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42 Comparison of domain decomposition methods for
solving continuous casting problem

E. Laitinen1, J. Pieskä2, J. Saranen3, A. Lapin4

Introduction

Two different kind of domain decomposition methods and algorithms to solve the continu-
ous casting problem are presented and analyzed. The multiplicative Schwarz method with
overlapping subdomains, and splitting iterative method with nonoverlapping subdomains are
studied. Results considering convergence for both of these methods are presented and stud-
ied via numerical example. The finite element method with rectangular elements was used
to discretize the problem. Advantages and disadvantages for both of these methods for this
problem are discussed and analyzed.

The continuous casting problem can be stated mathematically as follows. Let �������	�
�� ������������ 
�� �������� be the rectangular domain with the boundary ��� �!� consisting
of two parts: � � �"� 
$# �!�&% 
'� �(�*) 
�� �+������,�-� � �.� 
$# ���0/1� � �,2 We assume
that the domain ��304 � is occupied by thermodynamically homogeneous and isotropic steel.
We denote by 576 
 �989: the enthalpy related to unit mass and by ;<6 
 ��89: the temperature for6 
 �989: # �>=@?A�B�9CED . We have constitutive law

5.�$576F;�:G�IH JLKMON 6QP*:SR-PUT�HVW69XZY�[]\�6F;�:�: in �>=@?A�B��C^D_�
where H is density, N 6F;�: is specific heat,  is latent heat and [`\�6a;!: is solid fraction.

Graph 576a;!: is a increasing function 4Ubc4 involving near vertical segments correspond-
ing to the phase transition states, namely, for ; # D Ced<�9CgfB? where ����C!dL��Cgf are melting
and solidification temperatures, correspondingly.

We study the following boundary-value problem: find ;h�$;<6 
 ��89: such that

(P)

ijjjjjk jjjjjl
�'5L6a;!:�'8 T�m ��576a;!:� 
 � YonE;h�$� for 
p# �1��8�qU�B�
;��$r'6 
!� �989:ZqU� for 
s# � � �98Zq0�t���;gu��'v>TLw`;>Tyx]z ;{z |};��I~'��w��y�t��xW�0�t�S~��U� for 
�# � � ��8�qU�B�;��I; M 6 
 :�q0� for 
�#$��1��8{���B2

The existence and uniqueness of the weak solution for the problem (P) are proved in [RY90].

1Department of Mathematical Sciences, University of Oulu, P.O. Box 3000, Oulu 90401, FINLAND,
erkki.laitinen@oulu.fi

2Department of Mathematical Sciences, University of Oulu, P.O. Box 3000, Oulu 90401, FINLAND,
jpieska@cc.oulu.fi

3Department of Mathematical Sciences, University of Oulu, P.O. Box 3000, Oulu 90401, FINLAND, jsara-
nen@cc.oulu.fi

4Department of Computing Mathematics and Cybernetics, Kazan State University, Kazan 4200008, RUSSIA,
alapin@ksu.ru



412 LAITINEN, PIESKÄ, SARANEN, LAPIN

To approximate the problem (P) we rewrite it as the integral equality for fixed 8sq"�B2
Let

� �.5 � 6 � : � � M � � ; # � %{;@6 
 : �"� for 
 # � � � and
��� � � ; # � %{;<6 
 : �r for 
s# � � �,2 The solution of the problem (P) for fixed 8�q0� satisfies the following equality

for all � # � M ��;<6F89: # �������	� :J 
 6 �'5hu��'8!T7m�6a89:S��5�u]� 
�� :��-R 
 T J 
 � ; � �-R 
 T J  � 6Fw`;>Tyx]z ;@z | ;!:��-R,� �
J  � ~��-R`�

Let C�� be the triangulation of � in rectangular elements of dimensions � � =�� � and
� �>���;��B6 
 : # 5 � 6 � : %V;��B6 
 : #��^� for all � # C��V� , where �^� is the space of bilinear functions.

