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13 Discontinuous Hybrid Formulation turned to Domain
Decomposition

A. Agouzal!, N. Debit?

I ntroduction

We consider a macro hybrid primal finite element formulation turned to domain decomposi-
tion which produces a completely discontinuous approximation. The key point of the frame-
work is an analogous of an argument already used in stabilization techniques for DDM with
non matching grids, [BFMR97]. The resulting approximation is conforming and the conver-
gence is established with no inspection of consistency error, nor inf-sup condition.

The finite element approximation of the second order elliptic equations has been investi-
gated using several different approaches (see e.g. [Cia78] and the references therein). Previ-
ous analysis in primal formulation of these problems has been done for three types of approxi-
mation schemes : one which produces a continuous piecewise polynomial approximation, one
which produces a piecewise polynomial approximation with a fixed number of continuous mo-
ments accross interelement edges (nonconforming approximation) and one which produces
completely discontinuous polynomial approximation (interior penalty methods) [Arn82]. All
these finite element methods have optimal order of convergence, assuming sufficient regular-
ity. More recently, there has been growing interest in methods which can produce a completely
discontinuous approximation for diffusion problems [JO98]. The motivation for developing
these methods was the flexiblity afforded by discontinuous finite element spaces. Another
advantage that has recently become apparent is the application of domain decomposition al-
gorithms for the solution of the discrete solution.

1 Macro hybrid formulation for the model problem

Let ©2 be a simply connected polygonal domain of R? , d = 2 or 3, and T its boundary. Let us
perform a non overlaping domain decomposition on €2,

Qiﬂﬂjzw, 1<i#j<I.
We assume that each subdomain €2; is polygonal and set the following notations
Fij :8Qiﬂaﬂj, for ISZ;&.]SI,

VZG{].,,I},FZ:@Qz\F
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and
M={m=(i,j), 1 <i#j<I, suchthat meas(0Q; N 0R;) # 0}.

We consider, for simplicity, the Dirichlet problem for the Laplace equation :
—Au = finQ, u=00n00 =T. 1)

where f € L*(Q).
First, we introduce the following functional spaces

W; = {U € H! (Q,), 88: € LQ(Fz) and V|oQ; T = 0if meas(@Q,- N F) ;é 0}
where Ou is the outward normal derivative of v to the boundary T';,7 = 1,...,1.
Uz
I
w = [[wi
i=1

S={¢=(¢i =vpr)i<i<r Withv € H ()},
For (@, ¢), (0,1)) € (W x S)2, we define the product bilinear form

I
Bllisoh @) =3 [ VusSusdo = < it o, @
+ < g:;z;uz — ¢i >or; + 0i(ui — di,vi — Yi)or, (3)
(4)
Fori = 1,...,1I, let T, be a regular triangulation of the subdomain §2; with triangular

(d = 2) or tetrahedral (d = 3) finite elements whose diameters are less or equal than h;
and k; be a positive integer. We assume that the triangulation is uniformily regular near T';.
We introduce the standard finite element space

Vhi = {Uhi € CO(QZ)a\VlT € ﬂbiavhi T € Pki (T)7 Vigo.nr = 0if meas(aﬂi N F) 7é 0}

and we set .
Wi =[] V.-

i=1

Remark that V},, is a subspace of W;, and so W isa subspace of w.

Let us now proceed with the squeleton; For all m = (i,5) € M, let Ty, be a regular
subdivision (d = 2) or triangulation (d = 3) of I'; ; by finite elements whose diameters are
less or equal than h,,, and k,,, be a positive integer. We introduce related finite element space

Sh,. = {tn,, € C°(T;;) such thatVT € Th,., ¥n,, € P, (T)}
and we set the global related space

Sh=A{on = (¢i)i<i<r € S;Vm = (i,5) € M, ¢ir,; € Shpns
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and ¢;|p,np = 0 if meas(I’; N T) # 0}

The discrete problem states then as,

Find (s, ¢n) € Wi x Sy, such that (5)
B((ith, én), (0n, ¥n)) / fondz, V(on,1n) € Wy x Sh. (6)
(7

The functional space W x S is equipped with the norm

I
V(o,9) € W x S, [I(0,9)> =D _(vilf o, + dillvi = illg r,)-
=1

In the sequel, C' is a generic constant independent of 4 = (hi)L_; and 6= (6:)L,.

Lemma The bilinear form B is continuous and coercive with respect to the W x S normin
the following sense,

Y(in,%n) € Wi x Shy, B((0n,¢n), (0n, Y1) = || (0n, ¥)l1%;

V((9,9), (tin, Cn)) € (W x S) x (Wh x Sh),
B(((9,9), (tin, Cn)) < Cll(in, Cu)II{II((@ ||2+Z . ”21), 6.1 to ”Uz ¥illg s }2.

¢

If w is the weak solution of the model problem (1) and ¢ = (¢; = ujpo,)i—;. such that
U= (uz = U|Qi)l[:1 € W, then,

Y (i, bn) € Wi x Sk, B((i, ¢), (Wbn,¥n)) Z/ fwpdz.

