � � � E m � � � � �
� Q � � � � � � � 
 � �E m

� � � �
� Q � � � � � � � 
 � �E m z

(11)

Lemma 2 (Marchuk, Kuznetsov, Matsokin (1986)) Let � be as above. Then
� U c � � � � � � � �

� .
Reasonable estimates of � can be obtained by analyzing collision of two particles. Let

G
be the distance between these particles.

Lemma 3 The parameter � is independent of

G
, � and

�
when either (a) � � � � � �

and� �	� � �

G
or (b) � �

G
.

The proof is based on the norm preserving finite element extension theorem [Ast78,
Nep91, Wid87] and scaling arguments.

An important corollary from Lemma 3 is that when particles are close to each other a
severe restriction is imposed on � . Therefore grid

� � Q has only a few fully hierarchical
levels. Fortunately, we are solving the singular perturbed elliptic problem for which the BPX
preconditioner leads to a well conditioned coarse grid problem.

FDM for the Neumann boundary value problem

The saddle point problem (7) from the Projection step in the algebraic form reads:

� � �
�
�
� � � � � �� I � � �

�
�
� � �

I � z
(12)

Consider a block diagonal matrix

� � � � � II � �
�
�
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where � �
� � � �� and

� �
� � � � � �� � � � � � z

By using arguments similar to that in the proof of Lemma 1, we can show that the matrix
�

is spectrally equivalent to the stiffness matrix
�

. The simplest choice for
� � is the diagonal

lumping of mass matrix � � . The Schur complement
� � � �� � �

is spectrally equivalent to a
discrete Laplace operator in

�
with Neumann boundary conditions. Such boundary conditions

allow us to construct a very simple preconditioner proposed by Astrakhantsev [Ast78].
Let

�
be a matrix spectrally equivalent to the discrete Laplace operator on

� Q
with Neu-

mann boundary conditions. Let us divide mesh nodes into two separate groups. The first
group includes nodes from the mesh domain

� Q
. The second group contains the remainder of

the nodes. According to this partitioning matrix
�

can be written in the block form
�
� � � � � � � �� � � � ���

� z
One of the main results of [Ast78] is that the Schur complement

� � � � � � � � � � � � � ���� � � �
is spectrally equivalent to the discrete Laplace operator in

� Q
with Neumann boundary con-

ditions. Therefore we set
� � � � � �� � . Obviously that action of

� � on a vector � is reduced
to solving a linear system with matrix

�
and the right-hand side

�
� � I � � . One of the possible

choices for
�

is a multigrid preconditioner, for example, the BPX preconditioner.

Numerical experiments

For the simulation we used 27 identical balls of radius
� � I z I � � centered at nodes of a

3x3x3 cubic grid with the mesh step size
� � � % (see Figure 2). The particles were placed in a

parallelepiped with the square base I z � % � � I z � % � and height I z % � � filled with a glycerin.
We have chosen particles with density twice as large as the fluid density. The particle positions
at times

� � I H , � � I z % � H and
� � I z � � H are shown on Figure 2. The variable time step

strategy was chosen to minimize the number of time steps. The total simulation required 64
time steps with about 520000 degrees of freedom for velocity and 65000 for the pressure.

A very interesting symmetric aggregation of particles in triples is observed after a few
collisions between particles. Despite decreasing the distance between particles, we did not
change the embedding domain

�
. The number of iterations for solving the singular perturbed

problem (6) with the BPX preconditioner has been changed from 18 to 30 when distance
between particles has been changed from

� � � % to
� �

�
(the minimal allowed distance). We

expect that the new embedding strategy described above will decrease the number of iterations
and allow us a more detailed numerical analysis of particles collisions.
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Figure 2: The motion of the cubic structure of spheres
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36 Scalabilities of FETI for variational inequalities and
contact shape optimization

Zdeněk Dostál, David Horák, Jan Szweda and Vı́t Vondrák 1

Introduction

We review our work on development of an efficient algorithm for numerical solution of vari-
ational inequalities and their application to the solution of multi-body contact shape opti-
mization problems solved by the gradient methods. The method presented exploits optimal
features of the linear FETI domain decomposition method with the natural coarse grid and
a special structure of quadratic programming problems arising in dual formulation of the
state problem. Results of numerical experiments are reported that document both numeri-
cal and parallel scalability of the algorithm for the solution of a model variational inequality
and illustrate its efficiency in the solution of a contact shape optimization problem with the
semi-analytic sensitivity analysis.

Following [DFS98, DGS00a, DGS00b], we start our exposition by describing the dis-
cretized variational inequality as a convex quadratic programming (QP) problem with a block
diagonal stiffness matrix and general equality and inequality constraints. Then we show
that the difficulties arising from general inequality constraints and possible semi-definiteness
can be essentially reduced by the application of the duality theory. The matrix of the dual
quadratic form turns out to be positive definite with a spectrum that is more favorably dis-
tributed for application of the conjugate gradient based methods than its primal counterpart.
The performance of the method can be further improved by means of the natural coarse
space projectors[FMR94]. The algorithm and the corresponding theoretical results are then
reviewed in Section 36.

In Section 36, we show that the algorithm complies well with the semi-analytic method
[HN96, DVR01] for evaluation of the gradients of the cost function that are necessary for im-
plementation of the feasible direction method. In particular, it turns out that the gradient may
be evaluated with only one decomposition of the stiffness matrix, regardless of the number of
the design variables.

The algorithm has been implemented by means of PETSc [BGMS97] package on SP2 for
the solution of a model problem. The results of numerical experiments indicate both numerical
and parallel scalability of the algorithm. For solution of 2D contact and contact shape opti-
mization problems, the algorithm has been implemented into the system ODESSY [RKO91]
developed at the Institute of Mechanical Engineering of the Aalborg University. Reported
numerical experiments indicate again high performance of the algorithm in the solution of
the contact shape optimization problems. Let us recall that interesting results concerning nu-
merical scalabity of a different algorithm for variational inequalities can be found in Schöberl
[Sch98].

1VŠB-Technical University Ostrava, 17. listopadu, CZ-708 33 Ostrava-Poruba, Czech Republic,
zdenek.dostal@vsb.cz, david.horak@vsb.cz, jan.szweda@vsb.cz, vit.vondrak@vsb.cz
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Discretized variational inequality and duality

Let
� � denote a closed convex subset of a Sobolev space

� �
defined on a domain

�
in
� � � � G �% ��� with sufficiently smooth boundary

�
, and consider a problem to find � � � � so that

� �
� � �

�
�
� � � � � � �

�
for all � � � � � (1)

where
�

and � are a symmetric positive semidefinite bilinear form and a linear functional, re-
spectively. We restrict our attention to problems (1) arising from discretization of free bound-
ary elliptic problems [Glo83] with a spatial domain

�
comprising subdomains

� � � z'zdz � � �

.
An important special case is a problem to find an equilibrium of a system of elastic bodies in
contact, possibly with auxiliary domain decomposition [DGS00b].

The finite element discretization of
�
�
� � � z'zdz � � �

with a suitable numbering of nodes
results in the QP problem to find

� Z�c �% �
� � � � � � � subject to  � � � � � �  � � � � � (2)

with a symmetric block-diagonal matrix � � diag
� � � � zdzdz � � �

�
of order

�
,
� � � � � , an� � � � � � �

full rank matrix  comprising blocks  � and  �
, and similarly � � � � �

comprising subvectors � � and � � . The diagonal blocks � � that correspond to the subdomains� � � � � � �
z'zdz
�
H

are positive definite or semidefinite sparse matrices. Moreover, we assume
that the nodes are numbered in such a way that � � � z'zdz � � � are banded matrices that can be
effectively decomposed by the Cholesky factorization. If a contact problem of elasticity is
considered, then the vector

�
describes the nodal forces arising from the volume forces or

some other tractions, the matrix  � and the vector � � describe the linearized incremental non-
interpenetration conditions, and the matrix  �

with � � � I describe the ”gluing” conditions
on auxiliary interfaces. More details may be found in [DFS98].

Even though (2) is a standard convex QP problem, its numerical solution may be expen-
sive. The reasons are that � is typically ill-conditioned or singular, and that the feasible set
is so complex that projections onto it can hardly be effectively computed, so that it would be
very difficult to achieve fast identification of the contact interface and fast solution of auxil-
iary linear problems. These complications may be essentially reduced by applying the duality
theory of convex programming (e.g. [Dos95, DFS98]).

Following [DGS00a, DGS00b], let us first assume that the matrix � has a nontrivial null
space that may be used to define the natural coarse grid [FMR94]. The Lagrangian associated
with problem (2) is � �

� � �
�
� �
% �
� � � � � � � � � � �  � � � � � (3)

where the vector of multipliers comprises subvectors � � � � � that comply with the block struc-
ture of  , so that we can rewrite the problem (2) as the saddle point problem

� Z c � �
�� � ��

�
�� � `�^Y` � ^ � �

�� � ��
�
� �  �
�

f
� � Z c T� � �

� � �
��z

(4)

If we eliminate � from (4), we shall get the minimization problem

� Z�c�� � � � �
z ^ z ��� � I � c � � � � � �  � �

�
� I � (5)
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where
�

denotes a matrix whose columns span the null space of � , � �
denotes any matrix

that satisfies � � � � � � , and

�
�
�
�
� �
% �
�  � �  � � � � �

�
 � �

� � � ��z (6)

Once the solution
�
� of (5) is obtained, the vector � that solves (4) can be evaluated by

means of explicit formulas that may be found in [Dos95, DFS98]. The Hessian of � is closely
related to that of the basic FETI method by Farhat and Roux, so that its spectrum is relatively
favorably distributed for application of the conjugate gradient method.

Even though problem (5) is much more suitable for computations than (2) and has been
used for efficient solution of contact problems [DFS98], further improvement may be achieved
by the natural coarse grid projectors of Farhat, Mandel and Roux [FMR94]. In this way, it
is even possible to achieve that the effective spectral condition number of the Hessian of the
Lagrangian involved in computations is bounded independently of both the penalty parameter
and the number of subdomains [DGS00b]. It does not follow that the resulting algorithm is
scalable as it is still necessary to find the active constraints of the solution.

If the stiffness matrix � is regular, than the same procedure leads to the dual problem

� Z�c � � � � �
z ^ z � � I z (7)

Algorithm

The problem (7) comprises only bound constraints, so that efficient algorithms using projec-
tions and adaptive precision control [Dos97] may be used. To apply this algorithm also for
the problem (5), we shall use a variant of the augmented Lagrangian type algorithm proposed
by Conn, Gould and Toint [CGT91] for identification of stationary points for more general
problems. However, the algorithm that we describe here is modified in order to exploit the
specific structure of our problem. Main improvement is in a sense adaptive precision control
in Step 1.

To simplify our notation, let us denote � �  � �  � � � � � �  � , and

G
� � � �

,
and let us introduce the augmented Lagrangian with the penalization parameter � and the
multiplier � for the equality constraints for problem (5) by� �

� � � � �
�
� �% �

� � � � � � � � � � � � � � G � � �% ��� � � �
� G � � � z

If we denote by �� �
�
� � � � �

�
the gradient of

�
with respect to � , then the projected gradient� � � � �

�
� � � � �

�
of
�

at � is given component-wise by

� �� � � � TVU+W � � � I U+W � �� � � c � � �� �(� �� TVU+W � � � I � c � � � �
with � �� � � Z c � � � � I � , where

�
is the set of indices of constrained entries of � .

All the parameters that must be defined prior to the application of the algorithm are listed
in Step 0.

Algorithm 3.1. (Simple bound and equality constraints)

Step 0. Initialization of parameters
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Set I� � � � , � � � , � � � I , � � � I , � � I , � � � � � .
Step 1. Find �

�
so that � � � �

�
�
� � � � � � �

�
� �
� � � � � � � � � .

Step 2. If � � � �
�
�
� � � � � � �

�
� � � c � � � � � � � � are sufficiently small, then stop.

Step 3. �
� � � � � � � � � � � �

Step 4.
� � � � � � � � �

� � �
Step 4a. then � � � � � � � , � � � � � � � �
Step 4b. else � � � � � � � � , � � � � � � �

end if.

Step 5. Increase
�

and return to Step 1.

An implementation of Step 1 is carried out by the minimization of the augmented La-
grangian

�
subject to �

� I by an efficient algorithm that can be found in [Dos97]. The pro-
posed algorithm has been proved [DFS01] to converge for any set of parameters that satisfy
the prescribed relations. Moreover, an estimate of the rate of convergence of the approxima-
tions of the Lagrange multipliers has been proved that does not have any term that accounts
for inexact solution of the bound constrained problems that are solved in Step 1, and it was
proved that the penalty parameter is uniformly bounded. These results give theoretical support
to Algorithm 3.1.

Discretized contact shape optimization problem

Let us now consider a contact shape optimization problem assuming for simplicity that the
bodies occupy in a reference configuration subdomains

� � � zdz'z � � �

and that the shape of the
first region

� �
depends on a vector of design variables � , so that the energy functional will

have the form

$
�
� � �

�
� �
% �
� � � � � � � � � � � � � � (8)

where the stiffness matrix � � � � and possibly the vector of nodal forces
� �
�
�

depend on � .
The matrix  and the vector � now describe the linearized incremental conditions of non-
interpenetration so that they also depend on � and the solution �

�
�
�

of the contact problem
with the region

� � � � � � � � satisfies

�
�
�
�
� � W � � Z c � $ � � � � � � � � � � � � j � (9)

where � � � � � � � �  � � � � � � � � � j z
We shall consider the contact shape optimization problem to find

� Z c � � � � � � � � 
 � � � j � (10)
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where �
�
�
�

is the cost functional that defines the cost function for design of body
� � � � � . The

set of admissible design variables


� � � defines all feasible designs. For example, we can

consider the cost functional �
�
�
� � � $

�
� � �

�
that defines the minimal compliance problem.

The set of admissible design parameters will be defined by

� � � � � � '

�
�
� 	 � vol

��� �
�
� � �

vol
� � � I � � j � (11)

where ' � 	 are given vectors with non-negative entries that define bounds on the design vari-
ables, and vol(.) is a mapping that assigns to each domain its volume. It has been proved
that the minimal compliance problem has at least one solution and that the functional $

�
� � �

�
considered as a function of � is differentiable under reasonable assumptions [HN96].

If we want to exploit differentiability of problem (10), we must evaluate effectively partial
derivatives of � with respect to the design variables � � � zdzdz � � � . Our experience shows that
the semi-analytic sensitivity analysis [HN96] is a method of choice. Let us denote by

� �� � �
z z�z
� �
j

the set of indices of the Lagrange multipliers � ,
�

� � ��� � � �  � " � � � � " � � � �G
� � � � � � �

�
�
� � I j the set of indices that correspond to couples of nodes in strong contact,

and
� � � ��� � � �  � " � � � � " � � � � G � � � � � � � � � � � I j the set of indices that correspond to

couples of nodes in weak contact. We have used the standard summing convention. Analysis
of the Karush-Kuhn-Tucker conditions [HN96] enables to evaluate the directional derivative
� �
�
� � �

�
in the direction � by solving the quadratic programming problem

� Z�c
��� n � p � � � � n � � � p
��� n � p � � � � n � � � p �

% � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �  � � � � � � � � � � � � � (12)

where � � � � � � � , � � � � � � � and  �
�
� � �

�
denote computable directional derivatives of the

stiffness matrix, traction vector and the constraint matrix, respectively. Matrices  �
�
�
�

and  �

�
�
�

are formed by the rows of the matrix  
�
�
�

with the indices that belong to
� �

and
�

� , respectively. Similarly, the vectors

G
�
�
� � �

�
and

G
�

�
� � �

�
are formed by the en-

tries of

G
�
�
� � �

� �  �
�
� � �

�
�
�
�
�

with indices in
� � and

�
� , respectively. Solving (12) for

� � \ � � � � � �
z z z
� � , where \ � are the standard unit vectors, we evaluate the gradient of the

state problem. Denoting �
� �
� � �

�
�
�
�
�
� � �

� � � � � � � � � � � � � �  � � � � � � � � � � � , we can see
that the problem (12) has the same structure as the problem (2), so that we can rewrite (12)
into the dual form.

It turns out that the semi-analytic sensitivity analysis based on the dual formulation re-
quires only one assembly and decomposition of the stiffness matrix. More information may
be found in [HN96, VDR99, DVR01].

Numerical experiments

We have tested our algorithm on the solution of a simple model problem

Minimize 
 � � � � � � � � �q
� � � � @ E  � � � � � � G � � @ E


�
� �
G � �

subject to � � � I ��� � � I and � � � � ��� �	� � � � � � � � for � �
� I � � � �

where
� � � � I � � � � � I � � � , � � � �

� � %
� � � I � � � , � ��� � � � � � � for

���
��� � � � I � � � ��� I z�� � � � � ,� ���

��� � � I for
���
��� � � � I � � � � � I � I z�� � � , � � � � � � � �

� for
� �
��� � � � � �&%

� � � I � I z % � � and
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� ���
��� � � I for

���
��� � � � � �&%

� � � I z % � � � � . This problem is semicoercive due to the lack of
Dirichlet data on the boundary of

� �
.

The solution of our model problem may be interpreted as the displacement of two mem-
branes under the traction

�
. The left membrane is fixed on the left and the left edge of the

right membrane is not allowed to penetrate below the edge of the left membrane as indicated
in Figure 1a. The solution is unique because the right membrane is pressed down. More
details about this model problem including some other results may be found in [DGS00a].

The model problem was discretized by regular grids defined by the stepsize
� � � � �

with
� � � nodes in each direction per subdomain

� �
� � � � � % . Each subdomain

� �
was

decomposed into  
�
 identical rectangles with dimensions

� ��� �  . The solution of the
model problem discretized by

� � � � � and
� � � � � � can be seen in Figure 1b.

The model problem was solved for
� � � � ��� � � � � � % � � � � % � � � � � � � % j � � � � � � � with

the stopping criterion
� � � �

�
� � � � I � � � � � I � � � �  � � � � c � � � � � � �

�
� I � � � � G � � z

Both numerical and parallel scalabilities are demonstrated in Figure 2. Figure 2a demon-
strates the dependence of elapsed time on the number of processors. Let us point out that the
times were effected by the order and variety of used processors. Figure 2b then demonstrates
high degree of numerical scalability of our algorithm for variational inequalities. In particular,
the number of the conjugate gradient iterations ranged from 27 to 65 with only 54 iterations
for the largest problem. The primal dimension ranged from 8450 to 540800. To solve the
problem to the prescribed precision, it was necessary to identify about 350 active constraints
on the contact interface comprising 520 couples of nodes that might have come into contact.
The dual dimension was 14975.
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Figure 1: Model problem and its solution
���������	��
�������	�

We have also tested our algorithm on the solution of a problem to find a shape of the
spanner in Figure 3a that minimizes the maximum of von Mizes stress. To this end, we have
implemented our algorithm into the system ODESSY developed at the Institute of Mechanical
Engineering of the Aalborg University [RKO91]. The problem has been discretized by the
finite element method using 2606 degrees of freedom with 46 couples of nodes that may get
in contact. The admissible shape of the spanner was restricted by the box constraints on the
design variables and by the upper bound on the volume. The initial and optimized designs are
displayed in Figures 3a and 3b together with the values of the cost function. To get the results,
we carried out 79 design steps.
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Figure 3: Initial and optimized shape of the spanner
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For comparison, we attempted to solve the problem also by the commercial software AN-
SYS. It turned out that the implementation of our algorithm in ODESSY was considerably
more efficient. The analysis step in ODESSY required only 13 seconds, while it required 12
minutes to get a comparable result by ANSYS on the same computer. We were not able to
carry out the optimization in ANSYS.

Comments and conclusions

The FETI-based domain decomposition algorithms for the solution of coercive and semi-
coercive variational inequalities has been reviewed and tested. Presented results of solution
of a model variational inequality indicate both numerical and parallel scalability of the al-
gorithm. Development of the theory is in progress. Theoretical results published so far
[DGS00b] guarantee the convergence and robustness of the method. The method has been
applied to optimization of a spanner and the efficiency of the method has been confirmed also
by comparison with the commercial software. The salient feature of the algorithm in contact
shape optimization is the reduction in the costs in preparing domain decomposition based so-
lutions for related QP problems that appear in the dual formulation of the sensitivity analysis.
In particular, it turns out that for each design step, it is necessary to carry out the preparation
step only once regardless the number of the design variables. Further improvement may be
achieved by the application of the mixed finite element discretization [DHK00, WK01].
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[Dos97]Zdeněk Dostál. Box constrained quadratic programming with proportioning and pro-
jections. SIAM J. Opt., 7:871–887, 1997.

[DVR01]Zdeněk Dostál, Vı́t Vondrák, and John Rasmussen. Efficient algorithms for contact
shape optimization. In V. Schulz, editor, Workshop Fast Solution of Discretized Optimiza-
tion Problems, pages 98–106, WIAS Berlin, 2001.

[FMR94]Charbel Farhat, Jan Mandel, and Francois-Xavier Roux. Optimal convergence prop-
erties of the FETI domain decomposition method. Comput. Methods Appl. Mech. Engrg.,
115:367–388, 1994.

[Glo83]Roland Glowinski. Numerical Methods for Nonlinear Variational Problems. Springer
Verlag, New York, 1983.

[HN96]Jaroslav Haslinger and Pekka Neittaanmäki. Finite element approximation for optimal
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37 An Algebraic Convergence Theory for Restricted
Additive and Multiplicative Schwarz Methods

A. Frommer1, R. Nabben2, D. B. Szyld3

Introduction

In this contribution we use the algebraic representation recently developed for the classical
additive and multiplicative Schwarz methods in [FS99, BFNS01] to analyze the restrictive
additive Schwarz (RAS) and restrictive multiplicative Schwarz (RMS) methods; see [CS96,
CFS98, CS99, QV99].

RAS was introduced in [CS99] as an efficient alternative to the classical additive Schwarz
preconditioner. Practical experiments have proven RAS to be particularly attractive, because
it reduces communication time while maintaining the most desirable properties of the classical
Schwarz methods [CFS98, CS99]. RAS preconditioners are widely used in practice and are
the default preconditioner in the PETSc software package [BGMS97]. Similar savings in
communication time can be expected in the case of RMS; see [CS96]. In fact, we announce
here that we can prove that RMS is better than RAS, in the sense that the corresponding
iteration matrix has a smaller norm, for a certain weighted max norm.

Our results provide the theoretical underpinnings for the behavior of the RAS precondi-
tioners as observed in [CS99]. The theory we develop is not complete in the sense that we
do not get quantitative results (like mesh independence in the presence of a coarse grid, for
example). However, such results can be obtained indirectly by using some of the comparison
results of [FS01] and classical results for the usual Schwarz method.

Our approach is purely algebraic, and therefore our results apply to discretization of dif-
ferential equations as well as to algebraic additive Schwarz. We believe that the algebraic
tools used here and in [FS99, BFNS01] complement the usual analytic tools used for the anal-
ysis of Schwarz methods; see, e.g., the books [SBG96, QV99] and the extensive bibliography
therein.

One of the reasons why the algebraic approach presented here is a good alternative to the
classical approach is that the operators defining RAS and RMS are not orthogonal projections
(see [FS01]), and thus the usual theory as described, e.g., in [BM91] does not apply.

This paper is organized as follows. We start by giving algebraic representations of the
usual and the restricted additive Schwarz methods and we introduce the splittings associated
with each of the methods. Then, our convergence theorem for RAS, as well as results on the
effect of overlap on the quality of the preconditioner are presented. Finally, convergence of
RMS is shown, together with the comparison between RMS and RAS.

We note that using the same formulation described in this paper, several variants of RAS
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many, frommer@math.uni-wuppertal.de
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nabben@mathematik.uni-bielefeld.de
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19122-6094, USA, szyld@math.temple.edu . Supported by the U.S. National Science Foundation grant DMS-
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and RMS preconditioners can be analyzed, including the cases of inexact local solutions and
of weighted methods; see [FS01, NS01].

The algebraic representation

The
� � �

linear system is given as

�
�
� � z (1)

As in [CS99] we consider � nonoverlapping subspaces � � � � � � ��� �
zdz'z

� � which are spanned
by columns of the

� � �
identity

�
and which are then augmented to produce overlap. For a

precise definition, let
� � � � �

z'zdz
� �
j

and let

� �
��
� � � � � � �

be a partition of
�

into � disjoint, non-empty subsets. For each of these sets
� � � � we consider

a nested sequence of larger sets
� � � � with

� � � � � � � � � � � � � � z'zdz � � � � � �
z'zdz

� �
j
� (2)

so that we again have
� � � � � � � � � � � for all values of � , but for � � I the sets

� � � � are not
necessarily pairwise disjoint, i.e., we have introduced overlap. A common way to obtain the
sets

� � � � is to add those indices to
� � � � which correspond to nodes lying at distance � or less

from those nodes corresponding to
� � � � in the (undirected) graph of

�
.

Let
� � � � � � � � � � � denote the cardinality of the set

� � � � . For each nested sequence from
(2) we can find a permutation � � on � � �

zdz'z
� �
j

with the property that for all � � I we have� � � � � � � � � � � �
z'zdz

� � � � � j .
We now build

� � � � � � matrices whose rows are precisely those rows $ of the identity for
which $ � � � � � . Formally, such a matrix

� � � � can be expressed as

� � � � � � � � � � � � � � � (3)

with
� � � � the identity on the

� � � � -space. Finally, we define the
� � �

weighting matrices

N � � � � � �� � � � � � � �
� � �� � � � � � �� � � � � �

and the subspaces

� � � � � W � c � b � N � � � � � � � � �
z'zdz

� �
z

Note the inclusion � � � � � � � � � � for � � � � , and in particular � � � � � � � � � for all � � I .
We view the matrices

� � � � as restriction operators and
� �� � � as prolongations. We can

identify the image of
� �� � � with the subspace � � � � . For each subspace � � � � we define a

restriction of the operator
�

on � � � � as

� � � � � � � � � � � �� � � z
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The classical additive Schwarz method consists of using the following preconditioner in a
Krylov subspace method for solving (1):

� � �� � � � � �q
� � � � �� � � � � �� � � � � � � z (4)

In order to describe the restricted additive Schwarz method we introduce
‘restricted’

� � � � � � operators
!� � � � as

!� � � � � � � � � N � � � (5)

The image of
!� �� � � � N � � � � �� � � can be identified with � � � � , so

!� �� � � ‘restricts’
� �� � � in the sense

that the image of the latter, � � � � , is restricted to its subspace � � � � , the space from the non-
overlapping decomposition. The restricted additive Schwarz method from [CFS98, CS99]
replaces the prolongation operator

� �� � � by
!� �� � � and thus uses

� � �� � � � � � �q
� � � !� �� � � � � �� � � � � � � (6)

instead of (4)4. For practical parallel implementations, replacing
� �� � � by

!� �� � � means that the
corresponding part of the computation will not require any communication, since the images
of the

!� �� � � do not overlap. In addition, the numerical results in [CS99] indicate that the
restrictive additive Schwarz method is at least as fast (in terms of number of iterations and/or
CPU time) as the classical one. Note that we lose symmetry, however, since if

�
is symmetric,� � �� � � � will be symmetric as well, whereas � � �� � � � � will usually be nonsymmetric.

For the convergence analysis of these Krylov methods, the relevant matrices are � � �� � � � �
and � � �� � � � � � . Alternatively, we can consider the iteration matrices � � � � � � � � � � �� � � � �
and � � � � � � � � � � � �� � � � � � . To analyze these matrices, we write the orthogonal projections

� � � � � � �� � � � � �� � � � � � � � � � � � �
z'zdz

� �
and the oblique projections

� � � � � �� �� � � � � �� � � � � � � � � � ��� �
z'zdz

� � �
and thus we have the representation

� � � � � � � � �q
� � � � � � � � � � � � � � � � � �q

� � � � � � � z (7)

With this notation, the iteration matrix corresponding to the classical multiplicative Schwarz
method is

�
�
� �

� � � � � � � � � � � � � � � � � � � ��� � � � � � � � � (8)

4We note that the representations (4) and (6) using rectangular matrices ����� � and matrices ����� � of smaller size is
consistent with the standard literature [SBG96, QV99] and different than that of [CS99] where 	�
�	 matrices are
used.
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and the corresponding iteration matrix for the RMS method is

� � �
� �

� � � � � � � � � � � � � � � � � � � ��� � � � � � � � � (9)

As in [FS99, BFNS01], the key to our analysis is the use of the nonsingular matrices � � � �
defined as � � � � � � �� � � � � � �� 


�

� � � � � �
where



�

� � � is the diagonal part of the principal submatrix of
�

‘complementary’ to
� � � � , i.e.,


�

� � � � � Z � � � � � � � �

� � � � � � � � � � � �� � � � � � �

� � � � � 

with

�
�

� � � the
� � � � � � � � � � � � � identity. Here, we assume that

� � � � and



�

� � � are nonsin-
gular. With these matrices we can write

� � � � � N � � � � � �� � � � � (10)

� � � � � N � � � � � �� � � � � (11)

and this provides a new representation of the matrices (7), (8), and (9); see [FS99, FS01,
BFNS01, NS01]. The new representation of the additive Schwarz methods is very much in
the spirit of multisplittings; see [OW85], or [BMPS95] and its bibliography.

We note that with the RAS preconditioning the corresponding weighting matrices satisfy
�q
� � � N � � � � � �

consistent with the traditional multisplitting theory, while for additive Schwarz we have


 � � �q
� � � N � � � � � �

where the inequalities are componentwise and


 � �����"
� � ������� � � � ����� $ � � � � � j � z (12)

In the p.d.e. setting, 
 is the maximum number of subdomains to which each node of the mesh
belongs.

Convergence of RAS

We show in this section that for � -matrices the spectral radius �
� � � � � �� � � � � � �

of the RAS
iteration matrix is less than 1 for all values of � � I . This implies in particular that the
spectrum of the preconditioned system �

� � � �� � � � � � �
is located in the right half plane and

contained in a disk of radius less than one around the point 1.
We start by recalling some basic terminology. The natural partial ordering

�
between

matrices
� �

��� � " � � � �
� � � " � of the same size is defined component-wise, i.e.,

�
� �

iff
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� � " � � � " for all � � $ . If
�
� � we call

�
nonnegative. If all entries of

�
are positive, we say

that
�

is positive and write
�
� � . This notation and terminology carries over to vectors as

well. An
� � �

matrix
�

is called a (nonsingular) � -matrix if it has nonpositive off-diagonal
elements and

� � � � � ; see [Var62].
Consider the splitting

� � � �  with � nonsingular. This splitting is said to be weak
nonnegative of the first type (also called weak regular) if� � � � � and � � �  � � z (13)

Theorem 1 [OR70] Let
� � � �  be a weak nonnegative splitting of the first type. Then

�
� � � � � � � �

� � iff
�

is nonsingular and
� � � � I .

We are now able to formulate the central convergence result of this section.

Theorem 2 Let
�

be a nonsingular � -matrix. Then for each value of � � I , the splitting
� � � � � � � � �  � � � � � , corresponding to the RAS method, is weak nonnegative of the first
type. In particular, the iteration matrix � � �� � � � �  � � � � � � � � � � �� � � � � � satisfies

�
� � � � � �� � � � � � �

� �
z

(14)

The proof consists of showing that � � �� � � � � � � , and that
� � � � �� � � � � � � � , as per

(13), and then apply Theorem 1; see [FS01].
We point out that in general a convergence result such as (14) does not hold for the classi-

cal additive Schwarz preconditioner (4). To guarantee convergence, a damping (or relaxation)
parameter �

� I is introduced. It can be shown that if �
�
� � 
 , then �

� � � �+� � �� � � � � �
� � ,

where 
 is defined in (12); see [FS99, BFNS01]. Thus, one of the attractive features of the
RAS preconditioner is that no damping parameter is needed for convergence.

Using an appropriate norm, we study the effect of varying the overlap. More precisely, we
prove comparison results on the spectral radii and/or on certain weighted max norms for the
corresponding iteration matrices � � � � � � as defined in (7) for different values of � � I .

We want to compare one RAS splitting, defined through the sets
� � � � � with another one

with more overlap defined through sets
� � � � where

� � � � � � � � � � � � � � �
z'zdz

� � . We show
that the larger the overlap ( � � � � ), the faster RAS method converges as measured in certain
weighted max norms. This is consistent with the experiments in Tables 1 and 2 of [CS99],
where an increase of the overlap is associated with fewer iterations.

For a positive vector � we denote
k � k � the weighted max norm in

�
-space given byk � k � � ������ � � ������� � � � � � � ��� � z

The resulting operator norm in
� � �

-space is denoted similarly.
The following theorem from [FS01] is very similar to [FP95, Theorem 2.1].

Theorem 3 Let
�

be a nonsingular � -matrix and let � � I be any positive vector such that
� � � I , e.g., � � � � � � with �

� I . Then, if � � � � ,k � � � � � � k � � k � � � � � � �
k � z (15)

Moreover, if the Perron vector � � � of � � � � � � � satisfies � � �

� I and
� � � �

� I , then we also
have

�
�
� � � � � � � � �

�
� � � � � � �

��z
(16)
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In the case that (16) holds, Theorem 3 indicates that the spectrum of the preconditioned
matrix is included in a possibly smaller disk when the overlap is increased.

We remark that (15) (as well as most results using the weighted max norms in the paper)
holds for any positive vector � such that

� � is positive, so that one has a lot of freedom in
choosing the norm. For example, if all row-sums of

�
are positive we can choose as � the

vector of all ones, and thus the weighted max norm is simply the max norm. A commonly
chosen vector � is the row-sums of

� � � , which is always positive.
For � � � I , i.e., for the block Jacobi preconditioner we can always provide the comparison

of the spectral radii (16), in addition to the comparison (15). The following theorem is in fact
[FP95, Theorem 2.2].

Theorem 4 Let
�

be a nonsingular � -matrix. Then, for any value of � � I ,
�
�
� � � � � � � � �

�
� � � � � � ��z

Convergence of RMS

Using the new algebraic representation (10), it was shown in [BFNS01] that for any � �
� � � \ � I with \ � I , we have �

�
�
�
�

�3� k �
�
�
k � � � . In a similar way, using the

representation (11), we can prove the following result; see [NS01].

Theorem 5 Let
�

be a nonsingular � -matrix. For any � � � � � \ � I with \ � I , we have
�
�
� � �

�

��� k � � � � k � � � . Furthermore, there exists a unique splitting
� � � � �

such
that �

� �
� � � � � � , and this splitting is weak nonnegative of the first type.

It is well known that bounds for the convergence using the standard multiplicative Schwarz
preconditioner are better than those obtained for the standard additive Schwarz; see, e.g.
[SBG96, QV99]. For the restrictive preconditioners we can actually show that the weighted
max norm of the RMS iteration matrix is smaller than that of RAS.

