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Introduction

We report on our recent efforts concerning the construction of nonoverlappingadditive Schwarz
type algorithms for the solution of the system of Euler equations for compressible flows. We
are specifically concerned with the construction of appropriate interface conditions that im-
prove the convergence rate of the Schwarz algorithm. In Quarteroni and Stolcis[QS95], these
transmission conditions are Dirichlet conditions for the characteristic variables corresponding
to incoming waves. Such conditions can be qualified as “classical interface conditions” by
opposition to more sophisticated formulations such as the “optimized interface conditions ”
studied in [JNR98] for an advection-diffusion equation. Here, we are interested in extending
the principle of optimized interface conditions to the solution of the Euler equations. For
this purpose, general type interface operators are introduced in the formulation of the addi-
tive Schwarz type algorithm. A convergence analysis is performed in the continuous case
by considering the linearized Euler equations. An interface iteration is deduced from the
formulation of the Schwarz algorithm in the Fourier space. In [DLN00]-[JNR01], such a
convergence analysis has been performed by applying a classical diagonalization method to
the operator matrix involved in the problem. In this study, we apply the Smith factorization
theory[Gan66] in order to deduce a general form of the interface conditions. Then, the goal is
to optimize the convergence rate with respect to certain parameters entering in the definition
of these interface conditions. The analysis is limited to a two-subdomain decomposition in
vertical strips.

Domain decomposition for the Euler equations

Mathematical model

The conservative form of the Euler equations is given by :

�������� �	��

�������� � �������������� ��� with
� ������� �"!# �%$'&�( (1)

where
� � �)� !� � �*� is the vector of conservative variables; !� and

�
respectively denote the

spatial and temporal variables while !+ �,��� � �-� 
 ����� � � � �,���.� ( is the conservative flux
whose components are given by :
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In the above expressions, � is the density, !# � � ���
� � ( is the velocity vector, $ is the total
energy per unit of volume and � is the pressure. The pressure is deduced from the other

variables using the state equation for a perfect gas � � ������� � � $ � �
� ��� !# �

� �
where

�
is the ratio of specific heats (

� � ��� �
for the air). Under the hypothesis that the solution is

regular one can also write a nonconservative (or quasi-linear) equivalent form of Eq. (1) :

���������� 

�,��� �	���� ��� � �,��� ������ � � (2)

where the Jacobian matrices of the flux vectors
� 
��,���

and
� � �,���

(see Dolean[Dol01] for
more details). Suppose that we first proceed to an integration in time of (1) using a backward
Euler implicit scheme involving a linearization of the flux functions. This operation results in
the linearized system :

� ��� ��� Id� � � ��� 
 � ���� ��� � � ���� ��! (3)

where
�"���$#&% 
 � �'#

where
�'#(% 
 � �)�-� � �*) � � �
� �*�

, and � 
 (respectively � � ) is a
shorthand for � 
 �,�'#��

(respectively � �����'# �
).

In the following we are interested in solving the problem (3), associated to a suitable set of
boundary conditions, by a nonoverlapping additive Schwarz type algorithm. An algorithm
based on transmission conditions at subdomain interfaces that consist in Dirichlet conditions
for the characteristic variables corresponding to incoming waves (following a strategy already
studied by Quarteroni and Stolcis[QS95]) has been considered in Dolean and Lanteri[DL99].
The main originality of this preliminary study is that in the discrete case the interface con-
ditions are expressed in terms of upwind conservative normal fluxes computed using the ap-
proximate Riemann solver of Roe[Roe81]. This choice is before all motivated by the starting
point of our study which was given by a flow solver based on a combined finite element/finite
volume formulation on unstructured triangular meshes for the spatial discretization. Time
integration of the resulting semi-discrete equations is obtained using a linearized backward
Euler implicit scheme. As a result, each pseudo time step requires the solution of a sparse
linear system for the flow variables, which is the discrete counterpart of (3).

The two-subdomain case

We consider the case of a two-subdomain decomposition with + 
 ��,.-0/1, � + � �0, % /2,
separated by the interface

� � � ; let !) � �
� � � � denote the normal vector at the interface� � � , directed from + 
 to + � . Let :

3 # � !# � !)4 � � 4 and
365 � !# � !�4 � � 4

respectively denote the normal and the tangential Mach number at the interface
� � � .

