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37 An Algebraic Convergence Theory for Restricted
Additive and Multiplicative Schwarz Methods
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Introduction

In this contribution we use the algebraic representation recently developed for the classical
additive and multiplicative Schwarz methods in [FS99, BFNS01] to analyze the restrictive
additive Schwarz (RAS) and restrictive multiplicative Schwarz (RMS) methods; see [CS96,
CFS98, CS99, QV99].

RAS was introduced in [CS99] as an efficient alternative to the classical additive Schwarz
preconditioner. Practical experiments have proven RAS to be particularly attractive, because
it reduces communication time while maintaining the most desirable properties of the classical
Schwarz methods [CFS98, CS99]. RAS preconditioners are widely used in practice and are
the default preconditioner in the PETSc software package [BGMS97]. Similar savings in
communication time can be expected in the case of RMS; see [CS96]. In fact, we announce
here that we can prove that RMS is better than RAS, in the sense that the corresponding
iteration matrix has a smaller norm, for a certain weighted max norm.

Our results provide the theoretical underpinnings for the behavior of the RAS precondi-
tioners as observed in [CS99]. The theory we develop is not complete in the sense that we
do not get quantitative results (like mesh independence in the presence of a coarse grid, for
example). However, such results can be obtained indirectly by using some of the comparison
results of [FS01] and classical results for the usual Schwarz method.

Our approach is purely algebraic, and therefore our results apply to discretization of dif-
ferential equations as well as to algebraic additive Schwarz. We believe that the algebraic
tools used here and in [FS99, BFNS01] complement the usual analytic tools used for the anal-
ysis of Schwarz methods; see, e.g., the books [SBG96, QV99] and the extensive bibliography
therein.

One of the reasons why the algebraic approach presented here is a good alternative to the
classical approach is that the operators defining RAS and RMS are not orthogonal projections
(see [FS01]), and thus the usual theory as described, e.g., in [BM91] does not apply.

This paper is organized as follows. We start by giving algebraic representations of the
usual and the restricted additive Schwarz methods and we introduce the splittings associated
with each of the methods. Then, our convergence theorem for RAS, as well as results on the
effect of overlap on the quality of the preconditioner are presented. Finally, convergence of
RMS is shown, together with the comparison between RMS and RAS.

We note that using the same formulation described in this paper, several variants of RAS
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and RMS preconditioners can be analyzed, including the cases of inexact local solutions and
of weighted methods; see [FS01, NS01].

The algebraic representation

The ����� linear system is given as �����
	��
(1)

As in [CS99] we consider  nonoverlapping subspaces ����� ����� ��� � ����� �� which are spanned
by columns of the ����� identity � and which are then augmented to produce overlap. For a
precise definition, let � �! �� � ����� � �#" and let

� �%$&�('*) �+��� �
be a partition of � into  disjoint, non-empty subsets. For each of these sets �,��� � we consider
a nested sequence of larger sets �-�.� / with� ��� �10 � �.� )20 � ��� 3 ����� 0 � �! �� � ����� � �#" � (2)

so that we again have � �54 $ �6'*) �7�.� / for all values of 8 , but for 8�9;: the sets �-��� / are not
necessarily pairwise disjoint, i.e., we have introduced overlap. A common way to obtain the
sets �+��� / is to add those indices to �-��� � which correspond to nodes lying at distance 8 or less
from those nodes corresponding to �-�.� � in the (undirected) graph of

�
.