Theorem 6 Let
�

be a nonsingular � -matrix and let � � I be any positive vector such that
� � � I , e.g., � � � � � \ with \ � I . Then,k � � � � � � k �

� k � � � � � � k � z
Moreover, if the Perron vector � � of � � � � � � satisfies � � � I and

� � � � I , then we also
have

�
�
� � �

� � � � � �
�
� � � � � � ��z

The proof consists of showing that � � �� � � � � � � � �� � � � � , where � � � � � � �
� � � � � �

� � � � � � � .
This inequality together with theorems 2 and 5, and Theorem 4.1 of [FS99] provides the
needed norm and spectral radii inequalities; see [NS01].

As is the case for RAS, one can also show that by increasing the overlap, the weighted
max norm of the iteration matrix decreases, i.e., that if � � � � ,k � � � � � � k �

� k � � � � � � �
k � � �

for any � � I such that
� � � I . Furthermore, it can be shown that overlap is always better

than no overlap, i.e., for any value of � � I ,
�
�
� � �

� � � � � �
�
� � �

� � � ��z
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38 Some Remarks on Multilevel Method, Extrapolation and
Code Verification

M. Garbey 1 2

1 Motivation

Large scale CFD is becoming an important tool in the industry, and its success is very much
connected to the reliability of the output and the cost to produce the data. It is rare that the
reliability of the answer can be based exclusively on a firm mathematical basis, because the
models of interest for industry are often too complex for that. Code validation and verification
are therefore becoming essential.

Code Validation (1) and Verification (2) decompose roughly into a search for: Physical
Modeling Errors (1), Discretization Errors (2), Programming Errors (2) (i.e mistakes), and
Computer Roundoff errors (2). We refer to [OBA95] for a proper taxonomy of errors. Ac-
cording to [R98], discretization error can be evaluated by grid refinement verification studies.
The so-called grid convergence index [R98] can be computed to assess accuracy. Richardson
extrapolation plays a central role, in this type of code verification but is limited to approxi-
mation method with a known order of convergence. This information for complex flow sim-
ulation is not available in general, either because the hypothesis of the approximation theory
are not fully satisfied or simply because error estimates are essentially asymptotic relations
and practical calculation have not meshes fine enough to be in the range of the asymptotic
limit description. A better solution from the stand point of applied mathematics is to use an a
posteriori estimator, and lead the grid refinement with this tool. However, we will stay away
from this solution in order to deal with a CFD code as a black box, as it should be done in
principle for code verification.

We would like further to point out that the verification of large scale computation code is
difficult with modern parallel computing environment. Discretized errors might be affected
because the type of grid that is distributed on parallel computers is not necessary the clas-
sical one that used on a sequential machine ; classical examples are overlapping grids , non
matching grids, etc ... Programming errors on parallel systems with distributed memory as
Beowulf systems are of main concern because parallel codes are more complex than sequen-
tial code. Also there is no shared resources on Multiple Instruction Multiple Data Architecture
(MIMD), communication might be asynchronous, and result can depend slightly on the run,
with modern iterative solvers [1]. Round off errors are critical, because the grids have very
large number of nodes and therefore the condition numbers might be very high.

In this paper, we will discuss some methodology that tries to combine multilevel method,
such as cascade of computation on refined grids, with some aspect of code verification such
as order of accuracy verification. One of the key constraints that we would like to keep in the
design of this methodology is the fact that one reuses an existing CFD code on different grids
without rewriting the solvers, and one basically accumulates experience from the coarse grid

1COCS, University of Houston
2CDCSP/ISTIL - University Lyon 1, 69622 Villeurbanne, France�

garbey � @cdcsp.univ-lyon1.fr, http://cdcsp.univ-lyon1.fr
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to the finest grid computation in order to save eventually cpu time and improve the solution
quality. Our ultimate goal, in the design of the algorithm, is therefore to separate completely
possible improvements of the CFD code done by the user from post processing/preprocessing
methods that should increase the efficiency and trust in the overall numerical process.

2 Verification of Code and Cascade of Grids

We are going to present an attempt [EGH00] to make the additive Schwarz procedure more
efficient while keeping as much as possible the simplicity of the original method and using
cascade algorithm with three level of grids for acceleration purpose as well as verification.
Most of the concepts describe thereafter can be applied in a straightforward way to FE or FV
discretization with unstructured grid. But for simplicity, we will report on second-order FD
solution of the well-known Bratu problem in a square. The problem is written :

 
�
� � � � � � � \ � � � � � � � � I � � � � � � �

A�E
� I (1)

The discretized problem has the form,

 
Q �
� � � I � ���

�

� �  �
f

�
� � � �  �

� � �  �
f

�
�Q h

�

� �  �
� � f � � �  �

� � �  �
� � fQ h

�

� � \ �  �
� � I �

� � � " � � � � � " � � � � � � � � � � � � I �� ��� � � ��� �  � � � � $ � � � � ��� �  � � � �
where

� � (resp.
� � ) denotes the space step in

�
variable (resp � variable). We consider a

basic decomposition of the domain into
�
G
-overlapping strips,

���
�
� � �
�
�

�

��� � � � � I � � � � � �
� ��� � �

G
with arbitrary overlap of 
 intervals (meshes) that is :

�
�

� � � � �
�
� � � �

�
� 
 �� � � �

��� ��� � �
G �

� , 
 being a positive integer. At continuous level, the algorithm appears,
for

�
��� � ��� � � �

G
:

 
�
� � � � � � � � I

� � � � � � ��� � ��� � � 
 � � � � � � � � � � � � � � � 
 �
� � � � � � � � �

� � �
� 


�
� � �

� � � � � �
�

� � �
� 


�

with, in our notation, formally � � � � � � � � � � � � � I .
This process constructs a multi-valued piecewise solution because of the overlap and we de-
fine the global solution as follows. For

� � � � � � � � � � �

��� � �
:

� �
� � ��� � � � � � �q

� � � � � � � � � � � ��� � 
 � � �
�
�

� � � � � � � � � � � � � � � 
 � if
� � �� ��� � � �

�

� � � �
� �

� � � � � � � � � 
 � if
� � �� ��� � � �

�

� � � �
with

� �
a smooth partition of unity that is � in

���
�

� � �
�
�
�
�
�
��� � �

� �
and I outside���

�
� � �
�
�

�

��� � ��z
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We know that the convergence of this algorithm is linear and very slow. However, there
is obviously no need to solve exactly each nonlinear problem in each sub-block, since the
domain decomposition is an iterative process. One can optimize then the stopping criterion
of the subdomain iterative solver by using a prediction of some norm of the jump at artificial
interfaces at the end of each Schwarz iterate [EGH00].

The block solver is actually a nonlinear solver based on the Newton algorithm and a
Preconditioned Conjugate Gradient algorithm with Incomplete LU factorization (PCGILU)
for the linear system. In our basic strategy to enhance the additive Schwarz algorithm, we
introduce three levels of grids, � � , � � � � % �,� . For simplicity, we restrict ourselves to
embedded grids with discretization ratio 2, but as it will be seen later on, this simplification
is not necessary. The classical idea of cascade algorithm is to provide as an initial guess
for the iterative solution process on the grid level � an initial guess that is obtained from
the discretized solution on the coarser grid � �

� . This very old idea is called nested loop
when Successive Over Relaxation (SOR) is the block solver. It is known that in terms of
arithmetic efficiency the nested loop method should be limited to two levels of grids. The
implementation is very simple, since one always go from the coarse grid to the next finer grid
level, as long as grid level can be defined properly. The main purpose of using three levels of
grids instead of two will be that it will provide enough information in order to proceed to some
code verification. We will denote in the following � n � � Q

p
the discrete solution obtained by

our iterative method on grid level � . So the algorithm that we propose is to solve, first, with
additive Schwarz and iterative block solver, the discretized problem on the grid � � . Then, we
project the solution on grid �

�
and use an interpolation procedure to define the initial guess

every where. Second-order linear interpolation seems at first sight a natural tool. The same
solution procedure is then reproduced on the grid �

�
. If we basically project the solution

obtained on �
�

into � � , we miss a very important property of our approximation method.
The discretized solution of Bratu problem should converge to the exact solution with order
two accuracy in space as

� � � � � � � � � goes to zero, that is � � �
Q
� � � � �� � � �� � . Using the

classical Richardson extrapolation principle reported as in Roache [R98] for code verification,
we may therefore produce an initial guess for the iterative solution procedure on grid � � that is
much better than a basic projection of �

�
onto � � . We define the initial guess for the iterative

solution on � � to be

� n �
p� � � � � � n � � Q p � � � � � n � � Q p z (2)

We encounter two difficulties. First of all, � n �
p� is defined only on grid � n � p . We do

need therefore to interpolate � n �
p� with an interpolation procedure that keeps the Richardson

extrapolation procedure effective on � n �
p
. If � n � � Q

p
and � n � � Q p are known at second-order on

� n � p , we can expect � n �
p� to be at least a third-order approximation of � n � � Q

p
on � n � p . Actually

with regular grids of constant space steps, one obtains a fourth-order approximation. In order
to preserve as much as possible the quality of this information, we should use a third-order
interpolation method to extend our grid solution � n �

p� from � n � p to � n �
p
. In our case, we have

applied cubic bilinear interpolation as well as spline interpolation. A second difficulty is that� n � � Q p and � n � � Q
p

are computed with an iterative procedure. The Richardson extrapolation
principle applies to exact discrete solution. The error is then given by a truncation error
formula based on Taylor expansion of the discrete operator with respect to discrete parameter�

for which the leading coefficients are a priori independent of
�

. As opposed to the iterative
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solution procedure on a single grid, one therefore needs to compute an approximation of� n " � Q
p
, $ � � � % on the grids � n "

p
, $ � � � % , with a residual that is of the order the expected

rate of convergence of Richardson extrapolation method, that is at least
� � . This procedure

combining Richardson extrapolation and high order interpolation allows then to produce a
good initial guess for the iterative solution on grid � n �

p
, and the code can be verified by

simply proceeding with the computation of � n � � Q
p
. In principle, the number of Schwarz

iterates should be small if the construction of � n �
p

and the resolution of � n " � Q
p
, $ � � �&%

are correct. The solution process is however robust because � n �
p

is only used as an initial
guess. In the mean time the order

� ��� �
of the method can be checked with formula:

� � ' � � � � � � n � p � � n � p � � � � n � p � � n � p � � ' � � � � � % � � (3)

at each point
� z

This formula can be used in combination to the computation of the residual in order to
verify the stopping criterion of the iterative computation of the solution on the finest grid
� n �
p
that in practice dominates the overall cost of the method.

In order to illustrate the method, we report thereafter on the numerical solution of the
Bratu problem with � � � z Our computation, realized with matlab, is rather modest. The
fine grid � n �

p
has � � � � � grid points. The main thrust of this method is not the arithmetic

efficiency but its simplicity. However, we compare the number of floating point operations
realized with our algorithm to the flops performance of PCGILU, no domain decomposition,
one single fine grid and the trivial initial guess on � n �

p
. Parallel efficiency is analogous to

[PARCFD] and it is known that the additive Schwarz scales well even on MIMD parallel
systems with slow network as long as the load per processors is high enough .

The Schwarz algorithm is applied with minimum overlap on grid � n "
p
, $ � � �&% . The

size of the overlap is chosen on � n �
p

in order to minimize the overall flops performance. The
order of convergence of the method

� ��� �
is computed on the coarse grid; as expected, we

observe that
� � � �

is % within
�

�
. Table 1 shows the global efficiency of the iterative solver

by listing the total number of Mflops used on cascade algorithm, and the number of Schwarz
iterates for each grid level. It should be noticed that monitoring the order of the method with
formula (3) may avoid premature iteration stops of the Schwarz iteration process. It is also
interesting to notice that the overall number of flops to reach the correct solution is relatively
insensitive to the number of subdomains, but that the number of Schwarz iterates grows as
expected with the number of subdomains. This has an impact on the parallel efficiency of
the method that is usually limited by the network of communications, i.e. the more messages
i.e. Schwarz iterates, the less is the parallel efficiency. To conclude this section we observe
that our Bratu problem’s example is characterized by a very smooth solution and our results
cannot be reproduced for non smooth problems. For example, the Richardson extrapolation
methods break down for the cavity flow problem with a finite difference computation of �

� �
formulation even for modest Reynolds number of order � IXI � because of the existence of a
singularity in the flow field at the corner [SGAW01] We proceed therefore with a modification
of the Richardson extrapolation method that may work with numerical method with varying
order of approximation.
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Number of subdomains 2 3 4 5 6
Flops ratio versus no DD method

� 	 ��� � 	 � � ��	 � 
 ��	 � 
 ��	 ���
Mflops used � � 	 
 ��� � � ��� � ��� � � 


Number of Schwarz iterates on G1 � � � ��� � ��� � 
�� ��� �
Number of Schwarz iterates on G2 ��� ��	 � ���
� ��� � �����

Number of Schwarz iterates on G3 � � 
 � � ��	 ���

Table 1: Cascade-Newton-Schwarz on 2D Bratu problem with 65
�

61 unknowns.

3 A Generalized Extrapolation Method

In order to present the idea, we restrict ourselves to problems in one space dimensions with
regular grids. We refer to the report [GS01] to provide more details on the analysis and
application results in higher space dimensions. Let us consider two continuous functions�
� �
� � � � and �

���
� � � � that are approximations of a continuous function �

� � �
�
� � � I � � � . A

general consistent linear extrapolation formula writes:

� � n � � Q p � �
�
�
�
�
� n � � Q

p z
If the approximation method to build �

���
� � � is order 
 , the extrapolation formula becomes

��
� �
� � � � ���� � ��� � � � � � �� � � � � � � � ����� � �� � z

Let us consider now a linear differential problem
� �
� � � I � and a sequence of consistent

approximation
� Q

obtained with Finite Differences or Finite Volume for instance. The fol-
lowing discussion is fairly general and can be reproduced for variational formulations. Let us
suppose that the consistency error in some norm is of order 
 , and can be expanded as follows:� Q �

�
� �
� � " � � � �

��� � ��" � � �
� � � � � ��� � �" � � z (4)

Then 
 is the constant that minimizes the asymptotic order of the residual
� �
� �

���
� � � � ��

�
�
�
�
�
���
� � � � � , with � �

Q
�

hQ
�

h
�
Q
�

f z
Using a stability estimate on

� Q
, one can then prove that

the Richardson extrapolation �� is a better approximation of � than any of the approximation�
� �
� � " � � $ � � �&%

z
The main difficulty in practice, is that

� � and
� �

may not be small enough to produce
residual for which the first-order term

�
� in the expansion (4) is significantly greater than

the next order term
�
�
� � � z Even worst,

�
� and

�
�
� � are space dependent functions and

the approximations can behave as a 
 -order approximation in some subdomain and a 
 � � -
order approximation elsewhere. Classical Navier-Stokes provides a large collection of such
examples when boundary layer or transition layer occur. In addition, lift and drag calculations
may not require method with uniform order approximation.

We propose therefore to define the following problem:
find �

� � �
in some vector space to be defined later on, that minimizes the residual:� Q �

� �
� �
� � � � � �

�
�
�
�
�
���
� � � � � � (5)

in some norm to be defined.
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�� � �
��� �
�
� �
� � � � � �

�
�
�
� � � �
�
���
� � � � will be then our new extrapolation formula.

We have now several difficulties: first, we deal with grid functions � n " � Q
p

instead of con-
tinuous approximation �

���
� � " � . Second, following the lines of Sect 2, the practical purpose

of this optimization problem is to provide a good solution on the fine grid � � . Therefore the
computation of the residual on � � requires a high order interpolation of �

" � Q � $ � � � % that
is robust with respect to differentiation. Third the optimization problem should be well posed
and its solution should cost much less than the fine grid computation on � �

z
We propose in the following a basic algorithm that seems to be a good candidate to im-

prove the basic Richardson extrapolation procedure. We look for � as the shifted Fourier
expansion

�
� � � � � � � � ��� H ��� � � � " � � ��� � �

�
" H � � ��� $ � �

� � �
� (6)

that is solution of the least square problem� Q �
� � n � � Q p � �

�
�
�
�
� n � � Q

p
� � I � � � � 	 � G � �

z
(7)

We observe that the solution of the least square problem � � � � �
� � � with � � � � � � I � � �

is a second-order approximation in maximum norm of � on � � , and a third-order approx-
imation away from the end boundaries. We observe however that at location where � � �� n � � Q p � � n � � Q p is close to zero, and � n � � Q p � � n � � Q p are not close to the exact discrete solution� n � � Q

p
within asymptotic order � � � � �

, we have a singularity. In practice, there is not much
improvement that one may expect from classical extrapolation formula in such situation. We
therefore can detect local failure of our grid solutions � � and �

�
with (6, 7) but not fix it. We

found in practice more robust to use three levels of grids �
"
� $ � �

z z � in order to predict the
fine grid solution on � � with the following least square problem:
find � and � with expansion similar to (6), that is solution of the least square problem� Q �

� � n � � Q p � � � n � � Q p � �
�
�
�
�
�
�
� n � � Q

p
� � I � � � � 	 � G � � z (8)

Some details on the analysis of this method and its application to Navier Stokes problem can
be found in [GS01]. But in this proceeding paper, we would like to show with the following
classical Burgers problem,

�
� � ���

� � �
% �

� �
� � I � � � � I � � � � � � I � � � � % � � � �

� � � � � � � % � � �
that even if the Richardson extrapolation methods fails to improve the underlines grid so-
lutions � n " � Q

p
� $ � % �,� � our least square extrapolation method may give a much better

solution. Obviously since Burgers is a nonlinear problem, we apply recursively a least square
linear solve to the linearized problem with a Newton like loop. Fig 1 shows the error curves
with respect to the exact discrete solution on � � , with central finite differences. The number
of grid points on � � , (resp. �

�
� � � ) is  � � ��� , (resp.  � � � �

,  � � % � ) and � � I z � .
As an interpolant for the grid functions � n " � Q

p
, we have used spline interpolant (Fig 1) as

well as shifted Fourier interpolant similar to (6).  � in the shifted Fourier expansion of � is
limited to � and the number of Newton iteration to 3. In each case, the Richardson extrap-
olation assuming a first-order method (R1 curve), or a second-order method (R2 curve) are
less accurate than the solution on the fine grid G3. Nevertheless the least square extrapolation
improves significantly the accuracy of this fine grid solution. These results are quiet good and
have been extended to multidimensional problems [GS01].
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Figure 1: The x-axis is for the number of grid points on � � z The y-axis gives the error in
maximum norm in ' � � � � scale on grid � � z
4 Conclusions:

We have briefly presented, first in this paper some background on code verification, second
a practical way of combining efficiency in the solution process and some code verification
by using standard additive Schwarz algorithm with cascade method. In the development of
our solution, we restrict ourselves carefully to a method that should be easily generalized to
non-structured grid and FV or FE discretization. We have shown some practical limitation
on the use of Richardson extrapolation and presented a least square extrapolation variant that
looks promising for CFD application [S94]. Finally, we observe that multilevel methods give
us the opportunity to provide solutions on several grids and that it should be an important tool
used to understand better the convergence accuracy of a CFD code for which it is rare that all
mathematical hypothesis are fulfilled correctly.
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39 A Fast Solver for Systems of Reaction-Diffusion
Equations

M. Garbey,1 H. G. Kaper,2 and N. Romanyukha3

1 Introduction

In this paper we present a fast algorithm for the numerical solution of systems of reaction-
diffusion equations,� � � � � � � � � � � � � ��� � � � � � � � � � � � �

� � � I z (1)

Here, � is a vector-valued function, �
�
�
���
� � � � � � , � is large, and the corresponding sys-

tem of ODEs,
� � � ��� ��� � � � � � , is stiff. Typical examples arise in air pollution studies, where�

is the given wind field and the nonlinear function � models the atmospheric chemistry.
The time integration of Eq. (1) is well handled by the method of characteristics [P89]. The

problem is thus reduced to designing for the reaction-diffusion part a fast solver that has good
stability properties for the given time step and does not require the computation of the full
Jacobi matrix.

An operator-splitting technique, even a high-order one, combining a fast nonlinear ODE
solver with an efficient solver for the diffusion operator is less effective when the reaction term
is stiff. In fact, the classical Strang splitting method may underperform a first-order source
splitting method [VS98]. The algorithm we propose in this paper uses an a posteriori filtering
technique to stabilize the computation of the diffusion term. The algorithm parallelizes well,
because the solution of the large system of ODEs is done pointwise [FG01]; however, the
integration of the chemistry may lead to load-balancing problems [DS96, E97]. The Tcheby-
cheff acceleration technique proposed in [L00, D90] offers an alternative that complements
the approach presented here.

To facilitate the presentation, we limit the discusssion to domains
�

that either admit a
regular discretization grid or decompose into subdomains that admit regular discretization
grids. We describe the algorithm for one-dimensional domains in Section 2 and for multidi-
mensional domains in Section 3. Section 4 briefly outlines future work.

2 One-Dimensional Domains

Consider the scalar equation� � � � � �
� � �

� �
�
�
�

� � � I � � � � � � I z (2)
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We combine a backward Euler approximation in time with an explicit finite-difference ap-
proximation of the diffusive term,� � � � � � � � � � � � � �% � � � % 
 ��� � � � 
 � � � � � � � � � � � � � ��z (3)

This scheme is second-order accurate in both space and time [P83, SVLCPDS97, VHB98].
To analyze its stability, we take the Fourier transform of the linear equation,� �� � � � � � �� � � �� � � �% � � � � �

� % �� � � �� � � � � � (4)

where � � � % � � � � � U � � � � � � �
�
, from which we obtain the stability condition

% �
�� � ����
� U � � � � � �

� ����
�
� � � � � �

 
z

(5)

Thus we conclude that the time step must satisfy the constraint

� � � �
�
� � z

(6)

However, this constraint is imposed by the high frequencies, which are poorly handled by
second-order finite differences anyway. For example, with central differences, the relative
error for high-frequency waves

� U � ��� � � with
� �

 can grow at a rate of up to
� �

. The idea
is therefore to relax the constraint on the time step by applying a filter after each time step,
which removes the high frequencies but maintains second-order accuracy in space.

2.1 Filters

By a filter of order � we mean an even function � � � � �
that satisfies the conditions

(i) �

� I � � � , (ii) � n � p � I � � I for ' � � �
zdz'z

� �
�
� , (iii) �

� � � � I for � � �
�
� , and (iv) � �� � � � � � �

.

Theorem [GS97]. Let
�

be a piecewise
� �

function with one point of discontinuity,
�
, and let

� be a filter of order � . For any point � �
� I �&%�� � , let

G � � � ��� Z c � � � � � � % � � � � � � �
� � I � � j .

If
���
� � } 
� � � 
 �� � � � � �  � b � � � , then

�
� � � � � � ��

� � � � � �  � � � � G � � � � � � � � � � � � �  � u � � � k � n � p k � h �
where � � � � � � � �q �

� �
� G � � � � � � � n �

p
� � � � � � n � p � � � � � @ 


� 
 � � n � � �
p� � � � � � � �

and

�
� � � � � �

� � � � ��
� z

In other words, a discontinuity of
�

leads to a Fourier expansion with an error that is � � � �
near the discontinuity and � �  � � � away from the discontinuity. We must therefore apply a
shift and extend to

� I �&% � � before applying a filter.
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2.2 The Algorithm

We now describe the postprocessing algorithm that is to be applied after each time step. (We
do not explicitly indicate the dependence of � on the time step, and we use the abbreviations
� � � �

� I � and � � � �
� � � .)

First, we apply a low-frequency shift,

�
��� �

� �
��� � � �

� � � � � � U � � � � � � � � � �� � � � � � � � � � � � �� � � � � � � ��z (7)

Then we extend � to
� I �&%�� � , using the definition

�
� % � � � �

� �
�
��� �
�

� � � I � � ��z (8)

Thus, � is a % � -periodic function in
� � � I �&%�� � . Let

�� � be the
�

th coefficient of its Fourier
expansion.

Next, we apply an eighth-order filter [GS97],

�
�
�
� � �

�
q
�

�

�
�
�
 
�
�� � b � � � � (9)

where

�

� � � �
� � � � � � � �

� I � � � % I � � � � � � � � � � � � � �� � � � � U � � � � � ��z (10)

Here, � is a stretching factor, �
�
� . The correct choice of � follows from a Fourier analysis

of Eq. (5),

�
�
� � � �� U � � � � % � � � � � � � � � z (11)

We observe that the filter still damps some of the high frequencies less than � � . The choice
� � �� � � can give satisfactory results, but in principle one can compute the optimum value of
� at each time step by monitoring the growth of the high-frequency waves that have not been
completely filtered out.

Finally, we recover � from the inverse shift,

�
� � �

� �
�
�
��� � � � � � � � � U � ��� ��z (12)

The theorem quoted in the preceding section shows that the filtering process may affect
the spatial accuracy of the method. Since the filter is applied to a %�� -periodic function that
is
� �

at the points
�
� �

� � ,
� ��� , and

� �
everywhere else, the error is of the order of �

�
in the neighborhood of

�
� and  � � away from

�
� . In principle, we maintain therefore

second-order accuracy in space as long as � is of order one.
If the solution is in

� � � I � � � at each time level, we can improve the algorithm by replacing
the first-order shift (7) by a third-order shift,

�
��� �

� �
��� � � �q"

� � � " � U � ��� $ � �
� � �
� (13)
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Figure 1: Accuracy of the stabilized explicit scheme for the heat equation. The horizontal
coordinate is � � � � � � . * : first-order shift; o : third-order shift.

such that the extension of � to a % � -periodic function is in
� � � I �&%�� � . The first- and third-order

derivatives of � are zero at the points
�
� , and the second-order derivative is approximately

given by

� � �
� �
�
� � � � � � � ��� � � � � � � � � � � � � � � � ��� � �% � �

� � �
� �

� � � � � � ��z (14)

The coefficients �
"

are found by solving a linear system of equations,

� � � � � � � � � � � � �
� I � �

� � � � � � � � � � � � �
� � � ��

� � � � �
�
�

� � � � � � �
� I � �

� � � � �
�
� � � � � � � �

� � ��z
The third-order shift improves the performance of the filter for large � and allows for a larger
time step.

2.3 Numerical Results

Figure 1 shows some accuracy results for Eq. (2), where

�
� �
� � � � � U � � � � ��� � � � � � � � U � � � � � � � � � � I � � � � � � I z (15)

We observe a plateau for small time steps, when the second-order spatial error dominates. The
second-order error in time becomes dominant as the time step increases. The figure confirms
the superior performance of the third-order shift (13) over the first-order shift (7) at large time
steps.
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Figure 2: Accuracy of the stabilized explicit scheme for the predator-prey system. The hori-
zontal coordinate is � � � � � � . * : first-order shift; o : third-order shift.

Although the algorithm is based only on linear stability considerations, it is still effective
for systems of nonlinear reaction-diffusion equations. In Figure 2 we present some results for
a predator-prey system,� � � � � � � � � �

�
� � � � � � � � � � ��� � � � � � G � � � � � � I � � � � � � I � (16)

with
�
� �

z % , � � �
z I , � � I z � , and

G
� I z % . At these parameter values, the ODE system

(reactions only) has a limit cycle. However, when the boundary conditions are constant in
time, the solution of the reaction-diffusion system goes to steady state. To build a relevant test
case for the algorithm, we impose periodic excitations at both boundaries,

�
� I � � � � � � � � u � � � � � U � � � � � � � � I � � � � � � � � u � � � � � U � � � � � � � � I z

Although the time step can still be limited by nonlinear instabilities, we never observed nega-
tive values of the unknowns � and � , which are commonly associated with such instabilities.

The algorithm (7)–(12) extends in a straightforward way when one uses a domain decom-
position scheme with overlapping subdomains. One simply applies the same algorithm at each
time step to each subdomain separately. However, the number of waves per subdomain is of
the order of the total number of grid points,  , divided by the number of subdomains,  � , so
the balance between the order of accuracy of the filter—

�
 �

�
�  � � � � � for a first-order filter

or
�
 �

�
�  � � � ��� for a third-order filter—and the second-order accuracy  �

�
of the spatial

discretization of the underlying algorithm (3) deteriorates as  � increases. The maximum
time step for which the scheme remains stable may become even less than when no domain
decomposition is used. Furthermore, the Gibbs phenomenon tends to destabilize the algo-
rithm. This phenomenon is a consequence of the jump in the derivatives at the endpoints of
the subdomains (second-order derivatives in the case of the first-order shift (7), fourth-order
derivatives in the case of the third-order shift (13)). Since the Gibbs phenomenon arises at the
artificial interface and is damped away from it, an increase of the overlap generally produces
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Figure 3: Relative Accuracy of the stabilized explicit scheme applied to the heat equation with
overlapping subdomains.

a composite signal � that has fewer oscillations than each of the piecewise (overlapping) com-
ponents. One can therefore obtain good results by adapting the size of the overlap. The larger
the overlap, the larger the time step that can be taken; see Figure 3.

3 Two-Dimensional Domains

We now consider a Dirichlet problem in two dimensions,� � � � � � �
� �
�
�
�

���
��� � � � I � � � � � � � I � (17)

�
���
� I � � � � � � u � ��� � � � � I � � ��� � � � � u � � � � � �

��� � � I � � � � (18)

where the functions � satisfy the compatibility conditions � � u � � I � � � � � I � � � and � � u � � � � �� � � I � � � . We consider a numerical scheme similar to Eq. (3), where the diffusive term is
approximated, for example, by a five-point stencil. The postprocessing algorithm is essentially
the same, except that we need an apropriate low-frequency shift so we can apply a filter to a
smooth periodic function in two space dimensions. The shift is constructed in two steps. In
the first step, we render the boundary condition in the

�
direction homogeneous,

�
� �
��� � � �

���
� � � � � � � � � � � � � � � � � U � ��� � � � (19)

� � � � � � �� � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � ��z (20)

In the second step, we shift in the � direction,� � � � � � � � ��� ��� � � � � � ��� � � � � � � � � U � � � � � � (21)
� �
��� �

� �� � � ��� � I � � � � � � � � � � ��� � � � � �� � � ��� � I � � � ��� � � � ��z (22)

The final step is the reconstruction step,

�
���
��� � � �

� � ��� ��� � � � � � � � � � � � � � � U � ��� � � � � ��� � � � � ��� � � U � � � ��z (23)
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To make sure that no high-frequency waves remain, we filter the high-frequency components
from the boundary conditions � with a procedure similar to (7)–(12).

It is much more difficult to construct a high-order filter similar to (13) in two dimen-
sions, because the second-order derivatives cannot be obtained from the PDE, as in the one-
dimensional case (14). So far, we have used only the first-order shifts (19) and (21) in our
numerical experiments. Nevertheless, the algorithm allows for a significant increase of the
time step. We have also tested the domain-decomposition version of the algorithm, using
strip subdomains with an adaptive overlap, with good results.

We note that the computation in each block can be done in parallel and that the Jacobi
matrix does not depend on the spatial variables. The arithmetic complexity of the algorithm is
therefore relatively small. Also, the algorithm is suitable for multicluster architectures. Each
block can be assigned to a cluster, and parallel fast sine transforms can be used for the filtering
process inside each cluster. The cost of communication between blocks is minimal, since the
scheme is similar to the communication scheme of the additive Schwarz algorithm.

4 Conclusion

In this paper we have presented a postprocessing algorithm that stabilizes the time integration
of systems of reaction-diffusion equations when the diffusion term is treated explicitly. The
algorithm is easy to code and can be combined with domain-decomposition methods that use
regular grids in each subblock. In future work, we will consider the performance of its parallel
implementation and its robustness for large systems of reaction-diffusion equations with stiff
chemistry, which arise in some air pollution models [FG01].
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40 A Hierarchical Domain Decomposition Method with Low
Communication Overhead

M. Israeli1, E. Braverman2, A. Averbuch3

1 Introduction

We present a low communication, non-iterative algorithm for a high order (spectral) solution
of the Poisson equation. The domain is decomposed into nonoverlapping subdomains. Par-
ticular solutions are found in subdomains and subsequently hierarchically matched, such that
only the solution in the adjacent subdomains are coupled at each matching step, then these
joint subdomains are matched etc. If originally we had %

� �
subdomains, after

�
steps we

obtain a smooth global solution.
Implicit discretization of time dependent problems in computational physics, semicon-

ductor device simulation, electromigration and fluid dynamics often gives rise to equations of
Poisson and modified Helmholtz type. Thus, fast and accurate methods for elliptic equations
are important for such applications.

We solve the Poisson equation

� � �
� ���

� � � in
�

(1)

or the modified Helmholtz equation

� � � �
�
� �

� ���
��� � in

�
(2)

in the rectangular/square domain
�
�
� I � � � ��� I � � � with Dirichlet

� � � ��� ��� � on
� �

(3)

boundary conditions by the Domain Decomposition (DD) methods.
An algorithm for a fast solution of the Poisson equation by decomposition of the domain

into square domains and the subsequent matching of these solutions by the fast multipole
method was developed in [GL96]. Previously [ABI00] we adopted a DD method where the
equation was solved in each subdomain with assumed boundary conditions, resulting in jumps
in function or derivative on subdomain boundaries. The solution in each rectangular domain
is fast and accurate and is based on the algorithm developed in [AIV97, AIV98]. The jumps
at the interfaces were removed by the introduction of singularity layers. In order to account
for the global effect of these layers we had to compute the influence of each layer on each
subdomain boundary. In order to alleviate this heavy computational task we took into account
the decay or smoothing out of the influence as a function of the distance from the layer. To

1Technion, Computer Science Dept., Haifa 32000, Israel, israeli@cs.technion.ac.il. The research of the first
author was supported by the VPR fund for promotion of research at the Technion.
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reduce the communication load, compression in a multiwavelet basis was applied. Neverthe-
less, this part of the procedure can become expensive as the number of subdomains grows
considerably.

The algorithm developed in [ABI00] consists of the following steps:

1. In each subdomain a particular solution � n �

p� of the non-homogeneous equation with
arbitrary Neumann (Dirichlet) boundary conditions is found.

2. The collection of particular solutions � n �

p� �
H
� � �

z'zdz
� ' � usually have discontinuities (or

discontinuities in the derivatives) on the boundaries of the subdomains. We introduce
double (single) layers on the boundaries to match the solutions from different domains
to have continuous global solution. The effect of these layers on other boundaries is
calculated.

3. With the boundary conditions that were computed in the previous step, the solutions
� n �

p� are patched by adding the solutions � n �

p
� �

H
��� �

zdz'z
� ' � of the Laplace equation.

4. An additional solution of the Laplace equation is added to satisfy the boundary con-
ditions on

� �
. Namely, for the Dirichlet case the solution � � of the homogeneous

equation on the boundary
� �

is derived by

� �
���
��� � � � � � � � � � � � � � ��� � � � � ��� ��� � (4)

(the case with Neumann boundary conditions is treated similarly). Thus � � � � � � � �
� � is the solution of the non-homogeneous equation with the initial non-homogeneous
boundary conditions.

The interface jump removal can become cheaper if only adjacent boxes are matched,
which is a basis of the hierarchical approach which is proposed in the present paper. The
present hierarchical approach matching only two adjacent boxes at each level requires only
local corrections at the boundaries of these boxes. The result is a much more efficient com-
putation.

