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5 Aitken-Schwarz algorithm on Cartesian grid

M. Garbey , D. Tromeur-Dervout * 2

I ntroduction

This paper is devoted to the generalization of the Aitken-Schwarz (AS) domain decomposition
method (resp. Steffensen-Schwarz (SS)) method introduced in [GTDO1]. A solver was first
designed to solve linear (resp. nonlinear) elliptic problems in metacomputing framework with
a slow communication network. In [GTDO01] the domain decomposition was one dimensional
domain decomposition of multidimensionnal problems. We extend this domain decompo-
sition to multilevel one dimensional AS (resp. SS) domain decomposition. The AS (resp.
SS) method is recursively applied in one different direction at each level. The difficulty is to
generate homogeneous Dirichlet boundary conditions at each level of domain decomposition.
This problem is solved in AS domain decomposition with the superposition principle when
linear problems are solved. A similar shifting technique is also adopted to solve nonlinear
problems with SS. Some results on 2D linear and nonlinear problems are given as examples.

The arithmetical complexity of AS is investigated when the inner solver has linear or non-
linear complexity. Notably, a comparison with the best implementation of a fast solvers such
as FFT on Poisson problem are given. The stability of the Aitken-Schwarz and Steffensen-
Schwarz multilevel domain decomposition methods is investigated with an extensive sensi-
tivity analysis experiment that measures the influence on the convergence history when one
systematically perturbed randomly the subproblem solution at the end of each subdomain
solve.

The plan of this paper is as follows: section 1 recalls the principles of the Aitken-Schwarz
domain decompositions, section 2 describes the extension of the methodology from one di-
mensional domain decomposition to domain decomposition in several space directions, sec-
tion 3 comments on the arithmetical complexity of the method, and section 4 comments on
the stability of the method. Finally, section 5 gives the conclusions and perspectives.

1 Principles of the Aitken-Schwar z method

We are going to describe briefly the numerical ideas behind the Aitken Schwarz method. We
refer to [GTDO1] for more details.

For simplicity, we illustrate the concept with the discretized Helmholtz operator L[u] =
Au—Au, A > 0, with agrid that is a tensorial product of one dimensional grids, and a square
domain decomposed into strip subdomains.

Let us consider the homogeneous Dirichlet problem L[U] = f in Q = (0,1), Ujsq = 0,
in one space dimension. We restrict ourselves to a decomposition of €2 into two overlapping
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subdomains © [ 22 and consider the additive Schwarz algorithm [Sch80, Lio88, Lio89].
Llui™] = fin Qu, ofif] =gy, Llus™'] = fin Qo wlf) = ufip,. (1)

with given initial conditions uf,r.,, uf ., to start this iterative process.

To simplify the presentation, we assume implicitly in our notations that the homogeneous
Dirichlet boundary conditions are satisfied by all intermediate subproblems. This algorithm
can be executed in parallel on two computers [Kuz91]. At the end of each subdomain solve,
the artificial interfaces uy . and uf|r,, have to be exchanged between the two computers.

In order to avoid as much as possible redundancy in the computation we fix once and for
all the overlap between subdomains to be the minimum, i.e of size one mesh. This algorithm
can be extended to an arbitrary number of subdomains and is nicely scalable, because the
communications linked only subdomains that are neighbors.

However it is one of the worst numerical algorithms to solve the problem, because the
convergence is extremely slow. We introduce thereafter a modified version of this Schwarz
algorithm so called Aitken-Schwarz that transforms this dead slow iterative solver into a direct
fast solver while keeping the scalability of the Schwarz algorithm for a moderate number of
subdomains. The idea is as follows.

