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6 Domain decomposition and fictitious domain methods
with distributed Lagrange multipliers

Yu.A. Kuznetsov1

Introduction

In this paper we consider three applications of the distributed Lagrange multiplier technique
[DGH � 92, GHJ � 97, GK98] to design new domain decomposition and fictitious domain meth-
ods for the diffusion equation �������	��
������� ������� (1)

in a bounded 2D/3D polygonal domain with the homogeneous Dirichlet boundary condition
������ �������� (2)

and a piece-wise constant diffusion coefficient � .
The above restrictions are imposed for the sake of simplicity. The generalizations of the

algorithms and theoretical results to more complicated equations, domains, and boundary
conditions are obvious.

Let � � be a triangular/tetrahedral partitioning of � , and ! � be the corresponding piece-
wise linear finite element subspace of "$#% ��� � . We shall always assume in this paper that ���
is a shape-regular mesh. Then the classical finite element method
 � � ! ��& �'�(
����)	����*+�()	� ,�)-� ! � (3)

where �'�(
.�	)	�/��01 �2�3
-45�3)76	� and *8�()	���901 ��)/6	�:�
results in the system of linear algebraic equations;=<
�� <� (4)

with a symmetric positive definite matrix

; ��>@?BA�? , C �D6	EGF ! � , and a vector

<�H�I>J? . We
also denote by K the mass matrix and by LK the lumped mass matrix, i.e. LK is diagonal andK <M � LK <M , <M5N �O�QPR�TSUSTSV�UPW� , <M ��>J? .

For � #YX � and � Z X � being non-overlapping subdomains of ��� such that � ���D� #YX �/[\�JZ X � ,
we denote by

;
# and

; Z the corresponding stiffness matrices and by K # � LK # � and K Z]� LK ZU�
the corresponding mass (lumped mass) matrices. The matrices

;
, K and LK can be introduced

by subassembling of matrices

;�^
, K ^ , LK ^ with the same subassembling matrices _ ^ , ` �aP]�cb ,

respectively. For instance, ; � _ #
;
# _ N# d _ Z ; Z _ NZ �LK � _ # LK # _ N# d _ Z LK Z _ NZ S
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Domain decomposition for composite materials

Let � be a rectangle and � ^ , ` � P]��� , ��� P , be open non-overlapping polygonal subdo-
mains of � , i.e. � ^ [ ��� ��� for `
	��� and � � ^  �� ��� , ` ����� PR��� . An example of �
is given in Figure 1. We assume that � ^ are shape-regular, � # ��� 6	E��]F
�������W� � ^ � � � Z � and6	E������! #"$�R� � ^ �B�'� �%� ��& � with some positive constants � # , � Z , and �$& where

�(' � is given.
We also assume that � �OP d #)+* , , ^ - ��.5C0/�1 �$�����VP$2 in � ^ , ` � P]��� , and � - P in the rest of� . We shall call this model example a “composite material”.

Figure 1: The computational grid.

The stiffness matrix

;
of system (4) can be presented in the form; � ; % d 34 ^ 5 # P, ^76

^
(5)

where � 6 ^Y<)�� <8 �7��09 * �3)]� 4W� 8 ��6	� ,�)]��� 8 �=� ! ���
and � ; % <)�� <8 ��� 01 �3) � 4U� 8 � 6	� ,�) � � 8 � � ! � S
It is obvious that with an appropriate permutation matrix : ^ we have

: ^ 6 ^ : N^ �<; ; ^ �� �>=



DOMAIN DECOMPOSITION AND FICTITIOUS DOMAIN METHODS 69

where � ; ^ is the stiffness matrix of the Laplacian for the subdomain � ^ , P � ` � � .
In [Kuz00] was proposed to replace system (4) with

;
in (5) by a saddle point system��� <
 <��� � � ; % 6 N6 ��� � � <
 <��� � � <� � � (6)

with 6 N �O� 6 # 6 ZISTSTS 6 3 � ��> ?BA	� 3 ?�

and the block diagonal matrix

� ����� , #
6 #

. . . , 3 6 3
����� � > � 3 ?�
8A	� 3 ?�
 S

System (6) is equivalent to system (4) in the sense that the solution vector

<
 to (4) coin-
cides with the solution subvector

<
 to (6) and vice versa. Moreover,<� ^ � P, ^ <
���� �$� 6 ^
for any solution subvector

<� ^
to (6), ` � P]��� .

