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20 Overlapping Schwarz Waveform Relaxation for
Convection Reaction Diffusion Problems

D.S. Daoud 1, M.J. Gander 2

Introduction

Overlapping Schwarz waveform relaxation is a long name for an algorithm which simply
solves evolution problems in parallel. It got its name as follows: the distribution of the com-
putation is achieved by partitioning the spatial domain into overlapping subdomains, like in
the classical Schwarz method. However on subdomains, time dependent problems are solved
in the iteration and thus the algorithm is also of waveform relaxation type. Hence the name
overlapping Schwarz waveform relaxation. These algorithms have been introduced in [GK97]
and independently in [GZ97] for the solution of evolution problems in a parallel environment
with slow communication links, since they permit to solve over several time steps before com-
municating information to the neighboring subdomains. They are ideal when one wants to use
large existing networks of PC’s with a high latency network but reasonable throughput as a
super-computer. An earlier analysis for first order hyperbolic problems of the same type of
algorithm can be found in [Bjø95].

These algorithms stand in contrast to the classical approach in domain decomposition for
evolution problems, where time is first discretized uniformly using an implicit discretization
and then at each time step a problem in space only is solved using domain decomposition, see
for example [Meu91] and [Cai91, Cai94]. The main disadvantage of the classical approach is
that one is forced to use the same time step in all subdomains and thus looses one of the main
features of domain decomposition, namely to treat subdomains numerically differently. A
second disadvantage is that one needs to exchange information at each time step. Overlapping
Schwarz waveform relaxation is a remedy for both problems.

In this paper we study overlapping Schwarz waveform relaxation for space decomposi-
tions in all generality for the linear convection reaction diffusion equation in � dimensions.
We prove linear convergence of the algorithm on unbounded time intervals and state a theorem
about superlinear convergence on bounded time intervals. Both results hold at the continuous
level, which leads to algorithms that converge independently of the mesh size if the overlap is
held constant.

Problem Description

We are interested to solve parabolic partial differential equations in � dimensions on a parallel
computer with slow communication links. We consider as our guiding example the convection
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reaction diffusion equation on a bounded domain
�������

with a smooth boundary � � ,

�
	��������� � ���������� � ��� �"! � ��# � � $%	�&(' �  &*)+�,' - . � .�/0'�%	1&(' � 2� 34	1&(' �  &*) � �,'5- . � .�/0'�%	1&('6-78� ��97	�&: &*)+�,; (1)

We assume that the initial condition
��9<	1&:

and the boundary condition
34	1&(' �  are bounded

piecewise continuous and
$%	1&(' �  is continuous. This gives existence and uniqueness of a

solution to (1). In our analysis we will use the maximum principle satisfied by the solution�%	1&(' �  of (1):

Theorem 1 (Maximum Principle) Assume that
�
	1�4>=?-

(
�
	���A@?-

). Let B �DCFE�G�HI�
( JLKNM H � ). Assume that

�O� B at some interior point
	�& 9 ' � 9 P)D� and that one of the

following holds:

1. # ��- and B is arbitrary.

2. # @Q- and B =�-
( B @�-

).

3. B ��-
and # is arbitrary.

Then
�R� B on S�UT*V -�' � 9XW .

Proof The proof can be found in [Lie96].
To distribute the computation, we partition the domain

�
into overlapping subdomains.

Such a partition can be obtained by first partitioning
�

into Y non-overlapping subdomainsZ�\[
with boundaries � Z�\[ , ] �_^7'6`N'";a;";4' Y . We denote the boundaries of the subdomain

Z�\[
interior to the domain

�
by
Zb [

. Then we construct an overlapping decomposition
� [

with
boundary � � [ by enlarging each

Z� [
so that the boundaries of the new subdomains

b [
in-

terior to
�

are at least a distance c away from
Zb [

. To solve the parabolic problem (1), the
overlapping Schwarz waveform relaxation iteration constructs iteratively

�edgfeh[
on each sub-

domain
� [

using as the boundary condition the values from the neighboring subdomains
� di

at the previous iteration. To pass the boundary information, the boundary of
� [

is decom-
posed into disjoint subsets

b [ i , j �k^l'a;";a;4' Y such that the Euclidean distance of
&m) b [ i

from the boundary of
� i is at least c . This is possible because of the way the overlapping

decomposition was constructed: we simply use the solutions obtained in
� i only within the

smaller region
Z� i . Doing this for each subdomain, we define a complete approximation to the

solution at step n on the whole of
�

which can be used at step n � ^ as boundary condition for
the next subdomain solves. We denote also by

b [ 9
the part of the boundary that subdomain�\[

shares with the original domain
�

.

