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Introduction

We consider the optimal design and layout of high power electronic devices that are based on
the pulse width modulation technique such as DC-AC converter modules used in applications
as electric drives for high power electromotors. The design objective is to minimize power
losses caused by eddy currents that build up in the device due to fast switching times and steep
current ramps (cf., e.g., [BFS99, BHM01, DGH98]).
In mathematical terms this leads to a topology optimization problem with the electric conduc-
tivity of the material as the design parameter and the electric and the magnetic field as the state
variables that are supposed to satisfy the quasistationary limit of Maxwell’s equations. With
the optimal design of mechanical structures described by continuum mechanical models being
by now a well established discipline (cf., e.g., [BEN95] and the references therein), not much
work has been done with regard to the optimization of systems whose operational behavior is
governed by Maxwell’s equations. Moreover, the use of modern discretization and numerical
solution techniques such as multigrid and domain decomposition methods for optimization
problems with PDE constraints is still in its infancy (cf., e.g., [HEI00, HPS01, MAS00]).
In this paper, we focus on an approach relying on a primal-dual Newton interior-point method
for the discretized optimization problem where the discretization of the eddy currents equa-
tions is taken care of by curl-conforming edge elements. Domain decomposition methods on
nonmatching grids can be used for the numerical solution of the discretized field equations
which is an integral part of the optimization routine featuring logarithmic barrier functions
and simultaneous sequential quadratic programming.

The topology optimization problem

We consider a DC-AC converter module consisting of specific semiconductor devices such
as IGBTs (Insulated Gate Bipolar Transistors) and GTOs (Gate Turn-Off Thyristors) that are
interconnected and linked to the high power source as well as the load by copper made bus
bars (cf. Figure 1).
Each bus bar contains a certain number of ports where currents are either supplied to or taken
off the bar. The IGBTs and GTOs serve as valves for the currents which can be in the range
of several kA. During operation of the module, electromagnetic fields � and � are generated
that can be described by the eddy currents equations
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Figure 1: DC-AC converter module

� 	 � � 
 � 	�� ��� (2)

where
�

and � stand for the magnetic induction and the current density, � denotes the mag-
netic permeability, and � is the electric conductivity.
Considering a module � 	��	�
���
�� 
 with � bars � 
 
���������� , each bar containing � 

ports � 
�� 
���������� 
 , and introducing a scalar electric potential � and a magnetic vector
potential  according to

� 	�! grad �"! �  � � 
 � 	 curl  
we are led to the following coupled system of PDEs

div #$� grad �&% 	�� in � 
 (3)

�('*) grad � 	 + !-, 
�� # � % on � 
��
� else

(4)

� �  � � � curl �&. 
 curl  	 + !(� grad � in �
� in /10324� (5)

with appropriate initial and boundary conditions.
Note that in (4) we refer to , 
�� as the fluxes associated with the ports � 
5� satisfying 6 � 
��7
 6 �&8�9��
 , 
5� 	
� .
The total inductivity caused by the eddy currents can be described by the functional: #$� 
;� 
; <%>= 	@?A&B 
�C � B D C E FG HJI : 
5�KC D E # � % I LNM �POQ 
;R L � (6)
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Here,
: 
5�KC D E # � % are the generalized transient inductivity coefficients: 
5�KC D E # � %4= 	 � . 
 G

� 8 � 
5� #�� %&) � # � % � D E #�� %
M
�

where � 
�� denotes the current density generated by , 
5� at the port � 
5� of the bus bar � 
 and� # ) % is the solution operator associated with (5).
The design objective is to distribute the material in terms of the electric conductivity � as the
design parameter in such a way that the total inductivity is minimized

�����
	 C 
 C � : # � 
 � 
; 1% (7)

subject to the equality constraints� and  satisfy the state equations (3),(4),(5) 
 (8)G
�
� M � 	 � (9)

and the inequality constraints ��
���� � � � ��
���� (10)

where ������
������ � and ��
���� refers to the conductivity of copper.
Note that (10) represents relaxed constraints on the design parameter, since allowing only� 	 ��
���� or � 	J��
���� would lead to an ill-posed optimization problem. In practice, we
scale the conductivity by means of