2 Outline of the Algorithm

In the new hierarchical approach the domain is decomposed into
� �

subdomains; first (see
Fig. 1) the smallest domains 1,2,3,4 are matched, then they are matched with larger blocks
5,6,7, and, finally, the resulting box is matched with 8,9,10.

The “elementary step” of the hierarchical algorithm is the following.

1. First, in each of four subdomains some smooth boundary conditions are defined. These
conditions should not contradict the given right hand side, at the junctions. The Poisson
equation is solved with these boundary conditions by a fast spectral algorithm which
takes � �  � � U��  �

operations (  is a number of points in each direction).

2. The solutions have a discontinuity in the first derivative. We match the subdomains by
adding certain discontinuous functions. In fact we only evaluate these functions at the
boundaries of four adjacent subdomains and then solve homogeneous equations in each
subdomain with the cumulative boundary conditions.
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3. The global homogeneous equation is solved in such a way that it satisfies the assumed
conditions at the “global boundaries” of the merged subdomains.

This step is repeated
� U�� �

times, for a smalled number of larger subdomains each time.

1 2

3 4

5 6

7
8

9 10

Figure 1: The domain is decomposed into
� �

subdomains; first the smallest domains 1,2,3,4
are matched, then they are matched with larger blocks 5,6,7, and, finally, the obtained box is
matched with 8,9,10.

The algorithm can be also implemented on parallel multiprocessors. The parallelization of
the serial algorithm is achieved by decomposition of the computational domain into smaller
domains. Each domain is assigned to a processor. The information transmitted between
the processors is the influences of a function/derivative jumps at the interfaces. of a func-
tion/derivative jumps at the interfaces. The low communication is achieved due to the fast
decay of these influences and their efficient representation in multiwavelet bases.

For instance, when computing the influence of the derivative jump in the form of the sum
of random Gaussians� �q

� � � b � � � � � � ��� � � �
�
� � � � � � � � � � �

j
� I z % � � � � �

�

at distance 3 we have only 4 (of 256) multiwavelet coefficients above � I � � , 7 above � I � � , 15
above � I � � � .
3 Matching step of the algorithm

The fast and efficient solution of the Poisson/modified Helmholtz and their homogeneous
analogs was in detail described in [AIV97, AIV98]. Thus we focus here on the matching step
of the algorithm.
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Let us consider the simplest (“linear”) geometry of the 2-D problem (see Fig. 2) and
present the corresponding steps concerned either with the choice of the initial boundary con-
ditions or with patching jumps between the subdomains.

0 1 2 3 L-1 L x

y

Box 1 Box 3 Box LBox 2

1

Figure 2: The domain is decomposed into
�

subdomains.

Step 1. At the boundary of the global domain we assume the original boundary conditions,
to avoid singularities at the corners. At the interfaces

�
�
� � � I � � � � we assume

�
��� � � � � � � � ��� � � � � � � � ��� � � � � � (5)

where

� � ��� � � � � � � ��� � � I � � Z cK` � � � � � � � �
� Z cK` � � � � � � � � � �

� � Z cK` � � � �
� Z�c ` � � � (6)

matches the values at the interfaces with the value at the boundary and

� �
��� � � � � �

� ��� � � I � � � ��� � � I � � �
�
� � � � �� � � � Z�cK` � � � � � � � � �

� Z�cK` � ��� � � � Z�cK` � � � � � � � � �
� Z�c ` � � � � �

�
� � � � � �

� � � ��� � � �
�
�
�

�
� � � � �� � � � Z�cK` � ��� � �

� Z cK` � � � � � � Z cK` � � � � �
� Z�cK` � � � � � (7)

to satisfy the Poisson equation at the corners of the interfaces. The latter function vanishes at�
�
� � ��� � I � � .

Step 2. We solve the Poisson equation with the prescribed (at the first step) boundary
conditions. There is a jump of the first derivative at the interfaces� �� � ��� � � � � � � � �� � � � � � ��� � � � � � ��z (8)

Since the original boundary conditions are smooth, then
� � I � � � � � � � I . After subtracting

a function

�
� � � �

� � � � � �
�
� � � � �� � � Z�c � � � � �� Z c � ��� � � � Z c � � � � �

� Z c � � � � � (9)



HIERARCHICAL DOMAIN DECOMPOSITION METHOD 397� � � � vanishes at � � � together with its second derivative. A similar function is subtracted
for � � I . Then the remaining part �� can be accurately expanded into the sine series (in fact,
the fourth and higher even derivatives can be also eliminated by an analogous procedure)

�� � � � � q �
� � Z�c � � � � � (10)

Then, after adding to the solution to the left of
�
�
� � the following function� � � � � �% � � � � � � �� � � � U � ` � � � ��� � � � � � � �

� � � Z cK` � � � � � � Z c � � � � �
� Z�c � � � � � � Z�c ` � � � � � � � � � � � �

� U � ` � � � � � � Z�c � � � � �
� Z c � � � � �

� � � � � I �% � � � � � � �� � � � U � ` � � � � � � � � � � � �
��� � Z�cK` � ��� � � � Z�c � � � � � � � � �

� Z�c � � � �� � Z�c ` � � � � � � � � � � � �
� U � ` � � � � � � Z�c � � � � � � � � �

� Z�c � ��� � �
� �
%�� � � U � ` � � � � � q �

� � Z�c � � � � � � U � ` � � � ��� � � � � � � �
(11)

and a symmetric (with respect to axis
�
�
� � ) to the right of this axis, we obtain a function

which is smooth together with its first derivative. Besides, the function which we add decays
exponentially with the growth of the distance from

�
�
� � .

4 Numerical Results

Assume that � is the exact solution and � � is the computed solution. In the examples we will
use the following measures to estimate the errors:

�
�
� � � ����� k � �� � � � k

�
�
� � �

� �
���
f n � � � � 

p h
�

���
h

�
� �

���
f n � � � � 

p h
�

���
f
�
h


4.1 Linear geometry

We assume the geometry of Fig. 2 where the domain is decomposed in one dimension only.

Example 1. We solve the Poisson equation � � � � % � U � � � U � � with the boundary
conditions corresponding to the exact solution �

���
��� � � � � � U � � � U � � in the domain

� I �,� � �� I � � � which is divided into three equal boxes.

 �
�
 � in each box �

�
� � �

�
� � ���

h
� % � � % 4.1e-7 1.2e-7 2.1e-7� � � � � 2.9e-8 8.2e-9 1.4e-8
� % �

�
� % � 2.0e-9 5.4e-10 9.2e-10% � � � % � � 1.3e-10 3.5e-11 5.9e-11�

� %
� �

� % 8.5e-12 2.2e-12 3.8e-12

Table 1: � �
{

, MSQ and
� �

errors for the Poisson equation with the exact solution
�
���
� � � � � � � U � � � U � � for three boxes
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Example 2. We solve the Poisson equation with boundary conditions corresponding to the
exact solution

�
���
��� � � b � � � � � � � � � � � � � � � � � � � � � 
 � �

with
� � ���

z��
� � � � I z�� , � � % in the domain

� I �,� � � � I � � � which is divided into three equal
boxes.

 �
�
 � in each box �

�
� � �

�
� � ���

h
� % � � % 6.8e-6 2.0e-6 4.4e-6� � � � � 3.9e-7 1.1e-7 2.4e-7
� % �

�
� % � 2.3e-8 6.6e-9 1.4e-8% � � � % � � 1.4e-9 4.0e-10 8.5e-10�

� %
� �

� % 8.7e-11 2.4e-11 5.2e-11

Table 2: � �
{

, MSQ and
� �

errors for the Poisson equation with the exact solution
�
���
� � � � b � � � � % � � � �

z � � � � % � � � I z���� � j z
4.2 Hierarchical subdomains matching

1 2

3 4

Figure 3: The domain is decomposed into four subdomains

In examples 3, 4 the global subdomain was decomposed into four subdomains (see Fig. 3).
In the practical implementation first two pairs of adjacent subdomains were matched: box 1
and 2, box 3 and 4. Afterwards the two resulting boxes were patched. This is also valid for
examples 5,6 with 16 subdomains, where each four subdomains were matched in the same
way.

Example 3. We solve the Poisson equation with boundary conditions corresponding to the
exact solution

�
���
��� � � b � � � � � � � � � � � � � � � � � � � � � 
 � �

with
� � � I z�� � � � � I z � , � � % in the domain

� I � � � ��� I � � � divided into four equal boxes.
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 �
�
 � in each subdomain �

�
� � �

�
� � ���

h
�
�
� 1.7e-4 5.1e-5 7.1e-5

� � � � � 1.3e-5 3.6e-6 4.9e-6� % � � % 1.2e-6 3.5e-7 4.7e-7� � � � � 1.0e-7 2.8e-8 3.7e-8
� % �

�
� % � 8.0e-9 2.0e-9 2.7e-9% � � � % � � 6.1e-10 1.4e-10 1.9e-10

Table 3: � �
{

, MSQ and
� �

errors for the Poisson equation with the exact solution
�
���
� � � � b � � � % � ��� � I z���� � � % � � � I z���� � � j z in the domain

� I � � � � � I � � �
Table 4 presents the results for the same exact solution when the Dirichlet problem is

solved in the square
� I � % � � � I �&% � .

 �
�
 � in each subdomain �

�
� � �

�
� � ���

h
�
�
� 3.5e-3 1.2e-3 3.1e-3

� � � � � 1.7e-4 5.7e-5 1.4e-4� % � � % 8.3e-6 2.5e-6 6.1e-6� � � � � 4.4e-7 1.2e-7 2.9e-7
� % �

�
� % � 2.5e-8 6.5e-9 1.6e-8% � � � % � � 1.5e-9 3.8e-10 9.4e-10

Table 4: � �
{

, MSQ and
� �

errors for the Poisson equation with the exact solution
�
���
� � � � b � � � � % � ��� � I z���� � � % � � � I z���� � � j in the domain

� I �&% � ��� I � % �
Example 4. The exact solution is a steep Gaussian

�
���
��� � � b � � � �

� I � � � � I z % � � � � � � I z � � � 
 � z
Table 5 presents the numerical errors.

 �
�
 � in each subdomain �

�
� � �

�
� � ���

h
�
�
� 1.9e-2 4.4e-3 2.4e-2

� � � � � 4.9e-4 9.1e-5 4.9e-4� % � � % 1.1e-5 2.1e-6 1.1e-5� � � � � 3.0e-7 6.0e-8 3.2e-7
� % �

�
� % � 1.1e-8 1.9e-9 1.0e-8% � � � % � � 4.7e-10 6.4e-11 3.5e-10

Table 5: � �
{

, MSQ and
� �

errors for the Poisson equation with the exact solution
�
���
� � � � b � � � � � I ��� � � I z % � � � % � � � I z � � � � j z in the domain

� I �&% � ��� I � % �
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1a 1b

1c 1d

2a 2b

2c 2d

3c 3d

3a 3b

4c 4d

4a 4b

Figure 4: The domain is decomposed into sixteen subdomains

The domain is decomposed into sixteen subdomains which are hierarchically matched
(see Fig. 4): first each four small boxes and then the resulting four “big” (joint) boxes. Such
domain decomposition was implemented in Example 5.

Example 5. We solve the Poisson equation with the boundary conditions corresponding to
the exact solution

�
���
��� � � b � � � � % � ��� � I z���� � � � � � I z���� � 
 �

in the domain
� I � � � ��� I � � � divided into sixteen equal boxes (Table 6).

 �
�
 � in each subdomain �

�
� � �

�
� � ���

h
� � �

3.6e-4 1.6e-4 2.2e-4
�
�
� 2.4e-5 1.0e-5 1.4e-5

� � � � � 2.3e-6 9.6e-7 1.3e-6� % � � % 1.9e-7 8.0e-8 1.1e-7� � � � � 1.5e-8 6.1e-9 8.2e-9
� % �

�
� % � 1.1e-9 4.5e-10 6.0e-10% � � � % � � 8.3e-11 3.3e-11 4.4e-11

Table 6: � �
{

, MSQ and
� �

errors for the Poisson equation with the exact solution
�
���
� � � � b � � � � % � ��� � I z���� � � % � � � I z���� � � j in the domain

� I � � � ��� I � � �
5 Summary

1. The procedure developed here reduces drastically (by a factor of � ��� � � � U�� � � times)
the number of computations as compared to our previous algorithm where influences of
the layers at interfaces are evaluated.
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2. The algorithm has an adaptive DD version and also achieves high accuracy ( � I � �
�

� I � � for � � � � � points in the smallest subdomains).

3. The algorithm is applicable for parallel implementation as its previous version devel-
oped in [ABI00].

4. This algorithm can be used as a preconditioner for the solution of elliptic equations with
nonconstant coefficients by solving local constant coefficient problems in subdomains.

5. The present algorithm is close to a multigrid strategy, where the discretization points
are replaced by the small boxes in where the equation is satisfied with spectral accuracy
which is preserved in the final solution.
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41 FETI-DP Methods for Elliptic Problems with
Discontinuous Coefficients in Three Dimensions

Axel Klawonn1, Olof B. Widlund2

Introduction

Farhat, Lesoinne, Le Tallec, Pierson, and Rixen [FLLT
�

01] have recently introduced a dual–
primal FETI (FETI-DP) algorithm suitable for second order elliptic problems in the plane
and for plate problems. A convergence analysis in the case of benign coefficients is given by
Mandel and Tezaur [MT01]. Numerical experiments show a poor performance for this algo-
rithm in three dimensions; cf. [FLLT

�
01]. Recent experiments with alternative algorithms

are reported in [FLP00, Pie00]. We give a brief description of our own recent work in the
third section; see [KWD01] for many more details.

The remainder of this paper is organized as follows. In the next section , we introduce
our elliptic problems and the basic geometry of the decomposition. In the third section, we
present results on new dual–primal FETI methods for problems with discontinuous coefficient
in three dimensions; see [KWD01].

Elliptic model problem, finite elements, and geometry

Let
� � � � � be a bounded, polyhedral region, let

� � � � � �
be a closed set of positive

measure, and let
� �

� � � � � � � � �
be its complement. We impose homogeneous Dirichlet

and general Neumann boundary conditions, respectively, on these two subsets and introduce
the Sobolev space

� �� ��� � � � � � ��� � � � � � � � � � � � I on
� � � j

.
We decompose

�
into non-overlapping subdomains

� � � � � � �
z'zdz

�  � also known as
substructures, and each of which is the union of shape-regular elements with the finite el-
ement nodes on the boundaries of neighboring subdomains matching across the interface� ��� � 
 �� � � � � � � � � � z The interface

�
is decomposed into subdomain faces, regarded as

open sets, which are shared by two subregions, edges which are shared by more than two
subregions and the vertices which form the endpoints of edges. We denote faces of

� �
by

�
� "

, edges by
�
� �

, and vertices by
�
�  .

For simplicity, we will only consider a piecewise linear, conforming finite element ap-
proximation of the following scalar, second order model problem:
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D–53754 Sankt Augustin, Germany. E-mail: klawonn@scai.fraunhofer.de, URL:
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2Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012,
USA. E-mail: widlund@cs.nyu.edu, URL: http://www.cs.nyu.edu/cs/faculty/widlund. This
work was supported in part by the National Science Foundation under Grants NSF-CCR-9732208 and in part by the
US Department of Energy under Contract DE-FG02-92ER25127.
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Find � � � �� � � � � � � �
, such that� �
� � �

�
�
� �
�
� L � � � �� ��� � � � � �

� (1)

where

� �
� � �

�
�

�q
� � � � �

@�E
 � � ��� �

G �
�

� �
�
�
�

�q
� � � � @�E  � � G � � @KA�E


DBA�E

�

� � �
G�H 
 z

(2)

where � � is the Neumann boundary data defined on
� �

� S it provides a contribution to the
load vector of the finite element problem. We assume that � � is a positive constant on each
subregion

� �
.

In our theoretical analysis, we assume that each subregion
� �

is the union of a number of
shape regular tetrahedral coarse elements and that the number of such tetrahedra is uniformly
bounded for each subdomain. Thus, the subregions are not very thin and we can also easily
show that the diameters of any pair of neighboring subdomains are comparable.

We also make a number of technical assumptions on the intersection of the boundary of
the substructures and

� � � S see [KWD01]. The sets of nodes in
� � � on

� � � � and on
�

are
denoted by

� � � Q � � � � � Q � and
� Q � respectively.

We denote the standard finite element space of continuous, piecewise linear functions
on
� �

by �
Q � � � �

. For simplicity, we assume that the triangulation of each subdomain is
quasi uniform. The diameter of

� �
is
� �

, or generically,
�

. We denote the corresponding
finite element trace spaces by � � ��� �

Q � � � � � � � � � �
zdz'z

�  � and by � ��� � �� � � � � the
associated product space. We will often consider elements of � which are discontinuous
across the interface.

The finite element approximation of the elliptic problem is continuous across
�

and we
denote the corresponding subspace of � by

�

�
z
We note that while the stiffness matrix � and

its Schur complement
�

, obtained from � by elimination of the interior subdomain variables,
which both correspond to the product space � generally are singular those of

�

� are not.
For the dual–primal FETI methods, we will use additional, intermediate subspaces

��
of � for which a relatively small number of continuity constraints are enforced across the
interface throughout the iteration. One of the benefits of working in

�� � rather than in � , is
that certain related Schur complements

!�
and

�
� are positive definite.

As in previous work on Neumann–Neumann and FETI algorithms, a crucial role is played
by the weighted counting functions �

� � �� � which are associated with the individual subdo-
main boundaries

� � �
; cf., e.g., [DSW96, DW95]. In present context they will be used in the

definition of certain diagonal scaling matrices. These functions are defined, for � � � � � % � ) �
�

and for
� � � Q � � � Q , by a sum of contributions from

� �
, and its relevant next neighbors

�
� � � � �

����
��

� q" s��
�

� �" � � � � � � � � � Q 	 � �#" � Q �
� � � ��� � � � � � � � Q 	 � � � Q � � Q � �I � � � � Q � � � Q � � � � � � Q z (3)

Here,

 � is the set of indices of the subregions which have

�
on its boundary. We note that

any node of
� Q

belongs either to two faces, more than two edges, or to the vertices of several
substructures.
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The pseudo inverses �
�� are defined, for

� � � Q � � � Q � by

�
�� ��� � �

�
�
� �� � � �

if �
� ��� � �� I �I if �
� ��� � � I z

New Dual–Primal FETI methods

In previous studies of dual–primal FETI methods for problems in two dimensions, see Farhat,
Lesoinne, Le Tallec, Pierson, and Rixen [FLLT

�
01] and Mandel and Tezaur [MT01], the

constraints on the degrees of freedom associated with the vertices of the substructures are
enforced, i.e., the corresponding degrees of freedom have been added to the primal set of
variables, while all the constraints associated with the edge nodes are enforced only at the
convergence of the iterative method. In each step of the iteration a fully assembled linear
subsystem is solved. In a simple two–dimensional case, this subsystem corresponds to all the
interior and cross point variables; these variables can be eliminated at a modest expense since
we can first eliminate all the interior variables, in parallel across the subdomains, resulting in
a Schur complement for the cross point variables which can be shown to be sparse. It has a
dimension which equals the number of subdomain vertices which do not belong to

� � � z
In their recent paper, Mandel and Tezaur [MT01] established a condition number bound

of the form
� � � � � U�� � � � � � � � for the resulting FETI method equipped with a Dirichlet

preconditioner which is very similar to those used for the older FETI methods and which is
built from local solvers on the subregions with zero Dirichlet conditions at the vertices of the
subregions. They also established a corresponding result for a fourth-order elliptic problem
in the plane.

The same algorithm is also defined for three dimensions but it does not perform well. This
is undoubtedly related to the poor performance of many vertex-based iterative substructuring
methods; see [DSW94, Section 6.1] and [KWD01]. Recently, Farhat, Lesoinne, and Pier-
son added edge and face constraints to this basic algorithm, see [FLP00], and improved the
performance.

In the present study, as well as in others of FETI–DP methods, it is convenient to work in
subspaces

�� � � for which sufficiently many constraints are enforced so that the resulting
leading diagonal block matrix of the saddle point problem, though no longer block diagonal,
is strictly positive definite. We will explain how this can be accomplished and also introduce
two subspaces,

�

� � � �

� and
�� � � corresponding to a primal and a dual part of the space

��
z

These subspaces will play an important role in the description and analysis of our iterative
method. The direct sum of these spaces equals

�� � i.e.,
�� � �

� � �
�� �

z
(4)

The second subspace,
�� � , is the direct sum of local subspaces

�� � � � of
�� where each sub-

domain
� �

contributes a subspace
�� � � � ; only its � � � � component in the sense of the product

space
�� is nontrivial.

In the description of our algorithms, we will need certain standard finite element cutoff
functions � � 

o
, ���  � , and ���  $ . The first two are the discrete harmonic functions which equal

� on
�
� �Q

and
�
� "Q
� respectively, and which vanish elsewhere on

� Q S�� �  $ denotes the piecewise
discrete harmonic extension of the standard nodal basis function associated with the vertex
�
�  z These cutoff functions are also used in the analysis of the methods; see [KWD01].
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We are now ready to describe our algorithms in terms of pairs of subspaces.
Algorithm A: The primal subspace,

�

� � , is spanned by the nodal finite element basis func-
tions � �  $ . The local subspace

�� � � � is defined in terms of the subspace of � � of elements
which vanish at the subdomain vertices, i.e., by

�� � � � � ��� � � � � � � � � �  � � I L � �  � � � � j z
Hence,

� � is the subspace of � of functions that are continuous at the subdomain vertices.
Algorithm B: The primal subspace,

�

� � , is spanned by the vertex nodal finite element
basis functions ���  $ and the cutoff functions � � 

o
and ���  � associated with all the individual

edges and faces, respectively, of the interface. The local subspaces
�� � � � are defined as the

subspaces of � � where the values at the subdomain vertices vanish together with the averages
� � 
o

and � �  � , i.e., by
�� � � � � ��� � � � � � � � � �  � � I � � �  o � I � � �  � � I�L � �  � �

� � � �
� " � � � � j z

Hence,
�� is the subspace of � of functions that are continuous at the subdomain vertices

and have the same averages � � 
o

and � �  � independently of which component of � � ��
is used in the the evaluation of these averages. Here the averages �� � 

o
and �� �  � � which by

assumption take on unique values L � Q � �� � are defined by,

�� � 
o
�
�
� 
o
�
G�H

�
� 
o
�

G H
and �� �  � � �

�  � � G ��
�  � � G � z (5)

Algorithm C: The primal subspace,
�

� � , is spanned by the vertex nodal finite element basis
functions � �  $ and the cutoff functions � � 

o
defined on all the edges of

� z
The local subspaces�� � � � are defined as the subspaces of � � where the values at the subdomain vertices vanish

together with the averages � � 
o
, i.e., by

�� � � � ��� � � � � � � � � � �  � � I � � �  o � I � L � �  � �
� � � � � � j z

Hence,
�� is the subspace of � of functions that are continuous at the subdomain vertices

and have common averages � � 
o

for the individual edges. The number of degrees of freedom
of the corresponding primal subspace

�

� � is therefore equal to the sum of the number of
vertices and the number of edges; this

�

� � will be of lower dimension than the primal space
of Algorithm B.

The number of constraints enforced in all the iterations of Algorithms B and C is substan-
tially larger than when only the vertex constraints are satisfied as in Algorithm A, but we are
still able to work with a uniformly bounded number of such constraints for each substructure.
In order to put this in perspective, we consider Algorithms B and C in the very regular case
of cubic substructures. There are then seven global variables for each interior substructure
in the case of Algorithm B since there are eight vertices, each shared by eight cubes, twelve
edges, each shared by four, and six faces each shared by a pair of substructures. The count
for Algorithm C is four. We note that the counts would be different, relative to the number of
substructures, in the case of tetrahedral subregions.

It is useful to distinguish between the continuity constraints at the vertices and the other
constraints. The latter are sometimes called optional constraints since they are not needed to
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guarantee solvability of the subproblems if there are enough vertex constraints. The vertex
constraints are enforced in the subassembly process, for the primal problem, outlined above.
The optional constraints could be similarly incorporated after a change of variables. An-
other possibility, which we advocate, is to introduce an additional set of Lagrange multipliers
which are computed exactly in each iteration to enforce the required optional constraints of
the primal subspace; see Farhat, Lesoinne, and Pierson [FLP00], where this approach is used.
For a more detailed description of this approach, we refer to section 4.2, especially formulae
(24)-(28), of that paper.

We are able to show as strong a result for Algorithm C as for Algorithm B. It is therefore
natural to attempt to drop additional constraints, i.e., further decrease the primal subspace

�� �

while attempting to preserve the fast convergence of the FETI-DP method. This leads to the
introduction of our final algorithm.

Algorithm D: The primal subspace
�

� � , is defined in terms of constraints associated with
a subset of the edges and vertices of the interface. We first describe the requirements on a
minimal set of primal constraints which we have found necessary to give a complete proof of
a good bound for Algorithm D. For each face, we should have at least one designated, primal
edge. Additionally, for all pairs of substructures

� � �
� "

, which have an edge in common, we
must have an acceptable edge path between the two subdomains. An acceptable edge path
is a path from

� �
to
� "
� possibly via several other subdomains,

�
� , which have the edge

�
� "

in common and such that their coefficients satisfy � � � � � �
�
� Z�c � � � � �

" �
for some

chosen tolerance � � � z The path can only pass from one subdomain to another through an
edge designated as primal. Finally, we consider all pairs of substructures which have a vertex
�
�  but not a face or an edge in common. Then, we assume that either

�
�  is a primal vertex

or that we have an acceptable edge path of the same nature as above, except that we can be
more lenient and only insist on � � � � � �

� � � � � � � � � Z c � � � � �
" ��z

A possible algorithm of
selecting the set of primal constraints is given in [KWD01].

We can now formulate our FETI–DP algorithms. The primal part of the algorithm is based
on the exact elimination of all unknowns of the primal subspace as well as the interior vari-
ables. The remaining system is written in terms of a Schur complement

!�
. Thus, for all the

algorithms, we arrive at this reduced problem after eliminating the primal variables associ-
ated with the interior nodes, the vertex nodes designated as primal, as well as the Lagrange
multipliers related to the optional constraints. This Schur complement

!�
can also be defined

in terms of a minimum property; cf. [KWD01]. Analogously, we get from the load vec-
tors associated with each subdomain a reduced right hand side �

�
� . We can now reformulate

the original finite element problem, reduced to the degrees of freedom of the second subspace�� � � as a minimization problem with constraints given by the requirement of continuity across� Q
:
Find � � � �� � , such that

�
�
� �

� � � �� ' !� � � � � �

)
� ' �� � � � � ) � min�

� � � � I � z
(6)

The matrix
�

� is constructed from � I � � � � � j such that the values of the solution � � , asso-
ciated with more than one subdomain, coincide when

�
� � � � I . These constraints are very

simple and just express that the nodal values coincide across the interface; in comparison with
the one-level FETI method, see, e.g., [KW01], we can drop some of the constraints, in partic-
ular those associated with the vertex nodes of the primal space. However, we will otherwise
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use all possible constraints and thus work with a fully redundant set of Lagrange multipliers
as in [KW01, section 5].

By introducing a set of Lagrange multipliers � � � ��� ���������

� �
�

�
, to enforce the

constraints
�

� � � � I , we obtain a saddle point formulation of (6), which is similar to
that of the one-level FETI method; see, e.g., Klawonn and Widlund [KW01]. We use that!�

is invertible and eliminate the subvector � � , and obtain the following system for the dual
variable: � � � G � (7)

where � � � � �
!� � � � �

�

and the right hand side
G � � � �

!� � � �� �

z
To define the FETI–DP Dirichlet preconditioner, we need to introduce an additional set of
Schur complement matrices,

� n � p
� ��� � n � p� �

� � n � p� � � � n � p� � � � � � n � p� � � � ��� �
zdz'z

�  �
Here, � n � p� � is the principal minor of the stiffness matrix after the change of variables and it is

related to the variables of
� � �

z
The associated block–diagonal matrix is denoted by

�
� ��� G � � � �� � � � � n � p�

��z
We can compute the action of

�
� on a vector from the second subspace

�� � by solving
local problems with solutions that are constrained to vanish or to have zero average at the
designated, primal variables, as required by the algorithm in question; these constraints can
be enforced by using Lagrange multipliers or a partial change of basis.

We also introduce diagonal scaling matrices

 n � p

� that operate on the Lagrange multiplier
spaces. Each element on the main diagonal corresponds to a Lagrange multiplier which en-
forces continuity between the nodal values of some � � � �� � and � " � �� " at some point� � � Q z This diagonal element is defined as � �" ��� � � �" � � �

. Finally, we define a scaled jump
operator by � � � � � � � 
 n � p

�
� n � p

� �
zdz'z

�

 n � p

�
� n � p

� � z
As in Klawonn and Widlund [KW01, section 5], we solve the dual system (7) using the

preconditioned conjugate gradient algorithm with the preconditioner� � � ��� � � � �
�

�
� �� � �

z
(8)

The dual–primal FETI method is now the standard preconditioned conjugate gradient al-
gorithm for solving the preconditioned system� � � � � � � � � G z
This definition of � clearly depends on the choice of the subspaces

�

� � and
� � � for the

different algorithms.
A proof of the following theorem can be found in Klawonn, Widlund, and Dryja [KWD01].
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Theorem 1 The condition numbers of the preconditioned FETI–DP Algorithms B and C sat-
isfy

�
� � � � � � � � � � � � U�� � � � � � � �

and the condition number of Algorithm D satisfies

�
� � � � � � � � ����� � � � � � � � �

� � � U�� � � � � � � � z
Here,

�
is independent of

� � � � � � and the values of the � � .

Remark 1 A weaker condition number estimate, with an additional factor
� � � , can be given

for Algorithm A; see [KWD01].
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42 Comparison of domain decomposition methods for
solving continuous casting problem

E. Laitinen1, J. Pieskä2, J. Saranen3, A. Lapin4

Introduction

Two different kind of domain decomposition methods and algorithms to solve the continu-
ous casting problem are presented and analyzed. The multiplicative Schwarz method with
overlapping subdomains, and splitting iterative method with nonoverlapping subdomains are
studied. Results considering convergence for both of these methods are presented and stud-
ied via numerical example. The finite element method with rectangular elements was used
to discretize the problem. Advantages and disadvantages for both of these methods for this
problem are discussed and analyzed.

The continuous casting problem can be stated mathematically as follows. Let
�
� � I��� � � �

�

f
� I � � � �

�
�

h j
be the rectangular domain with the boundary

� � � �
consisting

of two parts:
� � � � � � � � � � � � I �

� � � �
�

h j
� � � � � � � � � � � � j z We assume

that the domain
� � �

�
is occupied by thermodynamically homogeneous and isotropic steel.

We denote by
� � � � � � the enthalpy related to unit mass and by �

� �
� � � the temperature for���

� � � � � � � I � � � . We have constitutive law

� � �
�
�
�
� �

@ �
� � � �

� G
� � �

� �
�
� �

�

�
�
� �

in
� � � I � � � �

where � is density, �
�
�
�

is specific heat,
�

is latent heat and
�

�

�
�
�

is solid fraction.
Graph

� � �
�

is a increasing function � � � involving near vertical segments correspond-
ing to the phase transition states, namely, for � �

�
� � � � � � where I � � � � � � are melting

and solidification temperatures, correspondingly.
We study the following boundary-value problem: find � � �

� �
� � � such that

(P)

�������
�����

�
� � � � �� � � � � � � � �� � � � � � � I for

� � � � � � I �
� � � ��� � � � � � I for

� � � � � � � I �� � � � � � �
� � � � � � � � � � �

� � I ��� � I � � � I for
� � � � � � � I �

� � � �
� � � � I for

� � �
�
� � � I z

The existence and uniqueness of the weak solution for the problem (P) are proved in [RY90].
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To approximate the problem (P) we rewrite it as the integral equality for fixed
� � I z

Let
� � � � ��� �

� � � � � � � � � � ��� � � I for
� � � � j and

� � � � � � � � � � � � �� for
� � � � j z The solution of the problem (P) for fixed

� � I satisfies the following equality
for all

� � � � � �
� � � � � � n � p :@ E � � � � � � � � � � � � � � � � � � � G � � @ E � � � � G � � @ � h ��� � � � � � � � �

� �
G � � @ � h � �

G �
Let �

Q
be the triangulation of

�
in rectangular elements of dimensions

� � � � � and
� Q �� �

Q � � � � � � � � � � � Q � � � � � � for all � � � Q j , where
� � is the space of bilinear functions.

By
� Q

we denote the local
� � -interpolant. We also use the following notations:

� �Q �� �
Q � � � � � Q � � Q ��� � � I � for all

� � � � j � � �Q � � �
Q ��� � � � Q � � Q � � � � � Q � for all

� �� � j for the subsets of
� Q z

Here � Q is the
� Q

- interpolant of � on the boundary
� � z For any

continuous function �
��� �

we put

� � � � � � @ � m � Q � � �
G � S � E � � � � q

� s � m � �
�
�
�
�

�

A � � � � � @ A � m � Q � � �
G � S � � h � � � � qA � m s � m D �� h �

A � � � ��z
Let also � � � � � � � � � � I � � � � � � � � �

j
be the uniform mesh in time on the

segment
� I � � � z To approximate the term � AA � � � � � � AA � h � � we use characteristics of this first

order differential operator [Che91, JR82]. We use the notationG
�� � � �� � � ��� � � � � ��

���
� � � � � �

for the difference quotient approximating the term � AA � � � � � � AA � h � � in each mesh point on

time level
�

by using characteristic method.
Then the approximation scheme can be written as follows: for all

� �
� � ,

� � I � find �
Q �

� �Q
such that

�

E � G
�� � Q � Q � � � E � � � Q � � Q � � � � h � ��� � Q � � � �

Q
� � � �
Q
�
� � Q � � � � h � � � Q � for all

� Q � � �Q z
(1)

Let  � � card
� �Q

and � � � � � be the vector of nodal values for �
Q � � �Q

. Below we
use the writing �

Q
� � for this bijection. For the matrices  �

�
 � we have the relations:

for all �
Q � � �Q � � � � � � � �

Q � � �Q � � � � � ��
� � � �

�
� �
E � � � Q � � Q � � � � h ��� � Q � Q � S � � � � � � � � E � � � � � Q � Q ��z� � � � � � � � � h � � � � Q � � � � Q � � Q � S

Similarly we define the vector
�

:
� �
� �

�
� � �

h �
� �
Q � � � E � � � � �� Q � Q ��z Let now ��

Q � � � � � Q
be the function which is equal to � Q in �� � and I for all nodes in � � then

� � is defined by the
equality:

� � � � �
�
� �

E � � �� Q � � � Q � for all
� Q � � �Q z

Finally we get � �
� � � � z In these

notations the algebraic form for the mesh scheme (1) at fixed time level can be written as
follows:

� � � � � � � � � � � � � z (2)
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Here
� � � are symmetric, positive definite M-matrices (moreover

�
is diagonal one) and� � �

�
is vector with components

� � � �
� � � � � � � �

��z
The operator

�
has the diagonal form:� � � � � � � � � � � � � � � � � � z�z z � � � � � � � � � � where � � are continuous non-decreasing functions.

