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23 Optimized Schwarz Algorithms for Coupling Convection
and Convection-Diffusion Problems

M.J. Gander!, L. Halpern?, C. Japhet®

Introduction

When solving the compressible Navier-Stokes equations in an exterior domain, it is of inter-
est in the computation to select regions where the viscosity is small and to solve the Euler
equations instead in these regions, since the Euler equations are less costly computationally.
In recent years, fundamental work has been done to study the range of applicability of this ap-
proach. Error estimates have been developed for small viscosity, coupled problems have been
formulated and more recently iterative algorithms have been developed to solve the coupled
problems (see [Dub93], [GQL90]).

For problems in fluid mechanics new domain decomposition methods with optimized
transmission conditions based on artificial boundary conditions [Hal86] have been introduced
[CQ95, NR95]. In particular, it was proposed for the convection-diffusion equation to use
transmission conditions such that the rate of convergence can be optimized [Jap98]. These
transmission conditions lead to very fast convergence, and the convergence rate is nearly in-
dependent of both the physical and the discretization parameters.

Here we extend these transmission conditions to the case of the coupled convection and
convection-diffusion problem. We consider the convection-diffusion equation

Leg(u) = —vAu +diviau) +cu = f in , 1
C(u) g on 912, (1)

where € is a bounded open set of R?, and C is a linear operator such as the identity or the
normal derivative. Here v > 0 is the viscosity, ¢ > 0 isaconstantanda = (a,b) € (L*°(Q))?
is the velocity field with diva € L>°(Q) and diva + ¢ > § > 0. This ensures that the problem
is well-posed, because it can be associated with a continuous and coercive bilinear form.

We suppose that the diffusion process is only physically relevant in a subregion Q2_ of
Q. LetQ =Q_ UQy withQ_NQy = 0. We denote by T' the common interface between
Q_ and Q4 and by n the unit outward normal for Q_. To solve the original problem (1),
we want to use the fact that the diffusion is only relevant in Q. We therefore couple the
convection-diffusion equation

Leqg(v) = —vAv +diviav) +cvo = f inQ_
with the convection equation
L.(w) =diviaw) +cw = f inQy

with C imposed on 9Q2_ N 9N and 9 N AN and with suitable transmission conditionson T'.
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We first present the optimized Schwarz algorithm for Q = R2 to show the link between
transmission conditions and artificial boundary conditions. We consider both inflow into the
purely convective region, a - n > 0, and outflow of the purely convective region, a-n < 0.
Then we present the optimized Schwarz algorithm for an arbitrary velocity field. We recall
error estimates for small viscosity and compare in numerical experiments the new optimized
Schwarz method for coupled problems to an earlier coupling algorithm in [GQL90].

Inflow into the Purely Convective Region

LetQ=R2,Q_ =R xR Q. =R xRandT = {(z,y), y € R, = = 0}. Inthe case of
inflow into the purely convective region, the coupling on I' needs both a condition on v and a
condition on w. Let A be the Dirichlet to Neumann operator of the left half plane defined by

ou Lcd(u) = 0 inQ_,
A (g) = 9 where u solves u = g onT,
T u  bounded at infinity.

If the coefficients of L.4 are constants, we can compute the symbol of A using a Fourier
transform in the y direction. The symbol is given by the root with positive real part of the
characteristic polynomial

—vA% +a) + (vE® +ibk +¢) = 0.

Then (8% — A) is the transparent operator on I" for the convection diffusion problem in 2_
(see [Hal86]). If we consider the Schwarz algorithm

Leg(v™)=f inQ_ Le(w™)=f in Q4 ’
{ Lo(v™)=Lo(w™ )onT {(% “AY) @)= (2 - Ay) @ HonT @)

then, because the transmission operators are the transparent operators for Q@ and Q, we
have the following optimal convergence result.

Theorem 1 The algorithm (2) converges in 2 iterations to the solution of the coupled problem

La(w) = f inQ_, v o= w onT, 3)
L(w) = f onQy, & = 2Zv onl.

