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8 On Polynomial Reproduction of Dual FE Bases

Peter Oswald1, Barbara Wohlmuth2

Introduction and abstract algebraic condition

We construct local piecewise polynomial dual bases for standard Lagrange finite element
spaces which themselves provide maximal polynomial reproduction. By means of such dual
bases for the Lagrange multiplier, extremely efficient realization of mortar methods on non-
matching triangulations can be obtained without losing the optimality of the discretization
errors. In contrast to the standard mortar approach, the locality of the constrained basis
functions is preserved. The construction of dual bases and quasi-interpolants for univariate
spline spaces is well-understood (see, e.g., [dB76, dB90, dBF73, Sch81]). However, the dual
space is usually of a more complicated structure, and cannot be fixed beforehand, see also
[DKU99, DS97, Ste00] for related research in the context of biorthogonal multiresolution
analysis.

We start with an abstract framework. Let ��������� �
	 be subspaces of a real Hilbert
space � . Furthermore, we assume that ������������������������������������� �! "��
�����#	%$'& . Let ( , ) , * and + be bases of � , � , � and 	 , respectively. All function
systems are written as row vectors, the matrix notation used below will be consistent with this
assumption. We also frequently use the notation ,.-0/�1 -3245�768*:9;���*:<>=@? for the Gram matrix
associated with two finite systems * ; ��*:<4�A� . Note that ,B-C2D1 -E/F�G,H9-0/I1 -C2 , and that ,KJ ;-L1 -
exists whenever the elements of * are linearly independent. By our assumptions, there exist
matrices M , N�OQPSRBTVU and W�OQPSRBTVX , such that )Y�Z+:M , *[�[+:N and ('�[+:W . The
sets of basis functions ) and * are called biorthogonal (or, equivalently, * is dual to ) ) if

\ � U ��, -S1 ]_^ (1)

The components of the function systems ) and * are denoted by `3a and b�a , respectively.
We introduce the dual operators cKdfeg�ih UaIj ; 6k`la���eV=@?#b�a and cnmoep�ih UaDj ; 6qb�ar�seV=t?A`la ,
i.e., 6keV�sc.dvu3=@?
�'68cnmoe��tu3=t? . Assuming that * and ) are biorthogonal, we find that cpd
reproduces the subspace � , i.e.,

c d.w � w xnw Oy��� (2)

if and only if ����� .
In the rest of this section, we establish algebraic conditions on * such that biorthogonality

and subspace reproduction are satisfied for given choices of ( , ) , and + .

Lemma 1 Under the above assumptions, (1) and (2) hold if and only if

\ � U � M 9 ,Hz 1 zLN[� (3)

,Hz 1 { � ,Hz 1 zLNn, ]C1 {A^ (4)
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Proof Equation (3) is equivalent to (1) since

,H]C1 -_��68) 9 ��*4=@? ��M 9 68+ 9 ��+4=t? N��GM 9 , z 1 z N ^
In a second step, we establish (4). If � � � , then there exists a

� OZP U TVX such that
( ��* � . Assuming (1), we find

� ��, ]C1 { and ,Hz 1 { � ,Hz 1 - � ��,Hz 1 zLNn, ]C1 { . On
the other hand, since + is a basis in 	 � � , , J ;z 1 z exists. Thus, if (4) is satisfied, ���Y�
follows from ( � +:, J ;z 1 z ,Hz 1 { �i+:Nn, ] 1 { �i*:, ] 1 { .

Proposition 1 For given subspaces ���s� � 	 �7� and their bases (p�I) ��+ satisfying the
above assumptions, there exists a subspace � ��	 and its basis * such that (1) and (2) are
satisfied if and only if ,B{S1 ] has maximal rank �4�������A� .