Linear Convergence for Unbounded Time Domains

For the convergence analysis, it suffices by linearity to consider the homogeneous problem,$%	1&(' � o��34	1&(' � \����97	�&:\�p- in (1) and to analyze convergence to zero. We first consider the
case where

/q�mr
and hence restrict # @p- to have bounded solutions. On each subdomain
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� [
we solve at each step n � ^ of the overlapping Schwarz waveform relaxation iteration the

subproblem
�,	1� dXfeh 2� - & ) � [ ' - . � .�/0'�4dXfeh[ 	1&(' � 2� � di 	1&(' �  & ) b [ i ' - . � .�/0'�4dXfeh[ 	1&(' � 2� - & ) b [ 97' - . � .�/0'� dXfeh[ 	�&('F-<2� - & ) � [ ' (2)

for ] � ^7'6`�'a;a;";4' Y , using the boundary information from the neighboring subdomains at stepn . This corresponds to an additive Schwarz or Jacobi iteration which can be done in parallel.
One can also consider a multiplicative Schwarz or Gauss Seidel iteration which would need a
special coloring of subdomains to remain a parallel algorithm.

We define the integer distance quantity � [ for each subdomain
� [

to be the least number
of subdomains one has to pass through to touch the boundary � � , and also the maximum� � ������� [ � [ . We further define the index sets

� i � �	� ] � � [ � j�
 so that the index
set

� i contains the indices of all the subdomains which are within distance j of the boundary.
Defining for bounded functions

34	1&(' �  �7�pT*V -�'Xr����
the norm��� 3�	 � ' �  ��� � � � C E�G��� H�� ��� 9 � 3�	�&(' �  �

we have the following

Lemma 1 The iterates of (2) satisfy for
/��Ur

and # @Q- the estimate
�����[ ��� �4dXf�� f��[ 	 � ' �  ��� � @! %	 � ' c ������[ ��� � d[ 	 � ' �  ��� � (3)

where
 %	 � ' c  is a number strictly less than one and independent of n .

Proof The idea of the proof is to construct a sequence of elliptic upper bounds on the iterates
and then to apply the convergence analysis based on the maximum principle for the elliptic
upper bounds in Lions [Lio88]. For n fixed we define " d ���#�����<[ ��� � d[ 	 � ' �  ��� � and note that

on each subdomain the solution $� dXfeh[ of the elliptic problem

��� $�4dXfeh[ ��� � ! $�4dXfeh[ ��# $�4dXfeh[ � - & ) � [ '
$�4dXfeh[ 	�&:2� " d & ) b [ i '
$� dXfeh[ 	�&:2� - & ) b [ 9 (4)

is an upper bound on the modulus of
�:dXfeh[

. Now $�4dXfeh[ satisfies a maximum principle and for

] ) � 9 we have $�4dXf h[ . " d in the interior of
Z� [

, since $�4dXfeh[ satisfies on part of the boundary

of
� [

a homogeneous boundary condition. Note that for ]&%) � 9 we have $� dXfeh[ not necessarily

strictly less than " d since $��dgfeh[ might have the value " d on all its boundaries and thus by the

maximum principle $� dXf h[ ' " d . Define

" dgfeh ��� CFE�G
���)(H+*,� i �.-�/ $

� dXf hi @0 h 	 c  " d

for some constant
 h 	 c  .5^ . Note that

 h depends on the size of the overlap, but not onn since $�4dXfeh[ is a linear function of the boundary condition. Now for the next iteration by
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definition part of the boundary of subdomains
� [

with ] ) � h lie strictly within
Z� i withj ) � 9 and therefore for ] ) � h the solution $�4dXf��[ of the elliptic problem