Note that the coupling conditions satisfied at convergence in (3) are the coupling conditions
satisfied by the original viscous problem in both subdomains. The continuity of both the
values and normal derivatives in the coupled solution seems to be important, since we neglect
the diffusion term only for computational purposes, not because the diffusion is physically
zero in one subdomain. This is an important distinction from the transmission conditions
derived in [GQL90] from a mathematical point of view, which led to a coupled solution with
jumps in the the normal derivatives across the artificial interface.

The transmission condition for €2 in the optimal Schwarz algorithm (2) involves a non-
local operator, which requires a convolution along the interface in a numerical implementa-
tion. To avoid this, we replace the non-local operator A by a local approximation given by a
differential operator in the y variable, which leads to the new transmission condition

0 0 02

B = e =Py Ty
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where a > 0, v > 0 and the coefficients «, § and -y are chosen to optimize the convergence
rate of the Schwarz algorithm as it was done for convection-diffusion problems in [Jap98].
The optimized Schwarz algorithm for the coupled problem is therefore given by

Loa(v™) = f inQ_ Lo(w™) = f in 0, ’
Lo(w™) = Lo(w™ 1) onT By (w") = By (v™1) onT “)

Remark 1 Note that on the interface, 22~ can be replaced by 1(f — cw™ — b2%") using the
convection equation in Q..

A priori estimates show the well-posedness as in [GQL90] and [NR95].

Theorem 2 Let HY1(Q4) = {v € HY(Q4),v|r € HY(T)}. Then the algorithm (4) has a
unique solution (v™,w™) in HH-1(Q_) x HL1(Qy).

Because the transmission condition for _ is still transparent for w? we have

Theorem 3 The algorithm (4) converges in 3 iterations to the solution of the coupled problem
(3). More precisely we have v? = v, w® = w.

Outflow of the Purely Convective Region

In this case only one transmission condition can be imposed and we choose here to impose
the continuity of the function values, v = w, on I". Note that one could also choose continuity
of the normal derivatives or a linear combination. The boundary conditions imposed on the
purely convective region 92 N 9§ are such that w is uniquely determined by

Low)=f inQy

without information required from the other subdomain (see [GQL90]). With the solution w,
the solution v on the other subdomain is then defined by

{ Lea(v) foinQ_,

v = w onl

and there is no need to iterate.

The Case of Mixed Inflow and Outflow

We define Tyt = {z € T,a-n <0} and Ty, = {z € T,a-n > 0} with T, NTour = 0
and I';;, UT ¢ = I as shown in Figure 1.
We propose the optimized Schwarz algorithm

Lea(w™) = f in Q_ n ;
Ec(’l)n) = ;Cc(wnil) on an {)‘ECEZ"; — IJ; ,Unfl :-_)nnS])_"-i,_ (5)
o = wht on Loy + * "

Again, a priori estimates lead to the following
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Figure 1: A problem with both inflow and outflow along the artificial interface.

Theorem 4 The algorithm (5) is well-posed in H11(Q ) x H1(Q).

We do not yet have a convergence proof of algorithm (5), but numerical experiments show that
the iterates (v™, w™) of the optimized Schwarz method (5) converge to the solution (v, w) of
the coupled problem

Lalv) = f inQ_, v = w onT,
EC(UJ) = f on Q+, g—:}l = % onl,.

Estimates for Small Viscosity

LetQ =R, Q_ =R xR Qp =R xRandT = {(z,y), y € R, = = 0}. Let
U be the solution of the convection-diffusion equation in R2. Dubach [Dub93] obtained for
a-n = a > 0and the problem

al,v = f, z <0,
ad,w —vAw = f, z >0,
(6z — %) w = —sv, z=0,

the estimates
v Vig
o = Dl = 0) and - lw = Vellzaqes) = 0(Z))
For the problem

w, atz =0,
O,w, atx =0,

alyw = f, x>0, Ogv

{a@xv—l/Av = f, <0, v

he obtained the estimates

[I(v — U)$||L2(]R2_) =0((

ISHIN

) and [l(w = U)allpaey) = 0(2)?)

