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22 Optimized Schwarz Methods for Helmholtz Problems
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Introduction

The classical Schwarz algorithm has a long history. It was invented by Schwarz more than a
century ago to prove existence and uniqueness of solutions to Laplace’s equation on irregular
domains. It gained popularity with the advent of parallel computers and was analyzed in depth
both at the continuous level and as a preconditioner for discretized problems (see the books by
Quarteroni and Valli [QV99] and Smith, Bjørstad and Gropp [SBG96] and references therein).
The classical Schwarz algorithm is however not effective for Helmholtz problems, because the
convergence mechanism of the Schwarz algorithm works only for the evanescent modes, not
for the propagative ones. Nevertheless the Schwarz algorithm has been applied to Helmholtz
problems by adding a relatively fine coarse mesh in [CW92] and changing the transmission
conditions from Dirichlet in the classical Schwarz case to Robin, as done in [DJR92], [BD97],
[Gha97], [dLBFM � 98], [MSRKA98] and [CCEW98]. The influence of the transmission
conditions on the Schwarz algorithm for the Helmholtz equation has first been studied for
a nonoverlapping version of the Schwarz algorithm in [CN98] and for the overlapping case
in [GHN00]. We begin this paper by recalling the optimal transmission conditions which
lead to the best possible convergence of the Schwarz algorithm and which even work without
overlap. These optimal transmission conditions are however non local in nature and thus not
ideal for implementations. One therefore approximates the optimal transmission conditions
locally. A first result we present is that no matter how one approximates, the new optimized
Schwarz method has a better convergence rate than the classical Schwarz method. Then we
present a new second order optimized transmission condition for a nonoverlapping variant of
the optimized Schwarz method with better asymptotic performance than the one presented in
[GMN01]. If � denotes the mesh parameter, then the new method has a convergence rate of�����	� ��
���� whereas the best optimized Schwarz method so far for the Helmholtz equation
had a convergence rate of

�����	� ��
����� , as given in [GMN01].

Classical Schwarz for the Helmholtz Equation

We consider the Helmholtz equation in two dimensions,

������� � � ��� ���! �" in #$�!%&�'" (1)

with Sommerfeld radiation conditions at infinity. We apply the Schwarz algorithm with two
overlapping subdomains # 
 �

�(�*) "+-,�./% , +10$2 and # � �43 25"
) �-.	% which leads to the

Schwarz iteration
�7698 �:
 ��� � 6;8 �:
<�  �" in # 
 "698 �&
 � +="?>5�@� A 8B� +�"?>5�C"D>FEG% (2)
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and
� A 8 �:
 ��� � A 8 �:
 �  �" in # � "A 8 �:
 � 2 "?>5� � 6;8�� 2 "?>5�C"D>FEG% � (3)

To analyze the convergence rate of this algorithm, we use Fourier analysis. By linearity it
suffices to analyze the homogeneous problem,  � � "> ���!2 , and show convergence to the zero
solution. Applying a Fourier transform in the > variable with Fourier parameter

�
leads to the

ordinary differential equations
� ���6;8 �:
� � �

� ��� � � � � ���6 8 �:
 � 25" ��� +=" � E % "
�698 �&
 � +=" � � � �A 8B� +=" � �C" � EG% "� � �A 8 �&
� � �

� ��� � � � � �	�A 8 �:
 � 25" � 0$25" � E % "
�A 8 �&
 � 2 " � �@� �6;8�� 25" � �C" � EG% �

Solving the second equation at step 
 and inserting the result into the first one we find after
evaluating at � � 2

�6 8 �&
 � 2 " � ������ � � ��� �� ��� �6 8  
 � 2 " � � �
Hence the convergence rate of the classical Schwarz method is

��������� ���  � � � � �� � � � (4)

This shows the main problem of the classical Schwarz method when applied to a Helmholtz
problem: while evanescent or high frequency modes,

� � 0 � � , converge as in the case of
Laplace’s equation, the propagating or low frequency modes,

� � � � � , do not converge at
all,  �������  � �

for those modes. Figure 1 shows the error in a numerical experiment for an
example on a domain # � 3 2 ""! , . 3 2 " � , split into two subdomains in the � -direction and� � � 2 . The error on the left subdomain is shown as the iteration progresses and one can see
that the classical Schwarz algorithm has problems converging because of the low frequency
modes, whereas the high frequency modes introduced at the interface by the initial guess are
reduced effectively. Figure 2 shows on the left the corresponding convergence rate (4) for this
example as a function of the frequency parameter

�
.

Optimized Schwarz for the Helmholtz Equation

We consider again the Helmholtz equation (1) in two dimensions and we apply a Schwarz
algorithm with the same overlapping subdomains # 
 �

�(�*) "+-, .�% , + 0 2 and # � �3 25" ) �&.	% as before. But this time we do not use Dirichlet transmission conditions, but more
general ones,

� 6;8 �:
 � � � 698 �&
<�  �" in # 
 "� �$# �&%(' � � 6 8 �:
 � +="> ��@� � �)# �*%+' � � A 8 � +�"?>5�?� " > E % (5)

and
� A 8 �:
 ��� � A 8 �:
<�  �" in # � "� �$# �*%+, � � A 8 �:
 � 2 "?>5�?�@� � �$# �&%(, � � 698 � 25">5�?�C"D> E % � (6)
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Figure 1: Error in iterations 1, 2, 3 and 8 on the left of the two subdomains of the classical
Schwarz algorithm applied to a Helmholtz equation. Clearly the low frequency modes are not
effectively reduced by the method.

