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24 Domain decomposition and virtual control for fourth
order problems

P. Gervasio1, J.-L. Lions2, A. Quarteroni3

Introduction

In this paper we consider domain decomposition strategies for fourth order operators featuring
a dominant second order component. More specifically, given an open and bounded domain�������

with continuous and Lipschitz boundary � � , the fourth order problem we consider
reads: 	�
 �
���
�����������

in
�������� ���
��� ��!

on � � (1)

where


 ��"$#&%('
)+*
and the functions

�
,
�

and
!

are assigned with sufficient regularity, while�
is the unit outward normal vector on � � .

We will partition
�

into several subdomains (overlapping or not) and consider different
ways to formulate (1) at the subdomain level. In particular, we are looking for suitable control
problems, the control variables being faced on the subdomain interfaces. Furthermore, we
address the so-called heterogeneous case, i.e. a situation in which the coefficient



is set

to zero on a subregion of
�

. Our control approach is then devised in order to handle the
coupling between the original fourth order problem and the second order one that is obtained
when dropping



out. A similar heterogeneous coupling has been previously investigated for

a second-order advection diffusion problem with dominant advection (see [GLQ00]).
An outline of the paper is as follows. First the overlapping decomposition and the hetero-

geneous coupling are considered: a natural choice for the cost functional is introduced and
it has been proved that its minimization leads to a unique solution for the coupled problem.
After, the non overlapping decomposition is taken into account and both homogeneous and
heterogeneous coupling are considered. Numerical results are shown for both overlapping
and non-overlapping decompositions.

The overlapping situation

For the sake of exposition we consider the case of decompositions by two subdomains
�-,

and� � , which satisfy .� � .� ,0/ .� � � � ,21 � ��3��45�76�� � � *
We define

6(89� � � 8:1�6 and ; 8<� � � 8>=96?8 , for @ �BAC�ED . Then
6F��60,</G6 � . Further we

define the differential operatorsH ,JI �K�L��� H � I � 
 �&���9����*
1Department of Mathematics, University of Brescia, via Valotti 9, 25133 Brescia (Italy), Paola.Gervasio@unibs.it
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Figure 1: An overlapping decomposition of
�

in two subdomains.

The heterogeneous coupling by means of virtual control is formulated as follows:�� � H , � , ��� in
� ,� , � �

on
6 ,� , ��� ,

on ; ,
�� � H � � � � � in

� �� � ���:� � �
��� � � ! on
6 �� � ��� � � � � � ��� � ��� � on ; � (2)

where � � 8(� ; 85/ 6?8 � for @ ��AC�ED (see Figure 1) and
� � is the unit outward normal vector on; � .

The functions
��, �	� � and

� � are the virtual controls. They are chosen in such a way that�>,
and
� � “adjust” in the best possible way on the overlap

� ,?1 � � . To this aim we introduce
the cost functional 
	� ��, ��� � �
� ��� � AD������
����� � �>, � ��, � � � � � � � ��� ����� ��� � �
and consider the minimization problem:���! " �$# " �%# &'� 
	� �:, ��� � �
� ��� * (3)

This problem has a unique solution. Indeed, let us rewrite the solutions
� ,

and
� � of (2)

as � ,9� �)( ,+*-, , �7� � � � ( � *-, � �
where

� ( ,
depends on the data

�
and

�
,
� ( � depends on

�:� �
and

!
,
, ,

depends on
� ,

,
, �

depends on
� � and

� � , and satisfy:H , � ( , � �
in
� , �7� ( , ���

on
6 , � � ( , �/.

on ; , �H , , , �/.
in
� , � , , ��.

on
6 , � , , ��� ,

on ; , � (4)

and H
� � ( � ��� in

� � �7� ( � ����� �G� ��� ( � � ! on
6 � �� ( � �/. � � � � � � ( � ��.

on ; � �H
� , � ��.

in
� � � , � �/. � �G�&� , � �/.

on
6 � �, � ��� � � � � � , � ��� � on ; � *

(5)

Then 
	� � , �0� � ��� � � � AD21 � � , �0� � ��� � � *-3 � � , �0� � ��� � � �
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where the quadratic functional 1 is given by

1 � �:, ��� � �
� ��� � �����
����� � , ,<� , ��� � � � �
while

3
is an affine functional. Consequently, if the functions

��8
and

� � are smooth enough,
one can define a semi-norm������� �:, ��� � �
� ��� ����� � � 1 � ��, �0� � ��� ����� ,�� � � (6)

on the space of
� ��, ��� � �
� ��� .