By ��� we denote the local �>� -interpolant. We also use the following notations:
� M� ���;��B6 
 : # � ��%t;��B6 
 : ���B� for all 
L# � � �,� ���� � � ;��t6 
 : # � �p%t;��t6 
 :1� r��t� for all 
7#� � � for the subsets of

� �t2 Here r�� is the
� � - interpolant of r on the boundary � � 2 For any

continuous function m�6 
 : we put��� 6FmV:G� J ��� � � 6FmV:9R 
! � 
 6am-:��#"�%$'& � ��� 6am-: �
��( � 6FmV:G� J ( � � �)�t6FmV:9R 
! �  �`6am-:�� "( ����$'&��+*�, � ��( � 6FmV:}2

Let also -/.�� � 810s�3254t���768296;:��<:=47�(C � be the uniform mesh in time on the

segment D �B��C ? 2 To approximate the term > (( � T�m�6a89: (( ���@? 5 we use characteristics of this first

order differential operator [Che91, JR82]. We use the notation

R ,� 5"� X4 6F5L6 
 ��89:{YBA5�6 
 �98@Y�4t:�:
for the difference quotient approximating the term > (( � T7m'6F89: (( � �'? 5 in each mesh point on

time level 8 by using characteristic method.
Then the approximation scheme can be written as follows: for all 8 # - . , 8Zqy�B� find ;�� #� �� such that� 
 6 R ,� 5 � � � :eT � 
 6 � ; � � � � :eT �  �]6�6Fw`; � Tyx]z ; � z | z ; � z :�� � :G� �  �]6a~�� � : for all � � # � M� 2

(1)

Let C M � card
� M� and ; # 4/D!E be the vector of nodal values for ; � # � M� . Below we

use the writing ;��GF ; for this bijection. For the matrices C M =HC M we have the relations:
for all ;�� # � M� F ; # 4/DIEB�1��� # � M� F#� # 4/DIE

6KJW; �L�-:G� � 
 6 � ; � � � � :gT �  � 6Fw`; � � � :  6KM^; �L�B:�� � 
 6SX�u+4-; � � � : 2
6ON1; �L�-:�� �  �,6 x]z ;���z | z ;���z ���`:  

Similarly we define the vector [ : 6 ['�L�-: � �  �]6a~��@�V:eT � 
 6SX�u+4GA5P�Q���,:}2 Let now Ar��B6 
 : # � �
be the function which is equal to rQ� in �� � and � for all nodes in - � then [ M is defined by the
equality: 6 [ M �L�-: � � 
 6 � Ar��B� � �@�V: for all ��� # � M� 2 Finally we get R �"[ T�[ M 2 In these
notations the algebraic form for the mesh scheme (1) at fixed time level can be written as
follows:

J ;>TSM^5L6a;!:eTSN1; �TR�2 (2)
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Here J^�LM are symmetric, positive definite M-matrices (moreover M is diagonal one) and576F;�: is vector with components 6F5L6a;!:9: � ��576F; � : 2 The operator N has the diagonal form:N1;h� 6 N � 6a; � :}� N � 6a; � : ��2_2 2 � N D 6a; D :�: & � where N � are continuous non-decreasing functions.

Schwarz alternating methods

We study the convergence of multiplicative Schwarz alternating method (MSAM) and additive
Schwarz alternating method (ASAM) for (2).