The operators
%+'

in (5) and
%+,

in (6) are linear operators in the > direction along the interface
which we will try to determine to obtain optimal performance of the Schwarz algorithm. Us-
ing Fourier analysis like in the case of the classical Schwarz algorithm and setting  � � "?>5� � 2 ,
we obtain the iteration in the Fourier transformed domain

� ���6;8 �:
� � �
�!� � � � � � ���6 8 �:
 � 25" � � +�" � E % "� �)# ��� ' � � �� � �6;8 �:
 � +=" � �?�@� � �$# ��� ' � � �?� � �A 8 � +=" � �?� " � E % "� � �A 8 �:
� � �
�!� � � � � � �	�A 8 �:
 � 25" � 0 2 " � E�� "� �$# ��� , � � �?� � �A 8 �:
 � 25" � �?�@� � �$# ��� , � � �� � �698:� 25" � �?� " � E % �

Solving the second equation at step 
 and inserting the result into the first equation we find
after evaluating at � � 2

�6 8 �:
 � 25" � ���
� ';� � � ��� � � � A �
� ';� � � � � � � � A �
	

� , � � � ��� � � � A �
� , � � � � � � � � A � �  �

� ���  � ��� �6 8  
 � 2 " � �
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and hence the convergence rate of the new Schwarz method is

� ����� � � � ' � � � � � � � � A �� ' � � � � � � � � A � 	
� , � � � � � � � � A �
� , � � � � � � � � A � �  �

� � �  � � � " (7)

where we can choose the symbols
� ' � � � and

� , � � � of the linear operators
%+'

and
%+,

along
the interface to influence the performance of the new Schwarz method.

An Optimal Schwarz Method

There is a best choice for the free parameters in the convergence rate (7) of the new Schwarz
method: choosing

� ' � � ��� � � � � A � and
� ,�� � �*� � � � � � A � , the convergence rate be-

comes zero for all values of the frequency parameter
�

and hence the method converges in
2 iterations. In addition for this choice the convergence rate is independent of the overlap,
the exponential factor in (7) is irrelevant and hence the Schwarz method can be used without
overlap as well. One can show that this result generalizes to convergence in

�
iterations if

�
subdomains in strips are employed [NR95]. But for real computations, we do not want to de-
pend on Fourier transforms, we want to do the computations as usual on a given finite element
or finite difference mesh. Hence we need the inverse transform of the optimal transmission
conditions,

� '�, � � � ��� � � � � A � . Unfortunately, this inverse transform leads to nonlocal
operators

% '�,
in the > variable, because of the square root in their symbol. Even though

such non-local operators can be implemented by using a convolution on the boundary, it is
much more cumbersome than to implement local transmission conditions. If the symbol of
the optimal transmission conditions was a polynomial in

�
however, then the operator in real

space would be local, because a polynomial in
�

transforms into derivatives in real space, and
derivatives are local operators. Therefore, instead of using the best possible transmission con-
ditions, we introduce local approximations to those conditions which are easy to implement.
One can either choose a Taylor expansion about a low frequency to improve the low frequency
behavior of the algorithm or, even better, optimize the approximation for the performance of
the algorithm by making � ����� , the natural measure of performance, as small as possible. This
leads to the new class of optimized Schwarz methods.

Optimized Schwarz Methods

We introduce local approximations of the best transmission operator,%+' � � �	� 
 ��
 
 � � �C" and
%+, � � ��� � �
 � � � �C"

where
��� " 
�� E�� , �!� � " ! . Note that we do not include a first order term because the

Helmholtz operator is symmetric. For non-symmetric problems one would include the first
order term as well. The case


�� �!2 leads to Robin transmission conditions and gives us four
coefficients to optimize the performance (two complex numbers

�

 and

�
� ). If


����� 2 we
obtain transmission conditions including second order tangential derivatives which gives us
eight coefficients to optimize the performance of the algorithm. In the sequel we restrict our
analysis for simplicity to the special case where

�

 �

�
� �

�
and




 �



� �



, for which

the convergence rate of the optimized Schwarz method can be simplified to

� ����� � � � �
 � � � � � � � A �� �
 � � � � � � � A ��� � �  � � � �  � � � � (8)
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Figure 2: Comparison of the convergence rate of classical Schwarz on the left with optimized
Schwarz using Robin transmission conditions in the middle and second order optimized trans-
mission conditions on the right.

This cuts the number of optimization parameters in half and simplifies the optimization, at
the cost of not finding the best possible second order transmission conditions. For symmetric
positive definite problems the difference is investigated in [Gan00] and is found to be signifi-
cant.

