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52 Iterative substructuring methods for incompressible and
nonisothermal flows using the

�����
turbulence model

T. Knopp1, G. Lube2, H. Müller3

Introduction

We consider the parallel solution of the incompressible Navier-Stokes equations coupled with
the energy equation. For turbulent flows, the ���
	 model is used. The iterative process requires
the fast solution of advection-diffusion-reaction and Oseen type problems. These linearized
problems are discretized using stabilized FEM. We apply an iterative substructuring method
which couples the subdomain problems via Robin-type interface conditions. Then we apply
the approach to the simulation of indoor air flow problems.
The mathematical model under consideration is the incompressible, nonisothermal (Reynolds
averaged) Navier-Stokes problem in a bounded polyhedral domain �
����� . For turbulent
flows we apply the ����	 model, cf. [CS99, MP94, Mue99]. Turbulent effects are modelled as
additional turbulent viscosity �
��������� �! and thermal diffusivity "#�$�&%(')+* ' , using the turbulent
kinetic energy � and turbulent dissipation 	 . Bouyancy effects are taken into account using
the Boussinesq approximation.
The velocity ,- , the (reduced) pressure . , and the temperature / , and in the turbulent case, the
quantities � and 	 are solutions of the coupled nonlinear system
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4 � ,- � ,57698;: �
< = 8 ,-?>@>BA 8 ,- 6 ,5 > ,-CA ,5 .D� �FEB/G,H,576 ,- � I4 �J/ A 8 ,- 6 ,5 > /K� ,576L8 " < ,5 / > � MNLO �
PRQ4 � � A 8 ,- 6 ,5 > �S� ,5T6L8 � � ,5 � > �VU � AXW �Y	4 � 	 A 8 ,- 6 ,5 > 	�� ,57698 � ! ,5 	 >+A ��Z[	 Z �]\G^_�`� ^ 	a�?\G^ 8 U � A_Wb>
(1)

with constants � ^dc � Z c ��� c �e� c Ugfh� c Ugf � c Ugf ! , effective viscosities � < �i� A �j� , " < �
" A
"k� c � � �l� A % ')+*(m c � ! �l� A % ')B*(n , production and bouyancy terms

U �So � : �d� p = 8 ,-]> p Z c W o ���q�rE � �Ugf � ,H 6 ,5 / with = 8 ,-G> o �ts: 8 ,5 ,-CA ,5 ,-?uv>xw
In laminar flows we set �zy�I and skip the ���C	 equations in (1). The boundary is divided into
inlet, outlet and wall zones { \ , {v| and {B} depending on the sign of ,- 6 ,~ . Using ��� : �9< = 8 ,-]> ,
we set in laminar flows

8 ����.�� > ,~ �V���$,~ on {v����{ \�� {B| c ,- ��,-G� on {v����{ \�� {v| c (2)
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with {B� � {B�i��� and {v� � {B� � { \ � {B| . On {B} , we prescribe either the tangential
stresses and the normal velocity or a no-slip condition8�� > 8 �K��,~�� ,~B> ��,~ � ,� � c ,- 6 ,~ � I c or

8���� > ,- � ,I on {+} w (3)

In this paper, we consider only case (i) with {$���	� . For / we set

/S� /�
 � on { \ c " < ,5 / 6 ,~ � I on {B| c " < ,5 / 6 ,~ � MN }d�
P Q on {+} w (4)

For turbulent flows, we apply the concept of wall functions in a neighbourhood �
� of {+}
containing at least the so-called viscous sub-layer. Firstly, as usual in wall law theory, the
r.h.s. ,� � in (3) and MN } in (4) are modified. We set ,� � �	� Z� ,- ��p p;,- p p and seek

8 � � c MN } > as solutions
of coupled nonlinear equations. Secondly, for the �C�X	 equations the computational domain
is ���
� � . Dirichlet data are prescribed on { \ and on the artificial boundary { � � 4 � � � � . A
no-flow condition is specified on { | . A computational algorithm has to control that { � , being
discretized with mesh points with minimal distance to { } , belongs to the so-called log-layer.
For details see [KLGR00, Mue99].

