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36 Scalabilities of FETI for variational inequalities and
contact shape optimization
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Introduction

We review our work on development of an efficient algorithm for numerical solution of vari-
ational inequalities and their application to the solution of multi-body contact shape opti-
mization problems solved by the gradient methods. The method presented exploits optimal
features of the linear FETI domain decomposition method with the natural coarse grid and
a special structure of quadratic programming problems arising in dual formulation of the
state problem. Results of numerical experiments are reported that document both numeri-
cal and parallel scalability of the algorithm for the solution of a model variational inequality
and illustrate its efficiency in the solution of a contact shape optimization problem with the
semi-analytic sensitivity analysis.

Following [DFS98, DGS00a, DGS00b], we start our exposition by describing the dis-
cretized variational inequality as a convex quadratic programming (QP) problem with a block
diagonal stiffness matrix and general equality and inequality constraints. Then we show
that the difficulties arising from general inequality constraints and possible semi-definiteness
can be essentially reduced by the application of the duality theory. The matrix of the dual
quadratic form turns out to be positive definite with a spectrum that is more favorably dis-
tributed for application of the conjugate gradient based methods than its primal counterpart.
The performance of the method can be further improved by means of the natural coarse
space projectors[FMR94]. The algorithm and the corresponding theoretical results are then
reviewed in Section 36.

In Section 36, we show that the algorithm complies well with the semi-analytic method
[HN96, DVR01] for evaluation of the gradients of the cost function that are necessary for im-
plementation of the feasible direction method. In particular, it turns out that the gradient may
be evaluated with only one decomposition of the stiffness matrix, regardless of the number of
the design variables.

The algorithm has been implemented by means of PETSc [BGMS97] package on SP2 for
the solution of a model problem. The results of numerical experiments indicate both numerical
and parallel scalability of the algorithm. For solution of 2D contact and contact shape opti-
mization problems, the algorithm has been implemented into the system ODESSY [RKO91]
developed at the Institute of Mechanical Engineering of the Aalborg University. Reported
numerical experiments indicate again high performance of the algorithm in the solution of
the contact shape optimization problems. Let us recall that interesting results concerning nu-
merical scalabity of a different algorithm for variational inequalities can be found in Schöberl
[Sch98].
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Discretized variational inequality and duality

Let
� �

denote a closed convex subset of a Sobolev space
� �

defined on a domain � in
� �����
	��

� ��
with sufficiently smooth boundary � , and consider a problem to find ��� � � so that

��� � ����� �
����� � ��� ��� for all
� � � ��� (1)

where � and � are a symmetric positive semidefinite bilinear form and a linear functional, re-
spectively. We restrict our attention to problems (1) arising from discretization of free bound-
ary elliptic problems [Glo83] with a spatial domain � comprising subdomains �! �#"$"#"
� �&% .
An important special case is a problem to find an equilibrium of a system of elastic bodies in
contact, possibly with auxiliary domain decomposition [DGS00b].

The finite element discretization of � � �' )( "$"#" (��&% with a suitable numbering of nodes
results in the QP problem to find

*,+.-0/� ��1 � � �32 14� subject to 5  ��687  
� 5�9#� � 7:9 (2)

with a symmetric block-diagonal matrix
�;�

diag � �  
�$"#"#"$�<�

% � of order = ,
2 � � �?> , an@BA = � @ 6C= full rank matrix 5 comprising blocks 5  and 5�9 , and similarly 7D� � �FE

comprising subvectors 7  and 7#9 . The diagonal blocks
�HG

that correspond to the subdomains
�
G �JIK� / �#"$"#":�ML are positive definite or semidefinite sparse matrices. Moreover, we assume

that the nodes are numbered in such a way that
�
 
�#"$"#":���

% are banded matrices that can be
effectively decomposed by the Cholesky factorization. If a contact problem of elasticity is
considered, then the vector

2
describes the nodal forces arising from the volume forces or

some other tractions, the matrix 5  and the vector 7  describe the linearized incremental non-
interpenetration conditions, and the matrix 5N9 with 7#9 �PO describe the ”gluing” conditions
on auxiliary interfaces. More details may be found in [DFS98].

Even though (2) is a standard convex QP problem, its numerical solution may be expen-
sive. The reasons are that

�
is typically ill-conditioned or singular, and that the feasible set

is so complex that projections onto it can hardly be effectively computed, so that it would be
very difficult to achieve fast identification of the contact interface and fast solution of auxil-
iary linear problems. These complications may be essentially reduced by applying the duality
theory of convex programming (e.g. [Dos95, DFS98]).

