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40 A Hierarchical Domain Decomposition Method with L ow
Communication Over head

M. Isradlil, E. Braverman?, A. Averbuch?®

1 Introduction

We present a low communication, non-iterative algorithm for a high order (spectral) solution
of the Poisson equation. The domain is decomposed into nonoverlapping subdomains. Par-
ticular solutions are found in subdomains and subsequently hierarchically matched, such that
only the solution in the adjacent subdomains are coupled at each matching step, then these
joint subdomains are matched etc. If originally we had 22* subdomains, after k steps we
obtain a smooth global solution.

Implicit discretization of time dependent problems in computational physics, semicon-
ductor device simulation, electromigration and fluid dynamics often gives rise to equations of
Poisson and modified Helmholtz type. Thus, fast and accurate methods for elliptic equations
are important for such applications.

We solve the Poisson equation

Au = f(z,y) in Q )
or the modified Helmholtz equation
Au — X2y = f(z,y) in Q )
in the rectangular/square domain 2 = [0, L] x [0, K] with Dirichlet
u=®(z,y) on 0N (3)

boundary conditions by the Domain Decomposition (DD) methods.

An algorithm for a fast solution of the Poisson equation by decomposition of the domain
into square domains and the subsequent matching of these solutions by the fast multipole
method was developed in [GL96]. Previously [ABI00] we adopted a DD method where the
equation was solved in each subdomain with assumed boundary conditions, resulting in jumps
in function or derivative on subdomain boundaries. The solution in each rectangular domain
is fast and accurate and is based on the algorithm developed in [AIV97, AIVV98]. The jumps
at the interfaces were removed by the introduction of singularity layers. In order to account
for the global effect of these layers we had to compute the influence of each layer on each
subdomain boundary. In order to alleviate this heavy computational task we took into account
the decay or smoothing out of the influence as a function of the distance from the layer. To
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reduce the communication load, compression in a multiwavelet basis was applied. Neverthe-
less, this part of the procedure can become expensive as the number of subdomains grows
considerably.
The algorithm developed in [ABI0Q] consists of the following steps:
1. In each subdomain a particular solution u§3> of the non-homogeneous equation with
arbitrary Neumann (Dirichlet) boundary conditions is found.

2. The collection of particular solutions u?), s =1,...,1,usually have discontinuities (or
discontinuities in the derivatives) on the boundaries of the subdomains. We introduce
double (single) layers on the boundaries to match the solutions from different domains
to have continuous global solution. The effect of these layers on other boundaries is
calculated.

3. With the boundary conditions that were computed in the previous step, the solutions
u§3> are patched by adding the solutions ug”, s =1,...,1, of the Laplace equation.

4. An additional solution of the Laplace equation is added to satisfy the boundary con-
ditions on 9€2. Namely, for the Dirichlet case the solution w3 of the homogeneous
equation on the boundary 92 is derived by

U3($,y) = (b(.’II,y) - Ul(.’]?,y) - ’U/Q(.'E,y) (4)

(the case with Neumann boundary conditions is treated similarly). Thus u = uy +us +
ug 1S the solution of the non-homogeneous equation with the initial non-homogeneous
boundary conditions.

The interface jump removal can become cheaper if only adjacent boxes are matched,
which is a basis of the hierarchical approach which is proposed in the present paper. The
present hierarchical approach matching only two adjacent boxes at each level requires only
local corrections at the boundaries of these boxes. The result is a much more efficient com-
putation.

2 Outline of the Algorithm

In the new hierarchical approach the domain is decomposed into k2 subdomains; first (see
Fig. 1) the smallest domains 1,2,3,4 are matched, then they are matched with larger blocks
5,6,7, and, finally, the resulting box is matched with 8,9,10.

The “elementary step” of the hierarchical algorithm is the following.

1. First, in each of four subdomains some smooth boundary conditions are defined. These
conditions should not contradict the given right hand side, at the junctions. The Poisson
equation is solved with these boundary conditions by a fast spectral algorithm which
takes O(N2log N) operations (V is a number of points in each direction).