Discretization, decoupling, and linearisation

Semidiscretization in time of system (1):
We are mainly interested in the long-term behaviour of the model. So we apply the backward
Euler scheme on a partition ������������+} of � I c�� �

with �r}���I c � � � � . We use the abbreviation� � � ��8 � � > y ��8 � � c 6 > for a function
�

. The time derivative
4 � ��8 � � > is approximated by4 �� � � 8!� � � � � \G^ > �#"$� with time-step "%���&� �_�$� � \+^ . We arrive at the semidiscrete

system 4 �� ,- � ,5T6k8 : � �< = 8 ,- � >(>BA 8 ,- � 6 ,5 > ,- � A ,5 . � � � E+/ � ,H,576 ,- � � I4 �� / A 8 ,- � 6 ,5 > / � � ,57698 " � < ,5 / � > � 8 MN
> O � �
PRQ (5)4 �� � A 8 ,- � 6 ,5 > � � � ,5�6k8 � �� ,5 � � > � U �� AXW � � 	 �4 �� 	 A 8 ,- � 6 ,5 > 	 � � ,576L8 � �! ,5 	 � >vA � Z 8 	 � > Z
� � � � ^ 	

�
� � 8 U �� A_W � >xw

Decoupling and linearization:
We use a block Gauss-Seidel method for the iterative decoupling of (5). A second upper index
denotes the iteration step. Furthermore we replace

4 �� �
by '4 �� � o � 8�� �
( 
 � � � \G^ > �#"$� .

Given ,- �
( } , . �
( } , / �
( } , � �
( } , 	 �
( } as the solutions of the previous time step, the algorithm
reads:

(1) Initialization: Set
� � �*),+.- � s .

(2) Set
�

- � � � �*)/+ and update turbulent viscosity � �� - �
� �� 8 � �
( 
 \G^ c 	 �
( 
 \+^ > . Update
� � c MN } according to (3),(4) using ,- �
( 
 \G^ and / �
( 
 \+^ .

(3) Update � �< and solve the linearized Navier-Stokes-equation

'4 �� ,-CA 8 ,- �
( 
 \G^ 6 ,5 > ,- �
( 
 � ,5�6k8 : � �< = 8 ,- �0( 
 >(>BA ,5 . �
( 
 �T� E+/ �
( 
 \+^#,H,5T6 ,- �
( 
 ��I
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(4) Update " � < and solve the / -equation.

'4 �� / A 8 ,- �
( 
 6 ,5 > / �
( 
 � ,5T6L8 " � < ,5 / �
( 
 > � 8 MN O > � �dPRQ
(5) Update � �� , U �� , W � using ,- �
( 
 , / �
( 
 and solve the � -equation.

'4 �� � A 8 ,- �
( 
 6 ,5 > � �
( 
 � ,5T6k8 � �� ,5 � �
( 
 > ��U �� A_W � �Y	 �
( 
 \G^
(6) Update U �� , W � , � �! using ,- �
( 
 , / �
( 
 , � �0( 
 and solve the 	 -equation.

'4 �� 	 A 8 ,- �0( 
 6 ,5 > 	 �
( 
 � ,57698 � �! ,5 	 �
( 
 >vA ��Z 	 �
( 
 \G^� �
( 
 	 �
( 
 ��� ^ 	
�
( 
 \+^� �
( 
 8 U �� AXW � >

(7) Stopping-criterion for linearization cycle : If
� � �*),+ ��� "�� �*)/+ and if stopping criteria

for �?,- �
( 
 � 
 , �[/ �
( 
 � 
 , �j� �
( 
 � 
 , �[	 �
( 
 � 
 are not yet fulfilled, then set
� � �*)/+�- � � � �*)/+ A sand goto (2). Otherwise goto next time step.

Linearized kernels:
The iterative scheme requires the solution of two basic model problems. First, the linearized
equations for / , � and 	 are advection-diffusion problems with non-constant viscosity of the
general form : 0112 113

� - yT� ,5�698 � ,5 -G>+A 8 ,� 6 ,5 >r-�A P - ��� in '�- � H on '{B�
� ,5 - 6 ,~ ��	 on '{B� w (6)

For / we set '����� , '{ � � { \ , '{ � � { } � { | , 	 p 
��C� MN } �
PRQ , 	 p 
�
_�7I . For � and 	 set
'� �����
� � , '{B��� 8 { \ � 4 '� > � { � with appropriate H and '{B���l{B| with 	��lI . The other
data are given in the following table.

equation - � ,� P - �
for / / �
( 
 " � < ,- �
( 
 / �
( 
 �#"$� MN O �dP Q A / � \G^ � "$�
for � � �0( 
 � �� ,- �
( 
 � �
( 
 �#"$� 8 U �� AXW � > �Y	 �
( 
 \G^A � � \+^ �#" �
for 	 	 �
( 
 � �! ,- �
( 
 � Z !���� ������ ��� � 	 �
( 
 � ^ !���� ������ ��� � 8 U �� AXW � >A 	 �
( 
 � " � A 	 � \G^ �#" �

Later on, we simply write � and omit the indices of viscosities and production terms.

