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51 Domain Decomposition M ethod Applied to a Coupling
Vibration Problem between Shell and Acoustics

T. Kako!, H. M. Nasir?

I ntroduction

We consider the numerical method for the structural-acoustic coupling vibration problem be-
tween a shell and acoustic fields by the finite element method. The structure is a shell S which
encloses a bounded acoustic region €2; and is surrounded by an unbounded acoustic region
Q>. The structural-acoustic system is described by a coupled problem between the acoustic
pressure perturbations of the inner and outer regions and the tangential and normal deforma-
tions of the shell. The problem can be regarded as a domain decomposition formulation for
the acoustic fields with a generalized Lagrangian multiplier. The normal deformation of the
shell acts as the Lagrangian multiplier which is in turn coupled with tangential deformation of
the shell. The finite element approximation to the problem results in a block matrix equation.
In order to solve this matrix equation by iterative methods, we consider two techniques: one
is based on the Schur complement of the block matrix with appropriate preconditioners and
the other is a direct iteration with some block preconditioners. We use a descretized version
of fictitious domain method to construct the block matrices and use the Krylov subspace it-
eration method for solving the system of equations [HKNT98]. The fictitious domain is used
to obtain preconditioners for the diagonal matrix blocks. The Schur complement technique
requires a double iteration whereas the direct iteration techniques requires only a single itera-
tion. We observe that the direct iteration technique with block preconditioners performs well
compared to the Schur complement technique.

Let there be two acoustic regions ; and 2, in R?, d = 2, 3, separated by a closed shell struc-
ture. The domain €2, is bounded and enclosed by the shell and the domain 2 is unbounded
(see Fig. 1). Let p;, p; and ¢; be the acoustic pressure perturbation, the density of acoustic
material and the sound velocity in the domain Q;,7 = 1, 2 respectively and p*™¢ be the pres-
sure perturbation of an incident wave from the outer region 5. Then the governing equations
for the vibration of the system are given by

8%p;
6:;’ EAp; = 0 inQ;, i=1,2,
6]32 62un
i onS, i=1,2,
an P o
*u N
Pow +Au = (P —pa2)lsn onS,
Po — pin° is outgoing,

where n is the outward unit normal to the shell surface; u is the vector of the shell deforma-
tions; u, = u - n is the shell deformation along the normal n; A is the shell force operator.
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Figure 1: Structural-acoustic coupling

For a general shaped arc shell in two dimensions, the operator A consists of membrane and
flexural components: A = D(A™e™b 4 %Aﬂ”) with

-0 0.k —A? —A A
memb __ s s flex __ 1 1432
AT = [ —kD, K2 ] and A7 = [ Ay A3

where Ay = 2k0, + k'; Ay = 8% — K2; 9, and ' denote differentiation with respect to the arc
length s, k and e are the curvature and thickness of the shell respectively and D = E/(1—v?)
is the flexural rigidity of the shell with Young’s modulus E and Poisson ratio v(0 < v < 1/2).
Let p; = p1 and po = po + p™™¢. Then, p; and p, represent the pressures of scattered waves
inside and outside respectively. We also assume that the incident wave, the scattering waves
and the deformations of the shell are time-harmonic: f(z,t) = f(z)ei™, f = p1, p2, p™™° or
u. Then, the problem can be written as follows:

_Apl - kfpl = 07 in Ql;l = 17 27 (13.)
% = pwiu, ons, (1b)
8}72 9 apinc
Zr2 . - 1
n P2t tin =~ onS, (1c)
Au—poiu = (p—ps— p™)sn onS, (1d)
— (% — ikzpz) — 0, asr — oo, (1e)

where k; = w/c¢;,i = 1,2 are the wave numbers corresponding to the inner and outer acoustic
regions respectively. The last condition is the Sommerfeld radiation condition for the scatter-
ing wave p» which allows only the out-going waves in the solution for the outer region.

Approximate problem and weak formulation

For the numerical treatment of the problem, introducing an artificial boundary I'g, we re-
strict the unbounded domain €, into a bounded domain Qg and impose an artificial radiation



DDM FOR SHELL-ACOUSTIC COUPLING 487

boundary condition on I'g. We choose I'r to be a circle or a sphere of radius R for the two
or three dimensional problems respectively.
The Sommerfeld radiation condition is then replaced by the radiation boundary condition

—— = Mp> (2)

where M is a differential or pseudo-differential operator with respect to the tangent parameter
of the boundary I'g.