2. The solutions have a discontinuity in the first derivative. We match the subdomains by
adding certain discontinuous functions. In fact we only evaluate these functions at the
boundaries of four adjacent subdomains and then solve homogeneous equations in each
subdomain with the cumulative boundary conditions.
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3. The global homogeneous equation is solved in such a way that it satisfies the assumed
conditions at the “global boundaries” of the merged subdomains.

This step is repeated log k times, for a smalled number of larger subdomains each time.

5 6

9 10

Figure 1: The domain is decomposed into &2 subdomains; first the smallest domains 1,2,3,4
are matched, then they are matched with larger blocks 5,6,7, and, finally, the obtained box is
matched with 8,9,10.

The algorithm can be also implemented on parallel multiprocessors. The parallelization of
the serial algorithm is achieved by decomposition of the computational domain into smaller
domains. Each domain is assigned to a processor. The information transmitted between
the processors is the influences of a function/derivative jumps at the interfaces. of a func-
tion/derivative jumps at the interfaces. The low communication is achieved due to the fast
decay of these influences and their efficient representation in multiwavelet bases.

For instance, when computing the influence of the derivative jump in the form of the sum
of random Gaussians

12
Zexp{—ak((m —2)*+ (y—wr)?)}, 02<a; <7,
k=1

at distance 3 we have only 4 (of 256) multiwavelet coefficients above 10—, 7 above 108, 15
above 10710,

3 Matching step of the algorithm
The fast and efficient solution of the Poisson/modified Helmholtz and their homogeneous

analogs was in detail described in [AIV97, AIV98]. Thus we focus here on the matching step
of the algorithm.
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Let us consider the simplest (“linear”) geometry of the 2-D problem (see Fig. 2) and
present the corresponding steps concerned either with the choice of the initial boundary con-
ditions or with patching jumps between the subdomains.

y

Box 1 Box 2 Box 3 Box L

0 1 2 3 L-1 L X

Figure 2: The domain is decomposed into L subdomains.

Step 1. At the boundary of the global domain we assume the original boundary conditions,
to avoid singularities at the corners. At the interfaces z = zg, 0 < y < 1 we assume

U(Ib'o,y) = ul(x07y) +U2(.§L’0,y), (5)
where
B sinh(A(1 — y)) sinh(Ay)

ul(any) - Q(anO) smh()\) + (p(an ]-) smh()\) (6)

matches the values at the interfaces with the value at the boundary and

ws(z0,4) = f(20,0) = ®(20,0)\* [sinh(M (1 —y)) sinh(Aa(1 —y))
210, 9) = X A2 sinh(\r) sinh(\2)

f(JUO, 1) _ (I)(‘T(b 1))‘2 Slnh()‘ly) _ SIHh()‘Zy) (7)

)\f - )\%) Sil’lh()\l) Sinh()\g)

to satisfy the Poisson equation at the corners of the interfaces. The latter function vanishes at
z=1x9,y=0,1.

Step 2. We solve the Poisson equation with the prescribed (at the first step) boundary
conditions. There is a jump of the first derivative at the interfaces

O (a+9) — e (zo=ry) = h3). ®

Since the original boundary conditions are smooth, then A(0) = h(1) = 0. After subtracting
a function

o) = h'(1) [sin(My)  sin(Aey)

A2 =2 | sin(A;)  sin(A2) ©
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h(y) vanishes at y = 1 together with its second derivative. A similar function is subtracted
for y = 0. Then the remaining part A can be accurately expanded into the sine series (in fact,
the fourth and higher even derivatives can be also eliminated by an analogous procedure)

hy) =) ax sin(rky) (10)
Then, after adding to the solution to the left of z = x4 the following function
h'(1) cosh(A1 (z —xo + L)) sin(Ay)  sinh(A2(z — z0 + L)) sin(A1y)
2002 = %) A1 sinh(A L) sin(A1) cosh(A2 L) sin(A1)
h'"(0) cosh(A(z — zo + L)) sin(A1 (1 —y))
YY) A1 sinh(\; L) sin(\1)
_sinh(Az(z — @0 + L)) sin(A: (1 — y))
cosh(A\a L) sin(\q

"3

1
P, i h(nk(L —
+ 37k cosh(mkL) Z a, sin(wky) cosh(rk(L — o + x)) (11)

and a symmetric (with respect to axis z = x¢) to the right of this axis, we obtain a function
which is smooth together with its first derivative. Besides, the function which we add decays
exponentially with the growth of the distance from z = z.