We observe that the interface operator T,

(uﬁl"l - UFUU’S\Fz - UFz)t - (U?;i - UF1 ) U?Ei - UF2)t (2)
is linear.
y T_h_erefore, the sequence (“ﬁrl’ung) has pure linear convergence that is, it satisfies the
identities:

U?Ei —Ur, =4 (USIH - Ur,); U;Tfi —Ur, =6 (Uﬁrz - Ur,), (3)

where §; (resp. d2) is the damping factor associated to the operator L in subdomain Q4 (resp.
Q5) [GHI7]. Consequently

2 1 1 0 2 1 1 0
Uir, — YU1r, = 51(U2|F1 - “2|r1)a Uy r, — Ugr; = 52(U1|r2 - U1|r2)a 4)

So except if the initial boundary conditions match with the exact solution U at the interfaces,
the amplification factors can be computed from the linear system(4). Since 6192 # 1 the limit
Ur;,i = 1,2 is obtained as the solution of the linear system (3). Consequently, this gener-
alized Aitken acceleration procedure gives the exact limit of the sequence on the interface I';
based on two successive Schwarz iterates uilp, n=12, and the initial condition u?m. An
additional solve of each subproblem (1) with boundary conditions u° gives the final solution
of the ODE problem. We can further improve this first algorithm as follows.
Let (v1,v2) be the solution of

Llvi] = 0in Qi, vr, = 1; L[vz] = 0in Qa, vjr, = 1. (5)

We have then 6; = vr,, d2 = vjr,. Consequently 6, and > can be computed before-hand
numerically or analytically.

Once (41, d2) are known, we need only one Schwarz iterate to accelerate the interface
and an additional solves for each subproblems. This is a total of two solves per subdomain.
The Aitken acceleration thus transforms the additive Schwarz procedure into an exact solver



AITKEN-SCHWARZ ALGORITHM ON CARTESIAN GRID 55

regardless of the speed of convergence of the original Schwarz method, and in particular with
a minimum overlap.

This Aitken-Schwarz algorithm can be reproduced for multidimensional problems. As a
matter of fact, it can be shown [GTDO01] that the coefficients of each wave number of the sine
expansion of the trace of the solution generated by the Schwarz algorithm has its own rate of
exact linear convergence.

We can then generalize the one dimensional algorithm to two space dimensions as follows:

e stepl: compute analytically or numerically in parallel each damping factor 6;? for each
wave number & from the two point one D boundary value problems analogues of (5)
with the operator

Ly, = uge — (4/h sinz(k%) + Au,
with A, being the space step in y direction.

e step2: apply one additive Schwarz iterate to the Helmholtz problem with subdomain
solver of choice (multigrid, fast Fourier transform, PDC3D, etc...)

e step3:
- compute the sine expansion g, n =01, k =1.N of the traces on the
artificial interface T';,7 = 1..2 for the initial boundary condition “?Fi and the solution
given by one Schwarz iterate “\lr,-v i=1,2.

- apply generalized Aitken acceleration separately to each wave coefficients in
order to get 4. .

- recompose the trace U?Tr- in physical space.

e stepd: compute in parallel the solution in each subdomains 2;, 4« = 1,2 with new inner
BCs and subdomain solver of choice.

So far, we have restricted ourselves to domain decomposition with two subdomains. We
show in [GTDO1], that a generalized Aitken acceleration technique can be applied to an ar-
bitrary number ¢ > 2 of subdomains with strip domain decomposition. Our main result is
that no matter is the number of subdomains, the total number of subdomain solves required to
produce the final solution is still two.

However the generalized Aitken acceleration of the vectorial sequences of the sine expan-
sion coefficients of the interface introduces a coupling between all interfaces.

To be more specific, we obtain a given linear system for each wave number &,

> = (Id — Pk)il(ﬂn_'_l — Pra™). (6)
and P, has the following pentadiagonal structure:

0 4 0 O

&t 0 0 &

st 0 0 &
53’71 0 0 &7,
65, 0 0 &0
0 0 Jdy 0
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But we observe first that this generalized Aitken acceleration processes independently
each waves coefficients of the sinus expansion of the interfaces. Second the highest is the
frequency k the smallest are the damping factors 6%, 87", 87!, 67", A careful stability
analysis of the method shows that

o for low frequencies, we should use the generalized Aitken acceleration coupling all the
subdomains.

o for intermediate frequencies, we can neglect this global coupling and implement only
the local interaction between subdomains that overlap.

o for high frequencies, we do not use Aitken acceleration because one iteration of the
Schwarz algorithm damps the high frequencies error enough.