Proof We will use the result of Lemma 1. The necessity is obvious from (4). To proof
the existence of � and * we will find N from the system (3)-(4) using the SVD of M . Let
MG���p6�� ��� =@9��n9 , where � OyPSRBT�R , �7OyPSU TVU are orthogonal, and ��OyPLU T�U is diagonal
and nonsingular. Obviously, N satisfies (3) if and only if it is of the form

N���,KJ ;z 1 z �g6�� J ; �
	 = 9 � 9 � 	iOfP U T�� R J U� ^ (5)

It remains that the arbitrary matrix 	 can be chosen such that (4) will be satisfied, too. Sub-
stituting the known factorizations for M and N , we obtain

, {S1 z��Y�G, {S1 ] N 9 ,Hz 1 z��Y� , {L1 zLM�� 9 6�� J ; ��	 =��G, {S1 z�� � \ � U ��	� ��� ^
Thus, (4) holds if and only if the matrix equation �K� , {S1 z��p6�	 9�� ��� \ � R J U =t9 is satisfied.
Using the factorization of , {S1 ] , the latter can be rewritten as

, {S1 ] ��	��G, {S1 z��p6�� � \ � R J U = 9 ^ (6)

Since the ���v� matrix ,H{L1 ] has maximal rank � , solutions 	 exist.
The above criterion does not depend on the particular choice of the bases ) and ( but

rather on the choice of the spaces � and � themselves (it is equivalent to requiring that
6 w ����=@? � � for all ��O � implies w � � for any w O � ). Equations (5)-(6) allow us to
find all * � 	 dual to ) , and such that the associated c d reproduces � . Whether this
procedure is effective depends on the factorization of M , and the structure of , {S1 ] and ,KJ ;z 1 z .
This is the place where the specific choices for 	"! � � � and for the bases come in. In the
subsequent sections, we specialize to the case ���$# < 6&% = , to Lagrange finite element spaces
� and corresponding spaces 	 of piecewise polynomials on a partition of %���P(' , )K�+* ��, ,
and to � coinciding with the space ��- of all polynomials of degree �/. . As we will see, the
resulting matrices have then a simple, sparse structure, and can easily be computed, which in
turn enables us to achieve additional properties of * such as local support of all b a .

1D construction

We consider the univariate finite element case. Let 0 �2143gU� �7�5* � ^ ^>^ �7698 be the
partition of a univariate interval :.�<; = ��>�? into consecutive intervals 3gU of length @ U . On the
interval ;A�B* ��*�? , we define a special basis for ��- byC - �D; wFE � w < � ^ ^>^ � w - � w ; ?3�
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where wFE 6 � =.� 6 *B� � =�� , , w ; 6 � =.� 6 *�� � =���, . The remaining polynomials w a 6 � = of degree� � ,�� ^ ^>^ �7. are supposed to vanish at
� ����* and form an orthonormal system on ;A�B* � * ?

with respect to the # < 6 �B* � * = -scalar product. We note that ��� ����- �$.�� * in 1D. Obviously,
a basis in 	 �� 1 � O # < 6&% =�	 ��
 �� O ��� �L� � * � ^ ^>^ �7698 , ��� . , is given by

+ �<;5+�� / � ^>^ ^ �I+ ��� ?3�
where + �  �+; � E>1 U � ^>^ ^ ����� 1 U ? is the unscaled transformation of the system

C � from ;A�B* ��*�? to3KU . For further reference, let +���  �+; � ; 1 U � ^ ^ ^ ����� J ; 1 U ? . We note that +���  is empty if � �<* .
We restrict ourselves to the case that the conforming finite element space � ���	�� � ;E 6&: =
satisfies homogeneous Dirichlet boundary condition. This is the interesting case for mortar
finite elements. To obtain optimal results, the Lagrange multiplier space � which has by
construction the same dimension as � has to be associated with the interior nodes on the
interface. We found it convenient to use

)A�<;5+ �� / ����� 1 ; ��� E 1 < ��+ �� 2 � ^ ^ ^ ����� 1  J ; ��� E 1  ��+ �� � ?
as basis in � . In this form, it is sometimes called hierarchical finite element basis. Us-
ing the notation of the previous section, we can write ) � + �p6��'��� =s9 , where � �
���"!�# 6 \ �$� J ; �&% ,�� \ �$� J ; �'% ,�� ^ ^ ^ �&% ,�� \ �$� J ; = and

(�)+*

,---------------------.

/103254�687 / / / / / / / // / 79 : 79 : / / ;&;'; / / // / / / 032 4�687 / / / // / / / / 79 : / / /
...