Schwarz alternating methods

We study the convergence of multiplicative Schwarz alternating method (MSAM) and additive
Schwarz alternating method (ASAM) for (2).

For the simplicity but without loss of generality we suppose that the domain
�

is de-
composed into two overlapping subdomains

� � and
� �

, consisiting of the elements of tri-
angulation �

Q
; any internal node of the grid in

�
is the internal node of at least one of the

subdomains. We arrange the internal nodes of the mesh as follows. First, we enumerate the
internal nodes lying in

� � , then the nodes in
� � 	 � � and at last the nodes in

� �
. The vector

� � � � takes the form � �
�
� � � � � � � � � ��� � � with subvector � � � corresponding to the values

of the mesh function
� Q � �

Q
� � in the nodes

� � int
� �

and subvector � � � corresponding
to the values in

� � � � 	 � � z
This decomposition implies also the partitioning of the matricies and nonlinear operator�

:
� �

�
� � " � �� " � � � � �

� � � " � �� " � � � � � diag
� � � � � � � � � ��z

We need some more notations, namely:

� �� � � � � � � � �
� � � � ���

�
� � �� � � � � � � � �� � � � ��� �

� � �� � G � � � � I � � � � � � � �� � G � � � � I � � � � � S
�
�
� �

� � ��� � �
��

�
� �

� �

�
� � �
� �

� � ��� � �
��

�
� �

� �

�
� �

� � � G � � � � � � � � I � � � �� � G � � � � � � � � I � S� � � G � � � � � � � � � � � � �
�
G � � � � � � � � � � � � � � �

� � � � � � � � � � � � � �
� � � � � ��� � �

and similar for other vectors. (We note, that
� � � � � � � � � � � � � � � are zero matricies.)

Then MSAM can be written as follows:��������
������

�
� �� � � � �� � � �� � � � � � �� � � � � � � � �� �

� � � � �� � �� � � �� � � � �� �
� �

� ���� � � ����

� �
� �� � � � �

� �� �
�
�
� � �

� �� � � �
� �

�
� �

� �� � � � �
� �

� �� �
� � � � � � � � � �� � � �� � � � � � �� �

(3)

and ASAM has the form:�����
���

� � �� � �
� �� � � �� � � � � � �� � � � � � � � �� �

� � � � �� � �� � � �� � � � �� �
�
�
� � � � �� � � �

� �
� � � � �� � � � � � � � �� �

� � � � � � � � � � � �� � � � � � �
� �

� �� � � � �
� �� � � � �

� ���� � � � � ���� � � �
� �� � � � � �

� �� � � �
�
�
�
� � � � �� � (4)

Here
�
� I � � �&% � z z�z � initial guess � � �

�
� � � � � � � � � � � � ��� � � and � �

� I � � ��z
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Along with these methods we consider also the block variant of Jacoby method (BJM).
Let

� � � diag
�
� � � � � ��� � � � � � be the block diagonal submatrix of

� � � � � �
�
� �

and� � � � � � � with similar splitting. Then
� � � � � are � - matricies and

� � � I � � � � I z
Moreover the iterative method (BJM) can be written in the form:

� � � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��z (5)

Theorem 1 Let
� � � are � �

matrices, where
�

is weakly diagonally dominant in columns,�
is strictly diagonally dominant and

�
has the diagonal form

� � � � � � � � � � � � � � � � � � z z z �� �
�
���

� � � � where � � are continuous non-decreasing functions. Let also there exist sub- and
supersolutions for the problem (2). Then the iterative methods (3), (4) and (5) are correctly
defined for any initial guess � � from ordered interval � � � �

� z
If the initial guess is superso-

lution then the sequences of iterations for all methods (3), (4) and (5) converge monotonically
decreasing to the unique solution of the problem (2). Moreover, let the iterations of MSAM,
ASAM and BJM be denoted by � �

�
� �

�
� � �� � �

�
� � �� � �

. Then for any
�

the following in-
equalities hold:

� �
�
� �

�
� � �� � �

�
� � �� � �

z
If starting from subsolution, then the inequalities are vice versa and the iterative sequences
converge monotonically increasing [LLP99].

Splitting iterative method

Let now
�

be divided into � nonoverlapping subdomains
� �

with the interfaces
� � " �

� � 	 � "
.

We suppose that all interfaces as well as
� � � consist of the sides of � � � Q z

The restrictions of functions from
� �Q

on subdomains
� �

form the spaces
� �Q � � ��� �&% �

z z�z
� �
z

We also denote by
� Q � � �Q � � �Q � � ��� � � �Q . It is easy to check that

� �Q
is isomorphic to the

subspace � Q of
� Q

: � Q � � �
Q
�
�
� �Q � � � Q � z�z z � � � Q � � � Q � � � Q � � � � � " Q � � � for

� � � � " � � � $ �
� � % �

z�z z
� �
j
.

Let us put in the correspondence to the function �
� Q � � �Q and the vector �

� � � �  of its
nodal values for nodes from �

� � � � � � and denote this bijection by �
�

� �
� Q
. To �

Q � � Q
corresponds the vector � � � � �  �  � �  � � � ��� �  �

z
The subspace � Q corresponds to

subspace of � � which we denote by � z We have the following relations for  �
�
 � matrices:

for all
� �Q � �

Q
� � � � �  � � �Q � � Q � � � � � �

� � � � � � �
� � � �

E

� � �

Q � � Q � � � � h~DBA�E  ��� � Q � Q � S � � � � � � � � � � � E  � � � � � Q � Q � and� � � � � � � �
� � � � �

hYDBA�E

� � � �
Q
� � � �
Q
� � Q ��z

Similarly we define the vectors
� � �
� � � :

� � � � � �
� � � � �

haDBA�E

�
� �
Q � � � E  � � � � �� Q � Q � � � � � � � � � � �

�

E

� � ��
Q
� � � Q � for all

� Q � � �Q z Finally we get � � � � � � � � � z
Let further

� �
G � � � � � � � � � � z�z z � � � � � � �

G � � � � � � � � � � � � z�z z � � � � � and � �
� � � � � � � z z�z � � � � �

� �
z
Below we denote by

� � � � � � � � � � � � � � � � � � � � , where
� � is the indicator function

of the subspace � . The operator
�

is bounded, hemicontinuous and uniformly monotone,�
is maximal monotone operator. In these notations the algebraic form for the mesh scheme

using DDM can be written (at fixed time level) as follows:

� � � � � � � z (6)
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Due to the properties of
�

and
�

there exists unique solution � to the problem (6) [Bre73,
Roc70].

We solve the inclusion (6) by splitting iterative method:
 � �� �
� �

� � u � � � � � � � � � � � � � � � u � � � (7)
 � � � � � � � � � � � � � � � u � � � � z
where


 � and

 � are some positive definite matrices. Due to the properties of


 � and

 �

there exist the unique solutions � �
� � u �

and � �
� �

for any
� z

For other examples of splitting
methods see [Gab83, LS88, LM79].

For theoretical study of the convergence and rate of convergence for this splitting iterative
method we can proof:

Theorem 2 Let
� � � � � � � � z z z � � � , where

� �
are Hilbert spaces with inner products

� z
�
z � �

and norms � �
z
� � � �

� z
�
z � � u �� and let

�
be diagonal linear operator:

� �
G � � � � � � � � � � z z�z � � � �

with
� � � � � � � �

satisfying for all � the following assumptions: � � � �
�
� � � � �� �� � � � for all � � � � � I z Let also

�
be a maximal monotone operator and � � � � � � � , where

� � is the
�

th iteration and � is the exact solution.
If

 � � G � � � � � � � � � � � � � � z z z � � � � � � and either


 � � � � 
 � � or

 � � � � %

� � � 
 � � �
then the iterative method (7) converges for any �

� � I and for the optimal choice of the
iterative parameter �

� ��� � �
� � � � � � the following estimate for rate of convergence is valid:k 
 � � u ��

� � � 
 � � n �
p
� � � k � 
 � k 
 � � u ��

� � � 
 � � n �
p
� � � k � (8)

with 
 � 
 � � �������� � � � � � �
� � � � � � � for the first choice of


 � (corresponds to Douglas-

Rachford scheme) and with 
 � 
 � � �������� � � � � � � � � � �� � � � � � � for for the second choice of

 �

(corresponds to Peaceman-Rachford scheme).

The iterative method (7) with, for example,

 � � � � 
 � � for DDM mesh scheme (6)

leads to algorithm 
 � �� �
� �

� � u � � � � � � � � � � � � � � � u � �

�
(9)� � � � � � � � � � � � � � � � � � � � � � � � � � � � � u � � � � � � � � � � �&% �

z z�z
� � � (10)

� � �
�
� � � � � � � � � � z�z z � � � � � ��z

Linear equations (10) may be solved independently for � � � �&% �
z z�z
� � . As for (9) then for

coordinates of � �
� � u �

corresponding to internal nodes
� � � � operator

�
has diagonal form:� � � � z It means that the system of non-coupled scalar nonlinear equations corresponds to

these points. For nodes lying on the interfaces
� � "

system (9) contains subsystems of two (if
it is the interior node of the interface) or several (if it is a cross-point of several interfaces)
coupled equations. These subsystems can be also reformulated as problems to minimise con-
vex differentiable functions of two or several variables. To solve these subproblems we can
use one of standard optimization method.

The assumptions of Theorem 2 are satisfied with � � � � � � � � � � � � � � � � � ��z If we
choose �

� � � � � � � � u � � in method (7) with either

 � � � � 
 � � or


 � � � � %
� � � 
 � � �

,
 � � G � � � � ��� � � � � � � � � z�z z � � � � � � , then 
 � � �
� � � � � � � u � � � 
 � � �

� � � � � � � u � � and the
number of iterations to achieve accuracy � is

� �
�

�
� � � � � u � � � � � c � � �

��z
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Numerical results

To validate the numerical schemes described in sections 42 and 42 the following numerical
example was considered.

Let
�
� � I � � � � � I � � � with the boundary

�
divided in two parts such that

� � � � � � � � �� � � I �
� � � �

j
and

�
� � � � � � , moreover let � � � . Let us consider the case where the

phase change temperature � � � � � and the latent heat
�
� � . Let the phase change interval

be
�
� � � � � � � � � � � � , � � I z I � , and the velocity is �

� � � � �
� . Our numerical example isA lA � � � � � � � � �

A lA
�

h
�

� ��� S � � on
�
�

�
� � � � � � S � � �

��� � � �� � � � �� \ � � � � �� on
� � �A

�
A
� � � on

�
� �

�
��� � � � � SYI � �

��� � � �� � � � � � � � �� � � � ��
on
�
�

where � � � � � �� � � if � � � � � � � �
� � �

� � � �� if � �
�
� � � � � � � � � � � � �% � � � if �

�
� � � � � �

and

� � �
�
� �� � % � if � � � � � � � �� � � � �� �


 �
�
�
�
� ���

� � �� if � �
�
� � � � � � � � � � � � �� � � � if �

�
� � � � �

z
Furthermore � ��� S � � � � � \ � � � � �

�
� � � � � % � � � if � � �

�
�

� % \ � � � � �
�
�
� %
� � � � � � � if �

�
�
�
z

The exact solution of our problem is �
� � � � � � S � � � ��� � � �� � � � � � � � �� � � � �� \ � � � � �

z
We split the enthalpy function

� � �
�

as follows:
� � �

�
� � � � � �

�
�
�
� where � is the

minimal slope of the enthalpy function. In our numerical example � � % .
For splitting iterative method the optimal iterative parameter �

� � �
� � 
�
 , where � � �

� � � � �� � � � � � � � and � � � � � � � �� � � � � � � � , where �
�� � � � � � � � is the smallest eigenvalue of

the matrix
�
� � � � � , which is the approximation of the Laplacian operator and correspondingly

�
�� � � � � � � � is the biggest eigenvalue.

The numerical test was done such away that everything for different methods would be
optimal. Numerical test were run in the computer Cedar in CSC, Espoo Finland, (128 RISC
processors); mainly 4 processors were used. The stopping criterion was the norm of residualk 	 k � � I � � .

From the tables below splitter is splitting iterative method, multi2 is multiplicative Schwarz
with overlapping size % � and multi4 is multiplicative Schwarz with overlapping size

� �
.

Moreover proc means the number of processors, iter the number of iterations and S is speedup.

Conclusions

Two different method was used to solve the problem (P). From Table 1 it can be seen that
Splitting iterative method (SIM) is better (faster) than the Multiplicative Schwarz Alternating
Method (MSAM) for the continuous casting problem. The speedups from the Table 1 show
that (SIM) can be parallelized better than (MSAM).
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Splitter multi2 multi4
proc Time [s] S Time [s] S Time [s] S

1 466.4 – 259.4 – 259.4 –
2 166.8 2.8 212.6 1.22 177.5 1.46
4 124.6 3.74 174.9 1.48 157.4 1.65
6 106.7 4.37 140.3 1.85 131.9 1.97
8 85.4 5.46 119.3 2.17 109.6 2.37

10 70.9 6.58 95.4 2.72 92.7 2.80
12 59.3 7.87 85.6 3.03 85.2 3.04

Table 1: The comparison of calculation times and speedups when grid size is fixed to be
� % �

�
� % �

and %
� � time steps. Number of processors are changed.

Splitter multi2 multi4
grid time steps Time [s] iter Time [s] iter Time [s] iter

�
� �

�
�

32 0.45 24 0.68 6 0.49 4� � � � � 65 1.75 25 1.44 7 1.31 4� � � � � 128 12.3 26 14.2 8 12.6 5
� % �

�
� % �

256 124.6 29 174.9 9 157.4 6
� � � � � � � 320 188.2 29 391.8 9 350.1 6% � � � % � � 512 1949.4 26 4425.2 9 3875.8 7

Table 2: The comparison of calculation times and number of iterations for different grid size
and fixed number of processors; 4 processors.

From Table 2 it can be seen that when grid size increases the difference between cal-
culation times for (MSAM) and (SIM) increases. Splitting iterative method is much more
suitable for big continuous casting problems when we can use many processors and number
of unknows are big, like in many real industrial application. For (SIM) we also know how
to determine the optimal iterative parameter. The numerical experiments have shown that the
theoretical optimal value for the iterative parameter is close to the practical optimal one.
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43 A Mesh Refinement Method for Optimization with DDM

Géraldine Lemarchand, Olivier Pironneau1 and Elijah Polak2

Approximate Gradient

We apply here an idea developed in [PP02] whereby mesh refinement can be mixed with
approximate gradients within an optimization loop. This is particularly useful for problems
where the exact gradient is difficult to compute, which is the case of DDM problems[BW86]

Consider a generic optimization problem and its finite dimensional approximation

� Z c�

s
�
�
� � � � Z c�

s
� m � Q � � ��z (1)

The following is the method of Steepest descent with a Goldstein/Armijo rule for the step
size:

Algorithm 1 :

while
k �+W � � � � Q � � � � k �

� do�� � � � � � � �
� �XW � � � � Q � � � �

where � is such that�
� � k � k � � �

Q � � � �
� � � �

�
Q � � � �

� �
� � k � k � (2)

with � � �XW � � � � Q � � � �
Set � � � � � � ;

j
Now consider the same algorithm with parameter refinement

Algorithm 2 :

while
� � � � � � do� while
k �XW � � � � Q � � � � k �

�
� � do�� � � � � � � �

� �XW � � � � Q � � � �
where � such that,�

� � k � k � � �
Q � � � �

� � � �
�
Q � � � �

� �
� � k � k � (3)

with � � �XW � � � � Q � � � �
. Set � � � � � � ;

j
� ��� � � % ;j
Convergence is straightforward to establish as it is either Steepest Descent or

�+W � � � Q � I by
the fact that

� � � � % .
1Université Paris VI and IUF (pironneau@ann.jussieu.fr)
2EEC, University of California, Berkeley
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Approximate Gradients

Another possible gain in speed arises from the observation that we may not need to compute
the exact gradient

�+W � � � � Q !
Assume that  is an iteration parameter and that �

Q � � and
�XW � � � � Q � � denote approxima-

tions of �
Q

and
�+W � � � � Q in the sense that

� Z �
� � 
 �

Q � � � � � � �
Q � � � � Z �

� � 
 �XW � � � � � Q � � � � � � �XW � � � � Q � � ��z (4)

Now consider the following algorithm with additional parameter � and  
� � �

with  
� � � �) when

� � I :
The following is Steepest descent with Goldstein/Armijo rule, mesh refinement and approxi-
mate gradients:

Algorithm 3 :

while
� � � � � ��

while � �XW � � � � � � � � �
� �

�
try to find a step size � with � � �+W � � � � � � � � �

�
� � k � k � � �

� � � �
� � � �

�
� � � �

� �
� � k � k � (5)

if success then� � � � � � � � � � �+W � � � � � � S � � � � � � ;

j
else  � �  � � ;
j
� ��� � � % S  � �  

� � �
;

j
The convergence is established by observing that Goldstein’s rule gives a bound on the step
size:

�
� � �XW � � � � � � � �

� � � � � � � �
� � � � � �+W � � � � � � � �

�

% � � � �i� (6)

� �
� % � � � �

� �XW � � � � � �
� � �
� � � �R� (7)

so that

� � � � � � � � � % �
�
�
�
�
�k � � � k � �XW � � � � � � (8)

Thus at each grid level the number of gradient iterations is bounded by � � � � � � � . Therefore
the algorithm does not jam and as before the norm of the gradient decreases with

�
.
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Applications

Distributed control and DDM

Let
� � � � � �

� Z�c	
s �
h
n � p � � � � � @ E � � � � � � � � � � � � � � � � � � � � (9)

subject to

�
� � � � I in

�
�
� �� � � � � � � � � � � � � � � (10)

Then the optimality conditions are � � � @
�

� � �
�
� � � � � (11)

Let
�
�
� � � � � , let

� � � �
and

�
� " � � � � 	 � "
. The multiplicative Schwarz algorithm

for the Laplace equation starts from a guess � � � � � � � and computes the solution of

�
� � � �

�
in
�
� � � � � � � (12)

as the limit in
�

of � �� � � ��� � % defined by

� �
� �� � � � �

� �� �
�

in
� � �

� �
� � � � D E/f � � � � � � �

� �� � �
fVh
� � ��

� � � � ��� � � � � � �

� �
� �� � � � �

� �� �
�

in
� � �

� �
� � � � D E h � � � � � � �

� � � � h f � � � � � � � � ��� � � � � � �

The discretized problem is

� Z�c	
s

 m � �Q � � � � k � � �

� � k �E � � �
" � I � � � �

z z
 Li� � � Q

� �
" �
A�E
 � � � � � �"

�
@BE � � � �" � � � � �" � � � � @ � � � �

where  is the number of Schwarz iterations. The exact discrete optimality conditions are
difficult to implement because we may need to store all intermediate functions generated by
the Schwarz algorithm (at least for the nonlinear cases) and integrate the system for the adjoint
vectors in the reverse order. So here we will try to use the approximate gradient

�
Q � � � k � Q � � �

� � k � (13)

where �
Q

is computed by N iterations of the Schwarz algorithm.

while
� � � � � � �

while �
Q � � �

�

� � � �
if ( � � � �Q � � �

� �Q � � � �
� � � � �Q � � )� do a gradient iteration of step size � � and m:=m+1

j
else N:=N+K
j
h:= h/2

j
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Figure 1: The computed solution � (left) and the error �
�
� � (right).
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Figure 2: After 30 iterations the gradient is � I � � times its initial value, while without mesh
refinment it has been divided by 100 only (embedded grid effect). On the left, is shown the
cost function versus iteration number with and without mesh adaptation for Problem � � .
The smooth curve (

� � �
) corresponds to standard steepest descent on the finest mesh with

500 Gauss-Seidel iterations for the linear systems. The broken curve (
� � �

) shows cost
function decrease with Algorithm 1. Although the two curves are similar, there is an order of
magnitude decrease in computing time using Algorithm 1. On the right is shown the history
of the parameters in the algorithm,  and

�
.

Numerical results

� � � \ � � � � H � � � � � . � � � Z�c � � I �

��� �
�
z
�
� � � � � Z c � � I �

� � � I z���� � . The number of Schwarz
iterations is initialized at 1. Results are shown in Figures 1 and 2.

Control in the coefficients

An absorbant coating of thickness � on an airfoil
�

is optimized to cancel the reflected ac-
coustic wave in a sector � . The Leontowitch conditions models the thin coating:

� Z c� @
�

� � �
�

subject to

�

�
� � � � � I � �� � � � � � � I on

� 
 � � �� � � � � � � I on
�
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Figure 3: Real part of the solution of Helmholtz equation

The problem is discretized by the finite element method of degree 1 [Cia78] on triangles. The
linear systems are solved with a Gauss factorization. The same gradient method with inexact
gradients is applied (i.e. the gradient of the continuous problem discretized) with domain
decomposition where one domain surrounds one of the airfoil. Figures 3 and 4 show the
solution and Figure 5 shows the history of the convergence compared with a straight steepest
descent method and a steepest descent with mesh refinement only and no DDM. The FEM
software [BHOP99] has been used.

Optimal Shape Design

A transonic flow is computed by solving the Euler system of partial differential equation
with NSC2KE[MP01] and the profile is optimized so as to minimize the pressure drag. The
state equation is non-linear and the acceleration by approximate gradient is on the number of
Newton iterations in the flow solver. There is no DDM here. The results are shown in Figures
6 and 7.
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Figure 4: � versus distance to the leading edge on the two sides of each airfoil.
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44 A Preconditioner for Linear Elasticity Problems

J. Martikainen1, R.A.E. Mäkinen2, T. Rossi3, J. Toivanen4

Introduction

We consider the linear elasticity problem for homogeneous and isotropic material with mixed
boundary conditions. The traditional formulation of the problem reads [NH80]���

�

� � % � � � �
�

��
� �
��� � �*� ��

�
� �

�
in
� � � � �

�� � I on
� � � � � �� % � �

�
��
� � � � �*� ��

� � � � �� � I on
� � � � � � � � � (1)

where
��

is the outward unit normal vector, �
�

��
�

is the strain tensor and the Lamé coefficients
� and � are defined by the Young modulus N and the Poisson ratio � as follows

� � N ��
� � �

� �
�
� % � � and � � N% � � � �

� z
Hereafter, it is assumed that the Poisson ratio � satisfies I � � � � � % , although in theoretical
considerations it is assumed that �

�
�� � � � % , where

�� is a constant. The measures of the
boundaries

� � and
� � are assumed to be positive. The drawback of formulation (1) is that

for (nearly) incompressible materials the parameter � approaches infinity and the problem
becomes ill conditioned. One remedy for this problem is to alter the formulation [BF91],
[NH80]. We define a scalar function � � �

�
� �*� ��

�
. This definition is added to the problem

as a second equation. Then, we divide the equation by � and get the following set of equations
(see, for example, [Kob94] and references therein)������

����

�
� % � � � �

�
��
� � � � � �

�
in
�
�� � � ��

�
� � � � � I in

�
�

�� � I on
� � �� % � �

�
��
� �

� � � � �� � I on
� � z (2)

For the Poisson ratio � � � � % the latter equation of (2) is
� � � �� � I , which is exactly the

incompressibility constraint. There are other possibilities to treat the elasticity problem for
almost incompressible material such as

� � -methods [SS96], nonconforming methods [Fal91]
and reduced integration rules [ZT89].
Our purpose is to develop an efficient method for the numerical solution of discretized coun-
terpart of the partial differential system (2). Our tools for this are a block diagonal precondi-
tioner, a fictitious domain method and distributed Lagrange multipliers. The idea of the ficti-
tious domain method is to extend the problem with complicated geometry to a larger, simple

1University of Jyväskylä, jamartik@mit.jyu.fi
2University of Jyväskylä, rainom@mit.jyu.fi
3University of Jyväskylä, tro@mit.jyu.fi
4University of Jyväskylä, tene@mit.jyu.fi
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PSfrag replacements �

D
� �

� �
E

� �

Figure 1: Rectangular domain
�

with subdomains.

domain where an efficient solver can be used. This procedure can be justified with extension
theorem for finite element functions [Wid87] on which the spectral optimality of the fictitious
domain preconditioning is based [Ast78]. The incorporation of distributed Lagrange mul-
tipliers in fictitious domain method has been proposed in [GK98],[GPH

�
99], for example.

The advantage of the distributed Lagrange multipliers compared to the boundary Lagrange
multipliers is the ease of preconditioning for both two-dimensional and three-dimensional
problems.

Weak formulation of the elasticity problem

For the finite element discretization of the problem (2) we present a corresponding weak
formulation. We define spaces

� � � �� ��� � � � � ��� � � �� � � � � �I j and
� �

� � ��� ��z
Then, the problem is to find

�� � � and � � � , such that����
��

� @�E % � � � ��
�
�
�

��
� � � � � ��

�
�
G �

�
@BE

�

� � ��

G � L �� � �@ E � � �*� ��
�

 � � � � � 
 G � � I L 
 � � z (3)

In practise, we use a formulation which is equivalent to (3), but allows the application of the
fictitious domain method. Therefore, we assume that there is a simple domain

� � � � , such
that

� � �
and a domain


 � �
, such that

� � � � 

,
� � 	 � 
 � � and


 	 � � � as in
Figure 1. We assume also that

� � � � � � � � and the measures of the boundary
� � and the

domains
�

,



and
� � � � � 
 �

are all positive. Then, we define spaces � and
�

as follows

� � � �� � � � � ��� � 
 � � � � �� � � � � �I j and
� � � � � � 
 � � � z
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A problem equivalent to (3) is to find
�� � � , � � � and

� � � , such that�������
�����

� % �
@ E

�
� �

�
��
�
�
�

��
� G � � @ E � �*� ��

�
�
G � � ' �� � ��

) l f n � p � @ E �

� � ��

G � L �� � �@�E � � �*� ��
�

 � � � � � 
 G � � I L 
 � �' �� � ��

) l f n � p � I L � � � �
(4)

where ' � � �
) l f n � p is the

� � � ��
 � � � inner product. We use finite element method with quadratic
triangular elements for the displacement components and distributed Lagrange multipliers and
linear triangular elements for the pressure, also known as the Taylor-Hood element combina-
tion [BP79]. In this way, the elements have a one-to-one correspondence and the implemen-
tation of the discretization process is straightforward. If the element spaces are selected this
way the distributed Lagrange multipliers tie the displacement components node by node and
the system is equivalent to the system arising from (3) where the Dirichlet boundary condi-
tions are treated by elimination. For this reason, the the triangulation must be compatible with
the boundary

� � . The finite element mesh is assumed to be regular.
The form of the discretized linear system is��

�
� � � �� �� �

� � ��� �
�� � � �� �� �

�
��
�� �

�� �
�� �� � (5)

where
�� has the form

�� �
� �� � �

. By applying the change of variables
� � �� �� and multi-

plying the last block row of (5) by
�� � � , we get our final linear system��

�
� � � � �� �

� � ��� �
� � � �� �� �

� � �� �
�� �
�� �� � (6)

where � �
��� � � � �� � � �� . Here, the matrix � is defined by � � � �

�
for all � �

�
�
E
� �
� �

.
The system matrix of (6), which we denote by 
 , is symmetric but indefinite.

The construction of the preconditioner

We would like to solve the linear system (6) using the preconditioned MINRES-method. We
will show that a good preconditioner

�
for the discrete problem, given by its inverse is

� � � � ��
� � � � � � �� � � � �� � � ��� � � �� �

�
� � �� z (7)

The constant � is defined by � � � � � � � � � and the matrix
�

by
� � � �

E
�
�

, where
� �

�
�
E
�
�
� �
C �

. The matrices
�
� and

� �
correspond to the elliptic part % � �

�
��
�
�
�

��
� G �

discretized in the domains
�

and



with the element space for the displacement components,
respectively and

�
is the mass matrix discretized in the domain

�
with the element space for

the pressure.
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We define the spectral equivalency of the matrices 
 and
�

as in [Kuz00]: Let �
�
, � �

� �
zdz'z

� � be the eigenvalues of the matrix
� � � 
 . If there exists positive constants � � and� � such that � � � � � � �

� � � for all � � � �
z'zdz

� � then the matrices 
 and
�

are spectrally
equivalent with the constants � � and � � . The condition number of the matrix

� � � 
 is then
bounded by �

�
� � � 
 � � � � � � � .

Since the convergence of the MINRES depends on the condition number of the preconditioned
system we can guarantee the convergence rate by showing that the proposed preconditioner is
spectrally equivalent to the system matrix.

Theorem 1 Let us assume, that the Poisson ratio � satisfies I � � � �� � � � % , where
�� is

a constant. Then, the preconditioner
�

is spectrally equivalent to the system matrix 
 with
constants � � and � � which are independent of the mesh step size

�
and the Poisson ratio � .

We begin to proof this result by showing that the matrix 
 is spectrally equivalent to a block
diagonal matrix. Results for generalized eigenvalue problems, resembling Lemma 1 have
been considered in articles [Kla95], [Kuz00] and [SW94]. We denote

� �
� �
�
�

and � �
�
� � � � �� � � z

Notice, that the requirement � � � � � � � � � � � � � � � �
� I is essential for the blocks

� � � � � �
and

� � � � � � to be positive definite.

Lemma 1 Let us assume that matrices
�

and
� � � � � �

are positive definite and matrix �
is positive semidefinite. Then the eigenvalues � of the generalized eigenvalue problem� � � �

� �
�

� � �
�
�
� �

� � �� � � � � � � � � � � �
�
�

(8)

belong to the intervals
� �
� � � � � �� � and

�
� � � � � �� � .

Proof The solution of the eigenvalue problem (8) satisfies the equations:� � � � � � � �
� � (9)

and
� � � � � � �

�
� � � � � � � � 
 � z (10)

We assume that �
�
��� and �

�
� �

. The vector � can be solved from (9) with respect to �
� � � � � � � � � � � � �

��z
Inserting this in the equation (10) gives us

� � � � � � � � � � � �
� �

� � � ��� � � � �
� � � � � � z (11)

We multiply the equation (11) from left by � � , collect the terms � � �
� � � � � � and divide

the equation by it. Then, we have

�
�
�
�
�
�
� �

� � �
� � � � �
� � � � � � � � � � I z



A PRECONDITIONER FOR LINEAR ELASTICITY PROBLEMS 431

We denote �
�
�
�
� � ��� �

� ����� � f ��� � . From the assumptions for the matrices it follows thatI � � � � � � ) . Now, the eigenvalue � can be solved from the equation
� �
� � �

�
�
� �
�
� �

� �
�
� � �

�
�
� �
� I , and this gives the intervals

� �
� � � � � �� � and � � � � � � �� � . By including the

value � � � , which was excluded during the calculations, the final intervals are obtained.
We continue the proof of the Theorem 1 by showing that the Schur complement matrix

� � �
� � � � � � � � is again spectrally equivalent to a block diagonal matrix. First, we need to
assume the following:
From here on, we assume that there exists positive constants � � and � � such that the inequality

� � � � � � � � � � � � � � � � � � � � � � � � � � � �
holds for any � , where the matrices

�
,
�

and
�

are discretized with the formulation (4).
Note that the assumption above holds if the element combination satisfies the LBB-condition
with the given mixed boundary conditions [SEKW01].

Lemma 2 For the Schur complements

� � � � � � � � �� � � �
�
� � � � � � � �

and

� � � � � � � � �� � � �
�
� � � � � � � � � �� �

� � � � � �
there exists positive constants � and � such that the inequality� 	 � � � 	 � 	 � � � 	 � � 	 � � � 	
holds for any 	 �

�
� � �

�
, when I� � � �� � � � % .

Proof We study the quadratic forms related to the matrices
� � and

� �
. We denote �� �� � � � � �

, �� � � � � � � � and �� � � � � � � � . It must be shown that the inequalities

� � � � � � � � � �
�
� � �� �

� � � � � � �� � � �
� �
�
� � � � �

�
� � �� �

� � � � � � �� � � % � � � � � �� � � (12)

� � � � � � � � � �
�
� � �� �

� � � � � � �� � � �
� �
�
� � � � �

�
� � �� �

� � � � � � �� � � % � � � � � �� � (13)

are satisfied. Clearly, (12) holds for any �
� % , since

�
is positive definite.

For every � and
�

I � � � � � � � � � � � � � � � � u � ��
� � � � � � � � � � � u � � � � � � � � � � � �

� � � � � � � � � � u � ��
� � � � � � � � � � � u � � �

��� � � � � � � � � � � � � � � u � � � � � � � � � � � � � � �� � � � � �� � � � % � � � � � �� �� �
� � � � � � � � � � � u � � � � � � � � � � � � � � � �� � � � � � � � �� � � � % � � � � � �� �
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holds. Therefore,
� �
� � � � � � � � � � � u � � � � � � � � � � � � � � � �� � � � � � � � �� � � � % � � � � � �� � z

By adding the term � � � � � � � � � � � � � �� � � � � � � � �� �
to both sides of the inequality, we

get the following lower bound

� ���
� ��

� � � � � � � �
� ��

� � � � � ��
� � � � �

� ��
� � � � � ���

�� � � � I z
Now, we have shown that the system matrix 
 is spectrally equivalent to the matrix��

�
� � �� � � � � �

� � � � � � � � � �� �
� � � � � � � � � �� z

Since the domain is extended only over the boundary
� � with natural boundary condition and

due to the Korn inequality the matrix block
�

is spectrally equivalent to the discretized vector
laplacian, the fictitious domain preconditioner

� � � �� � �
is optimal for

�
[Ast78]. Using the

same principles,
� �

is an optimal preconditioner for �
� � � � � [GK98]. It follows from the

assumption above that � � � � �
� � � � � � � � � and

�
� � � � � � � � � are spectrally equivalent.

This concludes the proof of Theorem 1.

Numerical example

In this numerical example the operator
� � �� is approximated with the multigrid method using

one symmetric multigrid V-cycle with one pre-smooth and one post-smooth with forward
and backward Gauss-Seidel, respectively [Hac85]. This approximation is accurate and can
be computed efficiently. The coarsest level problem is not solved exactly, but ten symmetric
Gauss-Seidel sweeps are used instead. While this does not give the smallest possible number
of outer iterations, it is very economical in the sense of the total computing time. The multigrid
method is based fully on linear triangular elements. Systems with the mass matrix

�
are

solved using the conjugate gradient method in machine precision with the lumped mass matrix
as a preconditioner.
The example problem is a mixed boundary value problem in a domain

�
bounded by two

parabole; see Figure 1. Homogeneous Dirichlet boundary condition is imposed on the lower
half of the boundary and natural bondary condition is satisfied on the upper half of the bound-
ary. The force term, which is pulling the structure left is distributed evenly over the compu-
tational domain. The displaced mesh can be seen in Figure 2. The numbers of iterations (it)
and CPU times in seconds (time) with respect to the degrees of freedom (d.o.f.) and Poisson
ratio ( � ) are presented in Table 1. The numbers of iterations show that the convergence of the
method is independent of both the mesh step size and the Poisson ratio and the method works
well even for Poisson ratio 1/2. The numerical tests are performed on a PC with 400MHz
Celeron processor running Linux operating system. The programs are compiled with the gcc
compiler.
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Figure 2: The finite element mesh with the displacements.