� #$��% 	 # �<!�� min ���� max ! � min

% 
 
 � � � ��� (11)

with an appropriately chosen !#" � .
The primal-dual Newton interior-point method

The discretization of the state equations (3),(4),(5) is performed as follows: For the interior-
exterior domain problem (5) we use a domain decomposition approach on nonmatching grids
featuring individual edge element discretizations of the interior and exterior domain prob-
lems with respect to simplicial triangulations $

%�&(') and $
%�*+') whereas the discretization in

time is done by the backward Euler scheme. Moreover, the elliptic boundary value problem
(3),(4) is discretized by means of nonconforming Crouzeix-Raviart elements. The electric
conductivity � serving as the design parameter is discretized by elementwise constants, i.e.,,� ) 	 # � % 
 ') 
5� � � 
 � % 
�- ') % F 
.! ) = 	 card $

%�&('
) . Comprising the discrete state variables

,� ) and, ) to a vector
,/ ) 	 # ,� ) 
 , ) % F , the discretized state equations can be stated in compact form

0 ) # ,� ) % ,/ ) 	 ,1 ) � (12)
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If we further denote by
: ) # ,� ) 
 ,� ) 
 , ) % the discretized objective functional, the topology

optimization problem in the discrete regime reads as follows:

� ����	 - C �
 - C �� - : ) # ,� ) 
 ,� ) 
 , ) % (13)

subject to the constraints
,/ ) 	 # ,� ) 
 , ) % F satisfies # � � % 
 (14)
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where
�
��� $ %�& ') 
K� �
	 � ! ) , and

,� ) = 	 # � 
5� � � 
5� % F .
Among the most efficient numerical solution techniques for constrained optimization prob-
lems like (13)-(16) are primal-dual Newton interior-point methods (cf., e.g., [ETT96, FOG98,
GOW98]). The idea is to take care of the inequality constraints (16) by parametrized logarith-
mic barrier functions
�
�) # ,� ) 
 ,/ ) % = 	 : ) # ,� ) 
 ,� ) 
 , ) % !���� log # ,� ) !���
���� ,� ) % � log #5��
���� ,� ) ! ,� ) %��

and to couple the equality constraints (14),(15) by Lagrangian multipliers. This gives rise to
the saddle point problem

� ����	 - C �� - ������� - C � - � % � ') # ,� ) 
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 � ) % (17)

for the Lagrangian
� % � ') # ,� ) 
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 � ) % = 	 ���) # ,� ) 
 ,/ ) % � ,� F ) # 0 ) # ,� ) % ,/ ) ! ,� ) % � � ) # � ) # ,� ) %�! � %4�
For the solution of the above primal-dual interior-point approach we use simultaneous se-
quential quadratic programming in the sense that Newton’s method is applied to the Karush-
Kuhn-Tucker conditions associated with (13). Denoting the Newton increments by � , ) = 	#!� ,/ ) 
"� ,� ) 
"� ,� ) 
#� � ) % F , this gives rise to a linear system

$ ) � , ) 	 ,% ) (18)

which is solved iteratively by right transforming iterations
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'&7
) 	 � , 
) � $�() #*) % 
 ') % . 
 # ,% ) ! $ ) � , 
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based on a regular splitting
$ ) $ () 	+) % 
 ') !,) % L ') involving an appropriately chosen right

transform
$ () . The new iterate

, (new)) = 	 # ,/ (new)) 

,� (new)) 
 ,� (new)) 
� (new)) % F is then obtained by a line search

, % new
') C � 	 , % old

') C � �.- � #/� , ) % � 
 � �0	 �01�
 (20)

where the steplengths are tested by means of a hierarchy of merit functions. We refer to
[HPS00, HPS01] for details.
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Domain decomposition on nonmatching grids

The simultaneous sequential quadratic programming approach being integral part of the primal-
dual Newton interior-point method, described in the previous section, requires an iterative
solver of the discretized state equations. In this section, we briefly sketch a domain decom-
position technique on nonmatching grids for the implicitly in time discretized equation (5)
with respect to a nonoverlapping geometrically conforming decomposition