. . ./ / / / / / 79 : / // / / / / / ;&;'; / 0<2=4�6$7>/? / / / / / / / // / 79 : @ 79 : / / / / // / / / / 79 : ;&;'; / / // / / / / / @ 79 : / // / / / / / / / ?

A�BBBBBBBBBBBBBBBBBBBBBC
*�D ( 7( :FE ;

(7)

We note that � is a 6G�H� * = 6 � 6<�I� * = 6 matrix, � ; OyP �  J ; T � �KJ ;   , �L<4OfP  J ; T � �KJ ;   
whereas � is a 6G� 6 �$* =���6<� 6 �$* = diagonal matrix. The dimension of 	 and � is  �
6G�L�$* = 6 and �f�M� 6 � * , respectively. If � �+* , \ � � J ; formally stands for a matrix of zero
size. Having in mind Proposition 1, it is sufficient to find a subsystem ) - �Y) of size .N� *
such that �PORQS, {TS>1 ]USWV�$� to guarantee the existence of a dual system * satisfying � -4� � .

The remaining part of this section is devoted to the construction of suitable subsystems )��
for the case .B�X� of maximal possible degree of polynomial reproduction, i.e., �Y� ��� . This
is a little bit more than required in the mortar context, where optimal a priori error estimates
can be obtained with a Lagrange multiplier space satisfying ��� J ; � � . We assume 6Z�\[
(the case 6 �2, , �X�2, , can be dealt with as a simple linear algebra problem). Then,
automatically, ����� �]�������A�^� . Consider any three consecutive intervals 3gU J ; �
3.Ul�
3KU J ; .
Without loss of generality, after a suitable linear coordinate transform we can assume that3KU coincides with ;A�B* � * ? and that the new intervals left and right to ;A�B* � * ? have lengths@ � , @ U J ; ��@ U and @U� �/, @ U J ; ��@ U , respectively. We choose the system

)L���+; ��� 1 U J ; ��� E 1 U ��� ; 1 U � ^>^ ^ ����� J ; 1 U ����� 1 U �_� E>1 U J ; ?<`>� (8)
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and denote its transformation to ; ��@ � * ���B*�? � ; �B* ��* ? � ;A* � * � @8� ? again by ) � . By construc-
tion, the transformations of � ; 1 U � ^>^ ^ ����� J ; 1 U have support in ;A�B* ��*�? and coincide with the
functions w < � ^ ^>^ � w � from

C � while the remaining two functions are scaled piecewise linear
hat functions.

In order to prove ��O Q , {��D1 ]�� V� � , we have a free choice of the basis in �^� . We will
choose ( � �D;��wFE ���w ; ���w < � ^ ^>^ ���w �7? such that for �yO ; �B* ��* ?

�w E 6	� =o�<*�� �

aIjC<

� ;
J ;
w a 6 � = ) �� wla 6	�l=�� �w ; 6	� =o��� � �


aIjC<

� ;
J ;
� w a 6 � = ) ��� w a 6�� =��

and �w ar6	� =o� w a�6	�l=I� � �/,V� ^>^ ^ � � . We note the following properties:

(P1) Restricted to ;A�B* � * ? , the basis ( � is orthogonal, �wFE and �w ; are not normalized.

(P2) �w E , �w < , �w�� � ^ ^>^ are even, �w ; , �w�� , �w�� � ^ ^>^ are odd.

(P3) All zeros of �wFE , �w ; are in 6 �B* � * = , i.e., �wFE 6 � =�� � for
� O P�� ;A�B* � * ? and �w ; 6 � =:$�� for� $ �B* and �w ; 6 � =�� � for

� � * .
(P1) and (P2) follow from the definition. To prove (P3) for �w�E , assume that it has zeros outside;A�B* ��*�? . Since �wFE is even and of even degree , ��� � � , its zeros are symmetrically located with
respect to the origin. Let �_$�� ; $ ^ ^>^ $�� a $ * be the zeros of odd multiplicity inside
6�� ��* = . By assumption at least one pair of zeros is outside ; �B* ��* ? and thus