For the simplicity but without loss of generality we suppose that the domain � is de-
composed into two overlapping subdomains � � and � � , consisiting of the elements of tri-
angulation C � ; any internal node of the grid in � is the internal node of at least one of the
subdomains. We arrange the internal nodes of the mesh as follows. First, we enumerate the
internal nodes lying in � � , then the nodes in � ��� � � and at last the nodes in � � . The vector; # 4/D takes the form ; � 6a; ��� �9; �S� �9; ��� : & with subvector ; ��� corresponding to the values
of the mesh function

� ���s;���F ; in the nodes 
�# int � � and subvector ; �9� corresponding
to the values in 
s# � � � � � 2

This decomposition implies also the partitioning of the matricies and nonlinear operatorN : J�� 6 J ��� : |���	� � �LM�� 6KM �
� : |���	� � � N � diag 6 N � �<N � �<N | : 2
We need some more notations, namely:

J �M � � J ��� J �9�J � � J ���� � M �M � � M ��� M �9�M � � M ����� �LJ �� �IR��Qw,~!6F�t�LJ � | :}�LM �� �$R�� w ~!6F�t�LM � | :  
J �M � � J ��� J � |J | � J |�| � � M

�M � � M ��� M � |M | � M |�| � �LJ
� � �IR��Qw,~!6KJ � � ���,:}�LM �� �$R�� w ~!6KM � � ���`:  

N � �IR�� w,~�6ON � � N � : � N � �IR��Qw,~!6 N � �<N | :}� ; � � 6a; ��� �9; �S� : & �9; � � 6a; �9� �9; ��� : &
and similar for other vectors. (We note, that J � | �LJ | � �LM � | �LM | � are zero matricies.)

Then MSAM can be written as follows:ijjjjjjk jjjjjjl
J �M m 0�� �� T M �M 5L6am 0�� �� :eTSN � m 0�� �� ��[ � Y J �� ; 0� Y M �� 576F; 0� :m 0�� ���� �I; 0���
; 0�� ���� �Um 0�� ����J �M ; 0�� �� T M �M 576F; 0�� �� :eT9N � ; 0�� �� ��[ � Y7J � � m 0�� �� Y7M �� 576am 0�� �� :

(3)

and ASAM has the form:ijjjk jjjl
J �M m 0�� �� T M �M 576Fm 0�� �� :eT9N � m 0�� �� ��[ � Y J �� ; 0� Y7M �� 576F; 0� :J �M�� 0�� �� TSM �M 576 � 0�� �� :eTSN � � 0�� �� ��[ � Y J � � ; 0 � Y M �� 576F; 0 � :
; 0�� ���� �$m 0�� ���� �9; 0�� ���� � � 0�� ���� �9; 0�� ��9� ��� m 0�� ��S� T�6SX Y��<: � 0�� ��9�

(4)

Here 2 ���B� X,���B� 2 2_2 � initial guess ; M � 6F; M ��� ��; M �9� ��; M ��� : & and � # 6 �B��X : 2
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Along with these methods we consider also the block variant of Jacoby method (BJM).
Let J M � diag 6KJ ��� � J ��� �LJ |�| : be the block diagonal submatrix of J^�LJ � � J YTJ M andMO�=M M Y M � with similar splitting. Then J M � M M are : - matricies and J � � �t�LM � � �B2
Moreover the iterative method (BJM) can be written in the form:

J M ; 0�� � TSM M 576a; 0�� � :eT9N1; 0�� � �$[	Y J � ; 0 Y M � 576F; 0 :}2 (5)

Theorem 1 Let J � M are : Y matrices, where J is weakly diagonally dominant in columns,M is strictly diagonally dominant and N has the diagonal form N1;h� 6 N � 6F; � : � N � 6F; � : � 2 2 2_�N D 6a; D :�: & � where N � are continuous non-decreasing functions. Let also there exist sub- and
supersolutions for the problem (2). Then the iterative methods (3), (4) and (5) are correctly
defined for any initial guess ; M from ordered interval �L; � ;sq�2 If the initial guess is superso-
lution then the sequences of iterations for all methods (3), (4) and (5) converge monotonically
decreasing to the unique solution of the problem (2). Moreover, let the iterations of MSAM,
ASAM and BJM be denoted by ; 0� f�� � �9; 0�gf�� � ��; 0��� � . Then for any 2 the following in-
equalities hold: ; 0� f�� ��� ; 0�gf�� �	� ; 0��� � 2
If starting from subsolution, then the inequalities are vice versa and the iterative sequences
converge monotonically increasing [LLP99].