The algorithm has then the same structure than the two subdomains algorithm presented
above. Step 1 and step 4 are fully parallel. Step 2 requires only local communication and
scales well with the number of processors. Step 3 requires global communication of inter-
faces in Fourier space for low wave numbers, and local communications for intermediate
frequencies. In addition for moderated number of subdomains, the arithmetic complexity of
step 3 that is the kernel of the method is negligible compared to step 2.

Our algorithm can be extended successfully to grids that are tensorial product of one
dimensional grids with arbitrary (irregular) space step [BGOO00], iterative domain decom-
position method such as Dirichlet-Neumann procedure with non-overlapping subdomains or
red/black subdomains iterative procedure.

For nonlinear elliptic problems, the Aitken acceleration is no longer exact. the so-called
Steffensen-Schwarz variant is then a very efficient numerical method for low order perturba-
tion of constant coefficient linear operators - once again we refer to [GTDO1] for more details.
We will proceed now with the description of the generalization of the method to domain de-
composition in more than one space directions.

2 Multilevel Aitken-Schwar z and Steffensen-Schwar z Domain
Decomposition

Let us consider first the linear case and denote L the discrete linear differential operator. For

simplicity, we will restrict this presentation to problems in two space dimensions. Once again,

we assume homogeneous Dirichlet Boundary conditions on domain Q. We introduce a first
level of domain decomposition into strips in direction z

o= (J o,
i=1,n,

where the Q; = (x;;, ;) x (0,7) are the overlapped rectangles represented in Figure 1.
To proceed with a two dimensional domain decomposition, we introduce a second level of
domain decomposition and decompose each subdomain €2; into a set of overlapping rectangles

in direction y,
%=

J=1,ny



AITKEN-SCHWARZ ALGORITHM ON CARTESIAN GRID 57

\ Q1 92 Q3 |

X1l x1,r x3| x3,r
Figure 1: Multilevel Aitken-Schwarz Method principle

The main idea is to apply recursively on each subdomain decomposition level the Aitken-
Schwarz algorithm. The difficulty comes from the fact that the Dirichlet boundary conditions
of the subdomain at the first level are no more homogeneous Dirichlet boundary conditions.
Consequently, the sine expansion operator should not be applied directly to the trace of the
interfaces solution generated by this second level of the Schwarz algorithm.

We introduce therefore a shift denoted v; in each subdomain €;, in order to retrieve the
homogeneous Dirichlet boundary conditions problem on each strip €2;.

Let ® be the notation for the Kronecker product. In each strip €2;, we solve with Aitken-
Schwarz the modified problem

Lw*'] = f—Lv] in ()
wit' = 0 in 0 (8)

where v; in matrix notation is defined as
Uy = di_l-Xl ® Ug=g;,; T di_l-Xr & Ug=g; ©)

with d; the size of the strip Q; in z direction: d; = z;; — zir, ;i = (ziy, .., Ti,r) FOW VECtor
of the x coordinates of the grid points in Q; in increasing order, X; = z; — (@i, .-, xiy) and
X, =z —(Ti,r, s Tirr), AN Up—s, ,, Us=z, . are the column vectors containing the artificial
boundary condition.

Table 1 gives the error between the Aitken-Schwarz solution and the discretized exact
solution u(z,y) = (22 — 0.25)y(y — 1) in maximum norm for a number of subdomains n,
in z-direction varying from 1 to 16 and a number of subdomains n,, in y-direction varying
from 2 to 16 and for four global size meshes varying from 34 x 34 to 258 x 258 points for the
Poisson problem. It exhibits that :

o the methodology gives accurate results close to the machine accuracy (we recall that
the test are done with the Matlab software),
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e the accuracy reached increases with the number of subdomains especially for large size
problem. This is due to the fact that the local system are smaller leading to smaller
conditioning number and then round off error in the LU factorization are smaller than
in the few-subdomain case.