The linearized Navier-Stokes-equation is an Oseen-type problem with a positive reaction term
and non-constant viscosity:

��� 8 ," c ,- c . > y � ,576L8 : � = 8 ,-G>(>vA 8 ," 6 ,5 > ,-CA P�,-CA ,5 . � ,� in �,576 ,- �`I in � (7)8 �z��.]� > ,~ �V�h��,~ on { \ � {v|8 � ��,~ � ,~B> ��,~ � ,� � c ,- 6 ,~ �`I on {B} w
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Comparison with step (3) of the algorithm yields ,- � ,- �
( 
 c ��� �
< c ," � ,- �
( 
 \G^ c P �
" \G^� c .��X. �
( 
 c ,���T� E+/ �
( 
 \G^ ,HKA " \+^� ,- � \+^ w
Stabilized finite element discretization of (6)-(7):
Assume an admissible triangulation

���
of the Lipschitz domain � and define finite element

subspaces � )� y ����� � 8	�� > p	�Gp 
��
� )
8�� >�� � � ��� � c � �
� w

For the advection-diffusion-reaction problem (6), for simplicity with H ��I on {�� , we apply
the Galerkin-FEM with SUPG-stabilization:

Find - ��� � � ������� )� p��Gp 
�� ��I � s.t. o ��� 8 - c � > � ��� 8 � >�� � ��� � c (8)

�!� 8 - c � > � "$#&% � ,5 - 6 ,5 � A 8 ,� 6 ,5 >r- � A P - ��')(�� A+*
u-,/.�0 " u21 u � - 8 ,� 6 ,5 > �3(���4� 8 � > � " #

�5�6(�� A "

/7 	��8($9 A *

u-,/. 0 " u21 u � 8 ,� 6 ,5 > �3(��
with appropriate parameter set � 1 u � u , see [KLGR00]. The SUPG solutions may suffer from
local crosswind oscillations in layers, hence negative values of � or 	 can occur. As a remedy,
we add in a consistent way crosswind diffusion thus leading to the (nonlinear) shock-capturing
method, for details see [CS99].

For the Oseen-problem (7), we define the discrete spaces : �<;>=?� � 8 � *� > � ; � �� withf c 92�
� . The Galerkin FEM requires the (bi)linear forms@ 8 � c � > � " 8 ,- c ,� >BA � 8 ,� c . > � � 8 ,- c N
> c A 8 � > � ��8 ,� > w
with � � 8 ,- c . > , �T� 8 ,� c N
> and

� 8 ,� c . > ���&B # . 8 ,5T6 ,� > (�� . Furthermore set

" 8 ,- c ,� > � "$# : ��= 8 ,-?> o ,5 ,� A 8(8 ," 6 ,5 > ,-zA P�,-]> 6 ,�C(�� A "

 �

8 .�� �l,~ � ,~ � > ,~ 6 ,�3($9
� 8 ,� > � " # ,� 6 ,�6(�� A "


 ��D 
 
 �h��,~ 6 ,�3($9 A " 
 � ,� � 6 ,�C($9 w
When using equal order ansatz functions fS�E9 , the discrete Babuska-Brezzi condition is not
satisfied. This problem is circumvented using a pressure (PSPG) stabilization. In addition,
divergence and a SUPG stabilization is used to deal with dominating first order terms. More
precisely, we set@ � 8 � c � > � @ 8 � c � >BA+*

u-,/.�0 " uGF ��� 8 ," c ,- c . >
% 1 u^IH ," 6 ,5 > ,� A 1 u^ Q ,5 N 'C(��

A " u 1 uZ H 8 ,5T6 ,-G> 8 ,5T6 ,� > (���J
A � 8 � > � A 8 � >+AK*

uL,/.�0 " u ,� % 1 u^MH 8 ," 6 ,5 > ,� A 1 u^ Q ,5 N 'N(�� w
Finally, the stabilized problem to the Oseen equation (7) reads