Following [DGS00a, DGS00b], let us first assume that the matrix
�

has a nontrivial null
space that may be used to define the natural coarse grid [FMR94]. The Lagrangian associated
with problem (2) is

Q � � ��R � � /� � 1 � � �S2 1 �NT R 1 � 5�� � 7$� � (3)

where the vector of multipliers comprises subvectors
R
 
�MR 9 that comply with the block struc-

ture of 5 , so that we can rewrite the problem (2) as the saddle point problem
U +V-)W �$X� � XR �ZY�[]\M^�_<^]`a_ Q �bX� � XR � � Y<[dceaf�gih +V-kjl Q � � �MR � " (4)

If we eliminate � from (4), we shall get the minimization problem

*,+.-nmN� R �oY " _ "pR
 �

O ` -)W � 1 � 2n� 5q1 R � �rO)� (5)
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where
�

denotes a matrix whose columns span the null space of
�

,
� �

denotes any matrix
that satisfies

�K� � � � �
, and

mN� R � � /� R 1 5 � � 5�1 R �3R 1 � 5 � � 2n� 7$� " (6)

Once the solution
XR

of (5) is obtained, the vector � that solves (4) can be evaluated by
means of explicit formulas that may be found in [Dos95, DFS98]. The Hessian of m is closely
related to that of the basic FETI method by Farhat and Roux, so that its spectrum is relatively
favorably distributed for application of the conjugate gradient method.

Even though problem (5) is much more suitable for computations than (2) and has been
used for efficient solution of contact problems [DFS98], further improvement may be achieved
by the natural coarse grid projectors of Farhat, Mandel and Roux [FMR94]. In this way, it
is even possible to achieve that the effective spectral condition number of the Hessian of the
Lagrangian involved in computations is bounded independently of both the penalty parameter
and the number of subdomains [DGS00b]. It does not follow that the resulting algorithm is
scalable as it is still necessary to find the active constraints of the solution.

If the stiffness matrix
�

is regular, than the same procedure leads to the dual problem

*,+.- mN� R �ZY " _ "pR � Od" (7)

Algorithm

The problem (7) comprises only bound constraints, so that efficient algorithms using projec-
tions and adaptive precision control [Dos97] may be used. To apply this algorithm also for
the problem (5), we shall use a variant of the augmented Lagrangian type algorithm proposed
by Conn, Gould and Toint [CGT91] for identification of stationary points for more general
problems. However, the algorithm that we describe here is modified in order to exploit the
specific structure of our problem. Main improvement is in a sense adaptive precision control
in Step 1.

To simplify our notation, let us denote � � 5 � � 5 1 ��� � � 1 5 1 , and
	 � � 1 2 ,

and let us introduce the augmented Lagrangian with the penalization parameter � and the
multiplier � for the equality constraints for problem (5) by

Q � R � � � �k� � /� R 1 � RH�SR 1 2 T�� 1 � ��Rn� 	 �4T /� ���	� ��RH�3	 �	� 9 "

If we denote by 
 � 
 � R4� � � � � the gradient of
Q

with respect to
R

, then the projected gradient

�� � 
� � R � � � �k� of

Q
at
R

is given component-wise by


 �� � 
 � j���� R ��� O �������� � ` -)W 
 �� � 
��� j���� R � � O ` -)W�� � �
with 
 �� � *N+V-4� 
 � ��O � , where

�
is the set of indices of constrained entries of

R
.

All the parameters that must be defined prior to the application of the algorithm are listed
in Step 0.

Algorithm 3.1. (Simple bound and equality constraints)

Step 0. Initialization of parameters
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Set
O ����� / , / ��� , � h � O , � h � O , � � O , � h � R h .

Step 1. Find
R��

so that � � 
�� � R	�k� � � � � � � �	�k6
� � � ��R�� � � .
Step 2. If �	� 
�� � R��d� � � � � � � � � ` -)W �	� ��R	� �	� are sufficiently small, then stop.

Step 3. � ��  � � � T � � ��R��
Step 4.

� 2 � � ��R	� �	� 6�� �
Step 4a. then � ���  

� � � , � ��  
� � � �

Step 4b. else � ���  
� � � � , � ���  

� � �
end if.

Step 5. Increase � and return to Step 1.

An implementation of Step 1 is carried out by the minimization of the augmented La-
grangian

Q
subject to

R � O by an efficient algorithm that can be found in [Dos97]. The pro-
posed algorithm has been proved [DFS01] to converge for any set of parameters that satisfy
the prescribed relations. Moreover, an estimate of the rate of convergence of the approxima-
tions of the Lagrange multipliers has been proved that does not have any term that accounts
for inexact solution of the bound constrained problems that are solved in Step 1, and it was
proved that the penalty parameter is uniformly bounded. These results give theoretical support
to Algorithm 3.1.