� I z � I z % I z � I z � I z �
d.o.f. it time it time it time it time it time
2253 108 2.7 105 2.6 102 2.6 99 2.5 99 2.5
8817 109 13.2 105 12.7 105 12.7 104 12.6 103 12.4

34889 108 57.0 105 55.6 103 54.6 102 54.2 103 54.8
138809 110 243.4 105 233.8 103 228.7 103 227.6 103 226.4

Table 1: The numbers of iterations and CPU times for the test problem.
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45 Comparison of two iterative substructuring methods for
advection-diffusion problems

Gerd Rapin1, Gert Lube2

Introduction

In this paper two different methods of domain decomposition for the advection-diffusion-
reaction problem are considered. Both methods are analysed on the continuous level. The
first approach is an additive nonoverlapping iteration-by-subdomains algorithm with Robin-
type transmission conditions at the interface. This method has been well investigated in the
last years (cf. [NR95], [LMO00], [Ott99]). We will give a short review of the results.
The second approach is a Schur complement method. The Schur complement is solved by
a preconditioned Richardson iteration. As a preconditioner we use a generalised Neumann-
Neumann preconditioner, the Robin-Robin preconditioner (cf. [ATNV00], [QV99], [BS00]).
The application of the preconditioner requires the solution of a mixed problem with a Robin
interface condition in each subdomain.
We apply a two-dimensional Fourier analysis to both methods in order to illustrate the differ-
ent convergence behaviour of the methods. Finally we summarize the comparison of the two
methods.

Let
� � �

�
be a bounded domain with Lipschitz boundary

� �
. We consider the following

boundary value problem:� �
� ��� �

�
� � � � � � � � � � �

�
in
�

� � I on
� � (1)

with the diffusion coefficient �

� I , a given flow
� � �

� � � 
 ��� � � �
, the source term

� �� � � � �
and the reaction coefficient � �

� 
 � � �
. The variational formulation of (1) is given by

Find � � � � � � �� � � � � � E �
� � �

�
� '
E �
�
�
� L � � � (2)

with�
�

�
� � �

� � � @
�

� � � � �
G � � @

�

� � � �
% �*� � � � � G � � �

%
@

�

� � � � � � � � ��� � � � G � �
' �

�
�
� � � @

�

�
�

G �
for a domain � �

�
. The weak formulation is obtained in the usual way using integration

by parts on
�
E � �

�
� � � �� � � � � � � G � . We require the existence of a constant �

� I such
that � � �� � � � �

�
� I is satisfied almost everywhere in

�
. Thus we get by virtue of the

Lax-Milgram lemma, that there exists a unique solution of (2).
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The Robin-Robin algorithm

Description of the algorithm

We begin by partitioning the domain
�

into  nonoverlapping subdomains
� � � zdzdz � � � , i.e.�

� 
 �� � � � � and
� � 	 � " � � for � �� $ , where each subdomain

� � � � � � � �
zdz'z
�  
j
,

is itself a Lipschitz domain with piecewise smooth boundary. We denote the interfaces by�	� � � � � � � � �
and

�	� " ��� � � � 	 � � "
for � �� $ . We identify

�
� "
with

� " �
. For simplicity we

assume that the decomposition is stripwise, i.e
� � " �� � � � implies Z�c T � ���  �

� ���

o � � � � � � � I z Now

the main idea of the algorithm is straight forward. In each subdomain
� �

a local problem with
an iterative coupling of the interface values has to be solved. Defining for � ��� �

zdz'z
 � � � � � ��� �

� �� 
 � � � � �% � � 
 � � � � � �
with a strictly positive function � � � � 
 � � � � and the outward normal 
 � we get

The Robin-Robin algorithm - version 1
Solve for

� �
� and for all � ��� �

zdz'z
�  :�� � �

� �� �
�

in
� �

� �� � I on
� � 	 � � �� � � � �� � � �

� � � � � � �" � � �
�
�
�
� � � � � � � �� �

on
�	� " � $ �� � � (3)

where � �
� I � � � is a relaxation parameter and � � � is a given initial guess. An appropriate

choice of the parameter � � is a difficult problem. We will give some suggestions later.
To derive a variational formulation of the algorithm, we first define the spaces

� �
by
� � ���� �

E
 and � �

"
by � �

" ��� � 	 �  � � . Thus � �
"

consists of traces on
� � "

of functions belonging

to
�

. Taking into account that the decomposition is stripwise, we obtain � �
"
� �

fh
� �
� � � " �

, or
� �
"
� �

fh
� � � " �

if
� � "

is closed.
Using the notation from above we can rewrite the DD-algorithm (3) starting with an initial
guess

�
� � � " � � �� " (cf. Robin-Robin alg. - vers. 2 ).

The variational algorithm is equivalent to algorithm (3). The well-posedness of the varia-
tional formulation has been shown (cf. [Ott99], Theorem 3.2):

Theorem 1 If � � � � 
 � �	� � is a strictly positive function for all � then the Robin-Robin
algorithm is well defined, i.e. at each iteration step

�
each subdomain boundary value problem

has a unique solution in
� �

.
Moreover if the initial guess �

� � "
belongs to

� � � � � " �
for all � �� $ , then �

�� " � � � � � � " �
for all

iteration steps
�

as well.

Convergence results and optimal choice of the parameter

For the remainder of this paper we restrict ourselves to the case of two subdomains. But
keep in mind that most of the results remain valid in the multidomain case and can also be
applied to the discrete stabilized case (cf. [LMO00]). In this setting we have the following
convergence result (cf. [Ott99], Th. 3.3; [LMO00], Th. 3.1):
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The Robin-Robin algorithm - version 2

1. given
�
� �� " � � �� " solve for � ��� �

zdzdz
�  �� � Find � �

� �� � � � with� E

�
� �

� �� � � �
� � ' � � � � � �� � � �

)
�  �'

E

�
� �
� � } " �� � ' � �" � � � �

)
�  � � L � � � � �

2. update �
� � �� " � � �� "

for � �� $ by' � � � �� " �
� )
�  � � � ' � � � � � " � � � � �� �

� )
�  � � � ' � �" � � �

)
�  � � �

�
�
�
� ' � �� " � �

)
�  �

for all
� � � � " .

3. until convergence:
�

�� � � � and goto step � .

Theorem 2 Let be � � �� � � � � � � I . Furthermore, let be � � � � � � � on
� ��� � � � and

� � � � � � � � � � � � � � . Then the sequences � � ��
j
� for � ��� � % converge according tok � �� � � � k 
  � I � � � ) �

where � � � � � � E  is the restriction of the global solution � � � of (2) onto
� �

.

Remark 1 Unfortunately the proof contains no indication about the speed of convergence.
With help of Fourier analysis it can be shown that, even in a simple case, the convergence
speed is not linear (cf. the section about Fourier analysis).

If we require some further assumptions, it is possible to give an a-posteriori error estimate.
The proof is similiar to [OLM01], [LMO00]. The local error is measured in the � -dependent
norm

� k � k � �� ��� � � � �
� � � E  � k � � � k �� � E  � L � � � � � � � � �&%

z
Theorem 3 Let � � � � I , � � I and � ��� . Let both subdomains be connected with

� �
, i.e.� � 	 � � � �� � for � ��� � % . Defining

k � k 
 � � ��� k � k � � n � p , k � k � � � ��� k � k �
h
n � p we get for� � � � % and $ � � � �

� k � � � �� �
� � k � � � �

� �
fh k � � � �

%
� � 
 � k 
 � � k � �� � � � � �� k � � � � � � " k � �� � � � � �� k � f h (4)

where � "
� � � � �

� � " � � 
 � " � � 
 � " � Z c � �� � � � " � � � � "
� �

j
�� 
 � � ��� k � k 
 � E  , � 
 � � ��� ����� � � � � � k � � k 
 � E  and

� � � � � � ess Z�c T � sXE  � � � � . �
� � � is the

constant of the Friedrich’s inequality and
�

is a constant independent of � � � and � .
Remark 2 The estimate (4) bounds the global error by interface terms, which can be com-
puted without any knowledge about the global solution. Therefore we can simply control the
convergence within a practical implementation.
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Now we derive a suitable choice of the parameter � � from the a-posteriori error estimate using
a method which was applied in [OLM01] to the Oseen equations. To be consistent with the
case � � I we propose

� � � �% �
� � 
 � � � � with

� Z �
�
� � � � I on

� � � � � ��
where

� � � � � �� ��� � � � �	� � � � � 
 � � ��� � � I j is the non-inflow part. Then equilibration of
the terms on the right hand side of (4) motivates for � � � � � � � the choice

� � � �
% �
� � 
 � � � �����"

� � � � � "
� �
fh

� �
% �
� � 
 � � � � � �����"

� � � � � � � � �
� � " � � 
 � " � � 
 � " � Z�c � �� � � � " � � � � "

� �

j � z
(5)

Remark 3 Further suggestions and numerical experiments concerning an appropriate choice
of � � can be found in [LMO00]. Other approaches like the technique of absorbing boundary
conditions [NR95] or asymptotic analysis for singularly perturbed problems [Ott99] yield
similiar results. In the last section additional variants are derived from Fourier analysis.

The Robin-Robin preconditioner for the Schur complement
equation

The Schur complement equation

It is possible to reduce the original problem (1) on
�

to an interface problem on
� ��� 
 �� � � � � .

This is a very natural way to transform the global problem into local problems on the subdo-
mains

� �
(cf. [QV99]).

First we introduce two operators, which extend functions from the interface
� �

to the subdo-

main
� �

. Defining the trace spaces � ��� � 	 � � and � � � � �
fh
� �
� �	� �

the
� E

� � � � � -extension� 	 � �� � � for a � � � � � is given by � 	 � �� � � � � � � � � with� E


� � � � � � � � I � L � � � � �� � � � � and � 	 �  � � � � � � � z (6)

Remark 4 If � � is regular enough, this implies that � � satisfies��� � � � � � � � I in
� � � � � � � � on

� � � � � � I on
� � � 	 � � z

Analogously the extension operator � 	 � �� for a � � � � � is defined by � 	 � �� � � � � � with� E

�
� � � � � � � IvL � � � � �� ��� � � � and � 	 �  � � � � � � � z (7)

The extensions are well-posed (cf. [QV99], ch. 5.1):

Lemma 1 Equations (6) and (7) have unique solutions. They satisfy the a-priori estimatesk � 	 � �� � � k � � E  � � k � � k �  and
k � 	 � �� � � k � � E  � � k � � k � 

for all � � � � � and � ��� �
zdz'z
 .
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Decomposing � � � � � into � � � 	 � � � � 	 � � � � } �� � � � � � , � � � 	 � �

�
� 	 � � � � } �� � � � ��

with � � � � � �� � � �� ��� � � for all �#� � �
zdzdz
 and � 	 � � � � 	 � �� , � 	 � � � � 	 � �� on subdomain� �

, the Schur complement equation can be derived from (2). The Schur complement equation
is given by

Find �� � � � ' � �� � ��
)
�

�q
� � � ' � � �� � ��

)
� ' � � ��

)
� L �� � � (8)

with

' � � �� � ��
)
�
� E

�
� 	 � ��  �� � � 	 � ��  ��

�
and ' � � ��

)
�

�q
� � � ' E  � � 	 � ��  ��

��z
It can be proved, that the Steklov-Poincaré operator

�
is continuous and coercive on � (cf.

[QV99], ch. 5.1). Thus we have proven the following:

Lemma 2 There exists a unique solution �� � � of (8). Furthermore, if � � � is a solution
of (2) then � � � is a solution of (8).

The Robin-Robin Preconditioner

Here the Schur complement equation (8) is solved by a preconditioned Richardson iteration:

� � � � � � � � � �
� � �

� � �
�
�

� � �
(9)

with an initial guess � � � � , a relaxation parameter �
� I and a preconditioner � .

From now on we consider again the case of two subdomains. The Robin-Robin preconditioner
is thus given by a sum of weighted inverses of local Steklov-Poincaré operators (cf. [QV99],
[BS00], [ATNV00]):

� � � � � � �� � �
� � � ��

with � � � � � � I . The operator � is continuous and coercive for � � � �
� � I . Thus, by virtue

of the Lax-Milgram Lemma, � � � exists and is also continuous and coercive (cf. [QV99],
p. 108). Unfortunately up to now linear convergence can only be proven in the diffusion
dominated case for two subdomains (cf. [QV99], ch. 5.1).
It is interesting that this method can also be interpreted as an iteration-by-subdomains method
(cf. [BS00]). To see this note that (9) can be written equivalently as: given � � � � � � , solve
for � � � �&% the Dirichlet problems and the mixed Dirichlet-Robin problems�� � � � �� �

�
in
� �� �� � I on
� � � � �� �� � �

� � � on
� ����

��

� � � �� � I in
� �

� �� � I on
� � � � �� � � � �� � � � � � � �� �� � � � � �" � on
� (10)

with
� � � � � ��� �

A
�
A
 
� �� � � 
 � � on

�
. Finally, update the interface function by

�
� ��� � � � � � �

�
� � � �� � � � �

� � �� � � 
 z
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Fourier Analysis

In this section we consider the special case that the flow
�

and the reaction term � are con-
stants. The domain

�
is given by

� I � � � � � I � � � and is divided into
� � � � I � � � � � I � � � and� � �

�
� �
� � � � I � � � (cf. figure (a)). Now we carry out a Fourier analysis for both methods.

The Robin-Robin algorithm

Via separation of variables we obtain the following representation of the error \ �� � � � �� � � � E 
of the

�
-th step:

\ � � � � � � � � b � � � � � ��� ��� �% �

� 
q �
� � � �� � � � Z�c ` � � � � � � Z�c � ' � � � �

\ �� � � � � � � b � � � � � ��� ��� �% �

� 
q �
� � � �� � � � Z�c ` � � � ��� � � � �

� Z c � ' � � �
where �

�� ��� � � �

h
� �

h
� �

�

� '
� � � . (cf. GASTALDI ET. AL. [GGQ96]). Inserting the boundary

condition on
� � � � � yields in the case of � � � the recursion formulas� �� � � � � � �� � � � �� � �

for � � � �&% where� � �� �
� � � � � � � � U ^Y` � � � � � � � � � � � � � U ^a` � � � ��� � � � � �
� � � � � � � U ^Y` � � � � � � � � � � � � � � U ^a` � � � ��� � � � � � z

F. NATAF and F. ROGIER [NR95] perform a similiar analysis for the case of infinite strips
with Fourier transform techniques. They require exact boundary condition for the first Fourier
mode to yield the following choice for the free parameter:

� � �
%
� � � � � � � � z (11)

Analogously, assuming exact boundary conditon for the first Fourier mode, we get

� � �
%
� � � � � � � � � � � � � �

�
� (12)

where the term
� U ^Y` � � � � � �

� is neglected. In [JNR01] the choice (11) is improved by
adding additional interface terms in the tangential direction. Then the constants are deter-
mined by minimizing the convergence ratio for a certain range of wave numbers. Numerical
experiments of the choice (5) resulting from the a-posteriori estimate show, that this choice
also damps the lower wave numbers very well (cf. [LMO00]).
With help of the recursion formulas it can be shown directly, that the algorithm converges for

this special domain decomposition and positive constant � . The convergence rate, however, is
in general not linear.
We illustrate the contraction rates � � � �� � in figure (b) for different � , the choice (12) and the
parameters

�
��� , � � I z � , � � �

� � �
� �

, � ��� . We observe that the contraction rates � � � �� �
tend to � for '#� ) . Thus higher modes are reduced slower. Further we recognize that the
algorithm works well for the case of small � .
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(b) The contraction rate � � � �� �

Robin-Robin preconditioner for the Schur complement equation

Next we examine the preconditioned Richardson iteration of the Schur complement equation.
With help of the differential interpretation of the algorithm it is also possible to apply Fourier
analysis.
Denoting the error at the

�
-th step by �\ �� � � � �� � � � E  , where � �� is the solution of the

Dirichlet problem in (10), the following representation can be derived in a similiar manner
described for the Robin-Robin algorithm:

�\ � � � � � � � � b � � � � � ��� ��� �% �

� 
q �
� � � �� � � � Z cK` � � � � � � Z c � ' � � �

�\ �� � � � � � � b � � � � � ��� ��� �% �

� 
q �
� � � �� � � � Z cK` � � � ��� � � � �

� Z�c � ' � � ��z
Inserting again the boundary conditions on

�
yields� � � �� � � � � Z cK` � � � � �

� Z cK` � � � ��� � � � � � � � �� � � and
� � � �� � � � � � � �� � �

with� � � �
�
� � � � � �

� � � � � U ^a` � � � ��� � � � � ^ � cK` � � � � � � �
� � U ^Y` � � � � � ^ � cK` � � � ��� � � � � j z

Thus, again, the convergence behaviour depends on the contraction rates � � � � . In figure (c)
and (d) the contraction rates are illustrated for the following choice of the parameters:

�
��� ,

� � I z � , � � �
� � �

� �
, � � � , � � � �

� � �� , � � � . In contrast to the Robin-Robin algorithm
we can state that the contraction rates � � � � tend to I for '9� ) . This allows us to prove
linear convergence in the

� �
-norm for this special case. Further we observe that for � � I

the contraction rates � � tend to I .
Comparison of the two methods

First we consider the convergence behaviour. Numerical experiments indicate that conver-
gence of the Schur complement method is linear, but up to now, it is not proved in the general
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(c)+(d) Contraction rates � � � � for different � resp. '

case. Conversely, it can be shown, that the Robin-Robin method converges, but the conver-
gence is in general not linear. In the case of the Robin-Robin algorithm one need compute
only one local problem in each subdomain per iteration step. The other method needs the
computation of two local problems per iteration step. Thus the Robin-Robin method is easier
to implement. A problem of the Robin-Robin algorithm is an appropriate choice of the free
parameter � � . Numerical experiments have shown that the algorithm is sensitive to the choice
of � � .
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46 Analysis of a defect correction method for computational
aeroacoustics

G. S. Djambazov, C.-H. Lai 1, K. A. Pericleous and Z-K Wang 2

Introduction

Many problems of fundamental and practical importance are of multi-scale nature. As a
typical example, the velocity field in turbulent transport problems fluctuates randomly and
contains many scales depending on the Reynolds number of the flow. In another typical
example, which is the main concern of this paper, sound waves are several orders of magnitude
smaller than the pressure variations in the flow field that account for flow acceleration. These
sound waves are manifested as pressure fluctuations which propagate at the speed of sound
in the medium, not as a transported fluid quantity. As a result, numerical solutions of the
Navier-Stokes equations which describe fluid motion do not resolve the small scale pressure
fluctuations. The direct numerical simulation to include the above multiple scale problems is
still an expensive tool for sound analysis [1].
In essence, there are at least three different scales embedded in the flow variables, namely (i)
the mean flow, (ii) flow perturbations or aerodynamic sources of sound, and (iii) the acoustic
perturbation. While flow perturbation or aerodynamic sources of sound may be easier to re-
cover, it is not true for the acoustic perturbation because of its comparatively small magnitude.
¿From an engineering perspective, much of the larger scales behaviour may be resolved with
the state-of-the-art CFD packages which implement various numerical methods of solving
Navier-Stokes equations. This paper examines, in more detail, a defect correction method,
first proposed in [2], for the recovery of smaller scales that have been left behind. The authors
have demonstrated the accurate computation of (i) and (ii) in [3][4][5]. In the present study,
a two-scale decomposition of flow variables is considered, i.e. the flow variable � is written
as �� � � , where �� denotes the mean flow and part of aerodynamic sources of sound and �
denotes the remaining part of the aerodynamic sources of sound and the acoustic perturbation.
The concept of defect correction [6] has been used in various contexts since the early days.
A typical example of defect correction is the computation of a refined approximation to the
approximate solution �

�
of the nonlinear equation

� ��� �
� I . Since �

�
is an approximate

solution, the defect may be computed as
� � �

�
� �

. The idea of a defect correction method
is to use a modified/derived version of the original problem such as the one defined by�
� ��� � � �

�
�
�
� � � � �

�
� � � � �

�
� �

� I . If one replaced
� �

�
�

as � , then � is the correction
computed by solving

�
�
�
�
� �
� � � � �

�
� �

and a refined approximation can be evaluated by using� ��� �
� � � . More details in expanding the concept to discretised problems and multigrid

methods can be found in [6]. Here, the authors would like to concentrate on using the defect
correction concept at the level of the physical problem rather than the discretised problem. For
a given mathematical problem and a given approximate solution, the residue or defect may be
treated as a quantity to measure how well the problem has been solved. Such information may

1C.H.Lai@gre.ac.uk
2Same address for all authors: School of Computing and Mathematical Sciences, University of Greenwich, 30

Park Row, Greenwich, London SE10 9LS, UK
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then be used in a modified/derived version of the original mathematical problem to provide
an appropriate correction quantity. The correction can then be applied to correct the approx-
imate solution in order to obtain a refined approximate solution to the original mathematical
problem.
This paper follows the basic principle of the defect correction as discussed above and applies
it to the recovery of the propagating acoustic perturbation. The method relies on the use of a
lower order partial differential equation defined on the same computational domain where a
residue exists such that the acoustic perturbation may be retrieved through a properly defined
coarse mesh.
This paper is organised as follows. First, the derivation of a lower order partial differential
equation resulting from the Navier-Stokes equations is given. Truncation errors due to the
model reduction are examined. Second, accurate representation of residue on a coarse mesh
is discussed. The coarse mesh is designed in such a way as to allow various frequencies of
noise to be studied. Suitable interpolation operators are studied for the two different meshes.
Third, numerical tests are performed for different mesh parameters to illustrate the concept.
Finally, future work is discussed.

The defect correction method

The aim here is to solve the non-linear equation

� � �
j
� ��� � � �� � �

j �
�� � �

�
� I (1)

where
� � �

j
is a non-linear operator depending on � . For simplicity, � is considered to have

two different scales of magnitudes as �� � � . Here �� is the mean flow and � is the acoustic
perturbation as described in Section 46. Note that � � �� and that

�� � @
� � � � �
� � �

G
� � I

with � � much larger than any significant period of the perturbation velocity. The problem here
is thus purely related to the scale of magnitude. In the case of sound generated by the motion
of fluid, it is natural to imagine

�
as the Navier-Stokes operator. For a 2-D problem,

�� �
�� ���� ��� �

�� � �
�� �

� �
� �

��
where � is the density of fluid and � � and �

�
are the velocity components along the two spatial

axes. Using the summation notation of subscripts, the 2-D Navier-Stokes problem
� � �

j
� � I

is written as � �� � � � � � �
" �� �	" � I �� � �� � � � " � � �� � " � �

�

� �� � � � � � � �
� � � I

where � is the pressure and
�
� � �

� � �
� � is the viscous force along � -th axis.
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Suppose (1) may be split and re-written as

� � �� � �
j �
�� � �

� � � � ��
j
�� � N � ��

j
� � � � �� � � � (2)

where
� � ��

j
and N � ��

j
are operators depending on the knowledge of �� and � � �� � � � is a

functional depending on the knowledge of both �� and � . Following the concept of defect
correction, �� may be considered as an approximate solution to (1). Hence one can evaluate
the residue of (1) as

� � � � �� � �
j �
�� � �

� � � � ��
j
�� �

� � � ��
j
��

which may then be substituted into (2) to giveN � ��
j
� � � � �� � � � � �

(3)

In many cases, � � �� � � � is small and can then be neglected. In those cases, the problem in
(3) is a linear problem and may be solved more easily to obtain the acoustics fluctuation � .
A non-linear iterative solver is required in order to obtain � for cases when � � �� � � � is not
negligible. Finally, to obtain the approximate solution �� , one only needs to solve

� � ��
j
�� � I .

Expanding
� � �� � �

j �
�� � �

�
� I for

�
being the Navier-Stokes operator and re-arranging we

obtain� �� � � ��
" � �� � " � ��

� � "� � " � �
�
" � � �� � �

�� � " � �
� � �� " � � " �� � " � � � � � ��� � � ��

" � ��� � " � ��
� �� "� � " �

and � � �� � � ��
" � � �� � " � �

��
� �� � � � � �� � �

� � (4)

� � �

��
� � �� � � � � �� � � �

�
" � �

��
�
��
" � � " � � � � �� � � � � �� � " � � � � � �� �� � � ��

" � �� �� � " � �
��
� ��� � � � � � �

�� �
�� �

It can be seen that (4) may be written in the form of (3) where

N � ��
j
� �

� A
�

A
� � ��

"
A

�

A
� � � ��

A
	 �A
� �A

	 
A
� � ��

"
A
	 
A
� � � �

��

A
�

A
� 
�
�
��
� �
� � + (5)

� � �� � � � � � �
"
A n �� � �

pA
� � � �

A n �	 � � 	 � pA
� �

�

��

A n �	  � 	  pA
� � �

�
" � �

��

�
��
" � � " � �

A n �	  � 	  pA
� � + (6)

� �
� � �

A
��

A
� � ��

"
A
��

A
� � � ��

A
�	 �A
� � �� �

A
�	 
A
� � ��

"
A
�	 
A
� � � �

��

A
��

A
� 
�
�
��
� �
�� � �

+ � � � � ��
j
�� (7)

¿From the knowledge of physics of fluids, the acoustic perturbations � and �
"

are of very small
magnitude (this is not true for their derivatives), therefore, � may be considered negligible
due to the reason that any feedback from the propagating waves to the flow may be completely
ignored, except in some cases of acoustic resonance, which we are not concerned with here.
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Hence the equation N � ��
j
� � �

, with N given by (5), which is known as the linearised Euler
equation, can be solved in an easier way. The numerics and the techniques involved here are
often referred to as Computational AeroAcoustics (CAA) methods.
The remaining question is to obtain the approximate solution �� to the original problem (2).
It is well known that CFD analysis packages provide excellent methods for the solution of� � ��

j
�� � I . Therefore one requires to use a Reynolds averaged Navier-Stokes package

supplemented with turbulence models such as [7, 8] to provide a solution of �� . One requires

�� to be as accurate as possible to capture all the physics of interest, such as flow turbulence
and the presence of vortices.
The use of a CFD analysis package effectively solves

� � ��
j
�� � I instead of

� � �� � �
j �
�� ��

�
� I . Following the concept of truncation error in a finite difference method, the truncation

error due to the removal of the perturbation part of the flow variable may be defined by� � � � �� � � j � �� � � � � � � �� j � �� � � � (8)

Using the relation
� � ��

j �
�� � �

�
� � � ��

j
�� � N � ��

j
� , the truncation error in the present context

is thus given by � � � � �� � � � (9)

Note that this truncation error is not related to the discretisation of continuous model.

A two-level multigrid method

In order to simulate accurately the approximate solution, �� , to the original problem,
� � � I ,

the QUICK differencing scheme [9] is used which produces sufficiently accurate results of

�� for the purpose of evaluating the residue as defined in (7). A sufficiently fine mesh has to
be used in order to preserve vorticity motion. However, much coarser mesh may be used for
the numerical solutions of linearised Euler equations [3, 4, 5]. It certainly has to obey the
Courant limit and also to account for the fact that the acoustic wavelength may be larger than
a typical flow feature which needs to be resolved, e.g. a travelling vortex [10]. The present
defect correction method requires to calculate the residue on the CFD mesh and to transfer
these residuals onto the acoustic mesh. Physically, the residue is effectively the sound source
that would have disappeared without the proper retrieval technique as discussed in this paper.
Let
�

denote the mesh to be used in the Reynolds averaged Navier-Stokes solver. Instead of
evaluating �� , one would solve the discretised approximation

� Q �� Q � I to obtain ��
Q
. The

residue on the fine mesh
�

can be computed as
� ��
Q

by means of a higher order approxima-
tion [5]. Let

�
denote the mesh for the linearised Euler equations solver. Again instead of

evaluating � , one would solve the discretised approximation N l � �� l
j
� l � � l

to obtain
� l . Here

� l
is the projection of

�
onto the mesh

�
. Let

� � Q � l�� be a restriction operator
to restrict the residue computed on the fine mesh

�
to the coarser mesh

�
. The restricted

residue can then be used in the numerical solutions of linearised Euler equations. Therefore
the two-level numerical scheme is (for non-resonance problems) :

Solve
� Q �� Q � I� l ��� � � � Q � l�� � �� Q�� l ��� � � Q � l�� �� Q

Solve N l � �� l
j
� l � � l

� l � � �� l � � l
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Here � l denotes the discretised approximation of the resultant solution on mesh
�

. Note
that

� l
cannot be computed as

� � � Q � l�� �� Q because
�

is a non-linear operator.
In the actual implementation, a pressure-density relation which also defines the speed of sound� in air is used: � �� � � � � � �

z � ��
�� (10)

and the first component of the linearised Euler equations in (5) becomes� �� � � ��
" � �� � " � �� �

� � � "� � " � � � � � � ��� � � ��
" � ��� � " � ��

� �� "� � " � (11)

The purpose of this substitution is to make sure that the new fluctuations � and �
�

do not
contain a hydrodynamic component, and hence can be resolved on regular Cartesian meshes
[4] which is essential for the accurate representation of the acoustic waves or the fluctuation
quantity � . On the other hand, an unstructured mesh may be used to obtain ��

Q
. The two differ-

ent meshes overlap one another on the computational domain. The computational domain for
the linearised Euler equations is not necessarily the same as the one for the CFD solutions. It
must be large enough to contain at least the longest wavelength of a particular problem under
consideration or a number of wavelengths where propagation is of interest. The numerical ex-
ample as shown in Section 46 does not contain any complicating solid objects, the restriction
operator

� � Q � l�� may then be chosen as an arithmetic averaging process [10].

Numerical experiments with various grid parameters

The propagation of the following one-dimensional pulse is considered: an initial pressure
distribution with a peak in the origin generates two opposite acoustic waves in both directions.
The exact solution of this problem (12) can be verified by substitution in the linearised Euler
equations.

� �
� � � � � � � � � � � � � � �

�� � � � �
� � � � � � � � � � � � � � �� ��� �

�
� � � � � � � U � %�� �� � � � � � � � �I � � � � � � � (12)

Here
�

is the amplitude and � is the wavelength of the two sound waves that start from the
origin (

�
� I ) at

� � I . The example was reported in [2]. This paper provides a detailed
numerical study on various aspects of the grid parameters being used in the two-level method.
The CFD domain is of 12 wavelengths and the CAA domain is of 14 wavelengths.
The effects of the following parameters on the solution accuracy are studied. These parameters
are (a) the ratio H:h, (b) number of points per wavelength, and (c) the restriction operator for
residual transfer from fine grid to coarse grid. In all cases, the norm

k � l � � k 
 is compared.
Here � l is the approximation obtained on the coarse mesh (CAA) after correction and � is
the exact solution of the pressure variable.
Let � � Q and � � l be the step lengths in the temporal axis for the CFD mesh and the CAA mesh
respectively. Figure 1 shows the effect on the accuracy for Case (a). Here � � Q and � � l are



450 DJAMBAZOV, LAI, PERICLEOUS, WANG

0

2

4

6

8

10

12

14

16

18

20

0 1 2 3 4 5 6 7 8 9 10 11

||P
_H

 -
 P

||_
in

ft
y

Propagation distance (wavelengths)

h = 0.05, dt_H = 0.00005875, dt_h = 0.000235

H / h = 1
H / h = 2
H / h = 4
H / h = 8

0

2

4

6

8

10

12

14

0 1 2 3 4 5 6 7 8 9 10 11

||P
_H

 -
 P

||_
in

ft
y

Propagation distance (wavelengths)

h = 0.025, dt_H = 0.00005875, dt_h = 0.000235

H / h = 1
H / h = 2
H / h = 4
H / h = 8
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on the accuracy.
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Figure 2: The effect of number of grid points per wavelength on the accuracy.

chosen to be 0.000235 and 0.00005875 respectively. Two different mesh sizes for the CFD
are chosen and they are 0.05 and 0.025. It can be seen that when

�
is not fine enough, say

�
= 0.05, to resolve some of the physics, it is still possible to use the mesh

� � % � or
� � �

to recover the small scale signal. If a finer mesh was used, say
� � I z I % � , it is possible to

use
� � � �

. This property essentially links with the Courant number of the coarse mesh for
CAA [5], i.e. H, and is also confirmed in the test performed for Case (b).
Figure 2 shows the effect on the accuracy for Case (b). The most accurate solution may be
achieved with more than 12 grid points per wavelength, e.g. 16 or more grid points. This
confirms the theoretical study based on Courant limits as discussed in [5]. For number of grid
points per wavelength less than 12, the accuracy deteriorates very fast.
Figure 3 shows the effect on the accuracy for Case (c). The restriction operators being used
in this test to transfer the function �

Q
onto the coarse mesh

�
includes

3 point formula:
� � Q � � Q � � Q � ��

�
� � � � � % � � � � � � � �

5 point formula:
� � Q � � Q � � Q � �

� %
�
� � � � � % � � � � � � � � � % � � � � � � � � � �

7 point formula:
� � Q � � Q � � Q � �

� � � � � � � � % � � � � � � � � � � � � � � � � � � � � � % � � � � � � � � � �
9 point formula:

� � Q � � Q � � Q � �� �
�
� � � � � % � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � % � � � � � � � � � �
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Figure 3: The effect of restriction operators on the accuracy.

For very fine CFD mesh, one can retrieve the small scale signal even on a relatively coarse
mesh. In the present study, with

� � I z IXI � � � % � one can use
� �

� � while still maintain-
ing the accuracy. The accuracy exhibited by using the coarse mesh

� � � � � I z I � % � is
compatible with the result for Case (a) as depicted in Figure 1.

Conclusions

This paper provides a numerical method for the retrieval of sound signals using the defect
correction method. A detailed numerical experiments to examine various grid parameters are
provided. Truncation error of solving

� � ��
j
�� � I instead of

� � �� � �
j
�� � � � I is derived.

