
Thirteenth International Conference on Domain Decomposition Methods
Editors: N. Debit, M.Garbey, R. Hoppe, J. Périaux, D. Keyes, Y. Kuznetsov c

�
2001 DDM.org

49 Domain decomposition methods in semiconductor device
modeling

L. Giraud1, J. Koster2, A. Marrocco3, J.-C. Rioual4

Introduction

In this paper, we present some parallel implementations of domain decomposition techniques
for the solution of the drift diffusion equations involved in 2D semiconductor device mod-
eling. The model describes the stationary state of a device when biases are applied to its
bounds. The mixed dual formulation is retained. Therefore, we have to deal with a system
of six totally coupled nonlinear partial differential equations. This system is decoupled and
discretized in time by a semi-implicit nonlinear scheme using local time stepping. At each
time step, we have to solve three systems of two nonlinear partial differential equations. The
first system is associated with electrostatic potential, the second with the negative charges
(electrons) and the third with the positive charges (holes). Each pair of equations is naturally
discretized in space by mixed finite elements defined on 2D unstructured meshes and then
solved by a Newton-Raphson method [HM94]. At each step of the Newton-Raphson method,
a linear system of equations has to be solved. Depending upon which nonlinear system is
being solved, these linear systems can be either symmetric positive definite or unsymmetric.
These systems are sparse with a maximum of five nonzero entries per row due to the mixed
finite element triangulation. A complete simulation is decomposed into two phases: first the
solution of the equilibrium problem, then the solution of the static problem. The equilibrium
problem consists of applying a zero potential to the bounds of the device and its numerical
solution only involves the solution of symmetric positive definite linear systems. In this paper,
we consider only the solution of the equilibrium problem.
Our objective is to obtain a fully parallel code in a distributed memory environment with MPI
as message-passing library.
The formulation is mainly vectorial and is naturally parallelizable. The main difficulty con-
sists of the efficient implementation of suitable linear solvers. This numerical kernel is the
most time consuming part of the code. In this respect, we investigate substructuring ap-
proaches using either direct or iterative linear solvers.

Substructuring techniques

We assume that the domain � with boundary ��� is partitioned into � non-overlapping subdo-
mains �����
	�	
	����� with boundaries �������
	�	
	�������� . After discretization, we obtain a linear
system ��������� where the matrix � is sparse, unstructured, and symmetric positive definite.
Let � be the set of all the indices of the discretized points which belong to the interfaces
between the subdomains. Grouping the points corresponding to B in the vector ��� and the

1CERFACS, 42 Av. G. Coriolis, 31057 Toulouse, France. giraud@cerfacs.fr
2Parallab, University of Bergen, N-5020 Bergen, Norway. jak@ii.uib.no
3INRIA, Rocquencourt, 78153 Le Chesnay Cedex, France. Americo.Marrocco@inria.fr
4CERFACS, 42 Av. G. Coriolis, 31057 Toulouse, France. rioual@cerfacs.fr

470 GIRAUD, KOSTER, MARROCCO, RIOUAL

points corresponding to the interior I of the subdomains in � � , we get the reordered problem�
� ��� � � �
���� � � ������� � � ���� � �

�
� �
��� � 	 (1)

The matrix � ��� can be reordered to a block diagonal matrix in which the 	 -th diagonal block
��
�
 corresponds to the internal variables of subdomain ��
 . Eliminating � � from the second
block row of Equation (1) leads to the reduced problem� � � ��� �� � �� � ��� ���� � � � where

� � � � �� � �� � ��� ���� � � � (2)

is the Schur complement matrix of the matrix � ��� in � . The matrix
�

is symmetric positive
definite,
Let � be the interface between the subdomains. The local interface of a subdomain can be
defined as �
 � ���
�� ��� . Let �
�� �����
 be the canonical pointwise restriction which maps
vectors defined on � onto vectors defined on �
 , and let � �
 � �
 ��� be its transpose. For a
stiffness matrix � arising from a finite element discretization, the Schur complement matrix
can be written as the sum of � (local) smaller Schur complement matrices� �

��
���� � �
 � �
"! �#
 � where
� �
"! � � �
�!$&% � �
 $ % � � �
"
 ��
 $&% � (3)

where the local Schur complement matrix
� �
�! associated with subdomain �'
 is computed

from the subdomain stiffness matrix � �
�! , defined by

� �
"! � � ��
�
 ��
 $&%
� �
 $ % � �
"!$&% � 	 (4)

In a parallel (multi-processor) computing environment, each subdomain matrix � �
�! is as-
signed to one processor. In this way, the local Schur complement matrices

� �
�! can be com-
puted simultaneously. The (global) Schur complement matrix

�
is available through Equa-

tion (3) and is never assembled explicitly.