Let � ��� / �=< �7�.� / < denote the cardinality of the set �-��� / . For each nested sequence from
(2) we can find a permutation >?� on

 @� � ����� � �#" with the property that for all 8BAC: we have> �ED � ��� /GF �! �� � ����� � � �.� / " .
We now build � �.� / �H� matrices whose rows are precisely those rows I of the identity for

which IKJH� �.� / . Formally, such a matrix L �.� / can be expressed asL2�.� / ��M �N�.� / < O2P >?� (3)

with ����� / the identity on the � ��� / -space. Finally, we define the ����� weighting matricesQ ��� / � LSR�.� / LT�.� /VU � >+R�
W �N�.� / OO O=X >Y��Z
and the subspaces � �.� / �\[^]`_ba@c D Q �.� /�F �H� �d� � ����� �. �
Note the inclusion �e��� /Sf\�g�.� /ih for 8jAk8`l , and in particular ���.� /Sfk����� � for all 8jAk: .

We view the matrices LT�.� / as restriction operators and L R�.� / as prolongations. We can
identify the image of L R�.� / with the subspace � �.� / . For each subspace � ��� / we define a
restriction of the operator

�
on � �.� / as� �.� / � LT��� / � LSR��� / �
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The classical additive Schwarz method consists of using the following preconditioner in a
Krylov subspace method for solving (1):

��� )��� � / � $� �('*) L R��� / � � )�.� / L �.� / � (4)

In order to describe the restricted additive Schwarz method we introduce
‘restricted’ � �.� / ��� operators �L ��� / as

�LT��� / � L2�.� / Q �.� � (5)

The image of �L R�.� / � Q ��� � L R��� / can be identified with � �.� � , so �L R�.� / ‘restricts’ L R�.� / in the sense
that the image of the latter, � ��� / , is restricted to its subspace � ��� � , the space from the non-
overlapping decomposition. The restricted additive Schwarz method from [CFS98, CS99]
replaces the prolongation operator L R�.� / by �L R�.� / and thus uses

��� )� ��� � / � $� �6',) �L R�.� / � � )�.� / LT��� / (6)

instead of (4)4. For practical parallel implementations, replacing L R�.� / by �L R��� / means that the
corresponding part of the computation will not require any communication, since the images
of the �L R��� / do not overlap. In addition, the numerical results in [CS99] indicate that the
restrictive additive Schwarz method is at least as fast (in terms of number of iterations and/or
CPU time) as the classical one. Note that we lose symmetry, however, since if

�
is symmetric,� � )��� � / will be symmetric as well, whereas

� � )� ��� � / will usually be nonsymmetric.

For the convergence analysis of these Krylov methods, the relevant matrices are
�	� )��� � / �

and
� � )� ��� � / � . Alternatively, we can consider the iteration matrices 
 ��� � / � ��� � � )��� � / �

and 
 � ��� � / � �� � � )� ��� � / � . To analyze these matrices, we write the orthogonal projections

� �.� / � L R�.� / � � )�.� / L ��� / � �,� �d� � ����� ��
and the oblique projections � �.� / ���L R�.� / � � )�.� / LT��� / � �,� ��� � ����� ��-�
and thus we have the representation


 ��� � / � ��� $� �('*) � �.� /`��
 � ��� � / � ��� $� �('*)
� �.� / � (7)

With this notation, the iteration matrix corresponding to the classical multiplicative Schwarz
method is


�� � � D ��� � $ � /�FND ��� � $ � )^� /GF�������D ��� � )^� /GF (8)

4We note that the representations (4) and (6) using rectangular matrices �����  and matrices !"���  of smaller size is
consistent with the standard literature [SBG96, QV99] and different than that of [CS99] where #%$�# matrices are
used.
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and the corresponding iteration matrix for the RMS method is


 � � � � D ��� � $ � / FND ���
�
$ � ) � / F�������D ���

� )^� / F (9)

As in [FS99, BFNS01], the key to our analysis is the use of the nonsingular matrices
� ��� /

defined as � ��� / � > R� W � �.� / OO ��� ��� / X >?�
where

��� �.� / is the diagonal part of the principal submatrix of
�

‘complementary’ to
� �.� / , i.e.,

��� ��� / �����(] a��EM O < � � �.� / P � >Y� � � � >+R� � M O < � � �.� / P R
	
with � � �.� / the � � � �.� / ��� � � �.� / identity. Here, we assume that

� ��� / and
��� �.� / are nonsin-

gular. With these matrices we can write

� �.� / � Q ��� / ��� )��� / � � (10)� �.� / � Q ��� � ��� )�.� / � � (11)

and this provides a new representation of the matrices (7), (8), and (9); see [FS99, FS01,
BFNS01, NS01]. The new representation of the additive Schwarz methods is very much in
the spirit of multisplittings; see [OW85], or [BMPS95] and its bibliography.