Let a matrix "�� � " N� ' � be spectrally equivalent to

;�� #% , i.e��� � "�� <)'� <)�� � � ; � #% <)'� <)2� � ��� � "�� <)B� <)2� , <)=��> ?
with positive constants � � and � � independent of the mesh �@� . Then the matrix � ��"�� �� ""! � (7)

with " ! � 6�E���#�$ 6 �# � 6 �Z �STSTS � 6 �3�% �
where

6 �^ denotes the generalized inverse to
6 ^

, ` � PR��� , was proposed in [Kuz00] as
an effective preconditioner for the matrix

�
in (6). To justify the latter statement we have

to consider the matrix
�  

in its invariant subspace ` � � supplied with the scalar product
generated by the matrix & � � " � �� ' ! � �
where ' ! ��6	E���#($ 6 # � 6 Z �VSUSTSV� 6 3 % S

It can be easily shown that
�  

is a symmetric operator in ` � � with respect to the

&
-

scalar product. Moreover, ` � � � ` � � �  � . To this end, all non-zero eigenvalues of the
matrix

�  
belong to the union of two segments ) � #+* � Z 2 and ) � & * � � 2 with end points� # � � Z-, ��, � & � � � S
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The condition number of
�  

with respect to the subspace ` � � and the

&
-scalar product is

defined by
���  6���� �  ��� F ���($ � � * � � # � %F E  $ � & * � � Z � % S

Under all the above assumptions the following result was proved in [Kuz00].

Proposition 1

���  6�� � �  � � �	� � (8)

where �	� is a positive constant independent of the values , # � , Z �VSUSTS� , 3 and the mesh � � .
Remark 1 In general, the constant � � depends on the constants � ^ , ` � P]��
 .

The implementation procedure of the preconditioner
 

is based on a simple observation
that 6 ^ 6 �^ � �� ^ �� � � (9)

where
�
^ - ; ^�; �^ S

The results of numerical experiments for the geometry given in Fig. 1 are presented in
Table 1. For numerical experiments " � was chosen to be the BPX-preconditioner [BPX90].

Table 1. The number of PCG iterations., P����HP�� ��������� ��������� P��R���$P��R�P 15 16 18 18PU� � # 17 22 25 27PU� � Z 19 23 27 29PU� � & 19 23 27 29PU� � � 19 23 27 29

The vectors
� ^

, ` � PR��� , in (6) can be called the discrete distributed Lagrange multipliers.
They have a very simple connection with the continuous/differential distributed Lagrange
multiplier. System (6) can be obtained by the straightforward finite element discretization of
the variational problem: find 
�� "$#% ��� � , � ^ � "$# � � ^ � , ` � P]��� , such that

01 �3
-4U�3)J6	� d 34 ^ 5 # 09 * � �
^ 4W��)J6	��� 01 ��)/6�� �

09 * �3
-4U���
^ 6��-� , ^ 09 * � �

^ 45��� ^ 6	��� � � ` � PR���$� (10)

,�)=� "H#% ��� � , � ^ � "H# � � ^ � , ` � PR��� .
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Fictitious domain method

The name “fictitious domain method” was originally suggested by V.K. Saul’ev in [Sau63].
The Saul’ev’s idea is to replace differential problem (1)–(2) by the problem����� � ) �3
 ) � � � ) � ��� � �
 ) � � � ��� � � � (11)

where
�

is a rectangle containing the original simply-connected domain � ,

� ) � � ��� �������P d #) � ��� ��� <��� � ) � � ��� ���������� ��� ��� <��S
It was proved that � 
 ) � L
 ���	�
 � 1 
�� � as , � � where

L
 � � 
:� �I� ������ �I� ��� <��S
The form of the equation in (1) reminds us the situation considered in the previous section.

If we introduce the distributed Lagrange multiplier by� � P, 
 (12)

in � � �� <� , then the weak saddle point formulation reads as follows: find 
D� " #% � � � ,� � "H# � � � , � ��� on � �  � � , such that0
�
�3
�4U�3)76	� d 09 � � 4W�3)76	� � 0

�
� ) )76	�:�

09 �3
�4U��� 6��-� , 09 � � 4U��� 6	������� (13)

,�)=� "H#% � � � , �$� "H# � � � , ����� on � �  � � .
The interesting observation is that with , � � formulation (13) coincides with the dis-

tributed Lagrange multiplier fictitious domain method invented by R. Glowinski (see [DGH � 92,
GHJ � 97]). Thus, the Glowinski’s method is the closure with respect to the parameter , of the
Saul’ev’s method.

The finite element discretization to (13) results in the algebraic system

� ���
<
 #<
�Z<�
���� - ���

;
#c#

;
# Z �; Z #

; ZcZ 6 ZcZ� 6 Z8Z � , 6 Z8Z
���� ���

<
 #<
�Z<�
���� � ���

<� #<� Z�
���� (14)

where
6 ZcZ stays for the stiffness matrix in subdomain � , and; % �<; ; #c# ;

# Z; Z #
; Z8Z =
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stays for the stiffness matrix in the rectangle
�

. If we present
�

in a different block form:� � ; ; % 6 N6 � , � = � � � 6 ZcZ �
and assume that a matrix ""� is spectrally equivalent to

; � #% , then the preconditioner for
�

can be proposed in the form of the block diagonal matrix � ; " � �� ""! = (15)

where " ! � 6 � #ZcZ .
Assume that the norm preserving finite element extension theorem for the subdomain �

with respect to the rectangle
�

holds. Then,
���  6 � � �  � � ���

where ��� is a positive constant independent of the mesh
� � and value of , � ) � * P�2 . In the

case , � � the result was proved in [GK98]. For the case , ' � one has to use technique from
[Kuz00].