The authors are currently applying the present method to sound propagation in vortex-vortex
interactions.
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47 Nonoverlapping Domain Decomposition Algorithms for
the System of Euler Equations

V. Dolean, D.Lanteri1, F. Nataf2

Introduction

We report on our recent efforts concerning the construction of nonoverlappingadditive Schwarz
type algorithms for the solution of the system of Euler equations for compressible flows. We
are specifically concerned with the construction of appropriate interface conditions that im-
prove the convergence rate of the Schwarz algorithm. In Quarteroni and Stolcis[QS95], these
transmission conditions are Dirichlet conditions for the characteristic variables corresponding
to incoming waves. Such conditions can be qualified as “classical interface conditions” by
opposition to more sophisticated formulations such as the “optimized interface conditions ”
studied in [JNR98] for an advection-diffusion equation. Here, we are interested in extending
the principle of optimized interface conditions to the solution of the Euler equations. For
this purpose, general type interface operators are introduced in the formulation of the addi-
tive Schwarz type algorithm. A convergence analysis is performed in the continuous case
by considering the linearized Euler equations. An interface iteration is deduced from the
formulation of the Schwarz algorithm in the Fourier space. In [DLN00]-[JNR01], such a
convergence analysis has been performed by applying a classical diagonalization method to
the operator matrix involved in the problem. In this study, we apply the Smith factorization
theory[Gan66] in order to deduce a general form of the interface conditions. Then, the goal is
to optimize the convergence rate with respect to certain parameters entering in the definition
of these interface conditions. The analysis is limited to a two-subdomain decomposition in
vertical strips.

Domain decomposition for the Euler equations

Mathematical model

The conservative form of the Euler equations is given by :� �� � � � � � � � �� � � � � � � � �� � � I with � � � � � �
�� � N � � (1)

where � � �
�

�

�
� � � is the vector of conservative variables;

�

�
and

�
respectively denote the

spatial and temporal variables while
��
�
�

�
�
� � � � � �

� � � � � � � �
is the conservative flux

whose components are given by :

1INRIA, 2004 Route des Lucioles, B.P. 93, 06902 Sophia Antipolis Cedex (FRANCE),E-Mail : Vic-
torita.Dolean/Stephane.Lanteri@inria.fr

2CMAP, Ecole Polytechnique and CNRS, UMR7641,91128 Palaiseau Cedex (FRANCE), E-Mail :
nataf@cmapx.polytechnique.fr
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� � � � �
�

�
� � � � �

� � � � � � � � �
� N � � � 
 �� � � � �

�
�

� � � � � � � � �
� � � � �

� N � � � 
 �
In the above expressions, � is the density,

�� �
�
� � �

� �
is the velocity vector, N is the total

energy per unit of volume and � is the pressure. The pressure is deduced from the other

variables using the state equation for a perfect gas � �
� � � �

� � N � �% � k �� k � �
where �

is the ratio of specific heats ( � � �
z �

for the air). Under the hypothesis that the solution is
regular one can also write a nonconservative (or quasi-linear) equivalent form of Eq. (1) :� �� � � � � � � � � �� � � � � � �

� � �� � � I (2)

where the Jacobian matrices of the flux vectors � � � � �
and � � � � �

(see Dolean[Dol01] for
more details). Suppose that we first proceed to an integration in time of (1) using a backward
Euler implicit scheme involving a linearization of the flux functions. This operation results in
the linearized system :

� � �
� � Id� � � � � � � �� � � � � � �� � �

�
(3)

where � � � � � � � � �
where � � � � � �

� �
�
� � � �

� � � � , and
� � (respectively

� �
) is a

shorthand for
� � � � � �

(respectively
� � � � � �

).
In the following we are interested in solving the problem (3), associated to a suitable set of
boundary conditions, by a nonoverlapping additive Schwarz type algorithm. An algorithm
based on transmission conditions at subdomain interfaces that consist in Dirichlet conditions
for the characteristic variables corresponding to incoming waves (following a strategy already
studied by Quarteroni and Stolcis[QS95]) has been considered in Dolean and Lanteri[DL99].
The main originality of this preliminary study is that in the discrete case the interface con-
ditions are expressed in terms of upwind conservative normal fluxes computed using the ap-
proximate Riemann solver of Roe[Roe81]. This choice is before all motivated by the starting
point of our study which was given by a flow solver based on a combined finite element/finite
volume formulation on unstructured triangular meshes for the spatial discretization. Time
integration of the resulting semi-discrete equations is obtained using a linearized backward
Euler implicit scheme. As a result, each pseudo time step requires the solution of a sparse
linear system for the flow variables, which is the discrete counterpart of (3).

The two-subdomain case

We consider the case of a two-subdomain decomposition with
� � � � � � � � � � � � � �

�
separated by the interface

�
� I ; let

�� �
�
� � I � denote the normal vector at the interface�

� I , directed from
� � to

� �
. Let :

� � � �� z ��
� � � � and � � � �� z ��

� � � �
respectively denote the normal and the tangential Mach number at the interface

�
� I .

We also have that, at any point of
� � 
 � � , the Mach number can be expressed as � �
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� �
� � � �
� � � � �

� � � �� . Let
�  � � � � � � � � � � for any vector

�� �
� � � � � �

� �
. Then,

it is well known (from the hyperbolic nature of the system of Euler equations) that the matrix
�  is diagonalizable with real eigenvalues :

�  � � �  
�
�

�
�  
�
�

�
� � � �

�
�

with �  
�
�

�
� diag � �� z �� � � � �� z �� � �� z �� � �� z �� � � �

Let � n �
p

� denote the initial appoximation of the solution in subdomain
� �

. A general formula-

tion of an additive Schwarz type algorithm for computing � n � � � p� from � n �
p

� (where � defines
the iteration of the Schwarz algorithm) writes as :

� � � � � � � n � � � p� �
�

� � for
�
� I� � � � n � � � p� �

� � � � � n � p� �
for

�
� I

� � � � � � � n � � � p� �
�

� �
for

� � I� � � � n � � � p� �
� � � � � n �

p
� �

for
�
� I

(4)

where the
� � � � ’s are interface operators. Natural (also qualified as “ classical ”) interface

conditions resulting from the variational formulation of the initial and boundary value problem
associated to system (1) are given by :

� � � � � � �  � � � � � and
� � � � �

 � �  �
�
 � � � (5)

In the particular case
�� �

�
� � I � we have that �

�
�

� � �  
�
�

�
with :

�
�
�

�
�

�
�
�
�
�
� � I � �

�
� � I � � � �
� � � % � �

�
� � � �
%

� � � � � �� � �
� � � % �

� � � �
% �

� � � �
% � � � � � �� � �

� 	
	
	
	�

By considering the approach adopted by Kroner[Kro91], we can use the matrix �
�
�

�
to

obtain a symmetrized form of the system (3) :

!� � !�
� � Id� �

!� � !� � � !�� � � !� � � !�� � � !�
(6)

where
!� � � � � � and :

!� � � � �
� � � � � � �

� � � � �
�
�
�

�
� diag

�
�
� � � � � � � � � �

�
!� � � �

�
� � � � � � �

� � � �
�
�
�
�

�
is a symmetric matix
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Smith factorization

The first step consists in applying a Laplace transform in the
�

direction (the Laplace variable
is denoted by � ) and a Fourier transform in the � direction (the Fourier variable is denoted
by

�
) to system (6). The transformed system writes

�
�
� �
� �

�

� � ��
. The expression of

the transformed matrix
�
�
� �
� �

is given in Dolean[Dol01]. An important result of the Smith
factorization theory[Gan66] is that the polynomial matrix

�
�
� �
� �

can be factorized as :

�
�
� �
� �
� N � � � � � 
 �

�
� �
� � � � � � � �

where



�

�
� �
� �

represents the Smith diagonal form of
�
�
� �
� �

; N � � � � � (respectively � � � � � � )
is a permutation matrix that operates on the lines (respectively the columns) of

�
�
� �
� �

. In
the present case, we obtain :



�

�
� �
� �
�
�
�
�
� � I I II � I II I �

�
� �
� � II I I �

�
� �
� � � � � � � � �
	

	� (7)

where :

� � � � � � � � � � � � � �
� �
�
� � % �

�
� � � � � � � � � � � � � �

� � � � � � �
�
�
� �
� �

� � � �
�
� � � � � � (8)

and :

� � � � � � � �
�
�
� � � � � II � ��� � � � � � � �

�
�
�

I � � � � � � II � I I
�
	
	� (9)

Smith form of the Schwarz algorithm

Let � �
� � � � � � � � � � � � � � denote the vector of conservative variables and � � � �

the corresponding vector of Smith variables. The equations within each subdomain can be
rewritten as :



� � � �

�
�

��������
������

�
� � � � � � � � � � � � � �

� �
� ��� � � � � � � � � � � � � �

�
�
� � � � �

� �
� �� �

�
�
� � � � � � � � � � � � � � �

�
�

� � �� � � �
� �

(10)

Because of the structure of the matrix



� it is sufficient to work with two Smith variables,� � and � � , the other ones being obtained from the relations (11). Let
� N n �

p
� � ��� �

�
�
� n �

p
� �
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� �
� ��� �

�
� \ � � � \ �� � \ �� � \ �� � � be the error vector in the subdomain

� �
after the iteration �

of the Schwarz algorithm. Using the change of variables N � � N , the Schwarz algorithm is
given by :

� � � �� � �
� �
�\ �� � n � � � p 
 and

� � � � �\ �� � n � � � p 
 for
�
� I

� � N n � � � p� � "
� � � N n �

p
� � "

for
�
� I and �

" �
� � � � I

� � � �� � �
� �
�\ � � � n � � � p 
 and

� � � � �\ �� � n � � � p 
 for
� � I

� � N n � � � p� � "
� � � N n �

p� � "
for

�
� I and �

" �
� � � � I

(11)

where
� � � � � � � � is a

� � % matrix corresponding to the last two columns of the
� � �

matrix� � � � � � � � � � � � � � . From now, we assume that the flow in subsonic i.e. � � � . By taking
into account the sign of the eigenvalues we obtain :

� � � � � � � � �\ �� � n � � � p � � � � � �\ �� � n � p � � � � � �\ � � � n � p
� � � �����

���

� � � � � �\ �� � n � � � p � � ��� � �\ � � � n � � � p � � � � � �\ �� � n � p
� � � � �\ �� � n � � � p � � �

� � �\ � � � n � � � p � � � � � �\ �� � n � p
� � � � �\ �� � n � � � p � � � � � �\ � � � n � � � p � � � � � �\ �� � n � p

(12)

On the other hand, the local solutions are explicitly given by :

�\ �� � � � \ � � f � � �\ �� � � � \ ��� � � � � \ � �
h
� � �\ � � � � � \ ��� � (13)

where ��� and � �

f
�

h
are the eigenvalues of the Fourier symbols ��� and � �

f
�

h
that factorize

the operators
�

and
�

i.e.
� � � � � ��� and

� �
� � � � � �

f � � � � � � �

h �
.

Generalized interface conditions

Using the relation
�
�\ � � � n � � � p � � � �

� ��� � � �\ �� � n �
p
� �

�\ �� � n � � � p � we can rewrite the interface itera-

tions (12) as:

� � � � � � � � ��� � �\ �� � n � � � p �
� � � � � ��� � � � � � � � � � �\ �� � n � p � � � � � � � � �\ �� � n � � � p

� � � �� � � � � � � ��� � � � � � � � � � �\ �� � n � � �
p
�
� � � � � ��� � � � � � � � � � �\ �� � n �

p
� � � � � ��� � � � � � � � � � �\ �� � n � � � p � � � � � � ��� � � � � � � � � � �\ �� � n � p (14)

In order to obtain a general form of the iterations we introduce the operators
� � � � � � � � � �� �
 � � � � � � � 	 � � � � � � � � � and we consider the Schwarz algorithm :
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� � � �� � � � \ n � � � p� �
� I for

�
� I

� � � \ n � � � p� �
�

� � � � � � � � \ n �
p

� � � � � � \ n � � � p� �
for

�
� I

� � � �� � � � \ n � � � p� �
� I for

� � I
�
� � � � \ n � � �

p
� �

� �
� � � � \ n �

p� �
for

�
� I

(15)

where � �
��� �
� 
 �

��� �
� 	 � � � � are polynomials in � � . Then, our strategy consists in several steps

(see Dolean[Dol01] for more details). First, we derive a new form of the interface conditions
by generalizing the expressions of � �

��� �
� 
 �

��� �
� 	 � � � � . Second, we construct the interface

operator
�

. Finally, we retrieve the interface conditions in physical variables by using the
matricial relation

� � � � � � � � . The interface conditions in physical variables are obtain
from the the matrix

�
that generalizes the matrix � � � :

�
�
�

�
�

�
�
�
�
�
�
�
�
�
�
�
�

� � �
%

� �
%
�
�
�
�
� �
� � �

�
� � � I � �

% �
�
�
�
�
�

� � �� � � � � �
%

�
� � � � �

� � � � �
� � % � � � �

�
% � � � �

� I �
� � � � �

�
�% � � � �

�H
� � H

�
� �

H
� �H

� � H
� � I H

� �

�
	
	
	
	
	
	
	
	
	
	�

with : ���������������������
�������������������

�

H
� � � � �

% � %
� �
� � � �

�
� � �

� � � �
�
�
� � � � � � � � �� � � �H

�
� � �

% � %
�
� � � �

�
�
� � � �

� � � � � � �
� � � � �

�
�
� � � � � � � � �� � � � � � � � �H

� � � �
% � %

�
� � � �

� � � � �
� � � � � � �

�
�
� � � � � � � � �� � � � � � � � �H

� � � � � � � �
�
� � � � �

� � � �
�
�

�H
� � � � � � � �

� � � � � � �
�
� � � � �

� � � �
�
�
�

�
� � � �

�H
� � � � � � � � �

�
� � � � � � � � �� � �

In Dolean[Dol01] simple interface conditions (without derivatives) are derived from the ex-
pression of the convergence rate associated to the iterations (15). These conditions are ob-
tained by setting �

� � � and � � �
�

� . This results in interface conditions that depend on
the parameter � only.
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Table 1: Nonoverlapping additive Schwarz type algorithm
Classical interface conditions versus generalized interface conditions� � OPT0 OPT1 � 
 OPT0 OPT1

0.1 and � � � I z I 20 20 0.3 and � � � I z I 24 19
0.6 and � � � I z I 27 17 0.1 and � � � I z � 24 21
0.3 and � � � I z % 24 28 0.6 and � � � I z � 32 18
0.6 and � � � I z�� 25 21 0.8 and � � � I z�� 42 21

Numerical results

Space and time discretization methods

The spatial discretization method adopted here combines the following elements (see Dolean
and Lanteri[DL99] for more details) : (1) a finite volume formulation on triangular meshes
together with upwind schemes for the discretization of the convective fluxes; (2) an exten-
sion to second order accuracy that relies on the MUSCL (Monotonic Upstream Schemes for
Conservation Laws) introduced by van Leer[Lee79] and extended to unstructured triangular
meshes by Fezoui and Stoufflet[FS89]. Time integration of the resulting semi-discrete equa-
tions is obtained using a linearized backward Euler implicit scheme[FS89]. As a result, each
pseudo time step requires the solution of a sparse linear system for the flow variables. In this
study, a nonoverlapping domain decomposition algorithm is used for advancing the solution
at each implicit time step.

Numerical results

We present here a set of preliminary results of numerical experiments that are concerned with
the evaluation of the influence of the interface conditions on the convergence of the nonover-
lapping additive Schwarz type algorithm of the form (4). The computational domain is given
by the rectangle

� I � % � ��� I � � � . The numerical investigation is limited to the resolution of
the linear system resulting from the first implicit time step using a Courant number CFL=100.
A slipping condition (

�� z �� � I ) is applied on the lower ( � � I ) and upper ( � � � ) walls; an
inflow (respectively outflow) condition is applied on the left

�
� I (respectively right

�
��� I )

boundary. Table 1 summarizes the number of Schwarz iterations required to reduce the ini-
tial linear residual by a factor � I � � � for different values of the reference Mach number. The
underlying triangular mesh is a regular one deduced from a finite difference grid containing
4000 nodes ( % I+I � % I ). In this table, OPT0 stands for the classical interface conditions while
OPT1 corresponds to the algorithm based on the generalized interface conditions.

Conclusions

In this work we were interested in the acceleration of the convergence of a nonoverlapping
additive Schwarz type algorithm by modifying the transmission conditions applied to the sub-
domain interfaces. We built generalized zero order interface conditions using Smith theory
of diagonalizing polynomial matrices. The numerical experiments confirmed at least qualita-
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tively the behaviour in accordance with the theory even if from the discrete point of view we
couldn’t reproduce identically the results obtained in the continuous case. The preliminary
results are very encouraging as the lead to a very good convergence rate for certain Mach
numbers.
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48 Optimized Interface Conditions for Sedimentary Basin
Modeling

I. Faille1, E. Flauraud
�
, F. Nataf2, F. Schneider

�
, F. Willien

�

Why DDM for basin modeling ?

Basin modeling aims at reconstructing the time evolution of a sedimentary basin in order
to make quantitative predictions of geological phenomena leading to oil accumulations. It
accounts for porous medium compaction, heat transfer, hydrocarbon formation and migration.
Recent evolutions of basin simulators have contributed to improve the treatment of geological
discontinuities such as faults and salt domes. Faults divide the basin into blocks which slide
between themselves. They may be a preferential path or in opposite a barrier for hydrocarbons
migration. A salt is an impervious medium and becomes a trap for hydrocarbon. CERES is
an advanced prototype of %



sedimentary basin tool that can handle non-vertical faults and

salt or mud tectonics (figure 1). Domain decomposition methods provide a way to solve the
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Figure 1: CERES 2D real basin

equations on the complex geometries considered, naturally defined as a set of adjacent sliding
blocks and faults.
Following the work of [NR95], [NRdS94], [JNR01], we use nonoverlapping techniques and
study several interface conditions, namely Robin type conditions.
The paper is organized as follows. First, the physical models and the governing equations
taken into account are reviewed. Then the DDM are presented on a simpler equation in
which we find the main characteristics of the problem. The optimized interface conditions
are detailed for this equation. Finally, numerical results are shown.
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Models and governing equations

In the blocks, the model accounts for the porous medium compaction, erosion, heat transfer,
hydrocarbon formation and migration. The equations are mass conservation of solid and fluids
(water,oil,gas) coupled with the Darcy’s law and a compaction law. The faults have a constant
porosity, but the permeability of the faults evolves in time. We consider only incompressible
multiphase flows.
To present the DD method we consider a simplified basin model where geometry does not
evolve in time. Using an IMPES (IMplicit Pressure, Explicit Saturation) scheme, we first
solve a parabolic pressure equation and then update explicitly the phase saturations.
After time discretization, the pressure equation is then roughly written as follows :

� � �
�
� �
� � � �

G � � � � � � � �� 	 � G � �
�
�

(1)

where � is the pressure, � the compressibility of the porous medium and � the intrinsic
permeability tensor of the porous medium divided by the fluid viscosity. The permeability
depends heavily on the lithology under consideration. The contrast in the lithologies can
induce a discontinuity of the permeability tensor of several orders of magnitude (up to six
orders).
Moreover we have to deal with subdomains of various size, block width is about � I � � while
fault width is about � I � .

The DDM for the pressure equation

Our goal is to find a domain decomposition method robust enough to deal with the strong dis-
continuities that can arise along and across an interface between two subdomains and whose
behavior is not ruined by small subdomains. To cope with these difficulties, we introduce
a Robin type interface condition whose coefficients are computed in order to optimize the
convergence rate of the Additive Schwarz method (ASM for short).
We consider the parabolic linear equation (1) with strongly discontinuous coefficients � . We
cut the domain into nonoverlapping subdomains

� �
and solve the equation in each subdomain.

In the framework of this paper, we weigh up only matching grid but the approach is extended
to non-matching grid as see on figure 1.
Pressure and flux continuity between two subdomains

� � and
� �

are expressed as Robin
conditions on the interface

�
:

� � � � � � � � � � � �� 	 � G � � � z �� � � � � � �
�
� �
� � � � �� 	 � G � � � z �� �

on
�

(2)
� � � � � � � � � � � �� 	 � G � � � z �� � � � � � � � � � � � � � �� 	 � G � � � z �� � on

�
(3)

where � � , � � are real such that � � � � � � � ��� �� I and � � � �
� I .

The idea is to find the coefficients
�
� � � � �

�
which allow a fast convergence of DD algo-

rithm, namely ASM with the boundary condition (2) in
� � and boundary condition (3) in

� �
.

This has been introduced by Nataf and co-author for convection-diffusion equation [NRdS94]
[NR95].

To compute the Robin coefficients, we successively address two main difficulties. First, we
consider the case of two subdomains with a jump of permeability across the interface. Sec-
ondly, we deal with two subdomains separated by a small fault.
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Robin conditions for two unbounded subdomains

We consider two unbounded subdomains
� � , � � with an interface

�
. The subdomains have

homogeneous permeability � � in subdomain
� � and � �

in
� �

. The computation of Robin co-
PSfrag replacements � � � �

�
��

��

� � � � �� 	 � G � � z �� � � � � � � � � � � � � � �
� � �� 	 � G � � z �� � � � � � � � � �

�� �
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Figure 2: Optimal interface condition for 2 domains

efficients is based on the approximation of the Optimal Interface Condition. Optimal Interface
Conditions are conditions which ensure convergence of ASM in 2 iterations for a decompo-
sition into 2 subdomains. They extend the Artificial Boundary Condition and keep the idea
of “packing the neighboring domain problem on the interface

�
”. To do so, let us define the

classical Steklov-Poincaré operator
� �

associated to
� �

:

� � � � � � � � � � �� 	 � G � � z �� � � � where � �
� � � � � � � � I in

� �
� � � � on

�
We can write the Optimal Interface Condition as follows, for

� � :

� � � � �� 	 � G � � z �� � � � � � � � � � � � � � �
� � �� 	 � G � � z �� � � � � � � � � �

�

For
� �

, we have :� �
� � �� 	 � G � � z �� � � � � � � � � � � � � � � � � �� 	 � G � � z �� � � � � � � � � � �

The contribution of subdomain
� �

appears through
� �

. The jump of permeability � is found
in the two terms � � , � �

.
To find the OIC, we need to make explicit the Steklov-Poincaré operator . Therefore we
perform a Fourier transform with respect to � of equation (1) and we solve exactly the obtained
equation which only depends on the

�
variable. The expression of �

�
, symbol of

� �
, are not

polynomial in
�

, dual variable with respect to � . The Steklov-Poincaré operator and so the
OIC are not local in space and must be approximated.
In order to obtain the Robin boundary condition, two constant approximations have been
considered, giving the following coefficients:


 taking a Taylor expansion of �
�
, we obtain:

�
� � � � �

�
�
� � � �

� � �
�
,


 we perform the minimization of the convergence rate on a frequency slot
��� � � � � � � � � � .

This can be done only in the homogeneous case. We have the following expression:
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Figure 3: OIC for the fault

�
� � � � �

�
�
� � � � �

�

�� � � �� � � � �

�� � � �� � � � � � . This leads to the geometric average
of the operator at the two extreme frequencies

� � � � � � � � � � � .
Although optimized in the homogeneous case, these conditions are efficient in the heteroge-
neous case. Indeed the coefficient � � is a good approximation of

� �
.

These last conditions have been implemented and give good results for subdomains with more
or less similar size [WFS96]. However in the case of two blocks separated by a fault, the
results need to be improved.

Robin conditions for two unbounded domains and one fault

Now, we examine the case of three subdomains : we have two unbounded subdomains
� � , � �

with a small fault
���

. The permeability of each subdomain is uniform : � � in
� � , � �

in
� �

and � � in
���

. We first set up the interface condition on the fault boundaries (see figure 3). As
for a given boundary, the fault has only one neighbor, so we can define the Optimal Interface
Condition as previously, where

� �
is the Steklov-Poincaré operator associated to domain

� �
.

Next we set up the OIC on the blocks boundaries. Assume, we are on the boundary of
� � to

find the OIC (see figure 4). The OIC uses
�
� � �

the Steklov-Poincaré operator associated to� � � � :
�
� � � � � � � � � � � �� 	 � G � z �� � � � � � � , where � is solution to� � ��� � �

� I in
��� S � � � �

�
� I in

� �
� � � � � on

� � S � and � � � �� 	 � G � z ��
continuous on

� �
Although more complex, the Steklov-Poincaré operator is determined as previously perform-
ing a Fourier transform with respect to � . This operator

�
� � �

depends on the permeabilities� �
in domain

� �
, � � in the fault and the fault width. As before the operators

� �
,
� � � �

are
non-local in space, so we compute a polynomial approximation:


 we take the OIC for a frequency
� � ,


 it is difficult to optimize the convergence rate, so we keep the idea to approximate the
operator by the geometric average of two extreme values:
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Figure 4: OIC for the subdomain

� �
Fault boundary condition:

�
�
� � � �

� � � �
� � � � � � ��� � � � � � � � � � � � � � � � ;

Block boundary condition:
�
� � � � �

�
�
� � � � � � � � � � � � � � � � � � � � � � � � � � � .

In the following, we denote by OIC, Robin conditions with these last
�
� � � � �

�
coefficients.

Numerical results

The approach is then extended to a real basin model (CERES 2D) which accounts for porous
medium sedimentation, compaction, erosion and blocks displacements along faults. In CERES
2D, we have a discontinuity jump of the permeability � along the interface, so the Robin coef-
ficient � � is computed locally on each edge. The interface problem is solved with the GMRES
algorithm. The unknowns are

� � � � � � � � � � � � , � � � � � � � � � � � � , .

� � � � � � � � � � � � ��� � �
with � � � � � � � � � �� 	 � G � � z �� � � and

���
�

� � � � � � � �
�

in
� �� �

on
� � � � �

� � � � � � � � � � � � �� 	 � G � � z �� � � � � � on
�

The equations are
Pressure and Flux continuity

� � � � � � � � � � � � I� � � � � � � � � � � I
Numerical results show the good behavior of the Robin interface conditions. Comparisons
with the Dirichlet-Neumann conditions illustrate the robustness and the good convergence
rate of DD algorithms such as additive Schwarz method, possibly accelerated by GMRES.

Mesh refinement

We consider a synthetic basin (figure 5) composed of two heterogeneous blocks with � � , � �
permeability and a fault with � � permeability. We want to study the influence of vertical
mesh subdivision: each row is subdivided in 2 then 4, so the number of interface unknowns is
growing. Moreover, the permeability of the fault is either: pervious, impervious or an average
of the two neighbouring block cells (variable for short).
In Figure 6, we report the number of DDM iterations as a function of the number of inter-
face unknowns for different fault permeability. The dotted lines show the Dirichlet-Neumann
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Figure 5: Synthetic basin
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Figure 6: Number of DDM iterations

condition, Dirichlet on blocks, Neumann on fault,(DN for short) and the solid lines show the
Robin condition. The Dirichlet-Neumann interface condition is very competitive for pervious
fault but not for the other cases. The Robin conditions converge well; all curves correspond
to � I iterations of DDM. The number of DDM iterations does not increase too much with the
number of interface unknowns for OIC. The behavior of OIC is regular for all spreading of
fault permeability.

Time evolution

We can study the time evolution of DDM since the number of unknowns increases through
time as new layers of sediments are deposited. Each layer corresponds to a row of homoge-
neous cells. On the following figure 7, a synthetic basin is composed of two heterogeneous



OPTIMIZED INTERFACE CONDITIONS FOR BASIN MODELING 467

Run: startFile.cere

Age: 0 Ma

X: Length in km
Y: Depth in m

Lithology

Fault
Sansdtone
Limestone
Dolomite
Marl
Silt
Silty_Shale
Shale
Salt
BUC_1
DLC_1

startFile.cere SnapShot 1 - Lithology - 0 Ma - ( km , m ) 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1700

1800

1900

2000

2100

2200

2300

2400

2500

2600

2700

2800

2900

3000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1700

1800

1900

2000

2100

2200

2300

2400

2500

2600

2700

2800

2900

3000

Figure 7: Synthetic basin
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blocks and one fault. Each block has alternated and shift row of pervious-impervious medium.
The fault permeability is successively: pervious, impervious or variable.
In Figure 8, we report the number of DDM iterations as a function of the number unknowns.
The dotted lines show DN condition and the solid lines show OIC. The number of DDM
iterations grows slowly with the number of unknowns for the OIC. Here again, OIC show
robustness regarding subdomain heterogeneities.

Conclusion

We introduced a domain decomposition method applied to sedimentary basin modeling. The
DDM is robust enough to overcome high jump of heterogeneity, up to 6 orders and various
sizes of subdomains. To do this, we have chosen a nonoverlapping ASM with Optimal In-
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terface condition, Robin type. The interface problem is solved with a GMRES algorithm.
Despite the good results obtained, the fault is still a very small subdomain compared to the
blocks. Therefore it seems promising to consider one dimensional fault [Fla01]. The fault
model is then included in the interface condition between two blocks. We wish to improve
the non-matching approach so as to win in flexibility and to have less interface unknowns.
Another improvement is to extend the DDM to a “fully implicit” discretization scheme for
multiphase flow. DDM will be applied to a system of pressure and saturation variables.
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49 Domain decomposition methods in semiconductor device
modeling

L. Giraud1, J. Koster2, A. Marrocco3, J.-C. Rioual4

Introduction

In this paper, we present some parallel implementations of domain decomposition techniques
for the solution of the drift diffusion equations involved in 2D semiconductor device mod-
eling. The model describes the stationary state of a device when biases are applied to its
bounds. The mixed dual formulation is retained. Therefore, we have to deal with a system
of six totally coupled nonlinear partial differential equations. This system is decoupled and
discretized in time by a semi-implicit nonlinear scheme using local time stepping. At each
time step, we have to solve three systems of two nonlinear partial differential equations. The
first system is associated with electrostatic potential, the second with the negative charges
(electrons) and the third with the positive charges (holes). Each pair of equations is naturally
discretized in space by mixed finite elements defined on 2D unstructured meshes and then
solved by a Newton-Raphson method [HM94]. At each step of the Newton-Raphson method,
a linear system of equations has to be solved. Depending upon which nonlinear system is
being solved, these linear systems can be either symmetric positive definite or unsymmetric.
These systems are sparse with a maximum of five nonzero entries per row due to the mixed
finite element triangulation. A complete simulation is decomposed into two phases: first the
solution of the equilibrium problem, then the solution of the static problem. The equilibrium
problem consists of applying a zero potential to the bounds of the device and its numerical
solution only involves the solution of symmetric positive definite linear systems. In this paper,
we consider only the solution of the equilibrium problem.
Our objective is to obtain a fully parallel code in a distributed memory environment with MPI
as message-passing library.
The formulation is mainly vectorial and is naturally parallelizable. The main difficulty con-
sists of the efficient implementation of suitable linear solvers. This numerical kernel is the
most time consuming part of the code. In this respect, we investigate substructuring ap-
proaches using either direct or iterative linear solvers.

Substructuring techniques

We assume that the domain
�

with boundary
� �

is partitioned into  non-overlapping subdo-
mains

� � � z'zdz � � � with boundaries
� � � � z'zdz � � � � . After discretization, we obtain a linear

system
� � �

�
� where the matrix

�
is sparse, unstructured, and symmetric positive definite.

Let
�

be the set of all the indices of the discretized points which belong to the interfaces
between the subdomains. Grouping the points corresponding to B in the vector � � and the

1CERFACS, 42 Av. G. Coriolis, 31057 Toulouse, France. giraud@cerfacs.fr
2Parallab, University of Bergen, N-5020 Bergen, Norway. jak@ii.uib.no
3INRIA, Rocquencourt, 78153 Le Chesnay Cedex, France. Americo.Marrocco@inria.fr
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points corresponding to the interior I of the subdomains in � � , we get the reordered problem� � � � � � �
� �� �

�
� �

� � � � �� �

�
�

� � ��
�

��z
(1)

The matrix
� � � can be reordered to a block diagonal matrix in which the � -th diagonal block

� � �
corresponds to the internal variables of subdomain

� �
. Eliminating � � from the second

block row of Equation (1) leads to the reduced problem
� � � �

�
�

�
� �� �

� � �� � � � � where
� � � � �

�
� �� �

� � �� � � � � (2)

is the Schur complement matrix of the matrix
� � � in

�
. The matrix

�
is symmetric positive

definite,
Let

�
be the interface between the subdomains. The local interface of a subdomain can be

defined as
� � � � � � � � �

. Let
� � � � � � �

be the canonical pointwise restriction which maps
vectors defined on

�
onto vectors defined on

� �
, and let

� �� � � � � �
be its transpose. For a

stiffness matrix
�

arising from a finite element discretization, the Schur complement matrix
can be written as the sum of  (local) smaller Schur complement matrices

� �
�q
� � � � �� � n �

p
� � � where

� n � p � � n �
p
� 
�
� �� �  � � �� � � � �  � (3)

where the local Schur complement matrix
� n � p associated with subdomain

� �
is computed

from the subdomain stiffness matrix
� n � p , defined by

� n � p � � � � � � � � 
� �� �  � n � p�  � z (4)

In a parallel (multi-processor) computing environment, each subdomain matrix
� n � p is as-

signed to one processor. In this way, the local Schur complement matrices
� n � p can be com-

puted simultaneously. The (global) Schur complement matrix
�

is available through Equa-
tion (3) and is never assembled explicitly.

Implementation

The implementation of substructuring methods usually consists of three steps. They are sum-
marized in Algorithm 1.

Algorithm 1 : Substructuring algorithm
Step 1 : Factorize the matrix

�����
and compute the Schur complement matrix � .

Step 2 : Solve the Schur complement system � ��� ��� � � ��	� � ��
 ���� � � , for
��

.
Step 3 : Solve the system

� ��� � � ��� � � � � � �� , for
� �

.

Since the matrix
� � � is a block diagonal matrix, steps 1 and 3 each consist of  independent

smaller steps (one for each subdomain). Furthermore, since each subdomain matrix
� n � p is

assigned to a different processor, these  steps can be performed in parallel. When the num-
ber of subdomains increases, the amount of parallelism naturally increases in steps 1 and 3
(but the total amount of work decreases). The solution of the Schur complement problem in
step 2 becomes more complex when the number of subdomains gets larger; the Schur com-
plement matrix

�
is not assembled and therefore efficient parallel direct or iterative schemes

are required for step 2.
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Direct substructuring

The three steps of Algorithm 1 are implemented as follows.

Computation of the local Schur complement matrices

Since the discretization of the local problem is a sparse matrix, a direct (factorization) ap-
proach can be used in step 1 to compute the local Schur complement matrices

� n � p explicitly.
In fact, computing

� n � p for subdomain
� �

is equivalent to a partial Cholesky factorization
of the matrix

� n � p of Equation (4). In our implementation, we use the parallel multifrontal
sparse direct solver MUMPS [ADLK01] that can compute a Cholesky factorization of the
sparse submatrix

� � �
and return the Schur complement matrix

� n � p . As mentioned before,
the local Schur complement matrices are computed simultaneously (one on each processor).
Therefore, we use one instance of the MUMPS solver on each processor.

Solution of the interface problem

The global Schur complement matrix
�

is the sum of the local Schur complements matrices
� n � p , see Equation (3). After computing the matrices

� n � p explicitly, the matrix
�

is available
as a sparse matrix that is distributed over the processors. MUMPS can accept such matrices
in distributed form and can therefore be used to solve the interface problem directly and in
parallel to obtain vector � � . For this step, we use only one instance of MUMPS over all
processors.