4 Numerical Results

Assume that u is the exact solution and ' is the computed solution. In the examples we will
use the following measures to estimate the errors:

EMAX max [Ju} — u|

N ! 2
— e (uf—ui)
EMSQ = V n

Er2 =

4.1 Linear geometry

We assume the geometry of Fig. 2 where the domain is decomposed in one dimension only.

Example 1. We solve the Poisson equation Au = —2cosz cosy with the boundary
conditions corresponding to the exact solution u(z, y, z) = cos z cosy in the domain [0, 3] x
[0, 1] which is divided into three equal boxes.

N, x Nyineachbox | emax EMSQ Er2
32 x 32 4.1e-7 | 1.2e-7 | 2.1e-7
64 x 64 2.9e-8 | 8.2e-9 | 1.4e-8
128 x 128 2.0e-9 | 5.4e-10 | 9.2e-10
256 x 256 1.3e-10 | 3.5e-11 | 5.9e-11
512 x 512 8.5e-12 | 2.2e-12 | 3.8e-12

Table 1: MAX, MSQ and £2 errors for the Poisson equation with the exact solution
u(z,y,2z) = coszx cosy for three boxes
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Example 2. We solve the Poisson equation with boundary conditions corresponding to the
exact solution

u(z,y) = exp {—a ((z — z0)* + (y —10)*) } ,

with g = 1.5, yo = 0.5, @ = 2 in the domain [0, 3] x [0, 1] which is divided into three equal
boxes.

N, x Nyineachbox | emax EMSQ Er2
32 x 32 6.8e-6 | 2.0e-6 | 4.4e-6
64 x 64 3.9e-7 | 1l.le-7 | 2.4e-7
128 x 128 2.3e-8 | 6.6e-9 | 1.4e-8
256 x 256 1.4e-9 | 4.0e-10 | 8.5e-10
512 x 512 8.7e-11 | 2.4e-11 | 5.2e-11

Table 2: MAX, MSQ and £ errors for the Poisson equation with the exact solution
u(z,y) = exp{—2(z — 1.5)2 + 2(y — 0.5)?}.

4.2 Hierarchical subdomains matching

Figure 3: The domain is decomposed into four subdomains

In examples 3, 4 the global subdomain was decomposed into four subdomains (see Fig. 3).
In the practical implementation first two pairs of adjacent subdomains were matched: box 1
and 2, box 3 and 4. Afterwards the two resulting boxes were patched. This is also valid for

examples 5,6 with 16 subdomains, where each four subdomains were matched in the same
way.

Example 3. We solve the Poisson equation with boundary conditions corresponding to the
exact solution

w(z,y) = exp {—a ((z — z0)” + (y —%0)%) } ,
with o = 0.5, yo = 0.5, & = 2 in the domain [0, 1] x [0, 1] divided into four equal boxes.
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N, x Ny in each subdomain | eyax EMSQ Er2
8 x8 1.7e-4 | 5.1e-5| 7.1e-5
16 x 16 1.3e-5 | 3.6e-6 | 4.9e-6
32 x 32 1.2e-6 | 3.5e-7 | 4.7e-7
64 x 64 1.0e-7 | 2.8e-8 | 3.7e-8
128 x 128 8.0e-9 | 2.0e9 | 2.7e9
256 x 256 6.1e-10 | 1.4e-10 | 1.9e-10

Table 3: MAX, MSQ and £ errors for the Poisson equation with the exact solution
u(z,y) = exp{2((z — 0.5)? + 2(y — 0.5)2)}. in the domain [0, 1] x [0, 1]

Table 4 presents the results for the same exact solution when the Dirichlet problem is
solved in the square [0, 2] x [0, 2].

