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43 A Mesh Refinement Method for Optimization with DDM

Géraldine Lemarchand, Olivier Pironneau1 and Elijah Polak2

Approximate Gradient

We apply here an idea developed in [PP02] whereby mesh refinement can be mixed with
approximate gradients within an optimization loop. This is particularly useful for problems
where the exact gradient is difficult to compute, which is the case of DDM problems[BW86]

Consider a generic optimization problem and its finite dimensional approximation
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	 ������ ��������
	�� �������
��� (1)

The following is the method of Steepest descent with a Goldstein/Armijo rule for the step
size:

Algorithm 1 :

while ���
���
 � � � ���
!"� �"#%$ do&
�'!)(+*),-�'!/.10 �2�3�2 � � � ���'!4� where

0
is such that

.6570 ��89�;:=< �'�>��� ! .?0 8 �@.A���B��� ! � < .DCE0 ��89�;: (2)

with 8 , �2�3�2 � �'�����'!=� Set FHG , FJILK ;M
Now consider the same algorithm with parameter refinement

Algorithm 2 :

while NO#/N !QP�R do&
while ���2�3�2 � � � ���'!"� �"#S$�NUT do&

�'!)(+*),-�'!/.10 �2�3�2 � � � ���'!4� where
0

such that,
.6570 ��89�;:=< �'�>��� ! .?0 8 �@.A���B��� ! � < .DCE0 ��89�;: (3)

with 8 , �2�3�2 � �'�����'!=� . Set FVG , FWILK ;M
NOG , NYX[Z ;M
Convergence is straightforward to establish as it is either Steepest Descent or �
���
 � �9\^]

by
the fact that N \ NYX[Z .
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Approximate Gradients

Another possible gain in speed arises from the observation that we may not need to compute
the exact gradient �
���
 � � � !

Assume that
�

is an iteration parameter and that
� ��� �

and �2�3�2 � � ��� � denote approxima-
tions of

���
and �
���
 � �'� in the sense that

� � ������ ���	� �9�����, ���B���'� � �������� �2�3�2 � � �'��� � �����, �2�3�2 � �'�B���'��� (4)

Now consider the following algorithm with additional parameter 
 and
�A� N � with

� � N � \� when N \^]
:

The following is Steepest descent with Goldstein/Armijo rule, mesh refinement and approxi-
mate gradients:

Algorithm 3 :

while NO#/N !)P�R&
while � �2�3�2 � � �7! ��#%$3NBT&
try to find a step size

0
with 8 , �
���
 � � � ���
!=�
.6570 ��89� : < ���� ! .?0 8 �@.A���� ! � < .DCE0 ��89� : (5)

if success then& �'!Q(E*Q,L�'!%.?0 �
���
 � � �7!� FVG , FJILK ; M
else

� G ,�� I�
 ;M
NOG , NYX[Z �� G ,�� � N � ;M
The convergence is established by observing that Goldstein’s rule gives a bound on the step
size:

.6570 �2�3�2 � ��� NO< � ��� I 0 N �+.A����'�,L0 �
���
 � ��� N I
0 :
Z
��� � N>N (6)

� 0 #/Z ��5O. K � �2�3�2 �
��� N� ��� ���2� N�N (7)

so that

� !Q(E* .S� ! < . Z
C)� K .?5E�
� � � � � � �2�3�2 � � � : (8)

Thus at each grid level the number of gradient iterations is bounded by � � N�� : T � . Therefore
the algorithm does not jam and as before the norm of the gradient decreases with N .
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Applications

Distributed control and DDM

Let
����� ,����

��� �	 ��
������� ������ ,���������� .���� � :)I��  ��� .������ � :"! (9)

subject to � .$#%� , ]
in
�'& �(��() � � , �*� �(+ � � ,,����- (10)

Then the optimality conditions are .
� , � � �U��� .�� � �

. �
(11)

Let
� ,/� *10 � : , let

� ,2���
and

� P43 ,/��� P65 � 3 . The multiplicative Schwarz algorithm
for the Laplace equation starts from a guess