Implementation

The implementation of substructuring methods usually consists of three steps. They are sum-
marized in Algorithm 1.

Algorithm 1 : Substructuring algorithm
Step 1 : Factorize the matrix ()*) and compute the Schur complement matrix + .
Step 2 : Solve the Schur complement system +-,/.10324.651(7) . (98;:)<) 2) , for ,=. .
Step 3 : Solve the system ()*) ,) 032) 5>() .?,=. , for ,) .

Since the matrix � ��� is a block diagonal matrix, steps 1 and 3 each consist of � independent
smaller steps (one for each subdomain). Furthermore, since each subdomain matrix � �
"! is
assigned to a different processor, these � steps can be performed in parallel. When the num-
ber of subdomains increases, the amount of parallelism naturally increases in steps 1 and 3
(but the total amount of work decreases). The solution of the Schur complement problem in
step 2 becomes more complex when the number of subdomains gets larger; the Schur com-
plement matrix

�
is not assembled and therefore efficient parallel direct or iterative schemes

are required for step 2.

DOMAIN DECOMPOSITION IN SEMICONDUCTOR MODELING 471

Direct substructuring

The three steps of Algorithm 1 are implemented as follows.

Computation of the local Schur complement matrices

Since the discretization of the local problem is a sparse matrix, a direct (factorization) ap-
proach can be used in step 1 to compute the local Schur complement matrices

� �
�! explicitly.
In fact, computing

� �
"! for subdomain �
 is equivalent to a partial Cholesky factorization
of the matrix � �
�! of Equation (4). In our implementation, we use the parallel multifrontal
sparse direct solver MUMPS [ADLK01] that can compute a Cholesky factorization of the
sparse submatrix �
"
 and return the Schur complement matrix

� �
"! . As mentioned before,
the local Schur complement matrices are computed simultaneously (one on each processor).
Therefore, we use one instance of the MUMPS solver on each processor.

Solution of the interface problem

The global Schur complement matrix
�

is the sum of the local Schur complements matrices� �
�! , see Equation (3). After computing the matrices
� �
"! explicitly, the matrix

�
is available

as a sparse matrix that is distributed over the processors. MUMPS can accept such matrices
in distributed form and can therefore be used to solve the interface problem directly and in
parallel to obtain vector ��� . For this step, we use only one instance of MUMPS over all
processors.

Solution of the interior problems

Step 3 consists of the solution of � independent systems �
�
 �
 � �
� �
 $ % �
 � � where �
 � �
is the restriction of the interface solution vector � � to interface �
 and �
 is the restriction
of � � to the internal variables of subdomain � � . The systems can be solved by using the
factorizations of the matrices �
"
 that were computed in step 1.

Iterative substructuring

Iterative substructuring differs from direct substructuring in the solution of the interface prob-
lem (step 2 of Algorithm 1). Instead of a parallel Cholesky factorization, preconditioned con-
jugate gradient (PCG) iterations are used. Two important components of the preconditioned
iteration are the matrix-vector product and the construction (and use) of the preconditioner.

Matrix-vector product

As the local Schur complements have been computed explicitly in the first step of the al-
gorithm, it is straightforward to implement the matrix-vector product with the global Schur
complement system.

For 2D problems, this implementation is more efficient than a classical implicit formulation
where the local Schur complements are not known explicitly and where step 1 of Algorithm 2

472 GIRAUD, KOSTER, MARROCCO, RIOUAL

Algorithm 2 : Computation of ��� +��
Step 1 : ��� 03+ � �	��
 � �
Step 2 : � 0����	� :
 7� � �

requires a forward and back substitution and three sparse matrix-vector products (see Equa-
tion (3)). We display in Table 1 a comparison between the explicit and the implicit version
of the Schur matrix-vector products for subdomains with ��������� unknowns each. For this ex-
ample, the computation of the explicit local Schur complement is twice as expensive as the
factorization of the local internal problem, but the subsequent gain for each Krylov iteration
is very important (without preconditioning, the matrix-vector product remains the most ex-
pensive part of a Krylov iteration). For 2D problems, the extra storage cost for the local Schur
complement is not prohibitive.

implicit explicit
Numerical factorization 14.2 27.2
Matrix-vector product 2.2 0.1
Time for factorization + 20 products 58.2 29.2

Table 1: Time comparison between implicit and explicit Schur matrix-vector product for sub-
domains of ��������� unknowns and with interfaces of size ������� . The computation has been
performed on an SGI Origin 2000.