� ���=� � * . Recall
also that by construction �wFE 6 �B* =����w E 6 * =��<* . Now, we define a polynomial

w 6�� =����6 *�� � < =D6 � < ��� < ; = ^ ^>^ 6 � < ��� < a =F� � O ;A�B* � * ? ^
which has the same sign as �w E everywhere in 6 �B* ��* = , with the exception of zeros of even
multiplicity. Thus, � ;J ; w 6

� =��w E 6 � = ) � � � . This contradicts the orthogonality property since
from �POR#l6 w = � , ���:� � and w 6 �B* =K� w 6�* =K� � we conclude that w O! #"U!%$B; w < � ^>^ ^ � w ��? .
The same reasoning goes through for �w ; , we leave this upon the reader. We are now in the
position to show that �PORQo, {���1 ]&� V�+� for the above ) � and ( � . Equivalently, we show that
orthogonality of

w �/= E'�w EY� = ; �w ; � �

aIj3<
=�a(�w a

to all functions from ) � yields = a � � for all
� � �V� ^ ^ ^ �'� . Testing with the translates

of �*) J ; 1 U (which coincide with �w )�	,+ J ; 1 ;.- ) and using (P1) immediately gives =/).� � for all0 �+,V� ^ ^>^ � � . Thus, only = E and = ; can be different from zero. Now, we test �w E and �w ; with
the two remaining hat functions which will be denoted by 1w ; and 1w < . Let 1w ; be supported in;A�B*��9@3��*�? and 1w < in ;A�B* � * � @$� ? . We recall that 1w ; and 1w < are positive in 6��B*��9@3���B* = and
6 * ��*Y� @$��= , respectively. Moreover, in ; �B* ��*�? they can be written as 1w ; � � ^ 2 63�w E��4�w ; =I�51� ;
and 1w < �/� ^62 67�w E^�8�w ; =8�41�>< , where 1� ; , 1� <4O9 #"U!%$ ; w < � ^>^ ^ w � ? . Then, due to (P1) and (P3), the,�� , determinant

�PO Q ,:+<;=?> 1 ;= / - 1 +�@= / 1 @= 2 - �BAAAA
� � � �
$ � � � AAAA � �K� (9)

is positive. This shows = E �$= ; �/� , and concludes the verification of ��O QL, {C��1 ]�� V�/� . As a
by-product, we see that the inverse ,gJ ;{ � 1 ] � continuously depends on @3��@8� .
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Proposition 2 For the above defined basis ) in the space � of
� E finite elements of degree����* on a partition 0 of an interval, there exists a locally supported dual basis * consisting

of piecewise polynomial functions of degree � on the same 0 such that � � ��� , and the
associated projections c d and c m possess # = -norm bounds ( * � w �'& ) which depend
only on � , and on the local meshsize ratio � 6&0n=F5��� !��I
 � J a 
 j ; @ � ��@ a .
Proof The existence of a dual basis with � � ��� has already been established. To construct a
locally supported basis, we specify 	 as follows: Obviously, the

�
-th column in 	 is naturally

associated with the vertex � a ��$= � h a J ;) j ; @ ) , *H� � � 6 � * , of 0 , see (6) and the explicit
form of � given in (7). For each

�
we chose three consecutive intervals 3 U�� , 3KU�� J ; and3KU�� J < such that

� O 1>� a � * �t� a � � a � * � � a � , 8 . Then, we take the special choice of ( �
and ) � given by (8) associated with these three consecutive intervals and define � a O_P � J ; ,*H� � � 6 � * , by

, {���1 ]&� � a ��, {C��1 z 6�� < = 9 a � (10)

where 6�� < = a is the
�

-th row of the matrix � < . In a next step, we set the
�

-th column in 	
by associating the components of � a to the position in this column by correspondence to the
functions in the chosen ) � and leaving zeros in positions corresponding to `') not in )L� . Note
that we work with different subsystems ) � for the vertices � a . Each column of 	 has thus
� �����A��� nonzero entries, associated with `') whose support is close to � a by construction.
Since (10) implies (6), we conclude that

N���, J ;z 1 z �p6�� J ; �
	 = 9 (11)

indeed defines a locally supported dual basis reproducing polynomials, with the supports of
the b ) close to the supports of ` ) for all