Solution of the interior problems

Step 3 consists of the solution of  independent systems
� � � � � �

� � � � � �  � � � � where
� � � �

is the restriction of the interface solution vector � � to interface
� �

and
� �

is the restriction
of
� � to the internal variables of subdomain

� � . The systems can be solved by using the
factorizations of the matrices

� � �
that were computed in step 1.

Iterative substructuring

Iterative substructuring differs from direct substructuring in the solution of the interface prob-
lem (step 2 of Algorithm 1). Instead of a parallel Cholesky factorization, preconditioned con-
jugate gradient (PCG) iterations are used. Two important components of the preconditioned
iteration are the matrix-vector product and the construction (and use) of the preconditioner.

Matrix-vector product

As the local Schur complements have been computed explicitly in the first step of the al-
gorithm, it is straightforward to implement the matrix-vector product with the global Schur
complement system.

For 2D problems, this implementation is more efficient than a classical implicit formulation
where the local Schur complements are not known explicitly and where step 1 of Algorithm 2
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Algorithm 2 : Computation of ��� � 

Step 1 : � � � � � ����� � 

Step 2 : � �	��
��� �

� 	� � �

requires a forward and back substitution and three sparse matrix-vector products (see Equa-
tion (3)). We display in Table 1 a comparison between the explicit and the implicit version
of the Schur matrix-vector products for subdomains with � �XI+IXI unknowns each. For this ex-
ample, the computation of the explicit local Schur complement is twice as expensive as the
factorization of the local internal problem, but the subsequent gain for each Krylov iteration
is very important (without preconditioning, the matrix-vector product remains the most ex-
pensive part of a Krylov iteration). For 2D problems, the extra storage cost for the local Schur
complement is not prohibitive.

implicit explicit
Numerical factorization 14.2 27.2
Matrix-vector product 2.2 0.1
Time for factorization + 20 products 58.2 29.2

Table 1: Time comparison between implicit and explicit Schur matrix-vector product for sub-
domains of � �XIXI+I unknowns and with interfaces of size � �XI+I . The computation has been
performed on an SGI Origin 2000.

Preconditioners for the Schur complement

The rate of convergence of the conjugate gradient method depends on the condition number of
the matrix of the linear system. In this section, we present two preconditioners for the Schur
complement system.

Balanced Neumann-Neumann preconditioner

This two-level preconditioner was first introduced in [Man93]. It can be formulated as

� � � � � � � � � � �
� � � � � � � � �

� and � � � �q
� � � � �� 
 �� � � n �

p
� � � 
 � � � z

Here, � � is the one-level Neumann-Neumann preconditioner that was originally proposed
in [DRLT91]. The weight matrices


 �
form a decomposition of unity. � denotes the

�
-

orthogonal projection onto the coarse space defined by� } �� � � � �� 
 �� 	 � � � j for some local subspaces
	 �

and arbitrary vectors �
�
.

In the experiments for this paper, we used a software package developed by Parallab (Uni-
versity of Bergen). One of the options that is available in that package is to construct the
coarse space from local subspaces

	 �
that are spanned by the eigenvectors associated with

selected (small) eigenvalues of the local Schur complement matrices
� n � p . In particular, each

subspace
	 �

must contain the null space of
� n � p . We refer to [BKK00] for more details on this

preconditioner.
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Assembled Schur preconditioner

We consider another preconditioning technique for the solution of the Schur complement
system. Let

� n � p be the local assembled Schur complement associated with a subdomain
� �

.
The assembled Schur preconditioner [CGM01] is defined by

�q
� � � � �� � � n �

p
� � � � � z

� n � p corresponds to the restriction of the global Schur matrix to the boundary
� � �

of the
subdomain

� �
and can be algebraically written as

� n � p � � � � � �� z
A second level can be

added to this preconditioner to define

� � � � �q
� � � � �� � � n �

p
� � � � � � � �� � � � � � �� � � � � � �

where
� � is a restriction operator from the global interface

�
onto a coarse space

� � . The sec-
ond term of the equation defines a second level for the preconditioner. In our experiments, we
consider a coarse space where we have one degree of freedom per edge of the decomposition,
that is one degree of freedom per interface between two subdomains [CGT01].

Numerical experiments

We have performed experiments on various meshes, but here we only report results on a
problem with 154892 unknowns. The size of the interface

�
varies from 440 unknowns for

the 4-subdomain decomposition to 2446 unknowns for the 32-subdomain decomposition. The
size of this problem is modest but it is representative for many problems that are solved in
device modeling. Indeed, due to the complexity of the underlying physical problem, the
complete code is memory consuming. We used a 32-processor SGI Origin 2000 for our
experiments.

Iterative substructuring methods

In this section, we use the following notation:

1. AS : Assembled Schur preconditioner without coarse space.

2. NN : Neumann-Neumann preconditioner without coarse space.

3. AS-edge : Assembled Schur preconditioner with a coarse space defined by one degree
of freedom per interface of the decomposition.

4. BNN1 : Balanced Neumann-Neumann preconditioner with a coarse space with one
degree of freedom per subdomain.

5. BNN3 : Balanced Neumann-Neumann preconditioner with a coarse space with three
degrees of freedom per subdomain.
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For the sake of comparison between direct and iterative substructuring approaches, we stop
the preconditioned conjugate gradient iterations only when the 2-norm of the residual of the
current iterate normalized by the 2-norm of the right hand side is less than � I � � � . Note that
such accuracy is often obtained by direct methods, without iterative refinement.
The condition number of the preconditioned Schur complement matrix varies from a few tens
to a few hundreds. It is obtained from the eigenvalues of the tridiagonal matrix of the PCG
coefficients although this may not be very reliable when the number of iterations is small.
We display in Table 2 the average number of conjugate gradient iterations that are needed to
solve a linear problem during nonlinear solution of the equilibrium problem. The table shows

Preconditioner
No. of subdomains none AS NN AS-edge BNN1 BNN3

4 67 4 15 6 15 15
8 87 20 22 23 21 20

16 117 31 29 33 27 25
32 125 37 33 40 32 29

Table 2: Average number of conjugate gradient iterations per linear system. ’none’ denotes
that no preconditioner is used. 19 linear systems were solved during the simulation.

that all the preconditioners improve the convergence of the conjugate gradient iteration. We
observe that one-level preconditioner AS is more efficient than NN on a small number of
subdomains. NN becomes more efficient when the number of subdomains increases. For all
methods, the number of iterations of the preconditioned conjugate gradient increases moder-
ately when the number of subdomains increases. The use of two-level preconditioners does
not eliminate this increase. The AS-edge preconditioner performs worse than the AS precon-
ditioner on this example.

Time measurements

In this section, we compare iterative substructuring with direct substructuring from an elapsed
time point of view. We also make a comparison with MUMPS used as a black-box parallel
sparse direct solver on the complete original problem, where the stiffness matrices are con-
sidered as in a distributed format (a feature of the MUMPS software).
In Table 3, we display the elapsed times to solve the complete equilibrium problem, by using
direct substructuring (DSS), MUMPS as a black box direct parallel solver (MS) or iterative
substructuring with preconditioned conjugate gradient (using AS, NN or BNN3),

Algorithm
no. of subdomains AS NN BNN3 DSS MS

4 49.65 49.50 53.01 57.47 63.97
8 26.11 31.04 28.53 31.59 44.24

16 14.79 16.74 17.89 22.81 43.66
32 10.65 11.87 16.31 16.98 44.07

Table 3: Times (in s) for solving the equilibrium problem (19 linear systems).

Table 3 shows that the substructuring algorithms are more efficient than the multifrontal par-
allel solver that does not scale very well because of the relative modest size of the linear
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systems. We also observe that iterative substructuring is slightly more efficient than direct
substructuring. Iterative substructuring will perform even better when we use a relaxed accu-
racy of the iterative linear solvers, while maintaining the same nonlinear path. However, this
behaviour might not be true for other equations and to make a fair comparison, we required
the same accuracy for all the linear solvers.
Table 3 shows that the one-level algorithms (AS and NN) perform better than the two-level
algorithms, even though the latter require slightly fewer iterations for larger number of sub-
domains. This shows that a smaller number of iterations is not always an indication for better
overall efficiency of a preconditioned Krylov solver.

Conclusion

We compared some efficient parallel linear solvers based on direct or iterative substructur-
ing methods that enable us to solve problems that cannot be tackled on a single processor
computer. For a set of linear systems that arise in semiconductor device modeling, we have
shown that the two-level Balanced Neumann-Neumann preconditioner converges faster, but
is less efficient in elapsed time, than the one-level preconditioners (Neumann-Neumann and
Assembled Schur). The overall efficiency of the iterative substructuring approaches for these
2D simulations is due to the multifrontal direct sparse solver MUMPS that is for example able
to compute the local Schur complement matrices efficiently.
Finally, we mention that domain decomposition techniques to parallelize the solution of the
unsymmetric systems arising from the solution of the continuity equations associated with the
electrons and the holes concentrations in the domain is still an ongoing work.
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50 3D Structural Optimization in Electromagnetics

R.H.W. Hoppe1, S. Petrova2, V. Schulz3

Introduction

We consider the optimal design and layout of high power electronic devices that are based on
the pulse width modulation technique such as DC-AC converter modules used in applications
as electric drives for high power electromotors. The design objective is to minimize power
losses caused by eddy currents that build up in the device due to fast switching times and steep
current ramps (cf., e.g., [BFS99, BHM01, DGH98]).
In mathematical terms this leads to a topology optimization problem with the electric conduc-
tivity of the material as the design parameter and the electric and the magnetic field as the state
variables that are supposed to satisfy the quasistationary limit of Maxwell’s equations. With
the optimal design of mechanical structures described by continuum mechanical models being
by now a well established discipline (cf., e.g., [BEN95] and the references therein), not much
work has been done with regard to the optimization of systems whose operational behavior is
governed by Maxwell’s equations. Moreover, the use of modern discretization and numerical
solution techniques such as multigrid and domain decomposition methods for optimization
problems with PDE constraints is still in its infancy (cf., e.g., [HEI00, HPS01, MAS00]).
In this paper, we focus on an approach relying on a primal-dual Newton interior-point method
for the discretized optimization problem where the discretization of the eddy currents equa-
tions is taken care of by curl-conforming edge elements. Domain decomposition methods on
nonmatching grids can be used for the numerical solution of the discretized field equations
which is an integral part of the optimization routine featuring logarithmic barrier functions
and simultaneous sequential quadratic programming.

The topology optimization problem

We consider a DC-AC converter module consisting of specific semiconductor devices such
as IGBTs (Insulated Gate Bipolar Transistors) and GTOs (Gate Turn-Off Thyristors) that are
interconnected and linked to the high power source as well as the load by copper made bus
bars (cf. Figure 1).
Each bus bar contains a certain number of ports where currents are either supplied to or taken
off the bar. The IGBTs and GTOs serve as valves for the currents which can be in the range
of several kA. During operation of the module, electromagnetic fields

�
and � are generated

that can be described by the eddy currents equations� �� � �
curl

� � � � div
� � I � curl � � � � (1)
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PSfrag replacements

Figure 1: DC-AC converter module

� � � � � � � � � z
(2)

where
�

and
�

stand for the magnetic induction and the current density, � denotes the mag-
netic permeability, and � is the electric conductivity.
Considering a module

�
� � � � � � � � with  bars

�
� � �

� � �  , each bar containing  �
ports

� � � � � � � �  � , and introducing a scalar electric potential � and a magnetic vector
potential

�
according to

� � �
grad �

� � �� � � � � curl
�

we are led to the following coupled system of PDEs

div
�
� grad �

�
� I in

�
� (3)

� 
 � grad � �
� � � � � � � � on

� � �I else
(4)

�

� �� � �
curl �

� �
curl

� �
� �

� grad � in
�

I in
� � � � (5)

with appropriate initial and boundary conditions.
Note that in (4) we refer to

� � � as the fluxes associated with the ports
� � � satisfying

} �
� � � } � �� � � � � � �I .

The total inductivity caused by the eddy currents can be described by the functional

� �
� � � �

� � ��� �� q
� � �
q
� � �

�@
�
�
�
� � � � � � � � � � G � �� � u � z

(6)
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Here,
�
� � � � � � � � are the generalized transient inductivity coefficients

�
� � � � � � � � ��� � � � @E

�

� � �
��� � � � � � � �

� �
��� � G �

where
� � � denotes the current density generated by

� � � at the port
� � � of the bus bar

�
� and

�
� � � is the solution operator associated with (5).

The design objective is to distribute the material in terms of the electric conductivity � as the
design parameter in such a way that the total inductivity is minimizedZ c T� � � � � � �

� � � �
� �

(7)

subject to the equality constraints

� and
�

satisfy the state equations (3),(4),(5) � (8)

@E �

G �
� �

(9)

and the inequality constraints

� � � � �
�

�
� � � � (10)

where I � � � � � � � and � � � � refers to the conductivity of copper.
Note that (10) represents relaxed constraints on the design parameter, since allowing only
� � � � � � or � � � � � � would lead to an ill-posed optimization problem. In practice, we
scale the conductivity by means of

� � � � �
� � � �

min

� �
�

max

�
�

min

� � � I� � � � (11)

with an appropriately chosen �
�
� .

The primal-dual Newton interior-point method

The discretization of the state equations (3),(4),(5) is performed as follows: For the interior-
exterior domain problem (5) we use a domain decomposition approach on nonmatching grids
featuring individual edge element discretizations of the interior and exterior domain prob-
lems with respect to simplicial triangulations

O n � pQ
and

O n CypQ
whereas the discretization in

time is done by the backward Euler scheme. Moreover, the elliptic boundary value problem
(3),(4) is discretized by means of nonconforming Crouzeix-Raviart elements. The electric
conductivity � serving as the design parameter is discretized by elementwise constants, i.e.,

��

Q
�
�
� n � pQ �

z z z
� � n � m

pQ � � � �
Q ��� card

O n � pQ
. Comprising the discrete state variables

��

Q
and

�
� Q

to a vector
��
Q
�
�

��

Q
� �
� Q � �

, the discretized state equations can be stated in compact form

�
Q �

��

Q �
��
Q

� �� Q z (12)
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If we further denote by
� Q �

��

Q
� ��

Q
� �
� Q �

the discretized objective functional, the topology
optimization problem in the discrete regime reads as follows:

� Z c�
� m � �� m � �� m � Q � ��

Q
� ��

Q
� �
� Q �

(13)

subject to the constraints
��
Q
�
�

��

Q
� �
� Q � �

satisfies
�
� %

�
� (14)

�
Q �

��

Q � ��� � mq
� � � � � � � � n �

pQ � � � (15)

�
min

��
Q �

��

Q �
�

max

��
Q
� (16)

where � � � O n � pQ � �
� � � � Q , and

��
Q ��� �

� �
z z�z
� �

� �
.

Among the most efficient numerical solution techniques for constrained optimization prob-
lems like (13)-(16) are primal-dual Newton interior-point methods (cf., e.g., [ETT96, FOG98,
GOW98]). The idea is to take care of the inequality constraints (16) by parametrized logarith-
mic barrier functions� �Q � ��

Q
� ��
Q � � � � Q �

��

Q
� ��

Q
� �
� Q � �

�
�
log

�
��

Q �
� � � � ��

Q � �
log

�
� � � � ��

Q �
��

Q � �
and to couple the equality constraints (14),(15) by Lagrangian multipliers. This gives rise to
the saddle point problem

� Z c�
� m � �� m ������� m � � m � n �

pQ �
��

Q
� ��
Q
� �

�
Q
� �
Q �

(17)

for the Lagrangian
� n � pQ �

��

Q
� ��
Q
� �

�
Q
� �
Q � � � � �Q � ��

Q
� ��
Q � � �

�
� Q � � Q � ��

Q �
��
Q �

�� Q � � � Q � � Q � ��

Q � � � � z
For the solution of the above primal-dual interior-point approach we use simultaneous se-
quential quadratic programming in the sense that Newton’s method is applied to the Karush-
Kuhn-Tucker conditions associated with (13). Denoting the Newton increments by � �� Q ���� � ��

Q
� � �

�
Q
� � ��

Q
� � � Q � � , this gives rise to a linear system

�
Q � �� Q � ��

Q
(18)

which is solved iteratively by right transforming iterations

� �� �
� �Q � � �� �Q � � �Q � � n � pQ � � � � ��

Q �
�
Q � �� �Q �

(19)

based on a regular splitting
�
Q

� �Q � � n � pQ �
� n � pQ

involving an appropriately chosen right
transform

� �Q . The new iterate
�� (new)

Q ��� �
�� (new)

Q
� �

� (new)

Q
� �� (new)

Q
�� (new)

Q � �
is then obtained by a line search

�� n new

pQ � � � �� n old

pQ � � �
H
� � � �� Q � � � �

� � � � � (20)

where the steplengths are tested by means of a hierarchy of merit functions. We refer to
[HPS00, HPS01] for details.
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Domain decomposition on nonmatching grids

The simultaneous sequential quadratic programming approach being integral part of the primal-
dual Newton interior-point method, described in the previous section, requires an iterative
solver of the discretized state equations. In this section, we briefly sketch a domain decom-
position technique on nonmatching grids for the implicitly in time discretized equation (5)
with respect to a nonoverlapping geometrically conforming decomposition �

�
� 
 �� � � �� � with

skeleton
� � 
 � �� " �
� " � �
� " ��� �

� � 	 �� " . In particular, we consider individual simplicial trian-

gulations
O n � pQ

of the subdomains and discretize the subdomain problems by the lowest order

curl-conforming edge elements  
G � � � � ��� � � � 
 � � �

�
� 
 � � � ��� j � � � O n � pQ

with the degrees of freedom given by the moments of the tangential components with respect
to the edges of � (cf. [NED80]). Since nonconforming nodal points may occur on the inter-
faces

�	� " � � , continuity of the tangential components across the interfaces is not guaranteed
requiring weak continuity constraints on the skeleton in order to achieve consistency of the
global approximation. This is taken care of by appropriately chosen Lagrangian multipliers
living in multiplier spaces

� Q � �
� " � � �	� " � � (for the construction of
� Q � �	� " �

we refer to
[HOP99]). Introducing the product spaces

�
Q � � � � � �|

� � � Nd � � � � � O n � pQ �
� � Q � � � ��� |

�  � � � � Q � � � " � �

where Nd � � � � � O n � pQ �
are the edge element spaces associated with the subdomains, the domain

decomposition approach leads to the discrete saddle point problem:
Find

� � Q � � Q � � �
Q � � � � � Q � � �

such that� Q � � Q � � Q � � � Q � � Q � � Q � � � � � Q � � �
Q � �

Q � � �
� (21)

� Q � � Q � � Q � � I � �
Q � � Q � � � z

(22)

Here, the bilinear form
� Q � �

Q � � � �
�
Q ��� � � �

and the functional � Q � �
Q � � � � �

are
given by

� Q � � Q � � Q � ��� �q
� � � @E  � � � � � � curl �

Q � curl �
Q � � �

Q �	� Q � G � �

� Q � � Q � ��� @E �

� � � � �Q � � Q � � � grad � � Q �	� Q � G � �

where � � � �Q
and � � Q refer to the FE approximations of the magnetic vector potential and the

scalar electric potential at time
� � � � and

� � , respectively, and � � ��� � � � � � � � .
Moreover, the bilinear form � Q � �

Q ��� � � � Q � � � � �
realizing the weak continuity of the

tangential components across the interfaces is chosen as follows

� Q � � Q � �

�
Q � � � q

�  ��� � @ �  � �

�
Q � � 
 � �

Q � � �  � G�H
with

�

 � �

Q � � �  � denoting the jump of 
 � �
Q

across the interface
�
� " � � .

It can be shown that
� Q � � � � � is elliptic on the kernel of the operator associated with �

Q � � � � � and
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Figure 2: Material distribution (5 ports)

PSfrag replacements

Figure 3: Magnetic induction between two ports (zoom)

that �
Q � � � � � satisfies an LBB-condition (cf. [HOP99]). The numerical solution of (21),(22)

is done by preconditioned Richardson-type iterations with a multilevel preconditioner and
features an additional defect correction in subspaces of irrotational vector fields that takes care
of the nontrivial kernel of the discrete curl-operator. We refer to [HOP00] for details (cf. also
[BBM99] for a related approach). Grid adaptation strategies based on efficient and reliable
residual-type a posteriori error estimators can be performed along the lines of [BHH00]).

Numerical results

The primal-dual Newton interior-point method has been tested in 2D with the total amount
of dissipated electric energy to be minimized and an optimal design has been computed in
3D for an individual bus bar by using the techniques described in the previous sections. The
numerical simulation provides a material distribution that can be visualized by grey-scales
ranging from black ( � � � � � � ) to white ( � � � � � � ) and by corresponding height profiles.
Figure 2 displays the material distribution for a 2D test case (bus bar with 5 ports).
We observe a sharp resolution of the interface “material - no material”. The performance
of the primal-dual Newton interior-point method depends on the number of ports and the
parameter � in (11) (for details see [HPS00]).
For an individual 3D bus bar, Figure 3 shows a visualization of the computed magnetic induc-
tion

�
for the final design in a vicinity between two ports. One clearly recognizes the effect

of the topology optimization (holes close to the ports) on the distribution of the magnetic
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induction (for a more detailed documentation we refer to [BHM01]).
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51 Domain Decomposition Method Applied to a Coupling
Vibration Problem between Shell and Acoustics

T. Kako1, H. M. Nasir2

Introduction

We consider the numerical method for the structural-acoustic coupling vibration problem be-
tween a shell and acoustic fields by the finite element method. The structure is a shell

�
which

encloses a bounded acoustic region
� � and is surrounded by an unbounded acoustic region� �

. The structural-acoustic system is described by a coupled problem between the acoustic
pressure perturbations of the inner and outer regions and the tangential and normal deforma-
tions of the shell. The problem can be regarded as a domain decomposition formulation for
the acoustic fields with a generalized Lagrangian multiplier. The normal deformation of the
shell acts as the Lagrangian multiplier which is in turn coupled with tangential deformation of
the shell. The finite element approximation to the problem results in a block matrix equation.
In order to solve this matrix equation by iterative methods, we consider two techniques: one
is based on the Schur complement of the block matrix with appropriate preconditioners and
the other is a direct iteration with some block preconditioners. We use a descretized version
of fictitious domain method to construct the block matrices and use the Krylov subspace it-
eration method for solving the system of equations [HKNT98]. The fictitious domain is used
to obtain preconditioners for the diagonal matrix blocks. The Schur complement technique
requires a double iteration whereas the direct iteration techniques requires only a single itera-
tion. We observe that the direct iteration technique with block preconditioners performs well
compared to the Schur complement technique.
Let there be two acoustic regions

� � and
� �

in � � � G � % �,� , separated by a closed shell struc-
ture. The domain

� � is bounded and enclosed by the shell and the domain
� �

is unbounded
(see Fig. 1). Let

�� � � � � and � � be the acoustic pressure perturbation, the density of acoustic
material and the sound velocity in the domain

� � � � � � �&% respectively and �
� � � be the pres-

sure perturbation of an incident wave from the outer region
� �

. Then the governing equations
for the vibration of the system are given by� � �� �� � � � � �� � �� � � I in

� � � � ��� �&% �� �� �� � � �
� �
� � � �� � � on

� � � ��� � % �
� �
� � �� � � � � � �

�
�� � � �� � � � � 
 on

� �
�� �
�
�
� � �

is outgoing �
where 
 is the outward unit normal to the shell surface; � is the vector of the shell deforma-
tions; � � � � � 
 is the shell deformation along the normal 
 ;

�
is the shell force operator.

1Univ. of Elecro-Comm., Chofu, Tokyo, Japan, kako@im.uec.ac.jp
2University of Peradeniya, Sri Lanka, nasirhm@fedu.uec.ac.jp
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Figure 1: Structural-acoustic coupling

For a general shaped arc shell in two dimensions, the operator
�

consists of membrane and
flexural components:

� �

 � � � e � � � e

h� � � � � e � � with

� � e � � � � � � �
�

�
�
��

� �
�
�
� � and

� � � e � � � �
�
� � �

� � � �
� � � � �

�� �
where

� � � % � � �
� � � ; � � � � �

�

�
�
�
;
�

� and
�
denote differentiation with respect to the arc

length

H
, � and \ are the curvature and thickness of the shell respectively and



� N � � � � � � �

is the flexural rigidity of the shell with Young’s modulus N and Poisson ratio �
� I� � � � � %

�
.

Let
���� � � � and

�� � � � � � � � � � . Then, � � and � � represent the pressures of scattered waves
inside and outside respectively. We also assume that the incident wave, the scattering waves
and the deformations of the shell are time-harmonic:

� ���
� � � �

� � � � \ � � � � � � ��� � � � � � � � � or� . Then, the problem can be written as follows:� � � � � � �� � � � I � in
� � � � ��� �&% � (1a)� ���� � � � � �

�
� � on

� � (1b)� � �� � � � � �

�
� �

� � � � � �� � on
� � (1c)� � � � � �

�
� �

�
� � � � � � � � � � � � � 
 on

� � (1d)	 � �
fh � � � �� � ��� � � � � � � � I � as 	�� ) � (1e)

where
� � � � � � � � � ��� �&% are the wave numbers corresponding to the inner and outer acoustic

regions respectively. The last condition is the Sommerfeld radiation condition for the scatter-
ing wave � � which allows only the out-going waves in the solution for the outer region.

Approximate problem and weak formulation

For the numerical treatment of the problem, introducing an artificial boundary
� � , we re-

strict the unbounded domain
� �

into a bounded domain
�
� and impose an artificial radiation
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boundary condition on
� � . We choose

� � to be a circle or a sphere of radius
�

for the two
or three dimensional problems respectively.
The Sommerfeld radiation condition is then replaced by the radiation boundary condition� � �� � � � � � (2)

where � is a differential or pseudo-differential operator with respect to the tangent parameter
of the boundary

� � .
Let us consider the function spaces

� � � � � ��� � � � � � � � � ��� � � � � � � � � � � �
and

� � �� � �
�
�

as the solution spaces for � � � � � � � � and � � respectively. Here, � �
� � � � � �

�
and � � is

the vector of tangential deformation.
The weak formulation of the problem (1) can be given as follows:
Find

�
� � � � � � � � � � � � � � � � � � � � � � � � such that, for all

� 
 � � 
 � � � � � � � � � � � � � � � � � � � �� � � ��� � 
 � � � � � �

� �
� � � 
 � � � � I � (3a)� � � � � � 
 � � � � � � � � 
 � � � �

�
� � �

� �
� � � 
 �

� E
� �

� � � � � � � � � � 
 � � � � (3b)

� � � � � � � � ��� � � � � � � �
� � � � �

�
� � � �

�
� � � � � �

�
� (3c)

where � � � � � � 
 � � �
� � � � � � 
 � � E f � � � � � � � 
 � � E f �� � � � � � 
 � � �
� � � � � � 
 � �

E
�

� � � � � � � 
 � � E � �
� � � � � 
 �

�
�

� �
@
�

�

� � � � � �
 �
G�H

and � � � � � � �
@
�

� � �
� � �

� �
� ��
G
�

z
We introduce finite dimensional subspaces

� � Q
of
� � � � � � �&% �,� � � respectively and consider

the approximate weak formulation, i.e., the finite element method:
Find

�
��� Q � � � Q � � � Q � � � Q � � � � Q � � � Q � � � Q � � � Q such that for all� 
 � � 
 � � � � � � � � � � � Q � � � Q � � � Q � � � Q ,� � � � � Q � 
 � � � � � �

� �
� �
Q
� 
 � � � � I � (4a)� � � � � Q � 
 � � � � � � � Q � 
 � � � �

�
� � �

� �
� �
Q
� 
 �

� E
� �

� � � � � � � � � � 
 � � � � (4b)

� � � Q � � � � � � � Q � � � � � � �
� �
Q
� � �

�
� � � �

�
� � � � � �

�
�
z

(4c)

By choosing bases for the function spaces and writing � � Q � � � Q � � � Q and � �
Q

with respect to
these bases, we obtain the block matrix equation as follows:���� � � I I �

� � �

� � � �I � � I � � �

� � ��I I � � �� � � � � � �
�����

���� � �� �� �� �
����� �

���� I� I
�

����� (5)

where each block corresponds to the sesquilinear form and its entries are given with respect
to the chosen base functions.
The matrices � � and � �

are constructed by the finite element discretization of fictitious
domains. For the inner bounded domain

� � , we consider a rectangular region such that
� � is
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included in it. We discretize the rectangular domain by a uniform orthogonal rectangular grid.
Then, the nodes close to the boundary of

� � are moved onto the boundary so that the new
locally modified partition is topologically equivalent to the orthogonal grid partition. Then,
the modified rectangles are triangulated such that the resulting triangles satisfy a regularity
condition. The computational domain for the inner region is then obtained by discarding the
extended portion in the rectangular fictitious domain.
Similarly, for the outer domain

�
� , we enlarge the domain towards inside the inner boundary

of
�
� so that it makes an annulus including the inner boundary of

�
� . We discretize the

annulus by a uniform orthogonal polar grid. The nodes near the inner boundary of
�
� are

modified as in the case of inner domain (see Fig. 2).

Figure 2: Fictitious domains and partitioning

Preconditioners for the matrices � � and � �
that are constructed by the fictitious domain

method are obtained by using the enlarged fictitious domain itself. We explain the construc-
tion of the preconditioner for the inner region. The one for the outer region follows analo-
gously.
The unmodified orthogonal mesh is used to obtain a matrix by using the same weak formu-
lation on the fictitious domain. This will give a matrix

�
which we write in a block form as

follows:

� � � �  � �  � � �� �  ��� �
where the matrix  � � corresponds to the nodes on the inner region, but not moved; the matrix ���

corresponds to the nodes outside the inner region. The matrix
� � is obviously larger in

size than the original matrix � � which corresponds to the moved nodes on the inner boundary.
When we want to solve a matrix equation of the form� � � � ��� � �
we enlarge the system as follows:

� � �
� � �  � �I  ��� � � � �� � � � � � �I � z

The two system of equations are equivalent in the sense that the solution � � is the same
for both systems. Hence, we solve the enlarged system using the Krylov subspace iteration
method with the matrix

� � as a preconditioner. For more details of the fictitious domain
method see [HKNT98].
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Schur Complement Method

The Schur complement of the block matrix with respect to its last block is obtained by solving
the block matrix equation (5) for the vector component � � :

� � � � � � � � � � � � �

� � � � � �� � � � � � � �

� � � � � �� � �� � � � � �
� � � �� � (6)

This matrix can then be solved numerically by using the Krylov subspace method. The terms
involving matrix inverses in this Schur complement are computed based on the fictitious do-
main method with preconditioners obtained from the fictitious domains.

Direct Iteration Method

In this method, we directly use the Krylov subspace iteration procedure to solve the block
matrix equation (5). For this purpose, the block matrix equation is enlarged to the the one
with the size corresponding to that of their fictitious domain preconditioners as follows:���� � � I I � � �

� � �I � � I � �
� ��I I � � ��

� � � � � �
� ���

���� � �
� �
� �

� �

� ��� �
���� �

� �
�

� ���
where the matrices in bold symbols are the enlarged matrices of their counterparts in the block
matrix equation (5).
The preconditioner used for this method is based on the preconditioning technique by Bramble
and Pasciak [BP88] which is given as follows:���� � I I II � I II I � I�

� � � � � � �

� ��� ���� � � �� I I II � � �� I II I � � �� II I I �

� ���
where the matrix

� � is the preconditioner for the matrix
�

based on the fictitious shell domain
(see Fig. 2). The first matrix is an elementary pre-multiplication matrix which makes the
preconditioned matrix symmetric.

Numerical Results

We present in this section the results of the implementation of the method. All computa-
tions were carried out on VT-Alpha5, 533Mhz, 512MB RAM with Linux operating system
environment with double precision arithmetic using object oriented C++ codes.
We test the two iterative methods in the last two sections for a two dimensional shell-acoustic
coupling problem. The shell is a circular arc of radius 	 � � � . The densities of the acoustic
material in both inner and outer acoustic regions are the same � � � � � � � . The artificial
boundary for the outer acoustic region is a circle of radius

� � % is chosen. The incident
wave is a plane wave with wave number

�
� � .

In the Schur complement methods, each iteration step requires the matrix inverses of � � � � �
and

� � . These are performed by an inner iteration using the fictitious domain method. Hence,
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each iteration step of the Schur complement matrix equation involves other iterations. Table
1 shows the number of iterations and times for both Schur complement and direct iteration
methods.

Method Outer Iter. Inv. Mat. Multiplications time (sec.)� � � � �

Schur Complement 23 1276 267 23 80.45
Direct iteration 35 35 35 35 3.20

Table 1: Performances of Schur complement and direct iteration methods

The Schur complement method has 23 outer iteration steps each of them has inner iterations.
The total numbers of inner iterations are 1276 for � � , 267 for � �

, and 23 for
�

and the total
time for the iterations is 80.45sec. For the case of

�
, the preconditioner is

� � the same as
�

,
because the shell is circular. Hence, it has only one iteration per step.
For the direct preconditioning method, the total iterations required to achieve the same result
is 35. Each iterative step requires one matrix multiplication with the preconditioned matrices
for � � � � �

and
� � . Hence the total numbers of iterations is 35 for each matrices. The time

required for the iterations is 3.20sec.
Figure 3 shows the real part of the scattering waves for circular and elliptic shell cases. The
radius of the artificial boundary is

� � % . The incident wave is a plane wave coming from
left along the x-axis direction with wave numbers

�
� % � and � � . The radius of the shell is	 � ��� and the major and minor axes of the elliptic shell are %

�
� � z % and % � � % .