Preconditioners for the Schur complement

The rate of convergence of the conjugate gradient method depends on the condition number of
the matrix of the linear system. In this section, we present two preconditioners for the Schur
complement system.

Balanced Neumann-Neumann preconditioner

This two-level preconditioner was first introduced in [Man93]. It can be formulated as

� � � � ������� � �"! � � � � � �"! � and
� � �

��
���� � �
$# �
 � � �
�! ! � � #
 �
 	
Here,

� � is the one-level Neumann-Neumann preconditioner that was originally proposed
in [DRLT91]. The weight matrices #
 form a decomposition of unity. � denotes the

�
-

orthogonal projection onto the coarse space defined by%'& �
"� � � �
 # �
)(
 *
,+ for some local subspaces (
 and arbitrary vectors *&
 .
In the experiments for this paper, we used a software package developed by Parallab (Uni-
versity of Bergen). One of the options that is available in that package is to construct the
coarse space from local subspaces (
 that are spanned by the eigenvectors associated with
selected (small) eigenvalues of the local Schur complement matrices

� �
�! . In particular, each
subspace (
 must contain the null space of

� �
�! . We refer to [BKK00] for more details on this
preconditioner.

DOMAIN DECOMPOSITION IN SEMICONDUCTOR MODELING 473

Assembled Schur preconditioner

We consider another preconditioning technique for the solution of the Schur complement
system. Let

� �
"! be the local assembled Schur complement associated with a subdomain �
 .
The assembled Schur preconditioner [CGM01] is defined by

��
"� � � �
 � � �
�! !�� � �#
 	
� �
�! corresponds to the restriction of the global Schur matrix to the boundary ���
 of the
subdomain �
 and can be algebraically written as

� �
�! � �
 � � �
 	 A second level can be
added to this preconditioner to define

� � � � ��
���� � �
 � � �
�! !�� � �#
 � � �� � � �
� � �� ! � � � � �

where � � is a restriction operator from the global interface � onto a coarse space
�

� . The sec-
ond term of the equation defines a second level for the preconditioner. In our experiments, we
consider a coarse space where we have one degree of freedom per edge of the decomposition,
that is one degree of freedom per interface between two subdomains [CGT01].

Numerical experiments

We have performed experiments on various meshes, but here we only report results on a
problem with 154892 unknowns. The size of the interface � varies from 440 unknowns for
the 4-subdomain decomposition to 2446 unknowns for the 32-subdomain decomposition. The
size of this problem is modest but it is representative for many problems that are solved in
device modeling. Indeed, due to the complexity of the underlying physical problem, the
complete code is memory consuming. We used a 32-processor SGI Origin 2000 for our
experiments.

Iterative substructuring methods

In this section, we use the following notation:

1. AS : Assembled Schur preconditioner without coarse space.

2. NN : Neumann-Neumann preconditioner without coarse space.

3. AS-edge : Assembled Schur preconditioner with a coarse space defined by one degree
of freedom per interface of the decomposition.

4. BNN1 : Balanced Neumann-Neumann preconditioner with a coarse space with one
degree of freedom per subdomain.

5. BNN3 : Balanced Neumann-Neumann preconditioner with a coarse space with three
degrees of freedom per subdomain.

474 GIRAUD, KOSTER, MARROCCO, RIOUAL

For the sake of comparison between direct and iterative substructuring approaches, we stop
the preconditioned conjugate gradient iterations only when the 2-norm of the residual of the
current iterate normalized by the 2-norm of the right hand side is less than ��� � � �

. Note that
such accuracy is often obtained by direct methods, without iterative refinement.
The condition number of the preconditioned Schur complement matrix varies from a few tens
to a few hundreds. It is obtained from the eigenvalues of the tridiagonal matrix of the PCG
coefficients although this may not be very reliable when the number of iterations is small.
We display in Table 2 the average number of conjugate gradient iterations that are needed to
solve a linear problem during nonlinear solution of the equilibrium problem. The table shows

Preconditioner
No. of subdomains none AS NN AS-edge BNN1 BNN3

4 67 4 15 6 15 15
8 87 20 22 23 21 20

16 117 31 29 33 27 25
32 125 37 33 40 32 29

Table 2: Average number of conjugate gradient iterations per linear system. ’none’ denotes
that no preconditioner is used. 19 linear systems were solved during the simulation.

that all the preconditioners improve the convergence of the conjugate gradient iteration. We
observe that one-level preconditioner AS is more efficient than NN on a small number of
subdomains. NN becomes more efficient when the number of subdomains increases. For all
methods, the number of iterations of the preconditioned conjugate gradient increases moder-
ately when the number of subdomains increases. The use of two-level preconditioners does
not eliminate this increase. The AS-edge preconditioner performs worse than the AS precon-
ditioner on this example.