We note that with the RAS preconditioning the corresponding weighting matrices satisfy$� �6',) Q ��� � � � �
consistent with the traditional multisplitting theory, while for additive Schwarz we have

� �KA $� �('*) Q �.� / Ak�Y�
where the inequalities are componentwise and

� � � ]�� '*) ������� � � <  ����IKJ�� ��� / " < � (12)

In the p.d.e. setting, � is the maximum number of subdomains to which each node of the mesh
belongs.

Convergence of RAS

We show in this section that for
�

-matrices the spectral radius � D � � � � )� ��� � / � F of the RAS
iteration matrix is less than 1 for all values of 8 A : . This implies in particular that the
spectrum of the preconditioned system � D � � )� ��� � / � F is located in the right half plane and
contained in a disk of radius less than one around the point 1.

We start by recalling some basic terminology. The natural partial ordering � between
matrices

� � D�� � � F ��� � D 	 � � F of the same size is defined component-wise, i.e.,
� ��� iff
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� � � � 	 � � for all �^� I . If
� A O we call

�
nonnegative. If all entries of

�
are positive, we say

that
�

is positive and write
� 9 O . This notation and terminology carries over to vectors as

well. An ����� matrix
�

is called a (nonsingular)
�

-matrix if it has nonpositive off-diagonal
elements and

� � ) A O ; see [Var62].
Consider the splitting

�
� � � � with
�

nonsingular. This splitting is said to be weak
nonnegative of the first type (also called weak regular) if� � ) A O and

� � ) � A O � (13)

Theorem 1 [OR70] Let
�
� � � � be a weak nonnegative splitting of the first type. Then� D ��� � � ) � F�� � iff

�
is nonsingular and

� � ) A\: .
We are now able to formulate the central convergence result of this section.

Theorem 2 Let
�

be a nonsingular
�

-matrix. Then for each value of 8�A : , the splitting� � � � ��� � / � � � ��� � / , corresponding to the RAS method, is weak nonnegative of the first
type. In particular, the iteration matrix

� � )� ��� � / � � ��� � / � ��� � � )� ��� � / � satisfies

� D ��� ��� )� ��� � / � F�� � � (14)

The proof consists of showing that
� � )� ��� � / A O

, and that � � ��� )� ��� � / � A O
, as per

(13), and then apply Theorem 1; see [FS01].
We point out that in general a convergence result such as (14) does not hold for the classi-

cal additive Schwarz preconditioner (4). To guarantee convergence, a damping (or relaxation)
parameter ��9 : is introduced. It can be shown that if � � ��� � , then � D � ��� � � )��� � / � F�� �

,
where � is defined in (12); see [FS99, BFNS01]. Thus, one of the attractive features of the
RAS preconditioner is that no damping parameter is needed for convergence.

Using an appropriate norm, we study the effect of varying the overlap. More precisely, we
prove comparison results on the spectral radii and/or on certain weighted max norms for the
corresponding iteration matrices 
 � ��� � / as defined in (7) for different values of 8 A\: .

We want to compare one RAS splitting, defined through the sets �*�.� / h with another one
with more overlap defined through sets � ��� / where � ��� / h�0 � ��� / �i� � � � ����� �. . We show
that the larger the overlap ( 8BA
8`l ), the faster RAS method converges as measured in certain
weighted max norms. This is consistent with the experiments in Tables 1 and 2 of [CS99],
where an increase of the overlap is associated with fewer iterations.