� � $� dXf��[ �P� � ! $� dXf��[ �P# $� dXf��[ � - & ) � [ '
$�4dXf��[ 	1&:8� " d & ) b [ i ' j %) � 9<'
$�4dXf��[ 	1&:8� " dXf h & ) b [ i ' j ) � 9

(5)

is an upper bound on the modulus of
� dgf��[

. Since " dXfeh @  h 	 c  " d we have by the maximum

principle $�4dXf��[ . " d in
Z�\[

and defining " dXf � similarly to " dXfeh before, we find " dXf � @ � 	 c  " d for some constant
 h 	 c  @  � 	 c  .D^ independent of n . By induction we find at

step n � � � ^ for the iterate in the subdomains
� [

with ] ) � � the elliptic upper bound

��� $� dgf�� feh[ ��� � ! $� dgf�� feh[ ��# $� dgf�� feh[ � - & )+�\[l'
$��dgf�� feh[ 	�&:2� " d & ) b [ i ' j %) � � � h '
$��dgf�� feh[ 	�&:2� " dXf�� & ) b [ i ' j ) � � � h (6)

and $� dgf�� feh[ . " d in
Z� [

. Defining " dXf ��f h as before we find " dXf�� feh @  � feh 	 c  " d
for some constant

 h 	 c  @  � 	 c  @k;a;";0@  � feh 	 c  . ^ independent of n . Now for the
next iteration step n � � � ` all the

� dXf�� f��[
have boundary values less than or equal to

" dXf ��f h @  � feh 	 c  " d , since they come from iteration step n � � � ^ in the interior of
neighboring subdomains. Defining

 (	 � ' c  ���  � feh 	 c  the result follows.

Theorem 2 (Linear Convergence) For # @Q- the overlapping Schwarz waveform relaxation
algorithm (2) converges on unbounded time intervals � ) V -�' / � r� at least at the linear
rate �����[ ��� � d � � f����[ 	 � ' �  ��� � @q	  (	 � ' c   d �����[ ��� � 9[ 	 � ' �  ��� � (7)

where
 %	 � ' c �.p^ as in Lemma 1.

Proof The proof follows by induction from Lemma 1.
The convergence result we derived on unbounded time domains depends on the number of
subdomains, as one can see explicitly from the dependence of

 
on � . The more subdomains

one uses, the longer it takes for information to propagate from the outer boundary of
�

to the
inner subdomains. This is because the steady state solution is limiting the convergence rate,
and the steady state solution does not see the zero initial condition. This is different if the
algorithm is analyzed over a bounded time interval. This analysis, which is beyond the scope
of this short paper, leads to a superlinear convergence result for the algorithm. Defining for
bounded functions

34	1&(' �  �7�pT*V -�'F/
 ���
the norm��� 3�	 � ' �  ��� � ��� C E G��� H�� 9�� � � � � 3�	�&(' �  �

we have the following

Theorem 3 (Superlinear Convergence) For # @O- the overlapping Schwarz waveform re-
laxation algorithm converges superlinearly on bounded time intervals � )PV - ' /�.Ur� in the
infinity norm,

�����[ ��� � d[ 	 � ' �  ��� � @�� `
�
	�� C�4	 c S� % 	 ` ��� �

F�� d
erfc
	 n�c` � �

/ ������[ ��� � 9[ 	 � ' �  ��� � ; (8)
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There are two interesting facts to note about this theorem: first the convergence rate is inde-
pendent of the number of subdomains, there is no dependence on a parameter � related to
the number of subdomains as in Theorem 2. second the superlinear convergence rate is faster
than the superlinear convergence rate found for classical waveform relaxation algorithms. The
classical result gives a contraction governed by a factorial [MN87] with asymptotic expansion

	��,/
 d
n�� ��� ^

� `�� �	� 	 n � h �
� � d�� �4dXf
� h f�� � ��� � � ��d ���� � ��d�� � � d�� �4d

whereas the new result (8) gives a contraction with asymptotic expansion

� dh erfc
	 � � n
� /

o��� � /� � � � �	� 	 n � � ���� ���
��� d � f�� � ��� � ��d � � �4d � � � d � ;

Numerical Experiments

We perform all our experiments on the two dimensional model problem

� �
���
� ��� � ����� ! � ��# � ' 	"! h '#! � �) V -�'a^aW T*V -�'"^gW ' � ) V - ' / W ; (9)