Time measurements

In this section, we compare iterative substructuring with direct substructuring from an elapsed
time point of view. We also make a comparison with MUMPS used as a black-box parallel
sparse direct solver on the complete original problem, where the stiffness matrices are con-
sidered as in a distributed format (a feature of the MUMPS software).
In Table 3, we display the elapsed times to solve the complete equilibrium problem, by using
direct substructuring (DSS), MUMPS as a black box direct parallel solver (MS) or iterative
substructuring with preconditioned conjugate gradient (using AS, NN or BNN3),

Algorithm
no. of subdomains AS NN BNN3 DSS MS

4 49.65 49.50 53.01 57.47 63.97
8 26.11 31.04 28.53 31.59 44.24

16 14.79 16.74 17.89 22.81 43.66
32 10.65 11.87 16.31 16.98 44.07

Table 3: Times (in s) for solving the equilibrium problem (19 linear systems).

Table 3 shows that the substructuring algorithms are more efficient than the multifrontal par-
allel solver that does not scale very well because of the relative modest size of the linear

DOMAIN DECOMPOSITION IN SEMICONDUCTOR MODELING 475

systems. We also observe that iterative substructuring is slightly more efficient than direct
substructuring. Iterative substructuring will perform even better when we use a relaxed accu-
racy of the iterative linear solvers, while maintaining the same nonlinear path. However, this
behaviour might not be true for other equations and to make a fair comparison, we required
the same accuracy for all the linear solvers.
Table 3 shows that the one-level algorithms (AS and NN) perform better than the two-level
algorithms, even though the latter require slightly fewer iterations for larger number of sub-
domains. This shows that a smaller number of iterations is not always an indication for better
overall efficiency of a preconditioned Krylov solver.

Conclusion

We compared some efficient parallel linear solvers based on direct or iterative substructur-
ing methods that enable us to solve problems that cannot be tackled on a single processor
computer. For a set of linear systems that arise in semiconductor device modeling, we have
shown that the two-level Balanced Neumann-Neumann preconditioner converges faster, but
is less efficient in elapsed time, than the one-level preconditioners (Neumann-Neumann and
Assembled Schur). The overall efficiency of the iterative substructuring approaches for these
2D simulations is due to the multifrontal direct sparse solver MUMPS that is for example able
to compute the local Schur complement matrices efficiently.
Finally, we mention that domain decomposition techniques to parallelize the solution of the
unsymmetric systems arising from the solution of the continuity equations associated with the
electrons and the holes concentrations in the domain is still an ongoing work.

References

[ADLK01]Patrick R. Amestoy, Iain S. Duff, Jean-Yves L’Excellent, and Jacko Koster. A fully
asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J. Matrix
Analysis and Applications, 23(1):15–41, 2001.

[BKK00]Petter E. Bjørstad, Jacko Koster, and Piotr Krzyżanowski. Domain decomposition
solvers for large scale industrial finite element problems. In PARA2000 Workshop on Ap-
plied Parallel Computing. Lecture Notes in Computer Science 1947, Springer-Verlag, 2000.

[CGM01]Luiz M. Carvalho, Luc Giraud, and Gérard Meurant. Local preconditioners for two-
level non-overlapping domain decomposition methods. Numerical Linear Algebra with
Applications, 8(4):207–227, 2001.

[CGT01]Luiz M. Carvalho, Luc Giraud, and Patrick Le Tallec. Algebraic two-level precondi-
tioners for the schur complement method. SIAM J. Scientific Computing, 22(6):1987–2005,
2001.

[DRLT91]Yann-Hervé De Roeck and Patrick Le Tallec. Analysis and test of a local do-
main decomposition preconditioner. In Roland Glowinski, Yuri Kuznetsov, Gérard Meu-
rant, Jacques Périaux, and Olof Widlund, editors, Fourth International Symposium on Do-
main Decomposition Methods for Partial Differential Equations, pages 112–128. SIAM,
Philadelphia, PA, 1991.

[HM94]Frédéric Hecht and Americo Marrocco. Mixed finite element simulation of hetero-

476 GIRAUD, KOSTER, MARROCCO, RIOUAL

junction structures including a boundary layer model for the quasi-fermi levels. COMPEL,
13(4):757–770, 1994.

[Man93]Jan Mandel. Balancing domain decomposition. Comm. Numer. Meth. Engrg., 9:233–
241, 1993.