For a positive vector 	 we denote 
 � 
�� the weighted max norm in � -space given by


 � 
 � � � ]��6',)^������� � � < � � < � 	 � �
The resulting operator norm in ����� -space is denoted similarly.

The following theorem from [FS01] is very similar to [FP95, Theorem 2.1].

Theorem 3 Let
�

be a nonsingular
�

-matrix and let 	d9k: be any positive vector such that� 	d9\: , e.g., 	 � � � )� with  9k: . Then, if 8 A 8`l ,

 
 � ��� � /�
 � ��
 
 � ��� � / h 
 � � (15)

Moreover, if the Perron vector 	 / h of 
 � ��� � / h satisfies 	 / h 9 : and
� 	 / h A
: , then we also

have

� D 
 � ��� � / F � � D 
 � ��� � / h F � (16)
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In the case that (16) holds, Theorem 3 indicates that the spectrum of the preconditioned
matrix is included in a possibly smaller disk when the overlap is increased.

We remark that (15) (as well as most results using the weighted max norms in the paper)
holds for any positive vector 	 such that

� 	 is positive, so that one has a lot of freedom in
choosing the norm. For example, if all row-sums of

�
are positive we can choose as 	 the

vector of all ones, and thus the weighted max norm is simply the max norm. A commonly
chosen vector 	 is the row-sums of

� � ) , which is always positive.
For 8 l � : , i.e., for the block Jacobi preconditioner we can always provide the comparison

of the spectral radii (16), in addition to the comparison (15). The following theorem is in fact
[FP95, Theorem 2.2].

Theorem 4 Let
�

be a nonsingular
�

-matrix. Then, for any value of 8jA : ,
� D 
 � ��� � / F � � D 
 � ��� � � F �

Convergence of RMS

Using the new algebraic representation (10), it was shown in [BFNS01] that for any 	 �� � ) � 9 : with � 9 : , we have � D 
�� � F � 
 
�� � 
 � � �
. In a similar way, using the

representation (11), we can prove the following result; see [NS01].

Theorem 5 Let
�

be a nonsingular
�

-matrix. For any 	 � � � ) � 9\: with � 9 : , we have� D 
 � � � F � 
 
 � � � 
 � � �
. Furthermore, there exists a unique splitting

� � ��� �
such

that 
�� � � � � � ) �
, and this splitting is weak nonnegative of the first type.

It is well known that bounds for the convergence using the standard multiplicative Schwarz
preconditioner are better than those obtained for the standard additive Schwarz; see, e.g.
[SBG96, QV99]. For the restrictive preconditioners we can actually show that the weighted
max norm of the RMS iteration matrix is smaller than that of RAS.

Theorem 6 Let
�

be a nonsingular
�

-matrix and let 	d9k: be any positive vector such that� 	d9\: , e.g., 	 � � � ) � with � 9k: . Then,


 
 � � � � / 
 � � 
 
 � ��� � /�
 � �
Moreover, if the Perron vector 	 / of 
 � ��� � / satisfies 	 / 9 : and

� 	 / A : , then we also
have � D 
 � � � � /�F � � D 
 � ��� � /�F �

The proof consists of showing that
� � )� � � � / A � � )� ��� � / , where

� � � � � / � D � � 
 � � � � / F � ) � .
This inequality together with theorems 2 and 5, and Theorem 4.1 of [FS99] provides the
needed norm and spectral radii inequalities; see [NS01].

As is the case for RAS, one can also show that by increasing the overlap, the weighted
max norm of the iteration matrix decreases, i.e., that if 8 A\8 l ,


 
 � � � � /�
 � � 
 
 � � � � /ih 
 � � �
for any 	 9 : such that

� 	 9 : . Furthermore, it can be shown that overlap is always better
than no overlap, i.e., for any value of 8 A\: ,

� D 
 � � � � /�F � � D 
 � � � � ��F �
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