34 x 34 points n, subdomains
n, subdomains 1 2 4 8 16
2 1.9920e-13 | 2.9296e-14 | 9.3051e-15 | 4.0246e-16 | 7.0777e-16
4 1.2676e-13 | 2.2225e-14 | 2.8172e-15 | 4.0246e-16 | 7.0777e-16
8 4.2848e-15 | 1.1623e-15 | 4.7184e-16 | 4.0246e-16 | 7.0777e-16
16 8.5522e-16 | 2.2421e-16 | 4.0246e-16 | 4.0246e-16 | 7.0777e-16
66 x 66 points n, subdomains
n, subdomains 1 2 4 8 16
2 1.0693e-12 | 3.8589%-13 | 6.1952e-14 | 9.1593e-15 | 1.1380e-15
4 9.3924e-13 | 4.1277e-13 | 4.2577e-14 | 1.1005e-14 | 1.1380e-15
8 5.3798e-13 | 1.0418e-13 | 3.6227e-14 | 2.2204e-15 | 1.1102e-15
16 4.8329¢-15 | 2.1164e-15 | 1.2906e-15 | 2.1649¢e-15 | 1.1380e-15
130 x 130 points ng subdomains
n, subdomains 1 2 4 8 16
2 7.7432e-12 | 2.3652e-12 | 1.2857e-12 | 8.1442e-14 | 1.6535e-14
4 6.2317e-12 | 1.6914e-12 | 6.3427e-13 | 1.3916e-13 | 1.9729%¢-14
8 2.6878e-12 | 1.2031e-12 | 3.5410e-13 | 1.7667e-13 | 7.2026e-15
16 1.0170e-12 | 4.1206e-13 | 5.3402e-14 | 2.3787e-14 | 5.9119¢-15
258 x 258 points n, subdomains
n, subdomains 1 2 4 8 16
2 4.3664e-11 | 1.3513e-11 | 2.1562e-12 | 1.6181e-12 | 1.6694e-13
4 2.9052e-11 | 6.6053e-12 | 2.8467e-12 | 1.1419e-12 | 3.3179e-13
8 2.0213e-11 | 6.7309e-12 | 4.5298e-12 | 1.3563e-12 | 2.1001e-13
16 1.9160e-11 | 4.4557e-12 | 1.8232e-12 | 3.2840e-13 | 8.4238e-14

Table 1: Error with respect of the number of subdomains

Secondly, let us consider the nonlinear case. The problem to be solved can be written
formally as

Alw)u=F (10)

We do not have anymore the superposition principle as in the linear case, but we can still use
the same shift to recover at the first level of domain decomposition homogeneous Dirichlet
boundary conditions. We set:

Afw]t + vj]
w?“

Fin Q,
0in 0Q;

(11)
(12)

where v; is defined as in (9).
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The solution for one Schwarz iterate on the subdomain €2; is obtained as

u?"'l = w?+1+v,~ (13)

To illustrate the two level domain decomposition algorithm, we consider the Bratu problem
which represents a simplified model of combustion written as follows:

Au(z,y) + exp(Au(z,y)) =0, (z,y) € 2=[0,1%,1 >0, (14)
w(z,y) =0, (z,y) € 9. (15)

The discrete operator on a regular stencil of space step h,, in « direction and h,, in y direction
is:
_ Wittt Uit = 2y Uigan U1 — 24
h2 hZ

+ exp(Au; ;).

This operator is a nonlinear and nonseparable discrete operator. We use a Newton scheme to
solve each nonlinear subdomain problem. The solution of the linear systems inside the New-
ton loop are obtained either by sparse LU or Preconditioned Conjugate gradient method with
uncomplete LU. The acceleration procedure is described in [GTD01]. To be more precise,
since the nonlinearity of the discrete operator is a second order perturbation of the Laplacian,
we use the same acceleration procedure as in the Poisson problem case; that is, we compute
the diagonal approximation of the matrix of acceleration P [GTDO01] based on three succes-
sive Schwarz iterates.

Figures 2 and 3 give the convergence history of the Steffenson-Schwarz multilevel domain
decomposition on the 2D Bratu problem with n, x n, = 3 x 4 subdomains and A = 6.
The convergence history is given for two problem sizes, namely 30 x 29 and 90 x 89. For
the smaller problem the size of overlap is one mesh cell, but for the 3 times larger problem
we have used 3 mesh cells overlap. The convergence to the exact discrete solution of the
problem, at the outer loop level i.e the Steffensen-Schwarz iteration between Q; strips, -see
2- and inside each strips -see 3- with the second level of Steffensen-Schwarz iteration seems
to be almost independent of the number of grid points provided that the size of the overlap
between subdomains in each space direction stays the same.