Splitting iterative method

Let now � be divided into 
 nonoverlapping subdomains � � with the interfaces
� ��� � � � � � � .

We suppose that all interfaces as well as � � � consist of the sides of � # C � 2
The restrictions of functions from

� M� on subdomains � � form the spaces
� �� �	�<� X ���B� 2 2_2 ��
 2

We also denote by
� � � � �� = � �� =����� = ���� . It is easy to check that

� M� is isomorphic to the
subspace � � of

� � : � � � ��; � ��6a; �� �9; � � ��2_2 2_��; � � : # � � %,; � � 6 
 :��I; � � 6 
 : for 
 # � ��� � � ��� �X � �-��2_2 2_��
g� .
Let us put in the correspondence to the function ; � � # � �� and the vector ; � # 4 D�� of its

nodal values for nodes from �� � / � � � and denote this bijection by ; � F ; � � . To ; � # � �
corresponds the vector ; # 4 Dh�LC.� C � T C � T������}T�C � 2 The subspace � � corresponds to
subspace of 4 D which we denote by �p2 We have the following relations for C � =�C � matrices:
for all

� �� �h;�� F ; # 4/D���� � �� � �@� F#� # 4/D��
6KJ � ; � �1� � : � � � 
 � 6 � ; � � � � :gT �  � * ( 
 � 6Fw`; � � � :  6KM � ; � �1� � :�� � 
 � 69X�u+4-; � � � : and

6 N � ; � �1� � : � � �  � * ( 
 � 6 x]z ; � z | z ; � z � � : 2
Similarly we define the vectors [ � � [ M � : 6 [ � �L� � : � � �  � * ( 
 � 6A~5� � :�T � 
 � 6SX�u�4GA5 � � � :<6 [ M � �L� � : � �� 
 � 6 � Ar � � � � � : for all � � # � �� 2 Finally we get R � ��[ � Ty[ M � 2

Let further J���R � w,~!6KJ � � J � ��2_2 2 �LJ � :}�LM ��R � w,~�6 M M � � M M � ��2_2 2 �LM M � : and R � 6KR � � R � � 2 2_2 �LR � : #4/Dh2 Below we denote by N 6F;�:G� M^5L6a;!:VT N ; Ts�����E6a;!: , where ��� is the indicator function
of the subspace � . The operator J is bounded, hemicontinuous and uniformly monotone,N is maximal monotone operator. In these notations the algebraic form for the mesh scheme
using DDM can be written (at fixed time level) as follows:

JW;>T9N1; � R�2 (6)
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Due to the properties of J and N there exists unique solution ; to the problem (6) [Bre73,
Roc70].

We solve the inclusion (6) by splitting iterative method:��� �M 6F; 0�� ����� Y ; 0 :gT JW; 0 T9N1; 0�� ����� � R (7)� � 6F; 0�� � Y ; 0 :��I; 0�� ����� Y ; 0 2
where

� M and
� � are some positive definite matrices. Due to the properties of

� M and
� �

there exist the unique solutions ; 0�� ����� and ; 0�� � for any 2�2 For other examples of splitting
methods see [Gab83, LS88, LM79].

For theoretical study of the convergence and rate of convergence for this splitting iterative
method we can proof:

Theorem 2 Let
� � � � = � � = 2 2 2�= � � , where

� � are Hilbert spaces with inner products 6S2 � 2 : �
and norms z z 2Az z � � 6S2 � 2 : ������ and let J be diagonal linear operator: J��$R�� w,~�6 J � � J � � 2 2_2 �LJ � :
with J � % � � b � � satisfying for all � the following assumptions: � � � � 6 J � �BJ��� 6: � � � for all ����� � q0�t2 Let also N be a maximal monotone operator and r 0 �$; 0 Yp; , where; 0 is the 2 th iteration and ; is the exact solution.