We also have that, at any point of + 
 7 + � , the Mach number can be expressed as
3 �
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. Let ��� � )�� � 
 � )�� � � for any vector !) � �*)�� � )��
� ( . Then,

it is well known (from the hyperbolic nature of the system of Euler equations) that the matrix
� � is diagonalizable with real eigenvalues :

��� � �
	�� �,���
� � ����� 	 - 
� �,���
with

� � ����� � diag � !# � !)�� 4 � !# � !) � !# � !) � !# � !) � 4 &
Let

�������� denote the initial appoximation of the solution in subdomain + � . A general formula-

tion of an additive Schwarz type algorithm for computing
����� % 
 �� from

�������� (where � defines
the iteration of the Schwarz algorithm) writes as :

+ 
���� � � � ��� % 
 �
 � � ! 
 for
��� �� 
 � � ��� % 
 �
 � � � 
 ��� ������ �

for
� � �

+ � � � � � � ��� % 
 �� � � ! � for
�� �� � � � ��� % 
 �� � � � � ��� ������ �

for
� � �

(4)

where the
� 
"! �

’s are interface operators. Natural (also qualified as “ classical ”) interface
conditions resulting from the variational formulation of the initial and boundary value problem
associated to system (1) are given by :� 
 � � -� �
	#� � -� 	 - 
� and

� 
 ��� %� �$	�� � %� 	 - 
� (5)

In the particular case !) � � � � � � we have that 	 ����� � 	�� �,���
with :

	 ����� ��%&&&&'
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� � �
�

� �
� � �

�
� � 4 ��� 4 ��1� �

(�))))*
By considering the approach adopted by Kroner[Kro91], we can use the matrix 	 �,���

to
obtain a symmetrized form of the system (3) :+� � +� ��� Id� � +� � +� 
 � +���� � +� � � +������ +! (6)

where
+� �$	 - 
 � and :+� 
 ����� � 	 - 
 �,��� � 
��,��� 	 �,��� � diag

� � � 4 � � � � � ��� 4 �+� ������� � 	 - 
 �,��� � � �,��� 	 �,���
is a symmetric matix
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Smith factorization

The first step consists in applying a Laplace transform in the
�

direction (the Laplace variable
is denoted by

�
) and a Fourier transform in the

�
direction (the Fourier variable is denoted

by � ) to system (6). The transformed system writes � � � � � ���� � �! . The expression of
the transformed matrix � � � � � � is given in Dolean[Dol01]. An important result of the Smith
factorization theory[Gan66] is that the polynomial matrix � � � � � � can be factorized as :

� � � � � � ��$ � � � � �����
� � � � �*� � � � � �
where

�	� � � � � � represents the Smith diagonal form of � � � � � � ; $ � � � � � (respectively
� � � � � � )

is a permutation matrix that operates on the lines (respectively the columns) of � � � � � � . In
the present case, we obtain :

�
� � � � � � � %&&'
� � � �� � � �� ��� � � � � � �� � � � � � � � � � � � � � �

( ))* (7)

where : � � � � � � � � �'� 4 � � �
� � � � � � � ��
 ��� � � � � � 4 � � � � ��
 ��� � � � �

� � � � � � � � ��� ��
 ��� � � � (8)

and :

� � � � � � � %&&'

 � � � �� ��� � � ��� ���2� � ��
 �
� ��� � ����� �� � � �

( ))* (9)

Smith form of the Schwarz algorithm

Let
� � ��� 
 � � � � � � � ��� � ( denote the vector of conservative variables and

� � �'�
the corresponding vector of Smith variables. The equations within each subdomain can be
rewritten as :

�
� � ���!��

�������� �������


 � 
 � � � � ��� � ��� � �! 
� � � � � � � �!� � � � �*�1� � ��
 � ��� �"�! �
� �� � � � �-� �.� � � � � ��� � � � ���! �

� � �� � �#�! �
(10)