0 �<* � ^>^ ^ � �V� � � .
Since all steps in the construction depend only on the local meshsize ratio, the uniform# = -stability bounds for the projections c d and c m (as well as local # = -error estimates for

smooth functions) can be derived. Since this is standard, we will not go into details.
Dual systems with basis functions of small support have been constructed in [Woh01]

for � �2, and . � � �D* . As was mentioned in the introduction, for the mortar finite
element applications polynomial reproduction of degree .n� ��� * would suffice. Our above
proof implies that for this case the construction of an adequate dual basis can be based on
) � J ; �+; � � J ; 1 U J ; �_�4E>1 U ��� ; 1 U � ^ ^>^ ��� � J < 1 U ��� � J ; 1 U ���4E 1 U J ; ? and ( � J ; , � � , .
Higher order mortar finite elements

In this section, we establish optimal a priori estimates for the discretization error of noncon-
forming mortar finite element methods. These domain decomposition techniques provide a
more flexible approach than standard conforming formulations, and are of special interest for
time dependent problems, rotating geometries, diffusion coefficients with jumps, problems
with local anisotropies, corner singularities and when different terms dominate in different re-
gions of the simulation domain. To obtain optimal a priori estimates, the interface between the
different regions has to be handled appropriately. Very often suitable matching conditions at
the interfaces can be formulated as weak continuity conditions. We assume that the bounded
polygonal subdomain % �YP < is geometrically conforming decomposed in non-overlapping
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polygonal subdomains % a , *p� � � �
. In particular, the situation with many crosspoints is

included. Each subdomain is associated with a locally quasi-uniform simplicial or quadrilat-
eral triangulation 0 a , and the discrete space of conforming finite elements of order � satisfying
homogeneous Dirichlet boundary conditions on ��% ��� % a is denoted by � � 6&% a = . On each
interface � ) a 5����% a ��� %�) , we use the one-dimensional mesh inherited either from 0 a or 0�) .
The choice is arbitrary but fixed. Now, we replace the standard Lagrange multiplier space, see
[BMP94], by our dual space. The basis functions of the Lagrange multiplier space � � J ; 6 � ) a =
on the interface � ) a are defined as the scaled transformed dual basis functions b a O * . Here
* is our locally supported basis consisting of piecewise polynomial functions of degree ���9*
or � and reproducing polynomials of order � � * . Then, the constrained nonconforming mortar
finite element space � � � # < 6&% = is defined by

� � �� 1 � O # < 6�% =T	 ��
 � � Of� � 6�% a =I� � ��� � ; � ? b ) �:�$� ��b O � � J ; 6 � ) a =I� *H� � $ 0 � � 8 ^
The analysis of the resulting jump terms across the interfaces plays an essential role for the
a priori estimates of the discretization schemes. It is sufficient to analyze the jump term on
the reference interface :f� ; = ��>�? . In particular, optimal methods can only be obtained if the
consistency error is small enough compared with the best approximation error on the different
subdomain. Indeed, in [Woh01, Conditions (Sa)–(Sd)], sufficient conditions for abstract La-
grange multiplier spaces are given to obtain a discretization error of order @ � and @ �KJ ; in the
� ; - and # < -norm, respectively. For convenience, we briefly review the conditions. In a short
form they read for dual spaces as: Locality of the support of the dual basis functions, polyno-
mial reproduction of degree � � * , stability of the projections c m , c d and the existence of a
well-defined stable operator c @m  # < 6�:r=
	 1� . The projection c @m will be defined by