If
� M � R � w,~!6
	 � � � ��	 � � � � 2 2 2_��	 � � � : and either

� � � � T � M J or
� � �OX�u �t6��*T � M J :

then the iterative method (7) converges for any 	 � q � and for the optimal choice of the
iterative parameter 	 � � X�u� 6�� � : � : the following estimate for rate of convergence is valid:

� � � �����M 6��1T � M J ���Q� :Sr � � 6�� � � � � �����M 6��*T � M J � M � :Sr M � � (8)

with �$��� � � �������� � � � � : �� : � T � � � for the first choice of
� � (corresponds to Douglas-

Rachford scheme) and with � ��� � ���������� � � � � : � Y � � �� : � T � � � for for the second choice of
� �

(corresponds to Peaceman-Rachford scheme).

The iterative method (7) with, for example,
� � � � T � M J for DDM mesh scheme (6)

leads to algorithm ��� �M 6a; 0�� ����� Y ; 0 :eTSJ ; 0 T9N1; 0�� ����� �s[ (9)6�� � T�	 � J � :}6F; �! 0�� � Y ; �! 0 :��U; �� 0�� ����� Y ; �� 0 �	�@� X ���B� 2 2_2 ��
 � (10)

; 0 � 6a; �  0 �9; �  0 ��2_2 2_��; �  0 :}2
Linear equations (10) may be solved independently for �G��X,���B� 2 2_2 ��
 . As for (9) then for

coordinates of ; 0�� ����� corresponding to internal nodes 
p# � � operator N has diagonal form:N+���#"B2 It means that the system of non-coupled scalar nonlinear equations corresponds to
these points. For nodes lying on the interfaces

� �
� system (9) contains subsystems of two (if
it is the interior node of the interface) or several (if it is a cross-point of several interfaces)
coupled equations. These subsystems can be also reformulated as problems to minimise con-
vex differentiable functions of two or several variables. To solve these subproblems we can
use one of standard optimization method.

The assumptions of Theorem 2 are satisfied with � � �%$ 6SX�: � : � �&$ 6K4 � � � :}2 If we
choose 	 � �'$ 6 ��u+4 ����� : in method (7) with either

� � � �1T � M J or
� � ��X�u �B6��1T � M J : ,� M �OR��Qw,~!6
	 � � � ��	 � � � ��2_2 2_��	 � � � : , then � � � X1Y($ 6O�'u�4 ����� : ��� � � X*Y�$ 6O�'u�4 ����� : and the

number of iterations to achieve accuracy ) is vG6!) :��*$ 6	4 ����� � � �,+.- X�u�) : 2
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Numerical results

To validate the numerical schemes described in sections 42 and 42 the following numerical
example was considered.

Let �U�W? �t� X,D =@?A�B� X`D with the boundary � divided in two parts such that � � � � 
p# ����%
�� �I��) 
'� � X � and � D �$�>/@� � , moreover let CI� X . Let us consider the case where the
phase change temperature ;gf`d�� X and the latent heat I� X . Let the phase change interval
be D ;!f`d	Y��-�9;!f`d>T�� ? , � �$�t2 �tX , and the velocity is m�6a89:�� �� . Our numerical example is(��( � Y�n �(T�m�6a89: (��( � � � [@6 
! 89: on �1�;<6 
 � � 
 �  89: � 6 
 � Y �� : � Y ���� �
	 � T �	 on � � �( K( � � X on � D �;@6 
!� � 
��@ �,: � 6 
!� Y �� : � T$6 
�� Y �� : � T �� on �1�
where