Find � � 8 ,- c . > �O: � ;�= � c s.t.
@ �d8 � c � > � A �d8 � >�� �P�Q: � ;Q= � w (9)

For the choice of the stabilization parameters 1 u^IH c 1 uZ H and 1 u^ Q see [KLGR00].
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Domain decomposition of the linearized problems

Here we apply a nonoverlapping domain decomposition method with Robin interface condi-
tions to the basic linearized problems (6), (7). Consider a nonoverlapping partition of � into
convex, polyhedral subdomains being aligned with the finite element mesh, i.e.���� � � � � ^ �� � c � � � � � �	� � ������ c � � � � ��� � o � � � � w
Furthermore, set { ��o � 4 � � � 4 � c { � � o � 4 � � � 4 � � c ���� � c where { � � is identified with{ � � . Assume, for simplicity, that the partition is stripwise.

For the (continuous) advection-diffusion-reaction problem (6) the DDM reads:
for given - � � from iteration step ~ on each � � , seek (in parallel) for - �
| ^�011112 11113

� - �
| ^� � � in � �- �
| ^� �`I on {v� � 4 � �� ,5 - �L| ^� 6 ,~ � � 	 on {v� � 4 � �� � 8 - �
| ^� > ��/ � � 8 - �� >+A 8 s � / > � � 8 - � � > on { � � c �S� s c w�whw c 	 c ���� � w
(10)

/ � 8 I c s � is a relaxation parameter. The interface function is specified as

� � 8 -?> ��� ,5 - 6 ,~ � A 8 � s: ,� 6 ,~ � A�
 � >r- w (11)

Let � � ( � , � �� and
� �� denote the restrictions of � � , � � and

� �
to � � , respectively. � � � ( � is

the restriction of � � to the interface part { � � . Furthermore, 
 6 c 6 � 
 m�� is the inner product
in
� Z 8 { � � > or, whenever needed, the dual product between

8 � � � ( � > � and � � � ( � . The fully
discretized DDM reads for ��� s c whw�w c 	 :

Parallel computation step : Find - �
| ^� �<� � ( � such that � � � �Q� � ( �
���� 8 - �
| ^� c � � >BA 
 8 � s: ,� 6 ,~ � A�
 � > - �L| ^� c � � � 
 m � �4�� 8 � � >BAK*

������ ���

�� �� � c � � � 
 m�� w

Communication step : For all ������ , update the Lagrangian multipliers


�� �
| ^� � c � � 
 m�� ��
 / 8 
 � A�
 � >r- �
| ^� � /�� �� � A 8 s � / > � � � � c � � 
 m�� � � ��� � � ( � w
The analysis of the method, given in [LMO00], can be easily extended to the case of non-
constant viscosity � : The algorithm is well-posed if 
 � � 
 � � I . The sequences � - � � � � ,� � s c w w w c 	 converge strongly to the restrictions of the global discrete solution to � � w.r.t.
the stabilized energy norm induced by the symmetric part of

� �� 8 6 c 6 > .Furthermore, an a posteriori estimate allows to control the convergence on subdomains via
jumps of discrete DD solutions across the interface. Besides this estimate yields the following
design of the interface function


 � �ts: p ,� 6 ,~ � p A�! � (12)

with strictly positive ! � �#" 8�$ � > depending on problem data. Formula (12) is compatible
with the vanishing viscosity limit �&%VI . Moreover, it is shown in [LMO00] that (12) allows
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a considerable acceleration of convergence. More precisely, the lower (and certain moderate)
frequencies of the error are quickly damped. In this range, formula (12) is surprisingly sharp
w.r.t. data. The convergence speed slows down when the level of the discretization error
is reached. An acceleration of the method w.r.t. higher frequencies of the error is under
consideration.