Discretized contact shape optimization problem

Let us now consider a contact shape optimization problem assuming for simplicity that the
bodies occupy in a reference configuration subdomains �! �$"#"$"
� �&% and that the shape of the
first region �  depends on a vector of design variables � , so that the energy functional will
have the form

� � � � � � � /� � 1 � � � � � �S2 1 � � � � � (8)

where the stiffness matrix
� � � � and possibly the vector of nodal forces

2 � � � depend on � .
The matrix 5 and the vector 7 now describe the linearized incremental conditions of non-
interpenetration so that they also depend on � and the solution � � � � of the contact problem
with the region �  � �  � � � satisfies

� � � � � ` ��� *,+V-�� � � � � � ��� �q��� � � ��� � (9)

where

� � � � � � ����5 � � � ��6�7 � � ��� "
We shall consider the contact shape optimization problem to find

*,+V-���� � � ��� � �� "! �ME � � (10)
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where � � � � is the cost functional that defines the cost function for design of body �F � � � . The
set of admissible design variables  ! �ME defines all feasible designs. For example, we can
consider the cost functional � � � � � � � � � � � � that defines the minimal compliance problem.
The set of admissible design parameters will be defined by

 "! �ME � � ��� 6 � 6�� � vol � � � � ��� 6 vol � � � O ����� � (11)

where
� � � are given vectors with non-negative entries that define bounds on the design vari-

ables, and vol(.) is a mapping that assigns to each domain its volume. It has been proved
that the minimal compliance problem has at least one solution and that the functional

� � � � � �
considered as a function of � is differentiable under reasonable assumptions [HN96].

If we want to exploit differentiability of problem (10), we must evaluate effectively partial
derivatives of � with respect to the design variables �  

�$"#"#"#� � � . Our experience shows that
the semi-analytic sensitivity analysis [HN96] is a method of choice. Let us denote by

�S�
� / �#"V"."V� @ � the set of indices of the Lagrange multipliers

R
,
�
%
� � � � � � 5 ��� � � � � � � � � �	 � � � ��� R � � � � � O � the set of indices that correspond to couples of nodes in strong contact,

and
�
	 � � � � � � 5 ��� � � � � � � � � � 	 � � � ��� R � � � � � O � the set of indices that correspond to

couples of nodes in weak contact. We have used the standard summing convention. Analysis
of the Karush-Kuhn-Tucker conditions [HN96] enables to evaluate the directional derivative
��� � � � � � in the direction � by solving the quadratic programming problem

*,+.-������������ � ������� ����� ������� ! � �"�#��� ��� /��$ 1 � � � � $ � $ 1 � 2 � � � � � � �3� � � � � � � � � � � T 5 � 1 � � � � � R � � �<� � (12)

where
� � � � � � � , 2 � � � � � � and 5%� � � � � � denote computable directional derivatives of the

stiffness matrix, traction vector and the constraint matrix, respectively. Matrices 5 	 � � �
and 5 % � � � are formed by the rows of the matrix 5 � � � with the indices that belong to

�&	
and

�
% , respectively. Similarly, the vectors

	�	 � � � � � and
	
% � �
� � � are formed by the en-

tries of
	 � � � � � � � 5%� � � � � � � � � � with indices in

�'	
and

�
% , respectively. Solving (12) for� �)( � � � � / �#"V"V".� @ , where

( � are the standard unit vectors, we evaluate the gradient of the
state problem. Denoting *2 � � � � � � 2 � � � � � � �S� � � � � � � � � � � T85%� 1 � � � � � R � � � , we can see
that the problem (12) has the same structure as the problem (2), so that we can rewrite (12)
into the dual form.

It turns out that the semi-analytic sensitivity analysis based on the dual formulation re-
quires only one assembly and decomposition of the stiffness matrix. More information may
be found in [HN96, VDR99, DVR01].

Numerical experiments

We have tested our algorithm on the solution of a simple model problem

Minimize + � �  � ��9$� � 9,
� !  