�� 	 � �� ��
 ���� with
skeleton � 	 �

������ � � � 
 � � � = 	 ������ �� � . In particular, we consider individual simplicial trian-

gulations $
% � ') of the subdomains and discretize the subdomain problems by the lowest order

curl-conforming edge elements � M 
 # � % = 	 	�
 	
� � ����� I � 
 � �(/���� 

�
� $ % � ')

with the degrees of freedom given by the moments of the tangential components with respect
to the edges of

�
(cf. [NED80]). Since nonconforming nodal points may occur on the inter-

faces �+� ��� � , continuity of the tangential components across the interfaces is not guaranteed
requiring weak continuity constraints on the skeleton in order to achieve consistency of the
global approximation. This is taken care of by appropriately chosen Lagrangian multipliers
living in multiplier spaces � ) # � � � % 
9�+� ��� � (for the construction of � ) #$�+� � % we refer to
[HOP99]). Introducing the product spaces

� ) #$�>% = 	 ��
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�����! #" �
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where Nd 
 #$� � 
 $ % � ') % are the edge element spaces associated with the subdomains, the domain
decomposition approach leads to the discrete saddle point problem:
Find # / ) 
 � ) % � � ) #$�>%%$&� ) #�� % such that

' ) # / ) 
)( ) % � 1 ) #*( ) 
 � ) % 	 + #*( ) % 
 ( ) � � ) #$�>% 
 (21)1 ) # / ) 
 � ) % 	 � 
 � ) �,� ) #��3% � (22)

Here, the bilinear form ' ) = � ) #$�>%%$ � ) # �>%.- / and the functional + ) = � ) #$�>%.- / are
given by

' ) # / ) 
/( ) % = 	 �B
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where / 
 . 
) and � 
 ) refer to the FE approximations of the magnetic vector potential and the
scalar electric potential at time

� 
 . 
 and
� 
 , respectively, and � � = 	 � 
 ! � 
 . 
 .

Moreover, the bilinear form
1 ) = � ) # �>%�$&� ) #3� %4- / realizing the weak continuity of the

tangential components across the interfaces is chosen as follows

1 ) #*( ) 
 ,� ) % = 	 B� �5�  6" G ���5� ,� ) ) � ' � ( ) � I ���5� M -
with � ' � ( ) �

I
����� denoting the jump of ' � ( ) across the interface � � ��� � .

It can be shown that ' ) # ) 
�) % is elliptic on the kernel of the operator associated with
1 ) # ) 
5) % and
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Figure 2: Material distribution (5 ports)

PSfrag replacements

Figure 3: Magnetic induction between two ports (zoom)

that
1 ) # ) 
5) % satisfies an LBB-condition (cf. [HOP99]). The numerical solution of (21),(22)

is done by preconditioned Richardson-type iterations with a multilevel preconditioner and
features an additional defect correction in subspaces of irrotational vector fields that takes care
of the nontrivial kernel of the discrete curl-operator. We refer to [HOP00] for details (cf. also
[BBM99] for a related approach). Grid adaptation strategies based on efficient and reliable
residual-type a posteriori error estimators can be performed along the lines of [BHH00]).

Numerical results

The primal-dual Newton interior-point method has been tested in 2D with the total amount
of dissipated electric energy to be minimized and an optimal design has been computed in
3D for an individual bus bar by using the techniques described in the previous sections. The
numerical simulation provides a material distribution that can be visualized by grey-scales
ranging from black ( � 	 � 
�� � ) to white ( � 	 ��
���� ) and by corresponding height profiles.
Figure 2 displays the material distribution for a 2D test case (bus bar with 5 ports).
We observe a sharp resolution of the interface “material - no material”. The performance
of the primal-dual Newton interior-point method depends on the number of ports and the
parameter ! in (11) (for details see [HPS00]).
For an individual 3D bus bar, Figure 3 shows a visualization of the computed magnetic induc-
tion
�

for the final design in a vicinity between two ports. One clearly recognizes the effect
of the topology optimization (holes close to the ports) on the distribution of the magnetic
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induction (for a more detailed documentation we refer to [BHM01]).
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Jyväskylä (Finland), October 1998 (Neittaanmäki, P. et al.; eds.), (2000).
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