Conclusion

The structural-acoustic coupling problem between a shell and inner and outer acoustic fields
is considered by the finite element method. Fictitious domain method is used to discretize
the acoustic domains and the resulting block matrix equation is solved by a Krylov subspace
iteration methods.
Two schemes are used: A Schur complement method and a direct block iteration method. The
Schur complement method requires a double iteration while the direct block iteration method
needs a single iteration.
The block iteration method performs very well in terms of the numbers of matrix multiplica-
tions and computing time.
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52 Iterative substructuring methods for incompressible and
nonisothermal flows using the

� ��� turbulence model

T. Knopp1, G. Lube2, H. Müller3

Introduction

We consider the parallel solution of the incompressible Navier-Stokes equations coupled with
the energy equation. For turbulent flows, the

�
� � model is used. The iterative process requires

the fast solution of advection-diffusion-reaction and Oseen type problems. These linearized
problems are discretized using stabilized FEM. We apply an iterative substructuring method
which couples the subdomain problems via Robin-type interface conditions. Then we apply
the approach to the simulation of indoor air flow problems.
The mathematical model under consideration is the incompressible, nonisothermal (Reynolds
averaged) Navier-Stokes problem in a bounded polyhedral domain

� � � �
. For turbulent

flows we apply the
� �

� model, cf. [CS99, MP94, Mue99]. Turbulent effects are modelled as
additional turbulent viscosity � � � �

�
�

h
� and thermal diffusivity

� � � ���
� � � , using the turbulent

kinetic energy
�

and turbulent dissipation � . Bouyancy effects are taken into account using
the Boussinesq approximation.
The velocity

�� , the (reduced) pressure � , and the temperature � , and in the turbulent case, the
quantities

�
and � are solutions of the coupled nonlinear system���������
�������

�
� � ��

�
�� � � % �

e
�
�

��
� � � �

�� � �� �
�� � �� � � �

� � ��
�� � �� � �� � � � �

�� � �� �
�
�

�� � ����� �� �
�
� �
 
 � � �� � � � �

�� � �� � � �
��*� � � � �� � � � � � � �

�
�� � � � �

�� � �� �
�

�
�� � � �

�

�� �

� �
	 � �

� � � � � 	 � �

� � � � � � � �
�

(1)

with constants
	 � � 	 � � 	 � � 	 � � � 	 � � � 	 � � � 	 � , effective viscosities �

�
� � � � � ,

���
�
� �� � � � � � � � � �

� ��� � � � � � � � �
� ��� , production and bouyancy terms

� � � � % � � � � � ��
�
�
�
� � ��� 	 � � � �

� 	 � �� � �� � with
�
�

��
� � � �

%
�

�� �� � �� �� �
��z

In laminar flows we set
� � � and skip the

� �
� equations in (1). The boundary is divided into

inlet, outlet and wall zones
� � ,

� �
and

� � depending on the sign of
�� � ��

. Using � � % � � � � ��
�
,

we set in laminar flows
� � � � � � �� � � � ��

on
�
�
� � � � � � � �� � �� � on

� � � � � � � � � (2)
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3Aerotec Engrg. GmbH Hamburg
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with
� � 	 �

� � � and
� � � �

� � � � � � �
. On

� � , we prescribe either the tangential
stresses and the normal velocity or a no-slip condition� � � � � � �� � �� � � �� � �� � � �� � �� � � � or

� � � � �� � �� on
� ��� (3)

In this paper, we consider only case (i) with
� � � � . For � we set

� � � � � on
� � � � � �� � � �� � � on

� � � � � �� � � �� � �
 � � � � on
� ��� (4)

For turbulent flows, we apply the concept of wall functions in a neighbourhood
� � of

� �
containing at least the so-called viscous sub-layer. Firstly, as usual in wall law theory, the
r.h.s.

�� � in (3) and �
 � in (4) are modified. We set
�� � � � �� �� � � � �� � � and seek

�
� � � �
 �

�
as solutions

of coupled nonlinear equations. Secondly, for the
� �

� equations the computational domain
is
� � � � . Dirichlet data are prescribed on

� � and on the artificial boundary
� � � � � � 	 � . A

no-flow condition is specified on
� �

. A computational algorithm has to control that
� � , being

discretized with mesh points with minimal distance to
� � , belongs to the so-called log-layer.

For details see [KLGR00, Mue99].

Discretization, decoupling, and linearisation

Semidiscretization in time of system (1):
We are mainly interested in the long-term behaviour of the model. So we apply the backward
Euler scheme on a partition � � ��� �� � � of

�
� � � � with

� � � � � �
�
� � . We use the abbreviation� � � � � � � � � � � � � � � � for a function � . The time derivative
� � � � � � �

is approximated by� �� � �
� � � � � � � � � � � � with time-step

� � � � � � � � � � . We arrive at the semidiscrete
system � �� ��

�
��*� � % � �� � � �� � � � � �

�� � � �� �
�� � � �� � � � �

� � � ��
�� � �� � � �� �� � � �

�� � � �� �
� � �

�� � ��� � � �� � � �
�

�
�

� 
 � � � � (5)� �� � � �

�� � � �� � � � �
�� � � � �� �� � � �

� � �� � � � �
� �� �� � � �

�� � � �� �
� � �

�� � � � �
�

�� � � � �
	 �
�

� � � �� � � 	 � � �� � � � �� � � � �
�

Decoupling and linearization:
We use a block Gauss-Seidel method for the iterative decoupling of (5). A second upper index
denotes the iteration step. Furthermore we replace

� �� � by �� �� � ��� � � � � � � � � � � � � � � .
Given

�� � � � , � � � � , � � � � , � � � � , � � � � as the solutions of the previous time step, the algorithm
reads:

(1) Initialization: Set � � � � � �
�
� .

(2) Set � �
� � � � � � and update turbulent viscosity � �� �

� � �� � � � � � � � � � � � � � � � . Update� � � �
 � according to (3),(4) using
�� � � � � � and � � � � � � .

(3) Update � �� and solve the linearized Navier-Stokes-equation

�� �� �� �
�

�� � � � � � � �� �
�� � � � � �� � � % � �� � � �� � � � � � � �� � � � � � �

� � � � � � � ��
��*� �� � � � � �
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(4) Update
� � � and solve the � -equation.

�� �� � � �
�� � � � � �� �

� � � � � ��*� ��� � � �� � � � � � � �
�
 


� � � � �
(5) Update � �� , � �� , � � using

�� � � � , � � � � and solve the
�

-equation.

�� �� � � �
�� � � � � �� � � � � � � ��*� � � �� �� � � � � � � � �� � � � �

� � � � � �
(6) Update � �� , � � , � �� using

�� � � � , � � � � , � � � � and solve the � -equation.

�� �� � � �
�� � � � � �� �

� � � � � �� � � � �
�

�� � � � � � �
	 � � � � � � �� � � � � � � � � 	 � � � � � � �� � � � � � �� � � � �

(7) Stopping-criterion for linearization cycle : If � � � � � � � � � � � � and if stopping criteria
for � �� � � � � � , � � � � � � � , � � � � � � � , � � � � � � � are not yet fulfilled, then set � � � � � �

� � � � � � � �
and goto (2). Otherwise goto next time step.

Linearized kernels:
The iterative scheme requires the solution of two basic model problems. First, the linearized
equations for � ,

�
and � are advection-diffusion problems with non-constant viscosity of the

general form : ����
��

� � � � �
�� � � � �� �

� � �
�� � �� �

� � � � �
�

in �
�

� � � on �� �
� �� � � �� � �

on �� � � (6)

For � we set �
�
�
�

, �� � � � � , �� � � � � � � � ,
� � � � � �
 � � � � , � � � � � � . For

�
and � set

�
�
�
� � � � , �� � �

� � � 	 � �� � � � � with appropriate � and �� � � � � with
� � � . The other

data are given in the following table.

equation � � �� � �
�

for � � � � � � � � �� � � � � � � � � � � �
 
 � � � � � � � � � � �
for

� � � � � � �� �� � � � � � � � � � � �
� �� � � � � �

� � � � � �� � � � � � � �
for � � � � � � �

�

�� � � � 	 � �
� �  � �

� � �  � � � � 	 � �
� �  � �

� � � 
�
� �� � � � �

� � � � � � � � � � � � � � � �
Later on, we simply write

�
and omit the indices of viscosities and production terms.

The linearized Navier-Stokes-equation is an Oseen-type problem with a positive reaction term
and non-constant viscosity:�

�

�
�

�
� �� � �

� ���
�� � � % � � � ��

� � � �
�

� � �� �
�� � � �� � �� � � �

�
in
�

�� � �� � � in
�

(7)� � � � � � �� � � � ��
on
� � � � �� � � �� � �� � � �� � �� � � �� � �� � � on
� � �
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Comparison with step (3) of the algorithm yields
�� � �� � � � � � � � � � �

�
� �� � � � � � � � �

� � �� � � � � � � � � �

�
� �

� � � � � � � �� � � � �� �� � � � �
Stabilized finite element discretization of (6)-(7):
Assume an admissible triangulation

���
of the Lipschitz domain

�
and define finite element

subspaces � �� � � � � 	 � �
� �

� � � � � � � � � ��� � � ��� � � ' � � �
For the advection-diffusion-reaction problem (6), for simplicity with ��� � on

� �
, we apply

the Galerkin-FEM with SUPG-stabilization:

Find � � � � � � � � � �� � � � � � � � � s.t. � � �

�
� � �

�
� ' �

�
�
���
� � � � � (8)

� �

�
� � �

�
�

�
	 ��� ����� � � ��� �� � ����� � ��� � � ��� � ������! #" � �%$ �'& � � �( � �)�+* �-,
. � � */�10 � 	%2 * �!,43 �65

�87 * �
9:3 ����! " � �%$ � 2 � �( � ����* �-,
with appropriate parameter set ; $ � � � , see [KLGR00]. The SUPG solutions may suffer from
local crosswind oscillations in layers, hence negative values of < or = can occur. As a remedy,
we add in a consistent way crosswind diffusion thus leading to the (nonlinear) shock-capturing
method, for details see [CS99].

For the Oseen-problem (7), we define the discrete spaces > �@?�AB� 0 � �DC� �FE ? �HG� withIKJ 9%L �
. The Galerkin FEM requires the (bi)linear formsM �ON JQP �R0�S � �� J �*
� 3 ( � �* JUT �WV ( � �� JYX � J Z � P �R0 & � �*/� �

with
N 0 � �� J[T � , P 0 � �* JYX � and

( � �* J[T �R0\VD] 	 T � �^� �*/� �!,
. Furthermore setS � �� J �*��_0 �
	%` ��a � ����:b � �* 3 �F� �SB� ��� �� 3 � ��c�d� �* �!,43 � 5-e � Tgf V �h � �hji � �h � �* �
9

& � �*
�_0 � 	
�

2 � �* �!,43 �65/k�l65
�
inm �h � �* �
9o3 �
5-e �inp � �* �
9 �

When using equal order ansatz functions I 0 9
, the discrete Babuska-Brezzi condition is not

satisfied. This problem is circumvented using a pressure (PSPG) stabilization. In addition,
divergence and a SUPG stabilization is used to deal with dominating first order terms. More
precisely, we setM G �ON JqP �D0 M �rN JqP � 3 ����! #" � �ts & � �quS J u� J[T �Hv $ �wFx uS�� u�� u* 3 $ �wry u XKz �-,3 � � $ �� x � u^� u�j� � u^� u*
� �!,�{

Z G � P �D0 Z � P � 3 ��|�! }" � � u2 v $ �w+x �quS%� u�� u* 3 $ �wOy u XKz �!, �
Finally, the stabilized problem to the Oseen equation (7) reads

Find
N 0 �#u� J[T � L > � ?~A � J s.t.

M G �ON JqP ��0 Z G � P � � P L > � ?�A � � (9)

For the choice of the stabilization parameters $ �wFx J $ �� x and $ �wOy see [KLGR00].
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Domain decomposition of the linearized problems

Here we apply a nonoverlapping domain decomposition method with Robin interface condi-
tions to the basic linearized problems (6), (7). Consider a nonoverlapping partition of

�
into

convex, polyhedral subdomains being aligned with the finite element mesh, i.e.�� 0������� w �� � J � �
	 ��� 0� � <��0�� J ��� L � ��� < b ��� � � �
Furthermore, set � � b 0�� � ��� � � J � � � b 0�� � � 	 � � � J � �0 < J where � � � is identified with� � � . Assume, for simplicity, that the partition is stripwise.

For the (continuous) advection-diffusion-reaction problem (6) the DDM reads:
for given

� m �
from iteration step h on each

� �
, seek (in parallel) for

� m�� w�
����� ����!

& � m�� w� 0 2
in
� �� m�� w� 0 � on �#" 	 � � �� u�� m$� w� � uh � 0 7 on � � 	 � � �% � � � m�� w� ��0'&(% � � � m� � 3 �*) V+&!�,% � � � m �/�

on � � � J ��0 ) J � � � J.-~J � �0 < � (10)

& L � � J )0/ is a relaxation parameter. The interface function is specified as% � � ����0 � u4��� uh � 3 � V )` u( � uh � 321 � ��� � (11)

Let P �43 � ,
( G� and

. G� denote the restrictions of P � ,
( G and

. G to
� �

, respectively. 5 � � 3 � is
the restriction of P � to the interface part � � � . Furthermore, 6 � J � 7 598;: is the inner product
in & � � � � � � or, whenever needed, the dual product between

� 5 � � 3 � �,< and 5 � � 3 � . The fully
discretized DDM reads for < 0 ) J � � � J,- :

Parallel computation step : Find
� m�� w� L P �43 � such that

� * � L P �43 �( G� � � m�� w� J * � � 3 6 � V )` u( � uh � 321 � �+� m$� w� J * � 7 598 0 . G� � * � � 3 ��0=?>�@��A 6CB m� � J * � 7 598*:ED
Communication step : For all

� �0 < , update the Lagrangian multipliers

6CB m�� w� � JGF 7 598*: 0 6 & � 1 � 3H1 � ��� m�� w� V+& B m� � 3 �I) V+&!� B m � � JGF 7 598;: � F L 5 � � 3 J D
The analysis of the method, given in [LMO00], can be easily extended to the case of non-
constant viscosity � : The algorithm is well-posed if

1 � 0 1 �LKNM
. The sequences ; � m �PO m ,< 0 ) J DQDRD J,- converge strongly to the restrictions of the global discrete solution to

� �
w.r.t.

the stabilized energy norm induced by the symmetric part of
( G� � � J � � .

Furthermore, an a posteriori estimate allows to control the convergence on subdomains via
jumps of discrete DD solutions across the interface. Besides this estimate yields the following
design of the interface function 1 � 0 )`TS u( � uh � S#32U �

(12)

with strictly positive
U � 0�V �?W � � depending on problem data. Formula (12) is compatible

with the vanishing viscosity limit �YX M
. Moreover, it is shown in [LMO00] that (12) allows
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a considerable acceleration of convergence. More precisely, the lower (and certain moderate)
frequencies of the error are quickly damped. In this range, formula (12) is surprisingly sharp
w.r.t. data. The convergence speed slows down when the level of the discretization error
is reached. An acceleration of the method w.r.t. higher frequencies of the error is under
consideration.

For the Oseen problem (7) we use the abbreviation � p 3 � b 0 f V uh ��� uh � . Then the DDM is
defined as follows:
for given

�#u� m � J[T m � � from step h on each
� �

, seek (in parallel) for
�#u� m�� w� J[T m�� w� �

�������� �������!

&�� �QuS J u� m�� w� J[T m�� w� �D0 u2
in
� �u^� u� m�� w� 0 M

in
� �� i m�� w� V T m�� w� f � uh � 0 i m uh � on
� � � 	 � ��� � � � �

� p 3 � i m�� w� uh � 0 ui p J V u� m�� w� � uh � 0 M
on

� � � 	 ���% � �#u� m�� w� J[T m�� w� �D0 &(% � �#u� m� J[T m� � 3 �I) V &6�,% � �}u� m � JUT m �
� on � � �
D (13)

& L � M J )0/ is again a relaxation parameter. The interface function is given by% � � � J[T � 0 � u u��� uh � V T uh � 3 � V )` uS�� uh � 3H1 � � u� (14)

with acceleration parameter
1 �

.
The corresponding parallel algorithm can be formulated (in weak form) similarly as for the
scalar case. For this DD algorithm (and certain variants of it), a similar a-priori and a-
posteriori analysis is available as briefly described for the scalar problem (6). In particular,
the interface function

1 �
in (14) has the same structure as in (12). For details, we refer to

[LMO01], [LMM00].

Application to room-air flow simulation

We applied our research code Parallel NS [Mue99] with piecewise linear ansatz functions for
all unknowns (

. 0 I 0 9 0 )
) on a triangular (resp. tetrahedral) mesh in 2D (resp 3D) to the

numerical simulation of room-air flow.

Example 1. We present a stationary ventilated laminar flow with
U
	 0���

, � I 0 M D � )
through a cube

� 0 � M J ) ��� with inlet zone � � 0 � M��.M D � � ? ; M O ? � M��,M D � � and outlet zone� � 0 � M D � � ) � ? ; ) O ? � M D � � ) � , cf. Fig. 1. We impose i m 0 M
,
u� S 5 e 0 uM

,
& ��� 0 M �R0 `�� D ) � �

,&�� m 0 `�� D ) � �
,
& S 5 e 0 `�� D ) � �

. Furthermore, we used time step ��� 0 ) D M 9
, a uniform

mesh with  
` �

nodes and ! S , E#"%$ 0 )
.

We studied the DDM on different macro partitions. Fig. 2 shows the reasonable convergence
history (w.r.t. a mesh-dependent norm including & w V and & � V convergence of velocity and
pressure, respectively) of the DD solution (with two subdomains) to the sequential discrete
solution. '
Example 2. The application of the DDM to turbulent flows in 2D has been considered in
[Mue99]. Here we present the natural convection for

U S�0 �
D � � ) M w � , � I 0 M D � )

, (X) 0 M
in a

cavity
�

of width
M D � ! and height & 0 ` D � ! . The flow is driven by a temperature difference

of  �
D �+*

between the vertical walls and gravity. Further we impose
u� S 5-e 0 uM

on � �-, � �
and
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tion to discrete solution

adiabatic conditions for
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at the top and bottom of the flow domain
�

.
In Fig. 3 we compare the vertical velocity profiles at height
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Figure 3: Vertical turbulent velocity at
, � 0 M D � & and

, � 0 M D ��� � &
for a DD solution with

) M
subdomains and

� D
 
�!`

finite elements (c) and the sequential solution
on different grids with

` D � ` �
(a),

� D
 
�!`

(b) and
) M D � ) `

(d) elements. The results are in good
agreement with measurements (e) by Cheesewright et.al (1986). '
The proposed method is currently applied at the Dresden University of Technology to the
simulation of turbulent indoor air flows. Such calculations allow to predict certain parameters
of the indoor-air climate over longer periods and to simulate different variants of ventilation
or of heating systems. Results of this ongoing research will be presented elsewhere. Let
us finally remark that the convergence of the method for the iteratively decoupled nonlinear
problem (1) is rather sensitive w.r.t. different ingredients. A more robust implementation is
probably given with an iterative substructuring method based on Dirichlet-Robin coupling,
see [ATNV00], and with transformation to logarithmic variables in the < V = equations.
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53 Schur Complement Based Preconditioners for
Compressible Flow Computations

Marzio Sala1

Introduction

The solution of linear systems arising from compressible flow computations is a great chal-
lenge in the field of scientific computing. Modern high-performance computers are very often
organised as a distributed environment, and every efficient solver must account for their mul-
tiprocessor nature. Domain decomposition (DD) techniques provide a natural possibility to
combine classical and well-tested single-processor algorithms with parallel new ones. The
basic idea is to decompose the original computational domain

�
into � smaller parts, called

subdomains
� = � A

, �
0 ) J D D D J � , such that

���� � w �� = � A 0 ��
. Then we replace the global

problem on
�

with � problems on
� = � A

. Of course, additional interface conditions must be
provided.
The DD methods can roughly be classified into two groups [QV99, SBG96, CM94]. In the
former, named after Schwarz, the computational domain is subdivided into overlapping sub-
domains, and local Dirichlet-type problems are then solved on each subdomain. The latter
group, instead, uses non-overlapping subdomains. It is thus possible to decompose the un-
knowns into two sets: one formed by the unknowns on the interface between subdomains, and
another formed by the unknowns associated to nodes internal to the subdomains. One may
then compute a Schur complement (SC) matrix by “condensing” the unknowns in the second
set. The system is then solved by first computing the interface unknowns and then solving the
independent problems for the internal unknowns.
It can be shown [QV99] that the SC system is better conditioned than the global system. How-
ever, the solution of this system requires computing as many linear problems as the number of
subdomains used. The dimension of these problems can be very large, unless the number of
processors used is sufficiently high. A possible solution can be to solve the internal problems
inexactly, using, for example, an incomplete factorisation [Saa96], or few steps of an iterative
solver. The resulting approximate SC matrix can be seen as a preconditioner for the global
system. Here we present some numerical results concerning the application of the SC matrix
as a preconditioner for the global (unreduced) system. We have tested an elliptic problem, as
well as a hyperbolic one. In the former the matrix arises from the Laplace operator, while in
the latter from the compressible Euler equations.
This paper is organised as follows. Second section describes the SC system, showing two
possible formulations, named element-oriented and vertex-oriented. Differences between the
element-oriented and vertex-oriented SC matrix are here outlined. Third section describes
the use of the SC system as a preconditioner for the global system. Numerical results for an
elliptic test case and for the compressible Euler equations are reported in fourth section. The
tests have been conducted on a distributed memory parallel machine. Conclusions are drawn
in last section.

1Département de Mathématiques, EPF-Lausanne
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The Schur complement Method

Let us consider the solution of the following linear system:

��� 0��
, (1)

where
� L�� m��/m

is a (sparse) real matrix,
�

and
� L	� m

two column vectors. In general, we
can think of (1) as begin the algebraic counterpart of a variational boundary value problem
which reads

find
� J L P J such that:S � � J J * J ��0 � 2 J * J � for 
 * J L P J ,

where P J is a finite dimensional space generated from finite element basis functions. For an
elliptic problem

S � � J J * J � is bilinear form and
� J

the discrete solution, while for the com-
pressible Euler equations

S � � J J * J � should be regarded as the bilinear form expressing the
Jacobian of the Euler system (after time and space discretisation), and

� J
plays the role of the

increment of the physical variables.

We now consider a partition of the domain
� � � E J � 0 ` J � , made in the following way. We

first triangulate
�

and we indicate by �
= 	 AJ

the corresponding mesh. For the sake of simplicity
we assume that the boundary of

�
coincides with the boundary of the triangulation. We then

partition �
= 	 AJ

into 3 parts, namely �
= w AJ

, �
= � AJ

and �
= 5 AJ

such that �
= w AJ � � = � AJ � � =

5 AJ 0 � =
	 AJ

.

We may associate to �
= w AJ

and �
= � AJ

two disjoint subdomains
� = w A

and
� = � A

formed by the

interior of the union of the elements of �
= w AJ

and �
= � AJ

respectively, while � = w 3 � A is formed by

the “elements” contained on �
= 5 AJ

.

We will consider two cases:

� � = w 3 � A reduces to a finite number of disjoint measurable
� V )

manifolds. This situation
represents the common case where

�� = w A 	 �� = � A 0 � = w 3 � A , i.e. � = w 3 � A is the discretisation
of the common part � of the boundary of

� = w A
and

� = � A
. This type of decomposition will

be called element oriented (EO) decomposition, because each element of �
= � AJ J � 0 ) J `

belongs exclusively to one of the two subdomains
�� = w A

and
�� = � A

.

� � = w 3 � A � � E
and it is formed by only one layer of elements. That is, each node of� = w 3 � A coincides with a node of either �

= w AJ
or �

= � AJ
. The portion of space � of which� = w 3 � A is a triangulation, is now formed by the union of a finite number of “strips” laying

between
� = w A

and
� = � A

. It will be called vertex oriented (VO) decomposition, because
each vertex belongs exclusively to one of the two subdomains

�� = � A J � 0 ) J ` .
A node is said to be internal if it is not connected to any node of other subdomains, while a
node that lies on � = w 3 � A is said to be a border node. In the following, we will consistently use
the subscripts f and  to indicate internal and border nodes, respectively, while the superscript� � � will denote the domain which we are referring to.
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Vertex Oriented Schur complement Matrix

Let us consider again problem (1). The block representation reads

��� 0 ���� � = w A M MM�� = w 3 � AM MM�� = � 3 w A � = � A
����	 ����� �

= w A
� = w A�� = � A
� = � A�
�����	 0 ����� �

= w A

� = w A�
� = � A
� = � A�

�����	 , (2)

where the submatrix
� = � A

, relative to subdomain
� = � A

, can be written as

� = � A 0� � = � A
�
 � = � A
��� = � A��
 � = � A����� .

In this partitioning the border nodes are subdivided into two sets: 
= w A

is the set of nodes of
the triangulation of the strips � = w 3 � A which lay on the boundary of

� = w A
, while 

= � A
is that of

nodes lying on the boundary of
� = � A

. Correspondingly, we have the blocks
� = w A� and

� = � A� in the

vector of unknowns and
� = w A� and

� = � A� in the right hand side.
� = � 3 � A

represents the contribution
to the equation associated to 

= � A
coming from the nodes in 

= � A
. We call the nodes of � = w 3 � A

contributing to 
= � A

external nodes of domain
� = � A

.
We can perform a LU elimination of internal nodes (which are coupled only to border nodes),
obtaining the following Schur complement system:

a ) � � � 0�� a = w A � = w 3 � A� = � 3 w A a = � A�� � � = w A�� = � A� � 0���� = w A� = � A�� , (3)

where

a = � A 0 � = � A��� V � = � A��
 � = � A k��
�
 � = � A
�� and � = � A 0 � = � A� V �� � � w U �� � = � A��
 � = � A
k��
�
 � = � A
 , (4)

with � 0 ) J ` . Note that a ) � is in general dense on the block diagonal, while the blocks� = � 3 � A
are sparse. The technique just shown may be extended to any number of domains.

The Schur operators built on an element-oriented or a vertex-oriented DD are clearly different.
The theoretical properties of the former are better known, since it has a more direct interpre-
tation at differential level [QV99], while the latter is normally the result of a purely algebraic
approach. Although the element-oriented decomposition has better theoretical foundations,
the literature for complex CFD computations refers more frequently to vertex-oriented de-
composition. In fact, the vertex-oriented approach is more simple derived by purely algebraic
manipulations on the original system matrix.
Although the SC matrix is better conditioned that the unreduced matrix

�
, a suitable pre-

conditioner has to be found. Many methods have been proposed in literature for the EO
decomposition; see for example [QV99, SBG96] for an overview. Among them, we recall
the balancing Neumann/Neumann, the wire-basket preconditioners FETI [FPL00] and others
[CGT98]. These methods couple a local preconditioner with a coarse correction to avoid the
degradation of the performance as the number of subdomains grows. Another possible way
to derive a preconditioner for equation (3) is to use using the relation a � w) � 0 U � � � w U �� ,
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where
U � the restriction operator on the interface variables. It follows that form that from

any preconditioner � � for the matrix
�

one can obtain a preconditioner ��� for the matrixa ) � . The preconditioning operation for a ) � which is induced from � � is defined by

� � w��� � 0 U � � � w� � M
� � � 0 U � � � w� U �� � � .

For example, a Schwarz-type preconditioner can be used for the solution of the vertex-oriented
SC matrix. In fact, we recall that the SC matrix obtained from a vertex-oriented decomposition
is less dense than the one obtained from an element-oriented one. As one may note from
equation (3), a ) � has dense diagonal blocks, while the non-diagonal blocks are sparse.

The Schur Complement System as a Preconditioner

The bottleneck of the SC system is the solution of the internal problems. This step can be
done in parallel, however it can be very expensive for both memory requirement and time.
Direct solvers can be used only with small problems, while iterative solvers need to be pre-
conditioned.
Let us write the matrix

�
in the following block form, putting before all the internal nodes,

followed by all border nodes:

� 0�� � 
�
 M
� ��
 f � � f � � w
�
 � 
��M a �

. (5)

A possible preconditioner is

� � ��� 0 � �� 
�
 M
� ��
 f � � f �� � w
�
 � 
��M �a �

, (6)

where
�� 
�
 is, for example, an ILU decomposition of

� 
�
 , and
�a is given, for instance, by

few steps of an iterative method where in the global Schur Complement the internal Dirichlet
problems are solved (approximately) using

�� 
�
 . To apply � � ��� to a vector, we need to solve
some local linear systems with the matrices

� 
�
 and a global linear system with
�a . In this

case, the role of
�a is to couple all the subdomains. In this way, we may avoid the definition of

a coarse space. In fact, the definition of the coarse problem may be difficult when dealing with
complex geometries or non-matching grids [CSZ96], especially for the choice of the boundary
conditions. On the contrary, the definition of the ASC preconditioner is purely algebraic and
it can be easily applied to any kind of matrices (provided that the incomplete factorization of� 
�
 exists). This approach is similar to the one followed in [Zha00] and other papers with
the same aim to construct the preconditioner without dealing with the geometrical data of the
underline physical problem.

Numerical Implementation

In first subsection we present some numerical results concerning a Laplace operator, while in
second subsection we apply the SC preconditioner to the solution of the compressible Euler
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equations. All the numerical results here presented have been obtained on a SGI-Cray ma-
chine located at the EPFL, with 32 MIPS R14000 processors, each of them has 256Kbytes
of local memory, 32 Kbytes of first level cache and 4 Mbytes of second level cache. For the
solution of the linear system, we have used the AZTEC library, developed at the Sandia Na-
tional Laboratories. The linear solver used is GMRESR, a variant of GMRES that allows the
preconditioner to be different at each iteration. We have stopped the solver after a reduction of) M � � of the initial residual. Each processor is given a single subdomain, and the MPI commu-
nicator has been used. About the Schwarz preconditioner, we have solved the local problem
using an ILU decomposition. For the ASC preconditioner, in the solution of the linear system
with

�a , we have used GMRES. The approximation is obtained replacing the exact & N of
� 
�


decomposition the an incomplete factorisation f & N�� M � .
An Elliptic Problem: the Laplace Operator

We have considered the following linear problem:� V���� 0 2
in
�� 0 �

on
� �

,
(7)

where
� 0 � M J ) � ? � M J ) � ? � M J ) � is discretized by piece-linear finite elements on tetrahedra

regular grids. For this simple test case we have partitioned the domain into slices, using a
vertex-oriented decomposition as indicated in Section 53. In Table 1 we have reported the
iterations to converge using 4 and 8 subdomains for different values of the numbers of the
unknowns. We indicate with np the non preconditioned case, sw1 the Schwarz preconditioner
with an overlap of 1 element, sw2 with an overlap of 2 elements. ASC-L represents the ASC
preconditioner, with L steps of the nested iterative solver.
One may note that the ASC preconditioner behaves better than the 1-level Schwarz precon-
ditioner for suitable values of & . This value can be increased to improve the efficacy of the
ASC preconditioner. Moreover, as the number of subdomains grows, the ASC preconditioner
requires less iterations to converge.

A Hyperbolic Problem: The Euler equations

Let us consider the Euler equations for compressible flows, that can be written in the following
form: ���� p 3	� E� � w ��
 :��� : 0 M

in
�

,
� K M

, (8)

(plus suitable boundary conditions on
� �

), where  and ��� are, respectively, the vector of
conservative variables and the flux vector:

 0 �� �� � �� �
�	 , � � 0 �� � � �� � � � � 3 T $ � �� & � �

�	 ,

with �
0 ) J D D D J � (

� � � E
), and

�
is the velocity vector, � the density, T the pressure, & the

specific enthalpy and $ � � the Kronecker symbol.
The spatial discretisation applied to the Euler equations leads eventually to a system of ODE
in time, which may be written as

� N�� � � 0 U �ON �
, where

N 0 �rN w J N � J D D D J N " J D D D � � is the
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N unks np sw1 sw2 ASC-2 ASC-5 ASC-10

4 processor

64.000 116 38 33 35 28 24
125.000 154 46 39 43 36 32
216.000 227 54 45 50 42 39
512.000 253 66 58 66 56 51

1.000.000 454 91 66 81 67 64

8 processor

64.000 116 43 35 32 22 14
125.000 154 51 40 38 29 20
216.000 227 56 48 45 37 27
512.000 253 68 59 60 49 40

1.000.000 454 105 67 73 64 54

Table 1: 3D Laplace problem. Number of iterations with 4 and 8 processors.

vector of unknown nodal states
N ��0 N � ��� �

and
U �ON �

the result of the spatial discretization
of the Euler fluxes. Applying the backward Euler method to the semi-discrete equation yieldsN m�� w V N m 0 � � U � N m$� w��

, (9)

where
� �

here represents a diagonal matrix of local time steps, since we are interested only
in steady-state solutions. We adopt the so-called “local time stepping” technique, where the
degrees of freedom associated to each node evolve with their own time step. This is a rather
common technique to accelerate convergence to steady state. In order to solve the nonlinear
problem (9), the Newton method is used. We refer to the literature for more detailed explana-
tions (see, for example [BCT98, SLW98, KKS98]).
For its spatial discretization, we have used the code THOR, developed at the von Karman
Institute, that makes use of the multidimensional upwind finite element discretization, while
for the vertex-oriented decomposition of the computational domain we have used the software
METIS. This decomposition is unstructured and the subdomains have no particular shape, as
one may appreciate from the picture on the left of Figure 1.
The first test case is represented by a NACA0012 airfoil with one degree of angle of attack.
The free-stream Mach number is

M D � �
.  ) time iterations were required to reach the conver-

gence to the steady state. The CFL number goes from
) M

to
) M �

, and it is multiplied on each
iteration by

`
.

Tables 2 reports a comparison between the Schwarz and the ASC preconditioners using from
4 to 32 processors. As we can observe, the gain in terms of number of iterations using the ASC
preconditioner can be very high especially as the number of subdomains grows. Although,
the time is (slightly) bigger that the one needed by the Schwarz preconditioners.
The second test case correspond to the solution of the compressible Euler equations around
an ONERA M6 wing. The 3D unstructured grid has 94493 nodes and 555514 elements. The
free-stream Mach number is

M D �  , and the angle of attack is
� D M �

. The CFL number goes from) M
to
) M��

, multiplied by
`

at each time iteration. In Table 3 we have reported the CPU time
required to reach the steady state. As we can observe, few iterations in the solution of

�a seems
to be appropriate to reach the prescribed accuracy.
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N procs sw1 sw2 ASC-2 ASC-5 sw1 sw2 ASC-2 ASC-5
Iterations CPU-time

4 487 454 370 369 124.8 162.7 312.7 276.0
8 507 458 357 351 56.6 65.4 125.8 165.0

16 544 488 329 317 36.1 40.5 60.2 66.8
32 587 502 311 278 21.3 24.8 29.2 42.0

Table 2: Iterations and total time (in seconds) required to reach the convergence. NACA0012
airfoil, 9239 nodes.

M_inf    0.45 Angle_of_attack    1.00                                           

THOR_M6                                                                   
                                                                                
                

Figure 1: M6 Wing. Decomposition of the elements on the surface among subdomains (left)
and particular of the unstructured 3D grid (right).

N procs ASC-2 ASC-4 ASC-8
8 1538.4 1600.4 1859.9

16 544.8 569.1 1330.5
32 248.5 286.0 358.9

Table 3: M6 wing, 94K nodes. CPU-time (in seconds) for ASC preconditioner, using different
values of & .
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Conclusion

In this paper, a preconditioner based on an approximation of the Schur complement system
has been described. Numerical results have been presented for an elliptic problem and for the
solution of the compressible Euler equations on 2D and 3D unstructured grids. The key idea
is to use an approximate Schur complement matrix to precondition the unreduced matrix,
exploiting the good parallel properties of the SC matrix. The approximate system is then
solved by an iterative Krylov method, that couples all the subdomains.
The use of the SC system as a preconditioner for the global system seems promising, espe-
cially when the number of subdomains is large enough. The number of iterations to converge
needed by the outer iterative solver is much lower than using a Schwarz preconditioner. More-
over, the effectiveness of the ASC preconditioner increases with the number of subdomains,
even without a coarse operator, dislike the Schwarz method. Further numerical tests will be
conducted to better investigate the parallel properties of this preconditioner.
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