which will be verified by our numerical experiments.
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Numerical Experiments

We discretize the global convection-diffusion problem and the subproblems in the optimized
Schwarz method by upwind finite difference schemes. We call the solution of the global
convection-diffusion problem the viscous solution. We use the mesh size A = 1/200 and both
the viscous solution as well as the subdomain solutions are obtained by a direct solver. We
first consider an inflow problem into the purely convective region of the domain and then a
rotating velocity. We compare the results obtained with the optimized Schwarz method to the
results obtained with the algorithm from [GQL90].

Inflow into the Purely Convective Region

We solve the coupled problem on the unit square using the optimized Schwarz method (4)
with v = 1073, a = (0.1,0.1) and ¢ = 10=5. The boundary conditions we use are given in
Figure 2 and the interface is located at z = 0.2.

ou

AATTT I I 77777777 ,/ on
W
U o
N
U o
A
U
A N
oo =0 " ou

' Interface =

‘

|

|

|

|

‘

on

TNNNNNN
g N

\
u = exp(—100(z — 1)?)

Figure 2: Convection field and boundary conditions for inflow into the purely convective
region.

On the left in Figure 3 we compare the viscous solution and the solution obtained by the
optimized Schwarz method for the coupled problem on the line y = 0.01 after 2 iterations.
On the right of Figure 3 we show the results obtained using the algorithm and transmission
conditions from [GQL90] obtained by letting © go to zero. They are given by
{ (-vZ& +a-n) ’UZ = —n(ill- n)w" ! onT, ©)

w' = v onT;,

and do therefore not satisfy continuity of the derivatives across the interface, as one can see
in Figure 3.

A Rotating Velocity

We use the optimized Schwarz method to solve the problem with v = 10=2,a = (0.5—y, 0.5)
and ¢ = 10~% and boundary conditions as given in Figure 4 on the unit square. The interface
is again located at z = 0.2. We compare the solution obtained by the optimized Schwarz
method after 3 iterations to the viscous solution. Figure 5 shows both solutions on the line
y = 0.15 (inflow into the purely convective region) and on the line y = 0.8 (outflow of the
purely convective region). The computed solution is continuous on the interface and also its
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Figure 3: Result for constant velocity, the solid line denotes the viscous solution, the dashed
line on the left the coupled solution obtained by the optimized Schwarz method and the dashed
line on the right the solution from the algorithm proposed in [GQL90]. Note the discontinuity
in the derivative on the right at = 0.2.
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Figure 4: Convective field and boundary conditions for the rotation velocity case.
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Figure 5: Result for rotating velocity on the left at y = 0.15 with a zoom on [0, 0.5] x [0,0.5],
on the right at y = 0.8. The solid line denotes the viscous solution, the dashed line the
optimized Schwarz solution.
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derivative is continuous on I';,. On I',,; there is a small jump in the normal derivative of
the solution because only one condition can be satisfied, as we have seen in the analysis. In
Figure 6 we show the results obtained with the transmission conditions (6) from [GQL90] after

\ — viscous solution

— - coupling with (6)
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x

Figure 6: Same graphs as in Figure 5 but for the algorithm with transmission conditions (6)
from [GQL9Q].

3 iterations. Note that on I';,, there is a jump in the normal derivative, whereas on T,,,; there
is a jump in the function value and in the normal derivative. The size of these discontinuities
diminishes however with diminishing viscosity. Nevertheless as a physical solution to the
original viscous problem, the solutions obtained by the optimized Schwarz methods seem to
be preferable.

Finally we show in Figure 7 the error on the interface as a function of decreasing viscosity.
The results confirm the asymptotic results from [Dub93].
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Figure 7: Asymptotic results in v for the rotating velocity, the solid line is the reference for
1 . . . . . .
vz, the dashed line denotes the optimized Schwarz solution, and the dotted line the solution

of the algorithm with transmission conditions (6).
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