The stop criterion for the Newton loop (resp. the Steffensen-Schwarz iterative procedure
inside strips) was that the difference between two successive iterates was less than 10~ (resp.
1077).

3 Arithmetical complexity

For the Helmholtz or Poisson operator case, the arithmetic complexity of the Aitken Schwarz
method can be easily given analytically, provided the arithmetic complexity of the linear
solver used in each subdomain is given.

Let us assume for simplicity that the arithmetic complexity of a fast sinus transform or
its inverse of a vector of size N is 5Nlog2(N). For strip domain decomposition with n,
subdomains, and a problem of global size N, x N,, the Aitken acceleration requires the
sinus transform and its inverse of the artificial interfaces at two iteration levels. It results
into 20 (n, — 1) Nyloga(INy) operations. The solution of the pentadiagonal linear system
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corresponding to the acceleration procedure itself cost 36 NV, (n, — 1) operations. We recall
that we need to solve each subdomain problem twice.

If one uses a sparse Gaussian elimination for each subdomain linear solve, the overall
arithmetic complexity is therefore approximately

N, A
6 n, N, N, (n— +3)% + 20 (ny — 1) Nylog2(N,) + 36 N, (n, — 1)
x

If one uses a fast Poisson or Helmholtz solver, the arithmetic complexity becomes approxi-
mately

20 n, N, (%u) (logz(% +2) + 1og2(Ny)> +20 (na—1) N,logs(N,) + 36 N, (n,—1).
€T X

This complexity analysis can be extended to the two level domain decomposition method
described in this paper. We have summarized in Figure 4 and Figure 5 the result of this
analysis. The efficiency of our solver increases when the number of subdomains n,, in the
second space direction increases from 1 to 16. Our two level domain decomposition method
speedup significantly the sparse Gaussian solver, but stays at best 50% slower than a fast
Poisson solver.

Our methodology is not therefore the best Poisson solver in terms of arithmetic complex-
ity, but as shown in [BGH*] its parallel efficiency in distributed computing with slow network
is very good, as opposed to the parallel efficiency of fast Poisson solver based on Fast Fourier
Transform algorithm that requires global transpose of matrices.

We proceed now with some experimental measurement of the arithmetic complexity of
our two levels domain decomposition with the Bratu problem. We have compared different
iterative procedures for the same final global accuracy of the solution: the error in maximum
norm between the exact solution of the discrete problem and the final iterate is about 104,

The linear subdomain solver inside the Newton loop is either sparse Gaussian elimination
or conjugate gradient with incomplete LU preconditioning. We select the most efficient solver
in our experiments, and typically the direct linear solver is preferred when the subdomains are
narrow strips.

Figure 6 reports on the domain decomposition performance with n, = 8 or n, = 16
strip subdomains compared to the iterative solver with no domain decomposition i.e n, = 1.
The problem’s size is N, x N, with N, = 81, and IV, = 11, 21, 41, 81. We get good
performances only if the strips are narrow enough and IV, is large. Once again the Steffensen-
Schwarz algorithm for such problem becomes a very efficient algorithm for large problems.
The two level domain decomposition efficiency follows the same principle. In addition, the
parallel efficiency of this algorithm in metacomputing situation has been demonstrated in
[BGHT].

Now we proceed with some remarks on the stability of this method.