Because of the structure of the matrix
�	�

it is sufficient to work with two Smith variables,� �
and

�$�
, the other ones being obtained from the relations (11). Let

� $ ������ � � ��� � ���������� �
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� � � � ��� � � � � 
 � � �� � � �� � � �� � ( be the error vector in the subdomain + � after the iteration �
of the Schwarz algorithm. Using the change of variables $ � � $ , the Schwarz algorithm is
given by :

+ 
 � �� � � � � �� 
� � � � % 
 � 	 and � � � � �� 
� � ��� % 
 � 	 for
� � �� � $ ��� % 
 �
 ��� � � � $ ������ ���

for
� � � and

� � � � 
 � � �
+ � � �� � � � � �� � � � � � % 
 � 	 and � � � � �� �� � ��� % 
 � 	 for

�  �� � $ ��� % 
 �� � � � � � $ �����
 � �
for

� � � and
� � � � 
 �  �

(11)

where
� � � � � � � � is a

� / � matrix corresponding to the last two columns of the
� / � matrix	 - 
 �,���*� - 
 � � � � � . From now, we assume that the flow in subsonic i.e.

3 � �
. By taking

into account the sign of the eigenvalues we obtain :

+ 
������ 
.

� �� 
� � ��� % 
 � � � 
 
 � �� �� � ����� � � 
 � � �� � � � �����
+ � � ����� ����

� � 

� �� �� � ��� % 
 � � � � ��� �� � � � ��� % 
 � � � � 
 � �� 
� � � � �
� � 

� �� �� � ��� % 
 � � � � ��� �� � � � ��� % 
 � � � � 
 � �� 
� � � � �
� � 
 � �� �� � ��� % 
 � � � � � � �� � � � ��� % 
 � � � � 
 � �� 
� � � � �

(12)

On the other hand, the local solutions are explicitly given by :

�� 
� ��� 
 �
	���
 � � �� �� ��� � �
	
� � ��� � �
	��
� � � �� � � ��� � �
	
� � (13)

where
���

and
��� 
�� � are the eigenvalues of the Fourier symbols

� �
and

� � 
�� � that factorize
the operators � and

�
i.e. � � � � � � �

and
� � �,� � � � � 
 � �-� � � � � � � .

Generalized interface conditions

Using the relation
� �� � � � � � % 
 � � � � 


� � � � � �� 
� � ����� � � �� �� � ��� % 
 � & we can rewrite the interface itera-

tions (12) as:

+ 
�� � � 
.
 � �.� � �� 
� � ��� % 
 � � � � 
.
 � �.� � � � 
 � 
*��� � �� �� � ����� � � � 
 � 
 � � �� 
� � ��� - 
 �
+ ��� �� � � � � 
 � � � � � � 
 � � � � � �� �� � ��� % 
 � � � � � 
 � � � � � � 
 � � � � � �� 
� � ������ � � 
 � � � � � � 
 � � ��� � �� �� � ��� % 
 � � � � � 
 � � � � � � 
 � � ��� � �� 
� � ����� (14)

In order to obtain a general form of the iterations we introduce the operators
� � �6� � � � � � �� �� � � � � � � ��� � � � � �%� � � � and we consider the Schwarz algorithm :



458 DOLEAN, LANTERI, NATAF

+ 
 � �� � � � � ��� % 
 �
 � � � for
��� �� 
 � � ��� % 
 �
 � � � � 
 � � � � � � ������ � � � � � � ��� - 
 �
 �

for
� � �

+ � � �� � � � � ��� % 
 �� � � � for
�  �� ��! � � � ��� % 
 �� � � � � ! � � � �����
 �

for
� � �

(15)

where � � � � � � � � � � � � � � � � � are polynomials in � � . Then, our strategy consists in several steps
(see Dolean[Dol01] for more details). First, we derive a new form of the interface conditions
by generalizing the expressions of � � � � � � � � � � � ��� � � � � . Second, we construct the interface
operator

�
. Finally, we retrieve the interface conditions in physical variables by using the

matricial relation
� � � � � - 
 � . The interface conditions in physical variables are obtain

from the the matrix
�

that generalizes the matrix 	 - 
 :

� �,��� �
%&&&&&&&&&&'