�
� c @m � b ) � � �

� � b ) � �%b Oy� ^

Here, 1� is a subspace of 	 � � ; 6�:r= having the same dimension as � and satisfying a low
order approximation property for all � Of� ; 6&: = . We point out that the required approximation
property of 1� does not depend on the order � . For a more detailed discussion on the properties
of 1� , we refer to [Woh01]. We note that in the case of our locally supported dual basis * ,
the best approximation property of the nonconforming space � � is automatically guaranteed.
Since c.m is by construction � E7E -stable, no problem at the crosspoints occurs. The analysis of
the consistency error requires the polynomial reproduction of degree ��� * and the existence
of such a c @m . Of crucial importance is the weighted # < -norm of the jump, * � % @��; � ?���E�� ��� � ,� O � � across the interfaces � ) a .
Lemma 2 Replacing in the mortar finite element approach the standard Lagrange multiplier
space on each interface � ) a by our locally constructed dual space � � J ; 6 � ) a = yields optimal a
priori estimates for the discretization error in the # < -norm (order @ �KJ ; ) and in the � ; -norm
(order @ � ). Moreover, the error in the Lagrange multiplier measured in a weighted # < -norm,% @�� ; � ?�� E�� ��� � , is of order @ � .
Proof Almost all required conditions, as locality, polynomial reproduction of degree ���* , and stability of c m , c d are satisfied by our above construction. Thus to establish the
optimality, it is sufficient to define a suitable 1� and show that the corresponding projection
c @m is uniformly stable. The low order approximation property is, e.g., satisfied if �� ��
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 #"U!%$ 1 � E>1 ; � ��� 1 ; � � E>1 < ����� 1 < � � E 1 � � ^ ^>^ ����� 1  J < � � E 1  J ; ����� 1  J ; � � E>1  � ��� 1  8 is a subspace
of 1� . Considering )7�!+<�p6�� �7� = 9 and adding �4E>1 ; to the first basis function and � � 1  to
the last one provides a new set ) ; of linear independent functions. The associated space 1�
satisfies �� � 1� , has the same dimension as � and a locally supported basis. In algebraic
notation, we can write ) ; as ) ; ��Y+$�p6�� � 1	 =@9 where 1	YOyPSU T�R J U has only two nonzero
entries, 1� ; 1 ; � 1� U 1 R J U � * . To show that c @m is well defined, it is sufficient to prove that
, -S1 ] / is non-singular. Using (11), we find , -S1 ] / � \ � U � 	 1	 9 . The special structure of 1	
yields that the first and last column of 	 1	 9 is the first and last column of 	 , respectively, all
other columns are zero. Our construction of 	 shows that the first column of 	 depends on
( � or ( � J ; which is associated with 3 ; , 3 < , 3 � . Since we have assumed 6 � [ , we find�
U 1 ; �

� ; 1 R J U � � . Therefore it is sufficient to show that *=� � ; 1 ; and *=� � U 1 R J U are nonzero.
Using the same notation as before �w E and �w ; are orthonormal polynomials on 3 < and extended
to : . The coefficient � ; 1 ; is the first component of the solution � of , +<;= > 1 ;= / - 1 +�@= /s1 @= 2 - � ��� , where� ; �!� � �w E �4E 1 ; )�� and � < � � � �w ; �4E>1 ; ) � . By means of (P3), we find � ; � � and � <4$ � which
together with (9) yields that � ; 1 ; � � . The same reasoning holds for � U 1 R J U , and we obtain
�PORQS,H-S1 ]l/ V�$� .
1D examples for � ���
The aim of this section is to illustrate the above theoretical result, and to provide explicit
formulas for �f� [ , at least for the case of uniform partitions. We base the construction of
our dual bases on (8). From now on we will assume that %�� ; � �76 ? , 3 UG�5; � � * �t��? ,
��� * � ^>^ ^ �76 , and � � [ . We refer to [OW00] for a detailed discussion and for an explicit
representation of the matrices 	 and N . For our convenience, we will fix the basis for + � /
on 3 ; �+; �V� * ? and obtain the bases + �  by translation:

+�� / � �� 	 ; � ;; ��� <; ?l�+;A*�� � � � ?3� � �+*4�; � ;; ��� �; ��� <; ?l�<;A*�� � ��
 � 6�*�� � =D� � ?3� � � ,.�; � ;; ��� �; ��� � ; ��� <; ?l�D; *�� � ��
 � 6 * � � =D��* � � 6 *�� � =D6�, � � * =I� � ?3� � �X[ ^
This will lead to the following � -independent formulas for the diagonal blocks , J ;z �  1 z �  of

, J ;z 1 z :

, J ;z �� 1 z �� � � � ��,��, � � � � � � 2 [� 2 2 � 2[ � 2 �
��
� ��� *�
 � 2 � � �� 2 2 � � 2� � � � �� � � 2 � � *�


�����
�

for � � * �
,�� [ , respectively. The explicit formulas for � and � only differ in the sizes of
the identity matrices for different � . Thus, we have all ingredients ready for using (11), with
the exception of the matrix 	 . The construction of 	 is described in the proof of Proposition
2, and depends on � and the desired degree of polynomial reproduction . ��� . We refer to
[OW00] for the calculation of the entries of 	 . Although we provide explicit results only for
uniform partitions, the construction can be used for non-uniform partitions without essential
changes. For �Q�2* , the dual basis functions b U obtained along the lines of the previous
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section are as follows. Away from the endpoints of % , we get

b U 6	� = 5�
�� 	 � <� � ;U � � � � <U � �yO ; � � * � �3=I��� � ;U J ; � < � � <U J ; � �yO ; �L�t�+� *�?8�� <� � ;U J < � ;� � <U J < � �yOQ6q� �$* � � � ,4? � [p�#� � 6 � [p�

for the interior dual basis functions (here and below, we only show formula for the intervals
in the support of b U ). For the boundary dual basis functions near the left and right endpoint
of % , we obtain modified expressions:

b ; 6	�l=�5�
�� 	 ,�� ;; �_� <; � � O ; �V� * =D�� ;< � � O ;A* �
,4? �� <� � ;� � ;� � <� � � O 6�,�� [ =I� b < 6	� = 5�

����
��
	 � � ;; � � O ; �V� * =I�� << � � O ;A* �
,4? ��� � ;� � <� � <� � � O 6�,���[�?8�� <� � ;� � ;� � <� � � O 6G[V� � ?8�

b  J < , b  J ; are defined in a similar way. Now, it is easy to verify that the locally sup-
ported basis functions b U are biorthogonal with the standard hat functions. Furthermore,
h  J ;U j ; b U �+* and h  J ;U j ; � b U � � and thus � ; � � . We note that in [Woh00, Woh01], a
dual basis with smaller support but only � EB� � has been constructed.

For �v� , , we introduce a dual basis satisfying �S<f�
� . We distinguish between two
different types of dual basis functions b �U and b �U which are associated with the bubble and hat
functions of the finite element basis functions, respectively. The interior dual basis functions
b �U with support on 3 U J ; � 3 U � 3 U J ; ( � �X[V� ^>^ ^ ��6 � , ) and b �U with support on 3 U � 3 U J ;
( �y�/,�� ^>^ ^ ��6 � , ) are defined by the corresponding � �a , *H� � � [ , as follows:

b �U 6	�l=�5�
�� 	 � � < � ;U J ;^� �� � �U J ; � ;< � <U J ;� [�� ;U � ; E� � �U � [�� <U� �< � ;U J ;^� �� � �U J ; � ;< � <U J ; �%b �U 6�� = 5�

� �< � ;U � �< � �U ���< � <U�< � ;U J ; � �< � �U J ; �< � <U J ; ^

The modifications for the boundary dual basis functions b �; , b �< , and b �; concern only their
values on 3 ; , otherwise the above formula apply correspondingly. We define on 3 ; : b �; ��[5[ �
	5� ;; � 2 �
	�� �;�� 2 �
	�� <; , b �< ��<* � �
	5� ;; � 2 �
	5� �;�� 2 �
	5� <; , and b �;v��<��, * � � � ;;(� 2 � � � �;��� � � � <; . The modifications for b � J ; , b � , and b � J ; on 3  are analogous. Note that the
support of the dual basis functions b �U , b �U is contained in � [ neighboring 3pU close to the
support of the corresponding finite element basis functions. Moreover, we find by construction
�E<H�A� .

For � � [ , we do not specify the explicit formulas for the basis functions and refer to
[OW00] for details. Figure 1 illustrates the interior dual basis functions, �B� [ , for ��<K�G�
and � � � � , respectively. We have three different types associated with hat functions,
quadratic, and cubic bubbles, and supports consisting of two, three and one/two consecutive
intervals, respectively.