-/.1032
� 4�� � � 9 	 � � .5032 2 � � 	 �76

subject to �  �
Od�98 � � O and �  � /

�98 � 6��i9 � / �:8 � for
8 �<; Od� /'= �

where �  � � O)� / � An� Od� / � , � 9 � � / � � � An� O)� / � , 2 ��> �:8 � � �  for ��> �98 � � � O)� / � A ; Od"@?BAd� / � ,2 ��> �98 � � O for ��> �98 � � � O)� / � AS� Od��Od"@?BA � , 2 �C> �:8 � � � / for �C> �98 �'� � / � � � AS� O)�<Od" � A � and
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2 ��> �98 � �PO for ��> �98 �F� � / � � � A � O)" � Ak� / � . This problem is semicoercive due to the lack of
Dirichlet data on the boundary of � 9 .

The solution of our model problem may be interpreted as the displacement of two mem-
branes under the traction

2
. The left membrane is fixed on the left and the left edge of the

right membrane is not allowed to penetrate below the edge of the left membrane as indicated
in Figure 1a. The solution is unique because the right membrane is pressed down. More
details about this model problem including some other results may be found in [DGS00a].

The model problem was discretized by regular grids defined by the stepsize
� � / � =

with =�T / nodes in each direction per subdomain � � � � � / � � . Each subdomain � � was
decomposed into 5 A 5 identical rectangles with dimensions � � / � 5 . The solution of the
model problem discretized by � � / ��� and

� � / � /�� can be seen in Figure 1b.
The model problem was solved for

� � � / � � � � / � / ��� � / � � A � � / � A / � � � � � � � � � with
the stopping criterion

� � 
 � � R � � �<O � �	� 6 / O �	� � � 5 2 �	��` -)W � � ��R �	�k6 / O �
� �	� 	 �	� "
Both numerical and parallel scalabilities are demonstrated in Figure 2. Figure 2a demon-

strates the dependence of elapsed time on the number of processors. Let us point out that the
times were effected by the order and variety of used processors. Figure 2b then demonstrates
high degree of numerical scalability of our algorithm for variational inequalities. In particular,
the number of the conjugate gradient iterations ranged from 27 to 65 with only 54 iterations
for the largest problem. The primal dimension ranged from 8450 to 540800. To solve the
problem to the prescribed precision, it was necessary to identify about 350 active constraints
on the contact interface comprising 520 couples of nodes that might have come into contact.
The dual dimension was 14975.
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Figure 1: Model problem and its solution ����������������������

We have also tested our algorithm on the solution of a problem to find a shape of the
spanner in Figure 3a that minimizes the maximum of von Mizes stress. To this end, we have
implemented our algorithm into the system ODESSY developed at the Institute of Mechanical
Engineering of the Aalborg University [RKO91]. The problem has been discretized by the
finite element method using 2606 degrees of freedom with 46 couples of nodes that may get
in contact. The admissible shape of the spanner was restricted by the box constraints on the
design variables and by the upper bound on the volume. The initial and optimized designs are
displayed in Figures 3a and 3b together with the values of the cost function. To get the results,
we carried out 79 design steps.
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Figure 2: Parallel and numerical scalabilities
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Figure 3: Initial and optimized shape of the spanner
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For comparison, we attempted to solve the problem also by the commercial software AN-
SYS. It turned out that the implementation of our algorithm in ODESSY was considerably
more efficient. The analysis step in ODESSY required only 13 seconds, while it required 12
minutes to get a comparable result by ANSYS on the same computer. We were not able to
carry out the optimization in ANSYS.

Comments and conclusions

The FETI-based domain decomposition algorithms for the solution of coercive and semi-
coercive variational inequalities has been reviewed and tested. Presented results of solution
of a model variational inequality indicate both numerical and parallel scalability of the al-
gorithm. Development of the theory is in progress. Theoretical results published so far
[DGS00b] guarantee the convergence and robustness of the method. The method has been
applied to optimization of a spanner and the efficiency of the method has been confirmed also
by comparison with the commercial software. The salient feature of the algorithm in contact
shape optimization is the reduction in the costs in preparing domain decomposition based so-
lutions for related QP problems that appear in the dual formulation of the sensitivity analysis.
In particular, it turns out that for each design step, it is necessary to carry out the preparation
step only once regardless the number of the design variables. Further improvement may be
achieved by the application of the mixed finite element discretization [DHK00, WK01].

Acknowledgements

This research has been supported by the grants GA ČR 101/01/0538 and 105/99/129 and by
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[DFS98]Zdeněk Dostál, Ana Friedlander, and Sandra A. Santos. Solution of coercive and
semicoercive contact problems by FETI domain decomposition. Contemporary Math.,
218:82–93, 1998.
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[Dos97]Zdeněk Dostál. Box constrained quadratic programming with proportioning and pro-
jections. SIAM J. Opt., 7:871–887, 1997.
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