Overlapping domain decomposition

Let � � be partitioned into two subdomains � # X � and � Z X � such that
� � � � # X �  � Z X � is

nonempty. We assume that F �7� �U� � � �  �� � � �$.5C0/$1 ' � , and the norm preserving finite
element extension results from

� � into � # X � and � Z X � hold [Wid87]. Later we shall give the
algebraic interpretation of this assumption.

Let the bilinear form �'�(
.�	)	� be split into two bilinear forms [Kuz97]:�'�(
.�	)	�/��� # �(
.�	)2� d � Z � 
:��)	� (16)

and the linear form *8�()	� be also splitted into two linear forms:*8�()	����* # �()	� d * Z �()	� (17)

where � ^ �(
.��)	���D01 * �
^ �3
-4W�3)76��

with � ^ � � �B� ����� ^ � � ����]b	� ��� � �
and * ^ � )2�7� 01 * �

^ ��)76	�
with

�
^ � � P]� ����� ^ � � �P��]b	� ��� � �
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` �OP]�Yb . Then, let us define two new bilinear and linear forms byL��� <
:� <)�� � � # �(
 # �	) # � d �2Z]�(
'Z � ) ZU� �� � � � <)�� � 0� � � 45��� ) # �$) ZW�	6�� �L*Q� <)�� � * # � ) # � d * Z]� ) ZW�
(18)

where<) � � ) # �) Z � � ) ^ � ! ^ ��� )7& )-� " # � � ^ � �:) ��� on ��  �� ^�� � ` �OP]�cb��
and � � !(! ��� � & � � " # � � � � � ��� on ��  � � � S
Then, the weak formulation of (1) based on the above overlapping decomposition with dis-
tributed Lagrange multipliers can be given by: find

<
�� L! � ! # � ! Z , � � ! ! such thatL��� <
:� <)2� d � � � � <)	� � L*Q�()	� �� � <
.��� � � � (19)

, <)=� L! , �H� !	! .
The finite element discretization of (19) can be suggested with the same formulae by

replacing L! and ! ! by L! � and ! ! X � which are the traces of the finite element space ! � onto� # X � , � Z X � and
� � , respectively. The finite element discretization of (19) results in the system

of algebraic equations� ; <
 <� = - ���
;
# � 6 N#� ; Z 6 NZ6 # 6 Z �

� �� ���
<
 #<
'Z<�
� �� � ���

<� #<� Z�
� �� � (20)

where ;
# �<; ; #8# ;

# �;
� #

; � # 
��� = ; Z � ; ; � Z 
��� ;
� Z; Z � ; ZcZ = �6 N# � � �6 � � � 6 NZ � � 6 �� � S

Here
6 � is defined by� 6 � <� � <� ��� 0� � � � 4U��� � 6	�:� , � � � � � � ! ! X � � (21)

i.e. � 6 � is the stiffness matrix for the Laplacian in the subdomain
� � .

We introduce a preconditioner
 

for
�

in the form of a block diagonal matrix: � �� " # � �� " Z �� � "�!
�� � (22)
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where " ^ is spectrally equivalent to

; � #^ , ` � P]�Yb , and " � #! is spectrally equivalent to the
Schur complement matrix

� ! � 6 # ; � ## 6 N#�d 6 Z ; � #Z 6 NZ S (23)

We have plenty of choices for " # and " Z , for instance, multigrid preconditioner. The question
is only about a choice for " ! .

The assumption about the norm preserving finite element extension results (in the con-
text of the above method) is equivalent to the assumption that the matrix

6 � is spectrally
equivalent to matrices

� � ^ 
� � ; � ^ 
� � ; � ^ ; � #^G^ ; ^ � � ` �aP]�Yb	S
In this case simple transformations show that the matrix

� ! is spectrally equivalent to the
matrix

6 � . The conclusion is obvious: we have to choose"�! � 6 � #� S
Implementation procedure for " ! is very simple due to the formulae

 � � ��� " # � �� " Z �� � � !
� �� ���

;
# � 6 N#� ; Z 6 NZ
�6 # �6 Z �

� �� �
where �6 # �O� ��� ! � and

�6 Z �a��� ! � �'S
Proposition 2 Under the assumptions made, the eigenvalues of the matrix

 �
belong to

the union of two segments ) � # * � Z 2 , ) � & * � � 2 with the end points
� # � � Z , � , � & � � �

independent of the mesh � � .
Remark 2 The values of

� # , � Z , � & and
� � from Proposition 2 depend on the constants of

spectral equivalence " ^ and

; ^
, as well as

6 � and
� � ^ 
� , ` �aP]�cb .
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