For the Oseen problem (7) we use the abbreviation � � ( ��o �7�C��,~ � � ,~ � . Then the DDM is
defined as follows:
for given

8 ,- � � c . � � > from step ~ on each � � , seek (in parallel) for
8 ,- �
| ^� c . �
| ^� >

011111112 11111113

� � 8 ," c ,- �
| ^� c . �
| ^� > � ,� in � �,5T6 ,- �
| ^� �VI in � �8 � �
| ^� ��. �
| ^� � > ,~ � � � � ,~ � on
4 � � � 8 { \ � { | >

� � ( � � �
| ^� ,~ � � ,�h� c � ,- �
| ^� 6 ,~ � �`I on
4 � � � { }� � 8 ,- �
| ^� c . �
| ^� > � / � � 8 ,- �� c . �� >BA 8 s �F/ > � � 8 ,- � � c . � � > on { � � w

(13)

/ � 8 I c s � is again a relaxation parameter. The interface function is given by

� � 8 - c . > �l� ,5 ,- 6 ,~ � ��.q,~ � A 8 � s: ," 6 ,~ � A�
 � > ,- (14)

with acceleration parameter 
 � .
The corresponding parallel algorithm can be formulated (in weak form) similarly as for the
scalar case. For this DD algorithm (and certain variants of it), a similar a-priori and a-
posteriori analysis is available as briefly described for the scalar problem (6). In particular,
the interface function 
 � in (14) has the same structure as in (12). For details, we refer to
[LMO01], [LMM00].

Application to room-air flow simulation

We applied our research code Parallel NS [Mue99] with piecewise linear ansatz functions for
all unknowns (

� ��fS�E9 � s ) on a triangular (resp. tetrahedral) mesh in 2D (resp 3D) to the
numerical simulation of room-air flow.

Example 1. We present a stationary ventilated laminar flow with !�� � ���
, Ugf � I w�� sthrough a cube �T� 8 I c s >�� with inlet zone { \ � 8 I
	RI w��L> ; �[I � ; 8 I�	@I w �9> and outlet zone{ | � 8 I w�� 	 s > ; � s � ; 8 I w � 	 s > , cf. Fig. 1. We impose � � � I , ,- p 
�� � ,I , / 8 ��� I > � :�
�� w s � � ,/ 
 � � :���� w s � � , /�p 
��z� :�
�� w s � � . Furthermore, we used time step " � � s w I/9 , a uniform

mesh with � : � nodes and � "�� �*)/+ � s .

We studied the DDM on different macro partitions. Fig. 2 shows the reasonable convergence
history (w.r.t. a mesh-dependent norm including � ^ � and

� Z � convergence of velocity and
pressure, respectively) of the DD solution (with two subdomains) to the sequential discrete
solution. �
Example 2. The application of the DDM to turbulent flows in 2D has been considered in
[Mue99]. Here we present the natural convection for ! "z� � w � 6 s I ^ } , Ugfg��I w�� s , MN O ��I in a
cavity � of width I w � � and height �t� : w � � . The flow is driven by a temperature difference
of � � w ��� between the vertical walls and gravity. Further we impose ,- p 
 � � ,I on {B}�y 4 � and



ITERATIVE SUBSTRUCTURING TECHNIQUES 499

0

0.25

0.5

0.75

1

z

0

0.5

1

x
0

0.5
1

y

X
Y

Z

Figure 1: Laminar flow field in a ventilated
room
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Figure 2: Convergence history of DD solu-
tion to discrete solution

adiabatic conditions for / at the top and bottom of the flow domain � .
In Fig. 3 we compare the vertical velocity profiles at height �GZK��I w�� � and �]ZK�TI w�� � � �
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Figure 3: Vertical turbulent velocity at �?Z�� I w � � and ��Z � I w�� � � �
for a DD solution with s I subdomains and

� w � �9: finite elements (c) and the sequential solution
on different grids with

: w�� : � (a),
� w � �9: (b) and s I w 
 s : (d) elements. The results are in good

agreement with measurements (e) by Cheesewright et.al (1986). �

The proposed method is currently applied at the Dresden University of Technology to the
simulation of turbulent indoor air flows. Such calculations allow to predict certain parameters
of the indoor-air climate over longer periods and to simulate different variants of ventilation
or of heating systems. Results of this ongoing research will be presented elsewhere. Let
us finally remark that the convergence of the method for the iteratively decoupled nonlinear
problem (1) is rather sensitive w.r.t. different ingredients. A more robust implementation is
probably given with an iterative substructuring method based on Dirichlet-Robin coupling,
see [ATNV00], and with transformation to logarithmic variables in the �S� 	 equations.
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