��7 * &8�67 : and computes the solution of� .9#:� ,�;
in
�'&<� � + ,=�(+ (12)

as the limit in
)

of
�YRP &?>@, K & Z defined by� R[(E** .9#:� R[(E** ,�;

in
� * &� R[(E* � +A@ ��B � � ,=�(+ � R[(E** � + B � ,=� R: �(� R[(+**�() � � , �*�� R[(E*

:
.9#:� R[(E*

:
,�;

in
�
:
&� R[(E* � +A@ � � � � ,=� + � R[(E* � + � B ,=� R * �(� R[(+*

:�() � � , �*�
The discretized problem is

��� �	 ��C � � �� �����, � � � .���� �;:� G � 73 , ] &<) , K ��� � D 8FEHG �� R3 � I �JLK ,=� R � *3 & � � K � � R3 8SI� � R3  98M! , � � �*� 8
where

�
is the number of Schwarz iterations. The exact discrete optimality conditions are

difficult to implement because we may need to store all intermediate functions generated by
the Schwarz algorithm (at least for the nonlinear cases) and integrate the system for the adjoint
vectors in the reverse order. So here we will try to use the approximate gradientN ��� �-, � �Y��� �%.���� � � (13)

where
� �

is computed by N iterations of the Schwarz algorithm.

while NO# NBF >O) &
while

N ��� � # $ � N � &
if (
� !)(+*��� � .A�7!�	� � < .DCE0'! N :�	� � )&

do a gradient iteration of step size
0�!

and m:=m+1
M

else N:=N+KM
h:= h/2

M
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Figure 1: The computed solution
�

(left) and the error
� .�� �

(right).
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Figure 2: After 30 iterations the gradient is K ] � � times its initial value, while without mesh
refinment it has been divided by 100 only (embedded grid effect). On the left, is shown the
cost function versus iteration number with and without mesh adaptation for Problem

� * .
The smooth curve (

. I . ) corresponds to standard steepest descent on the finest mesh with
500 Gauss-Seidel iterations for the linear systems. The broken curve (

.��%.
) shows cost

function decrease with Algorithm 1. Although the two curves are similar, there is an order of
magnitude decrease in computing time using Algorithm 1. On the right is shown the history
of the parameters in the algorithm,

�
and N .

Numerical results� � ,�� ��� � :
	 > )���U� . � ,� � � ��� ]�� ����. K � K�� � � I  ��� ��� ]�� ���=. ] � � � � . The number of Schwarz
iterations is initialized at 1. Results are shown in Figures 1 and 2.

Control in the coefficients

An absorbant coating of thickness
C

on an airfoil
�

is optimized to cancel the reflected ac-
coustic wave in a sector � . The Leontowitch conditions models the thin coating:

������ �
� � � � : subject to

� : � I #%� , ] �6��() . > � � , ] on
� � & �(��() I C � � , ] on

�
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Figure 3: Real part of the solution of Helmholtz equation

The problem is discretized by the finite element method of degree 1 [Cia78] on triangles. The
linear systems are solved with a Gauss factorization. The same gradient method with inexact
gradients is applied (i.e. the gradient of the continuous problem discretized) with domain
decomposition where one domain surrounds one of the airfoil. Figures 3 and 4 show the
solution and Figure 5 shows the history of the convergence compared with a straight steepest
descent method and a steepest descent with mesh refinement only and no DDM. The FEM
software [BHOP99] has been used.

Optimal Shape Design

A transonic flow is computed by solving the Euler system of partial differential equation
with NSC2KE[MP01] and the profile is optimized so as to minimize the pressure drag. The
state equation is non-linear and the acceleration by approximate gradient is on the number of
Newton iterations in the flow solver. There is no DDM here. The results are shown in Figures
6 and 7.
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Figure 4:
C

versus distance to the leading edge on the two sides of each airfoil.
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Figure 5: History of the convergence of the cost function for the coating problem. The method
with mesh refinement and adapted Schwarz iteration number (green curve) is compared with
a straight steepest descent method (red curve) and a steepest descent with mesh refinement
only and no DDM (blue curve).
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Figure 6: Mach lines for the flow around the airfoil before shape optimization (left) and after.
Notice that the shock tends to disappear, an expected result since the drag is a pressure drag.
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Figure 7: History of the decrease of the cost function with and without mesh refinement and
approximate gradient based on non converged flow solvers. The curve in red (top curve) is
without mesh refinement but with control over the iteration number for the flow solver and the
green curve is the same with mesh refinement.