The convection is chosen to be diagonal, � ���O	 ^l'a^  and the other parameters are # � - and

� � ^ % ^"- . We decompose the domain into smaller squares with equal size and overlap both
in the

! h and
! � direction and simulate directly the error equations. In space we discretize

using central finite differences and in time using backward Euler. To see linear convergence
the problem is integrated over a relatively long time interval � ) V -�'"^"- W and to see superlinear
convergence the problem is integrated over a shorter time interval � )�V - 'F-�;%$ W . Our analysis
showed that for both the linear and superlinear convergence the convergence rate depends on
the size of the overlap as usual. Increasing the overlap, the error decays faster, as shown in
Figure 1 on the left for a long time interval and on the right for a short time interval. We usedc ��- ;L^ and c �p-�; -'& for the overlap parameter and

`�T `
subdomains.

Theorem 2 shows for the linear convergence regime that the decay of the error depends
on the number of subdomains; the parameter � appears in equation (7), which is similar to
the results found for the heat equation in [GS98]. Thus for a long time interval, the over-
lapping Schwarz waveform relaxation algorithm does not scale with respect to the number
of subdomains. This is illustrated in Figure 2 on the left for � � 	 ^7'a^  , # �?- , � � ^ % `l- ,
overlap parameter c � - ; -'( and � ) V -�')$ W . Note how initially the algorithm does not ex-
hibit convergence, the information needs to be propagated first from the domains connected
to the boundary towards the interior, as we saw in the analysis. In the superlinear conver-
gence regime however for the same problem parameters and � ) V -�'F- ;L^aW the convergence rate
is independent of the number of subdomains, as stated in Theorem 3. This is confirmed in
the numerical experiments shown in Figure 2 on the right and corresponds to the result found
earlier for the heat equation in [GZ97]. Note how the error reduction in the superlinear con-
vergence regime is considerably faster than the one in the linear convergence regime. Note
also that the error reduction in the superlinear convergence regime is considerably faster than
the one in the linear convergence regime.
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Figure 1: Two dimensional problem with four subdomains and different size of overlap for
a long time interval on the left, where the algorithm is in the linear convergence regime and
for a short time interval on the right, where the algorithm is in the superlinear convergence
regime.

Conclusions

We have shown that the overlapping Schwarz waveform relaxation algorithm for general lin-
ear convection reaction diffusion equations with very general domain decomposition exhibits
two different types of convergence regimes: on unbounded time intervals the algorithm con-
verges at least at a linear rate depending on the size of the overlap, the problem parameters
and the number of subdomains. On bounded time intervals however the convergence is su-
perlinear. The convergence rate depends on the overlap and the diffusion coefficient, but is
independent of the number of subdomains and the other problem parameters.

The main interest of the algorithm are the following three points:

1. The original problem is solved on subdomains in space-time and thus one can refine
both in space and time independently on each subdomain.

2. Communication is not necessary at each time step, each processor continues to solve
over a whole time window before it needs to communicate.

3. Theorem 3 shows that algorithm converges superlinearly and independently of the num-
ber of subdomains, so there is no coarse grid needed for scalability.

For a given hardware configuration, it remains to find the best length of time windows so that
the convergence speed of the algorithm is balanced with the communication cost. Longer time
windows lead to slower convergence, but they require less often communication which makes
them faster.

References

[Bjø95]Morten Bjørhus. On Domain Decomposition, Subdomain Iteration and Waveform
Relaxation. PhD thesis, University of Trondheim, Norway, 1995.



OVERLAPPING SCHWARZ WAVEFORM RELAXATION 233

0 2 4 6 8 10 12 14 16 18 20
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

iteration

m
ax

im
um

 e
rr

or

2x2 subdomains
3x3 subdomains
4x4 subdomains
6x6 subdomains

0 2 4 6 8 10 12 14 16 18 20
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

iteration

m
ax

im
um

 e
rr

or

2x2 subdomains
3x3 subdomains
4x4 subdomains
6x6 subdomains

Figure 2: The effect of the number of subdomains on the algorithm. On the left for long
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on the right for short time intervals where the superlinear convergence rate is independent of
the number of subdomains.
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