N, x Ny ineach subdomain | eprax EMSQ Er2
8 x 8 3.5e-3 | 1.2e-3| 3.1e-3
16 x 16 1.7e-4 | 5.7e-5| 1.4e-4
32 x 32 8.3e-6 | 2.5e-6 | 6.1e-6
64 x 64 4.4e-7 | 1.2e-7| 29e-7
128 x 128 2.5e-8 | 6.5e-9 | 1.6e-8
256 x 256 1.5e-9 | 3.8e-10 | 9.4e-10

Table 4. MAX, MSQ and £2? errors for the Poisson equation with the exact solution
u(z,y) = exp{—2((z — 0.5)% + 2(y — 0.5)?)} in the domain [0, 2] x [0, 2]

Example 4. The exact solution is a steep Gaussian

u(z,y) = exp {—10 ((z — 0.2)* + (y — 0.3)%) } .

Table 5 presents the numerical errors.

N, x N, in each subdomain | eaax EMSQ Er2
8x8 1.9e-2 | 4.4e-3 | 2.4e-2
16 x 16 49e-4 | 9.1e-5| 4.9e-4
32 x 32 1.1e-5| 2.1e-6 | 1.1e5
64 x 64 3.0e-7 | 6.0e-8 | 3.2e-7
128 x 128 1.1e-8 | 1.9e-9 | 1.0e-8
256 x 256 4.7e-10 | 6.4e-11 | 3.5e-10

Table 5: MAX, MSQ and £2 errors for the Poisson equation with the exact solution
u(z,y) = exp{—10((z — 0.2)® + 2(y — 0.3)?)}. in the domain [0, 2] x [0, 2]
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Figure 4: The domain is decomposed into sixteen subdomains

The domain is decomposed into sixteen subdomains which are hierarchically matched
(see Fig. 4): first each four small boxes and then the resulting four “big” (joint) boxes. Such
domain decomposition was implemented in Example 5.

Example 5. We solve the Poisson equation with the boundary conditions corresponding to
the exact solution

u(z,y) =exp {—2 ((z — 0.5)> + (y — 0.5)) }

in the domain [0, 1] x [0, 1] divided into sixteen equal boxes (Table 6).

N, x N, in each subdomain | eaax EMSQ Er2
4 x4 3.6e-4 | 16e-4 | 22e-4
& x8 2.4e-5 | 1.0e-5| 1.4e-5
16 x 16 2.3e-6 | 9.6e-7 | 1.3e-6
32 x 32 1.9e-7 | 8.0e-8 | 1.1e-7
64 x 64 15e-8 | 6.1e-9 | 8.2e-9
128 x 128 1.1e-9 | 4.5e-10 | 6.0e-10
256 x 256 8.3e-11 | 3.3e-11 | 4.4e-11

Table 6: MAX, MSQ and £2 errors for the Poisson equation with the exact solution
u(z,y) = exp{—2((z — 0.5)% + 2(y — 0.5)2)} in the domain [0, 1] x [0, 1]

5 Summary

1. The procedure developed here reduces drastically (by a factor of O(k2/ log k) times)
the number of computations as compared to our previous algorithm where influences of
the layers at interfaces are evaluated.
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2. The algorithm has an adaptive DD version and also achieves high accuracy (10~7 —
10~8 for 64 x 64 points in the smallest subdomains).

3. The algorithm is applicable for parallel implementation as its previous version devel-
oped in [ABIOO0].

4. This algorithm can be used as a preconditioner for the solution of elliptic equations with
nonconstant coefficients by solving local constant coefficient problems in subdomains.

5. The present algorithm is close to a multigrid strategy, where the discretization points
are replaced by the small boxes in where the equation is satisfied with spectral accuracy
which is preserved in the final solution.
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