4 Sensitivity analysis
For the linear case, and when the acceleration matrix Py, are known analytically, the additional

source of unstabilities in the Aitken Schwarz algorithm may come from the linear solve of (6).
Let us restrict ourselves to uniform strip domain decomposition with minimum overlap and
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denote
51 00 52
( 5, 006, ) (16)

the generic subblock of Py for a given wave number k. The conditioning number of Id — P,
for the Helmholtz operator, is bounded by [GTD]:

1 0 (]. —61)_2

cond(Id — Py,) < 2(1—(51 + 1= 0, (1= o)1

)
with
61 = sinh(V/Ah,)/ sinh(VAd,), 02 = sinh(VA(dg — hy))/ sinh(VAdy),

where d,, is the size of the €; strip in z direction. The conditioning humber is then of order
h;! for A = 0(1). A direct numerical simulation to test the sensitivity of our algorithm to
perturbation on the RHS of the linear differential problem confirms the good stability proper-
ties of the one-level and two-level Aitken-Schwarz method. The linear stability of the solvers
deteriorates very slowly as the number of subdomains increases, as expected.

The sensitivity analysis of the Steffensen-Schwarz method for nonlinear elliptic prob-
lems is more challenging, because P; is approximately reconstructed from the sequence of 3
Schwarz iterates:

~r,n+3 ~7r,+2 ~r,+2 ~r,n+1 ~l,n+2 ~l,n+1 ~l,n ~l,m

(I A I e V] — pi i - Uy i Uy A7)
~ln+3  ~lint2 ~ln+2 _ ~lntl — 4k ~rnt2 _ ~rntl N ~T\T
Uit Uit Uit1 Uit u;’ Uy u; =y

where the ¢ Al ™and d.'" stand for the sine expansion coefficients of the left and right interfaces
solution in Q

In particular there is no guarantee that (17) system is well posed. In our implementation,
the Steffensen acceleration algorithm is applied only to waves for which this system is not
badly conditioned or possibly singular. We have undertaken an extensive sensitivity analysis
experiment that measures the influence on the convergence history of our algorithm when
one systematically perturbed randomly the subproblem solution at the end of each subdomain
solve. The test for a given domain decomposition and a given number of grid points was
realized 50 times, and we checked by doubling the number of runs the sensitivity of the
result. Figure 7 shows a representative average measure of the error that was obtained as a
function of the norm of the perturbation. We looked at square domains with n, = 2 (’0’
curves), n, = 4 ('+’ curves), n, = 8 (’v’ curves) and n, = 16 ("*’ curves). We checked the
influence of the number of points in y direction, for these four different cases. It should be
noticed that the standard deviation from the mean in these experiments are of the same order
than the mean of errors. These results seems to provide some confidence in the robustness of
our method.

5 Conclusion

We have extended our result on Aitken like acceleration of the Schwarz algorithm presented
in [GTDO01], to two level domain decomposition and further investigated the arithmetic com-
plexity and stability of our algorithm.
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convergence to the exact discrete solution

2+

-4t

-6 L L L L L I I
0 2 4 6 8 10 12 14 16

outer iteration number

Figure 2: Convergence of the first level of Steffensen-Schwarz iterative solver, *0’ for 30 x 29
problem size, *** for 90 x 89 problem size.

Further extension of this method to irregular meshes or non-matching grids are presently
under investigation -see [BGOO00] for example. We have shown in this paper that our tech-
nique is robust and numerically efficient, for the Helmholtz operator or weakly nonlinear high
order perturbation of this operator such as the operator in Bratu problem. The main interest
of our methodology lies however in its application to large scale metacomputing. The LIONS
project [BGH™] demonstrates the rather unique ability of our algorithm to provide numeri-
cal and parallel efficiency for a PDE solver with several hundred of processors distributed on
several heterogeneous large-scale parallel computers in Europe linked with a slow network.
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based on Gauss band subdomain solver

14 T T T T

16

Figure 4: Arithmetic complexity for the linear case assuming sparse Gauss subdomain solver,
* forn, =1,’+ forn, = 2, triangles for n,, = 4, square for n,, = 8, diamond for n, = 16.

based on fast subdomain solver
1.95 T T

Figure 5: Arithmetic complexity for the linear case assuming fast Poisson subdomain solver
** forn, = 1,’+ for ny, = 2, triangles for n,, = 4, square for n,, = 8, diamond for n,, = 16.
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Figure 6: Arithmetic complexity for the nonlinear case, solid line forn, = 1, .-’ forn, = 8,
dashed line for n, = 16.
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Figure 7: N, = 80, N, = 80, overlap is one mesh cell.