It is a trivial consequence of Lax-Milgram lemma that the discrete problem (5) has the unique

solution (s, ¢n) € Wi, x Si. Moreover by standard arguments and for §; = h—,z‘ =1,...,1,
i

l(@—in,d—gn)l| <C  inf  {[[((4—"n,— QJP+§:hH - |brv
(0n,Cn)EWR XS

The main result states then as,

Theorem Let (ap, ¢p) € W, x S be the solution of discrete problem (2), u be the weak
solution of the model problemand ¢ = (¢; := u|s, )1<i<r € S. Weassumethati = (u; :=
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<o;<ki+1,i=1,.,I andforalm= (i,j) € M,

bm = dijr,, € H™™(Tsj), 1 <oy < kp, + 1. Assume moreover that
Ym = (’L,J) eM, h,<C min(hi,hj),

and

Then the following estimate holds,

I
lla =, ¢ — dnl> < CO R il 0, + > B2 Yigml, r,, )

i=1 m=(i,j)eEM

¢

The proof of the theorem requires the following technical lemma, given as an appendix.
Lemma LetT be aregular triangle (tetrahedron), and e an edge (face) of T. For all v €
HYo(T)with1/2 < o < 1, we have

L Ov -
hillg, llo.e < C(hz|olivor + [vli,7).
e

Proof As usually, let 7' be a reference triangle (tetrahedron), and F'(#) = B% + b, the affine
application defined from 7" onto T" such that F'(T') = T'. First, we have

ov

155,

llo.e < [IVollo,e;

then
Ov meas(é)

- e <
I v, lo.e < (meas(e)
withd =vo Fandé = F~1(e).
Using the trace theorem applied to V4 on é, we obtain

1 _ ~
)z 1B IVollo.é

1 61} _ N N
meas(e)? || s—lo.e < CIIB~ (|01, 4 + 0], 4 4.5)-
ov,
Then
1 81} _ _1 o —1\s
meas(e) || 5"~ llo.. < Cl|B Y1 1Bl |detB| 2 (jvo]1,r + | BI|I”(I|B||* |detB|)* |v|i40,7)
e

withs =0ifeo=1and s = 1 otherwise.
Since T is regular, we obtain the required inequality,

1 Ov
h%lla—yllo,e < C(h7|vliter + [v]1,T)-
e
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The physical model Two dimensional related model
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2 Application to heterogeneous domain decomposition

Let us turn now to the motivation of this study. This methodology has been first investigated
for the treatmant of models of elastic multi-structures. Consider the junction of two elastic
bodies Q' and 02, with e << 1. In Q2 the model is a 2-dimensional model derived from a
thin 3-dimensional linearly elastic plate using variational methods [SA99]. In 2D the related
model reduces to a formulation on the union of a macro-element !, a patch element . and
a one-dimensional element A2. Internal domain decomposition can be performed on each
element.

Since the methodology is intended for PDEs arising from general elastic multi-structures
models, we present it here for the Laplace equation.

We consider the two dimensional (a section) global model problem,

([ —Au¢ = f inQ'UQ?
u¢® = 0 only
€
) %1; = 0 onl\=.
u = 0 onl§
0 _ ) ond02\ {%, UTS
L an - on € \ { € 0}

where f is no longer dependent on the y-variable in the domain Q2. The asymptotic problem
(the strategy) states as

~Au = f inQ! .
u = 0 onTy { —w = g onA? = (071)
1 —
0u _ o onT, wl) =0

an
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Uy = w(0)
wo = 2 [ 4

€ Se 671

Let us set the adapted hybrid functional framework : the space
. ou
_ 1 1 1 2y . — —
W ={(u,w) € H () x H(A"); uw =0, w(1) =0, 6_n|26
equipped with the norm [|(u, w)||3 = (|ul} g1 + €lwli o2 + 6[lu — w(0)[I5 5.

and the bilinear form Bs((u, w), (v, 2)) :/ VuVudzr + € / w' 2 dx —
Ql

AZ
g—Z(v ~ 2(0)) do + /E S—Z(u — w(0)) do + 5/ (1 — w(0)) (v — 2(0)) do

ze .
And the adapted hybrid formulation states then as

€ L*(Z)},

€

Find (u,w) € W such that (8)
Bs((u,w), (v,2)) = . fvdz + ¢ /A2 gzdo Y(v,z) €W 9)

Since w € H?(A?), ifu € H°t1(Q'), 0 < o < 1, the analysis carried in this context
with minor adaptation for a standard P;- finite element discretization as performed in the

. . 1 . . .
previous section and 6 = o gives the following error estimate,
1

l(w = wn,w —wr)lls < C (M? |uli1o,01 + ho [w]2a2)

with the constant C' independent of e.

Since w is the opproximation of u¢ on 2, it is clear that if the error

[lw(0) — u<(0,.))[l1 /2,2 is small, then the error [u — u¢|; o1 is also small. This is due to the
fact that e = u — u® is the weak solution of the following elliptic equation

—Ae = 0 in Q!
e = 0 on [y
ge _ 0 onl{\ X
on 1 €
e = w(0)—u0,.) onX

More precisely, we have
lu —ufl,on < Cllw(0) —u*(0, N2z,

where C'is a constant independent of .
The following plots of the solution on the one dimensional subdomain A2 illustrate this re-
mark.



DISCONTINUOUS HYBRID FORMULATION 157
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Figure 1: Plots of the solution w and u. (., 0)for different values of €, on subdomain A2.
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