Actually, this is a norm. Indeed if 1 � � , ��� � ��� � � � .
, then

, , � , � � ,
in
� , 1 � � . ¿From

(4) we know that
� , �/.

in
�L, 1 � � , and

, �/.
on

� � � � � , 1 � � � 1 � � . Moreover, from
(5) we obtain that

� � � , � .
on

�
too. Thus by the continuation theorem it follows that,	� .

in
� , 1 � � . Then

� , �/� � �/� � �/.
which leads to the conclusion that (6) is a norm.

Therefore, if all data are smooth enough,

���! 
	� � , ��� � �
� ��� admits a solution in the space
of
� � , �0� � ��� � � obtained by completion for the norm (6).

Numerical results for the overlapping heterogeneous decomposition

In order to approximate the fourth order problem by Galerkin method with Lagrangian poly-
nomials, we consider a mixed formulation of problem (1). For the sake of simplicity we
consider homogeneous boundary data, that is

� � .
and

! � .
. The mixed formulation we

have adopted reads as follows. Given
��
 H � � � � , find

�
����� � 
�
 I ��� ,( � � ��� � , � � � I

� �
���?�E�	� � � � 
 � ��� �E�	� � � � �

�:��� � � � ��
�� ,( � � �
 � ���?�E� , � � * � � � , � � ��. � , 
�� , � � � � (7)

where

�
� �
� � � denotes the

H
� inner product in

�
.

Remark 1 Let us set� � ��������� � , � � �
����� �	� � � � 
 � ��� � �	� � � * 
 � ����� � , � � * � � � , � � *�

is continuous over the space



and is positive over the space
� ,( � � ��� H � � � � . In fact� � �?����� ����� � � �
���!� �" �$# �&% * �'���$�" �(# �&% . Then, if the solution of (7) exists, it is unique. On

the other hand, the weak form of problem (1) reads: find
�)
)� �( � � � such that:
 �

�
����� � , � � * �

����� � , � � � �
�:� , � � � , 
����( � � � *

Existence and uniqueness of
�

follows by Lax-Milgram Lemma. Moreover,
�*
+�-, � � � (if

�
is regular enough) and the couple

�
����� � 
 ��� � is a solution to problem (7).

In order to formulate the mixed heterogeneous problem we define:.
 � ��� ,( � � � �!� � , � � � � , ./ , �0� ,( � � , � , 
 � �0� ,1 � � � � �2� � , � � � � , / , �3� ,1 � � � , � where
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� ,1 �
�
� 8 � � � , 
*� , � � 8 � I ,�� 1 � � . � . Then we solve the minimization problem (3) where� , 
 / ,

,

�
� � ��� � � 
�
 � are the solutions to the following problem�������� �������
�
��� � � �	� � ��� � 
 � ��� � � �	� � ��� � �

�:��� � �)� � �	
)� ,( � � � �
 � ��� � � � , � ��� * � � � � , � �)� � 
 ��� � � � , � ' � , 
)� , � � � ��
��� , � �	� � ��� � �

�:��� � � � � �	
)� ,( � � , �
� , �/� ,

on ; , � � � ��� � on ; �
(8)

The minimization problem (3) is solved by the BFGS Quasi-Newton method with a mixed
quadratic and cubic line search procedure ([JS96]), while we use a Galerkin approximation
by conformal spectral elements to solve the associated problem (8).

We have considered the following domain and its decomposition:� �
�
�-A � A � � � � , � �

�-AC�
* � � � � �-AC� A � � � � � � . � A � � � �-AC� A � *
The right-hand side and the boundary data are chosen so that the analytical solution is

�
�
� �	� � ��

� �9�FA ��

� * �
�5�9� A ��

� *

In
� ,

we have considered � � D equal spectral elements, while in
� � D � D equal spectral

elements. If not otherwise specified, the polynomial degree has been set � ���
.

In order to assess numerically the above theory, we consider the following error terms, that
we show in Table 1. The minimum value attained by the functional


	� � , ��� � ��� � � : �



; the
maximum interface errors and the

� �
-norm errors for @ �KAC�ED :

' 8 I � �$� , � � � � "�� # � � % ���
�
� � 8?����� ��� ����� � �"! �$#���%� � � �"! � # ���

�
�'& � 8?� �+� 8 � � & �)( � # � � %�$� & �)( �'# � � % �

(9)

where
�

is the analytical solution of the global fourth-order problem (1),
� 8

are the numerical
solutions of the virtual control problem (3) and

� &
is the spectral element solution of the

discretized global fourth order problem (1).
 ' , ' � �



�
�
� � , �

�
� � � �

�
� & � , �

�
� & � �

1 1.90e-1 9.92e-2 6.58e-4 1.95 2.02 1.96 2.02A�. � �
3.64e-4 2.97e-3 1.47e-7 1.04e-3 3.08e-2 2.74e-4 3.08e-2A�. � ,
1.28e-6 1.23e-6 6.36e-14 1.02e-3 6.96e-4 3.33e-6 3.62e-6A�. �'*
1.25e-6 1.13e-6 6.18e-14 1.02e-3 6.96e-4 3.33e-6 1.06e-6

Table 1: Numerical results for the heterogeneous coupling with overlap.