� � �
� � ��

� � � � � � ��� 4 �
4 � � � � �� �

� � � � �
4 � �

� � ��� � �
�

� � ��� � � � � 4 � � � � � � 4 � � �� � 4 � � � � � � ��� � � � �� � 4 � � �
� � 
 � �.� � � � �
� � 
 � � � � � ���

( ))))))))))*
with :

��������������������� ��������������������

� � 
 � � �
� � � �'� � 
 � � � ��� 4 � � � � � � �.� � � � � � 
 �

� � 4 �
� � � � �

� � � � � 
 � � � � � 4 � � � � 4 � 4 ��� � � � � � � � �.� � � � � � 
 �
� � 4 � � 4 � � �

� � � � �
� � � � � 
 � � � � 4 � � � � 4 � � � � � � �*� � � � � � 
 �

� � 4 � � 4 � � �
� � 
 � 4 � � � � � � � � � � � � � � � �

�
� � � � � � ��� 4 � � 4 � � � � � � � � � � � � � � � � �

� � 4 � � �
� ��� � � 4 � � � � � � ��� � � � � � 4

4 � �
In Dolean[Dol01] simple interface conditions (without derivatives) are derived from the ex-
pression of the convergence rate associated to the iterations (15). These conditions are ob-
tained by setting � � � �

and � � � � � . This results in interface conditions that depend on
the parameter � only.
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Table 1: Nonoverlapping additive Schwarz type algorithm
Classical interface conditions versus generalized interface conditions

3 # OPT0 OPT1
3 � OPT0 OPT1

0.1 and
3 5 � � � � 20 20 0.3 and

3 5 � � � � 24 19
0.6 and

3 5 � � � � 27 17 0.1 and
3 5 � � � � 24 21

0.3 and
3 5 � � � � 24 28 0.6 and

3 5 � � � � 32 18
0.6 and

3 5 � � ��� 25 21 0.8 and
3 5 � � ��� 42 21

Numerical results

Space and time discretization methods

The spatial discretization method adopted here combines the following elements (see Dolean
and Lanteri[DL99] for more details) : (1) a finite volume formulation on triangular meshes
together with upwind schemes for the discretization of the convective fluxes; (2) an exten-
sion to second order accuracy that relies on the MUSCL (Monotonic Upstream Schemes for
Conservation Laws) introduced by van Leer[Lee79] and extended to unstructured triangular
meshes by Fezoui and Stoufflet[FS89]. Time integration of the resulting semi-discrete equa-
tions is obtained using a linearized backward Euler implicit scheme[FS89]. As a result, each
pseudo time step requires the solution of a sparse linear system for the flow variables. In this
study, a nonoverlapping domain decomposition algorithm is used for advancing the solution
at each implicit time step.

Numerical results

We present here a set of preliminary results of numerical experiments that are concerned with
the evaluation of the influence of the interface conditions on the convergence of the nonover-
lapping additive Schwarz type algorithm of the form (4). The computational domain is given
by the rectangle � � � ��� / � � � � � . The numerical investigation is limited to the resolution of
the linear system resulting from the first implicit time step using a Courant number CFL=100.
A slipping condition ( !# � !) � � ) is applied on the lower (

� � � ) and upper (
� � �

) walls; an
inflow (respectively outflow) condition is applied on the left

� � � (respectively right
� � � � )

boundary. Table 1 summarizes the number of Schwarz iterations required to reduce the ini-
tial linear residual by a factor

� � - 
 � for different values of the reference Mach number. The
underlying triangular mesh is a regular one deduced from a finite difference grid containing
4000 nodes (

� � � / � � ). In this table, OPT0 stands for the classical interface conditions while
OPT1 corresponds to the algorithm based on the generalized interface conditions.

Conclusions

In this work we were interested in the acceleration of the convergence of a nonoverlapping
additive Schwarz type algorithm by modifying the transmission conditions applied to the sub-
domain interfaces. We built generalized zero order interface conditions using Smith theory
of diagonalizing polynomial matrices. The numerical experiments confirmed at least qualita-
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tively the behaviour in accordance with the theory even if from the discrete point of view we
couldn’t reproduce identically the results obtained in the continuous case. The preliminary
results are very encouraging as the lead to a very good convergence rate for certain Mach
numbers.
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