Let us consider the function spaces V; = H(Q;),Va = H*(Q2),V3 = H'(S) and V4 =
H?(S) as the solution spaces for p, p2, u; and u,, respectively. Here, u = (a4, u,,) and uy is
the vector of tangential deformation.

The weak formulation of the problem (1) can be given as follows:

Find (p1, p2, ug, up) € Vi x Vo x V3 x V, such that, forall (g1, g2, v, vn) € Vi X Vo x V3 x Vy

a1(p1, @) + pr’(un,q1)s = 0, (3a)
a1(p2, @) — m(p2, @2)rp — P2’ (Un, @2)ar = (0p™/On,q2)s, (3b)
b(u,v) — (p1,vn)s + (P2,vn)s = —(@" vn)s (3c)
where
a (plaql) = (Vpthl)Ql - kl (plaql)Qla
a2(p2,q2) = (Vp2,Va2)ar — k2(p2, ¢2)ag,
m(pz, @2)rn = /(Mpz)q‘zds and b(u,V)=/(A—pow2)u‘7d0-
T'r S

We introduce finite dimensional subspaces V;;, of V;,4 = 1,2, 3, 4 respectively and consider
the approximate weak formulation, i.e., the finite element method:

Find (plh,p%,uth,unh) € Vin X Vop X Vap X Vap such that for all

(q1,92,Ve,vn) € Vip X Vap X Vap X Vi,

al(plhaql) + p1w2(unhaq1)5 = 0; (43.)
a1(P2ny @2) — M(Dan, @2)Tr — P20 (Unk, @) = (0D™¢/On,q2)s, (4b)
b(un,v) — (P1h,vn)s + (P2n,vn)s = —(@", vn)s. (4c)

By choosing bases for the function spaces and writing p1 5, p2n, ugn, and u,p With respect to
these bases, we obtain the block matrix equation as follows:

M1 0 0 —p1w2Lf P1 0
0 M2 0 p2w2Lg P2 _ F 5
0 0 A BT Us | | 0O ®)
-Ly L, B C U, G

where each block corresponds to the sesquilinear form and its entries are given with respect
to the chosen base functions.

The matrices M; and M, are constructed by the finite element discretization of fictitious
domains. For the inner bounded domain €21, we consider a rectangular region such that 2, is
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included in it. We discretize the rectangular domain by a uniform orthogonal rectangular grid.
Then, the nodes close to the boundary of 2; are moved onto the boundary so that the new
locally modified partition is topologically equivalent to the orthogonal grid partition. Then,
the modified rectangles are triangulated such that the resulting triangles satisfy a regularity
condition. The computational domain for the inner region is then obtained by discarding the
extended portion in the rectangular fictitious domain.

Similarly, for the outer domain Q g, we enlarge the domain towards inside the inner boundary
of Qg so that it makes an annulus including the inner boundary of Qg. We discretize the
annulus by a uniform orthogonal polar grid. The nodes near the inner boundary of Qg are
modified as in the case of inner domain (see Fig. 2).
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Figure 2: Fictitious domains and partitioning

Preconditioners for the matrices My and M- that are constructed by the fictitious domain
method are obtained by using the enlarged fictitious domain itself. We explain the construc-
tion of the preconditioner for the inner region. The one for the outer region follows analo-
gously.

The unmodified orthogonal mesh is used to obtain a matrix by using the same weak formu-
lation on the fictitious domain. This will give a matrix N which we write in a block form as
follows:

Nll N12
N, =
1 [NE; Ny

where the matrix N1, corresponds to the nodes on the inner region, but not moved; the matrix
N4 corresponds to the nodes outside the inner region. The matrix N is obviously larger in
size than the original matrix Ay which corresponds to the moved nodes on the inner boundary.
When we want to solve a matrix equation of the form

M P, = Fi,

we enlarge the system as follows:

_ Mz N]_2 P]_ _ Fl
we[ 221817

The two system of equations are equivalent in the sense that the solution P; is the same
for both systems. Hence, we solve the enlarged system using the Krylov subspace iteration
method with the matrix Ny as a preconditioner. For more details of the fictitious domain
method see [HKNT98].
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Schur Complement Method

The Schur complement of the block matrix with respect to its last block is obtained by solving
the block matrix equation (5) for the vector component Us:

[C — BAT'BT — p1w? LiM["LT — pow®LoMy ' LY Us = G — My 'F (6)

This matrix can then be solved numerically by using the Krylov subspace method. The terms
involving matrix inverses in this Schur complement are computed based on the fictitious do-
main method with preconditioners obtained from the fictitious domains.