We note that the minimum value attained by the functional



,

tends to zero when the
coefficient



tends to zero, as well as the jumps of the solution across the interfaces. The� �C�

norm errors are bounded from below by the discretization error, which depends on the
spectral polynomial degree � .

The non overlapping situation

We consider now a decomposition by two disjoint subdomains
� ,

and
� � and a unique inter-

face ; � � � , 1 � � � . Again,
6 8 � � � 8 1 � � for @ �KAC� D (see Figure 2).
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� , � �;
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Figure 2: A partition of
�

in two disjoint subdomains.

The homogeneous coupling for the fourth order problem (1) would read as follows: we
look for

�
,
�

on ; which solve the minimization problem� �  " # & 
	� �>, � �(��� � � � � � �>�
� ��� (10)

where
� ,

and
� � satisfy:�� � H � � , ��� in

� ,� , �F��� ���
��� , � !
on
6 ,�>,9�/�(� � � �&� �>,9� �

on ;
�� � H � � � � � in

� �� � ���:� �G�&� � � � ! on
6 �� � ���>� � � � ��� � ���

on ; � (11)

and
� �

is the unit normal vector on ; directed from
� ,

to
� � .

The most natural choice of the cost functional is

,
� �(��� � � AD ��� � � � , � � � � � *�� � � ,� % � � � � �� % ��� � (12)

* � ���>,<� � � ��� � *�� � � �>,� % � � � ��� �� % ���
��� � '

where both
� ,

and
� � depend on the virtual controls

�
and

�
and ��� � % � stands for

� � � �
.

Remark 2 The choice of the functional



,

is justified by the fact that the global solution of
problem (7), which annihilates the right hand side of (12), is looked for in

� ,( � � ��� � , � � � .
Another possible choice for the cost functional is obtained by looking at the mixed for-

mulation of problem (11) that we are going to introduce. For @ � AC�ED
we define

.
 8 �� ,( � � 8 ��� � , � � 8 � and

 8 �3� ,1 �

�
� 8 ��� � , � � 8 � . The mixed approach for the homogeneous

coupled problem (11) reads: find

�
� 8 ��� 8 � 
)
 8 for @ ��A � D such that:�

� �>,&�E�	� , � � � � 
 � ��� , � �	� , � � � � �
�:��� , � � � � � , 
)� ,( � � , � (13)
 � � �>, � � , , � � � * � �L, � , , � � � � 
 � � � , , � , , 
)� , � � , � (14)�

� � � �E�	� ��� � � � 
 � ��� � � �	� ��� � � � �
�:��� ��� � � � � � 
)� ,( � � ��� (15)
 � � � � � � , � � ��� * � � � � , � � ��� ��� 
 ��� � , � � , � 
)� , � � � � (16)

� , ��� � ���
on ; � (17)
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and the virtual controls
�

and
�

are determined by the minimization problem (10).
The choice of the functional is made based on the following observation. Taking

�
and

, 
���( �
� � in (7) we obtain by integration by parts

�L��� * 
 � ����� � � a.e. in
�

(18)� 
 ��� * ����. � � a.e. in
� *

(19)

To be more general, let us assume that



takes two different values


 ,
in
� ,

and


 � in
� � .

Then let � 
3� ,�� �(�( �
; � and denote by �� 8 an extension of � in

� 8
such that �� 8 
0� ,

�
� 8 � ,�� 8 � 1 � ��.