Theorem 1 If
� �	� �C"�� �	� �C" � � 
 � "�� � 
 ��� 2 then the optimized Schwarz method always con-

verges faster than the classical Schwarz method.

Proof We have to show under the conditions of the theorem that � ����� � � � given in (8) is smaller
or equal to ����� � � � � given in (4) for all

�
. The only difference between the two convergence

rates is the additional factor in front of the exponential in (8). But the modulus of this factor
is

� � ��� � � � � 
 � � � � � � � � � � A � ��(� �!� � ��� � � � �	
 � � � � � � � � � � A � ��(�� � ��� � � � � 
 � � � � � � � � � � A � �� � �!� � ��� � � � �	
 � � � � � � � � � � A � �� �
� �

if the real and imaginary parts of
�

and



are non-negative, which completes the proof.
This indicates that one should not use the classical Schwarz method any longer, whatever

one does to the coefficients in the transmission conditions, the optimized Schwarz method
will work better than the classical Schwarz method. Figure 2 shows a comparison of the con-
vergence rates of the classical Schwarz method and optimized Schwarz methods with Robin
and second order transmission conditions as a function of the frequency parameter

�
. Note

that for optimized Schwarz methods the low frequency modes converge as well, not just the
high frequency ones. Only at the resonance frequency

� �7� � � the convergence rate equals
one for optimized Schwarz methods. This is however not a problem when optimized Schwarz
is used as a preconditioner for a Krylov subspace method, since such a method easily corrects
one bad mode in the spectrum.

An Optimized Schwarz Method without Overlap

We optimize now the coefficients
�

and



in (8) for the case of no overlap, +�� 2 . For the
continuous problem we would need to optimize for all frequency parameters

� E % which
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would lead to convergence problems as
� � � � ) . But in a numerical computation, the

frequency range is bounded, from below by the smallest frequency
����� �

relevant to the sub-
domain and from above by the largest frequency

�����	�
supported by the numerical grid. The

largest frequency
�
���	�

is of order � � � . We therefore have to solve the optimization problem

������� �����
�� ����� ��� �! �" # � ��$&%(' � ��) � �! �*,+ %

----- � � 
 � � � � � � � A �� � 
 � � � � � � � A � ----- �/.0 (9)

where
�
 and

�
� are parameters to be chosen to exclude the single mode with convergence

rate one at the resonance frequency
� ��� � � . We have the following asymptotic convergence

result

Theorem 2 There exist parameters
� " 
 E � such that the asymptotic convergence rate of

the optimized Schwarz method is

� ����� � ���21 � �3 4 ��� ! � � 4 � � � 
�� � 
?�� � �	� � 
?��� �
where

4 � � � � �
� � � � � �  .

The proof of this result is beyond the scope of this short paper, since it involves the asymptotic
solution of the min-max problem (9). But it is important to notice that the classical Schwarz
method does not converge without overlap, not even in the symmetric positive definite case.
If the overlap is of order � , then the convergence rate of classical Schwarz is

�����	� ��� in the
symmetric positive definite case. The optimized Schwarz method without overlap converges
even for the indefinite case at the much better rate of

�*�$�	� �B
�� � except for the resonance
mode. The numerical results in the next section show that the optimized Schwarz method used
as a preconditioner for a Krylov methods exhibits a convergence rate of nearly

�=� �	� � 
�	5 � ,
gaining almost the expected square-root from Krylov acceleration.

Numerical Results

We chose the model problem of a tube,
� �	� � � � �  2 � � "> � � "� � 2 2 � ��� � " >/� 25" � "6876 # �29���� � 2 � �!25"&2 � > � � "� 6876 # �29���� � 2 � � � "&2 � > � � �

and two nonoverlapping subdomains # 
 � 3 25" � � ! ,:. 3 2 " � , , # � � 3 � � ! " � ,:.�3 25" � , . For ex-
periments with overlap, see [GHN00]. Table 1 shows the number of iterations required to
converge to a desired tolerance

� 2 � �;:
using optimized Schwarz as a preconditioner for GM-

RES and compares this to a non-optimized local approximation of the optimal transmission
conditions using a Taylor expansion for low frequencies.

Figure 3 shows the asymptotic convergence rate in � achieved by the optimized Schwarz
method. Note how Krylov acceleration gives almost the additional square-root, � ����� �� �1�	� ��
�<5�� as one can expect in ideal situations. It would have been interesting to do the
experiment for � � � � �=: 2 2 , but the case � � � ��> 2 2 shown constitutes already a complex
linear system with 640’000 unknowns and is at the limit of current workstation capacities.
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� 1/50 1/100 1/200 1/400 1/800
Taylor Order 2 25 32 38 46 57

Optimized Order 2 10 10 10 11 13

Table 1: Optimized Schwarz second order transmission conditions compared to a simpler sec-
ond order Taylor approximation of the optimal transmission conditions for low frequencies.
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Figure 3: Asymptotic convergence rate of the second order optimized Schwarz method with-
out overlap.
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