Direct Iteration Method

In this method, we directly use the Krylov subspace iteration procedure to solve the block
matrix equation (5). For this purpose, the block matrix equation is enlarged to the the one
with the size corresponding to that of their fictitious domain preconditioners as follows:

M; 0 0 -kLT P, 0
0 M, 0 k°LT P, | | F
0 0 A BT U, | | o

-I, L, B C U, G

where the matrices in bold symbols are the enlarged matrices of their counterparts in the block
matrix equation (5).

The preconditioner used for this method is based on the preconditioning technique by Bramble
and Pasciak [BP88] which is given as follows:

I 0 0 0 N;' o0 0 0
0 I 0 0 0 N8 0 o0
0 0 I 0 0 0 Ay' 0
-L; L, B -I 0 0 0 I

where the matrix Ay is the preconditioner for the matrix A based on the fictitious shell domain
(see Fig. 2). The first matrix is an elementary pre-multiplication matrix which makes the
preconditioned matrix symmetric.

Numerical Results

We present in this section the results of the implementation of the method. All computa-
tions were carried out on VT-Alpha5, 533Mhz, 512MB RAM with Linux operating system
environment with double precision arithmetic using object oriented C++ codes.

We test the two iterative methods in the last two sections for a two dimensional shell-acoustic
coupling problem. The shell is a circular arc of radius 1o = 1. The densities of the acoustic
material in both inner and outer acoustic regions are the same p; = p» = 1. The artificial
boundary for the outer acoustic region is a circle of radius R = 2 is chosen. The incident
wave is a plane wave with wave number k = .

In the Schur complement methods, each iteration step requires the matrix inverses of M7, M>
and Ap. These are performed by an inner iteration using the fictitious domain method. Hence,
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each iteration step of the Schur complement matrix equation involves other iterations. Table
1 shows the number of iterations and times for both Schur complement and direct iteration
methods.

Method Outer Iter. | Inv. Mat. Multiplications | time (sec.)
M; | M, A
Schur Complement 23 1276 | 267 23 80.45
Direct iteration 35 35 35 35 3.20

Table 1: Performances of Schur complement and direct iteration methods

The Schur complement method has 23 outer iteration steps each of them has inner iterations.
The total numbers of inner iterations are 1276 for M+, 267 for M,, and 23 for A and the total
time for the iterations is 80.45sec. For the case of A, the preconditioner is Ay the same as A,
because the shell is circular. Hence, it has only one iteration per step.

For the direct preconditioning method, the total iterations required to achieve the same result
is 35. Each iterative step requires one matrix multiplication with the preconditioned matrices
for My, M> and Ay. Hence the total numbers of iterations is 35 for each matrices. The time
required for the iterations is 3.20sec.

Figure 3 shows the real part of the scattering waves for circular and elliptic shell cases. The
radius of the artificial boundary is R = 2. The incident wave is a plane wave coming from
left along the x-axis direction with wave numbers & = 27 and 3. The radius of the shell is
ro = 1 and the major and minor axes of the elliptic shell are 2a = 3.2 and 2b = 2.

Conclusion

The structural-acoustic coupling problem between a shell and inner and outer acoustic fields
is considered by the finite element method. Fictitious domain method is used to discretize
the acoustic domains and the resulting block matrix equation is solved by a Krylov subspace
iteration methods.

Two schemes are used: A Schur complement method and a direct block iteration method. The
Schur complement method requires a double iteration while the direct block iteration method
needs a single iteration.

The block iteration method performs very well in terms of the numbers of matrix multiplica-
tions and computing time.
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Figure 3: Scattering waves: circular and elliptic cases
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