, �� 8 � � � � , @ ��AC�ED . Then, taking

� � 	 �� , in
� ,

�� � in
� �

in (7) and using (18) we deduce that

��� � � � ,� % � � 
 , � � ,� % � � � � ��� � � � �� % � � 
 � � � �� % � � � �/. � � 
�� ,�� �(�( �
; � * (20)

Proceeding in a similar way in the second equation of (7), this time using (19), we obtain that

� � � 
 , � � ,� % � � 
 � � � �� % � � � �/. � � 
)� ,�� �(�( �
; � * (21)

This latter condition is implicitly guaranteed by having chosen the same multiplier
�

in (14)
and (16). On the other hand, since problem (13)-(17) guarantees neither the continuity of�

across the interface nor the transmission condition (20), we look for these properties by
choosing the following cost functional


�
� �>�
� � � AD � � � � �L,<�*� ��� � * � � � � ,� % � � 
 � � ,� % � � � � � � �� % � � 
 � � �� % � � � ���

In Table 2 we show the numerical results obtained by the minimization of functional



,
, versus

the coefficient



. The quantities

'	� � ,
'�


and
'��



stand for the maximum norm of the jumps
of � � � � % � ,

�
and � � � � % � on ; , respectively, while

�


,

is the minimum value achieved by
the cost functional



,
. Moreover

�
�
� � 8 and

�
�
� & � 8 (for @ �7AC� D ) are the errors defined in

(9). The jump of
�

on ; is not reported since it is always of the same order of the machine
precision.
 ' � � ' 
 ' �

 �



, �

�
� � , �

�
� � � �

�
�'& � , �

�
�'& � �A *

3.71e-5 2.85e-5 4.73e-4 5.88e-08 9.80e-4 6.97e-4 6.21e-6 3.80e-6A�. � �
9.81e-7 2.72e-5 1.54e-5 2.22e-10 9.79e-4 6.96e-4 1.55e-7 1.20e-7A�. � ,
2.03e-8 5.12e-7 2.26e-6 1.01e-12 9.79e-4 6.96e-4 1.20e-6 8.44e-7A�. � *
8.00e-5 1.47e-7 2.26e-8 3.41e-09 9.79e-4 6.96e-4 1.17e-6 8.23e-7

Table 2: Numerical results for the homogeneous coupling without overlap. Minimization of
the functional



,
.
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 ' � � ' 
 ' �

 �


� �

�
� � , �

�
� � � �

�
�'& � , �

�
�'& � �A *

2.15e-5 2.83e-5 2.10e-4 1.20e-08 9.79e-4 6.96e-4 2.49e-6 2.47e-6A�. � �
3.31e-6 3.98e-6 2.07e-4 7.51e-12 9.79e-4 6.96e-4 1.31e-6 9.18e-7A�. � ,
4.62e-6 5.32e-6 2.23e-6 1.12e-11 9.79e-4 6.96e-4 1.07e-6 7.49e-7A�. � *
8.00e-5 2.92e-7 2.27e-8 3.41e-09 9.79e-4 6.96e-4 1.18e-6 8.27e-7

Table 3: Numerical results for the homogeneous coupling without overlap. Minimization of
the functional



� .
 '�� � '

�
�



�
�
�
� � , �

�
� � � �

�
� & � , �

�
� & � �A *

8.28 2.47e-4 1.76e-02 1.82 1.78e-1 1.82 1.78e-1A�. � �
1.50e-1 8.62e-5 5.89e-05 1.13e-3 3.08e-2 5.63e-4 3.08e-2A�. � ,
1.60e-5 3.08e-7 6.83e-09 9.79e-4 6.96e-4 1.13e-6 3.41e-6A�. � *
2.68e-7 2.69e-7 7.05e-13 9.79e-4 6.96e-4 1.19e-6 8.31e-7

Table 4: Numerical results for the heterogeneous coupling without overlap. Minimization of
the functional



� .

Remark 3 When the functional



,

is replaced by a simpler functional in which the terms
depending on

� 8
are dropped, similar results to those of Table 2 are obtained.

In Table 3 we show the numerical results obtained by the minimization of functional



� .

The heterogeneous coupling for non overlapping situations reads as (8), where we use the
virtual controls

�
instead of

� � and a single control
�

instead of
� ,

and
� � and then we solve

the minimization problem (10). In this case we choose the following cost functional:

�

� �(��� � � AD � � � � � � ,� % � � � � �� % � * 
 � � �� % � � � * � 
 � � �� % ��� � � � 'C*
Note that through the minimization of



� we are enforcing the fulfillment of the matching

conditions (20) and (21) where, this time, we have taken


 ,9�/.
.

In Table 4 we show the numerical results obtained by the minimization of functional



�

on the heterogeneous coupling without overlap. In particular we define
'

�
� � � �>, � � % � �� � � � � % � * 
 � � � � � % � � " � # � % .

As for the overlapping case, we note that the minimum value attained by the functional



�

tends to zero when the coefficient



tends to zero, as well as the jump of the normal derivative

of
�

across the interface ; . Again, the
� � �

norm errors are bounded from below by the
discretization error, which depends on the spectral polynomial degree � .
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