�y6a;!:@�
ik l ; if ;s�y;!f`d�Y��-�|� ;�Y � �
�� if ; # D ;!f`d�Y��V��;�f`d T���?Q���;	YyX if ;sqy;!f`d>T��-�

and

576a;!:G�
ik l �]; if ;s�0; f`d Y�-�� � ��� �� ��� 6F;�YyX�:gT � � 	��� if ; # D ; f`d Y�-�9; f`d T���? �� ;�Y�� if ;sq0; f`d T��-2

Furthermore [@6 
! 89:G����� � �
	 � T �� 6 � 
 � Y��,:<Y � if ;s�0; � �X � � �
	 � T �� 69X � 
 � Y � :<Y�� if ;sq0; � 2
The exact solution of our problem is ;<6 
g� � 
��@ 89:G� 6 
!� Y �� : � T$6 
�� Y �� : � Y ���� ��	 � TIX,2

We split the enthalpy function 5L6a;!: as follows: 576a;!:E� � ;hTI5 M 6F;�:}� where � is the
minimal slope of the enthalpy function. In our numerical example � � � .

For splitting iterative method the optimal iterative parameter 	 � � �� �
�
�
� , where � � �� T 4 � �� � � 6KJ M�M : and : � � � T 4 � ��"! � 6KJ M�M : , where � �� � � 6KJ M�M : is the smallest eigenvalue of

the matrix 6 J M�M : � , which is the approximation of the Laplacian operator and correspondingly� ��"! � 6 J M�M : is the biggest eigenvalue.
The numerical test was done such away that everything for different methods would be

optimal. Numerical test were run in the computer Cedar in CSC, Espoo Finland, (128 RISC
processors); mainly 4 processors were used. The stopping criterion was the norm of residual�$# � 6�X�� ��	 .

From the tables below splitter is splitting iterative method, multi2 is multiplicative Schwarz
with overlapping size �'� and multi4 is multiplicative Schwarz with overlapping size � � .
Moreover proc means the number of processors, iter the number of iterations and S is speedup.

Conclusions

Two different method was used to solve the problem (P). From Table 1 it can be seen that
Splitting iterative method (SIM) is better (faster) than the Multiplicative Schwarz Alternating
Method (MSAM) for the continuous casting problem. The speedups from the Table 1 show
that (SIM) can be parallelized better than (MSAM).
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Splitter multi2 multi4
proc Time [s] S Time [s] S Time [s] S

1 466.4 – 259.4 – 259.4 –
2 166.8 2.8 212.6 1.22 177.5 1.46
4 124.6 3.74 174.9 1.48 157.4 1.65
6 106.7 4.37 140.3 1.85 131.9 1.97
8 85.4 5.46 119.3 2.17 109.6 2.37

10 70.9 6.58 95.4 2.72 92.7 2.80
12 59.3 7.87 85.6 3.03 85.2 3.04

Table 1: The comparison of calculation times and speedups when grid size is fixed to beX � � = X � � and ��� � time steps. Number of processors are changed.

Splitter multi2 multi4
grid time steps Time [s] iter Time [s] iter Time [s] iterX��^= X�� 32 0.45 24 0.68 6 0.49 4���>= ��� 65 1.75 25 1.44 7 1.31 4� �E= � � 128 12.3 26 14.2 8 12.6 5X � � = X � � 256 124.6 29 174.9 9 157.4 6X � X*= X � X 320 188.2 29 391.8 9 350.1 6�����^= ����� 512 1949.4 26 4425.2 9 3875.8 7

Table 2: The comparison of calculation times and number of iterations for different grid size
and fixed number of processors; 4 processors.

From Table 2 it can be seen that when grid size increases the difference between cal-
culation times for (MSAM) and (SIM) increases. Splitting iterative method is much more
suitable for big continuous casting problems when we can use many processors and number
of unknows are big, like in many real industrial application. For (SIM) we also know how
to determine the optimal iterative parameter. The numerical experiments have shown that the
theoretical optimal value for the iterative parameter is close to the practical optimal one.
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