2D results

The above approach generalizes to higher dimensions, as we demonstrate with the following
example. We consider the space � of quadratic Lagrange

� E -elements, i.e., �Q� , , with
homogeneous Dirichlet boundary conditions on a triangulation 0 of a bounded polygonal do-
main %G�AP < , and show the existence of a dual basis of locally supported piecewise quadrat-
ics on 0 such that � reproduces linear polynomials locally, i.e., � ; �Z� , under a certain
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Figure 1: Interior dual basis functions � -4�A� , .B�$, (above) and .H� [ (below)

regularity condition on 0 . For lowest order finite elements, dual basis functions satisfying
� E �A� have been constructed in [KLPV01, WK01, Woh01].

The basis + in 	 which is set to be the space of discontinuous piecewise quadratics is
conveniently given by the collection of all elemental nodal shape functions � � 1 � , piecewise
linear barycentric coordinate function for vertex � of triangle 3 , and � � 1 � , quadratic tent
function associated with triangle 3 and its edge � . Each such function is supported on a single
triangle, and there are 
 of them for each 3 . As before, an explicit, sparse factorization of M
can be found (see [OW00]), and Proposition 1 can be applied. Following the considerations
of Section 8, it is sufficient to find a locally defined subsystem ) ; such that �PO QL,H]l/�1 {E/ V�$� .
Let 3 O/0 be any triangle all edges of which are interior to % . We specify a basis ( ; of
� ; by setting ( ; 5�+; w ; � w < � w�� ? where w a denotes the extension of the barycentric coordinate
function associated with the vertex �La of 3 to all of P < which is defined by requiring w anOy� ;
and w a�6k� ) = � � a ) � � � 0 � * �
,�� [ . The subsystem ) ; is defined by ; `��t/ �s`�� 2 �s`���� ? where `�� �
denote the conforming quadratic bubble functions associated with the edges � a of the triangle3 . Using the affine invariance of both ) ; and ( ; we can without loss of generality assume
that 3 is equilateral, with area MG�<* . All the other notation can be found in the left of Figure
2. The area of the triangle 3 a , attached to 3 along � a , is denoted by M a .
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Figure 2: Notation for Lemma 3 (left) and counterexample (right)
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Lemma 3 Let the triangles in the left part of Figure 2 satisfy the following condition: For
each

� � * ��,V��[ , the diagonal � a c a belongs to the closure of the corresponding quadrilateral3 � 3 a . Then the determinant of , { / 1 ] / is positive and depends continuously on the location
of the c a . If the additional geometric assumption is dropped, the matrix , { / 1 ] / may become
singular.

Proof The proof is based on elementary calculations. We start by stating the formula

� � � � 1 � / � �
aIj ; � aIw a )��f� M* 2 6 � ; � ,V6 � < � � � =t=F�
which holds, due to affine invariance of all functions involved, for all triangles. This allows
us to compute all scalar products necessary for , ] / 1 { / . E.g.,

�
� � � 1 � / � w ; )��f� � � � � 1 � / � w ; )�� � � � / � � 1 � / � w ; ) � � M* 2 � M ;* 2 w ; 6kc ; =�� *�� M < ;* 2

since w ; 68c ; =n� � M ; �IM!� � M ; . Since w ; � w < � w���� * , we have w < 68c ; =�� w�� 6kc ; =n�*�� w ; 68c ; =o� *Y��M ; which leads to the ansatz

w < 68c ; =�� *Y��M ; ��� ;, � w � 68c ; =�� *Y��M ; ��� ;, �

where our geometric assumption implies that �p�<$36 w < 6kc ; =D� w�� 6kc ; =t=�� � or, equivalently,	 � ; 	r��*Y� M ; . With this at hand, we compute

�
� � � 1 � / � w < ) � � , M* 2 � M ;* 2 6�, � w < 6kc ; = =�� � � 2 M ; � M < ; � M ; � ;[ � �

and, analogously,

�
� � � 1 � / � w � ) � � � � 2 M ; � M < ;���M ; � ;[ � ^

Applying the same analysis to the other rows of , ] / 1 { / and observing that the rows almost
completely divide by 6 *Y��M a = , we get the following explicit formula

� /	� 2�
����� /�� �l/� ?����N7�� � ?���� : � � ?���� � � *��! 
""""""

# @ #	� 7 $ �%� 7 @'&)( 7 $ ��� 7 � &)( 7$ ��� : � &*( : # @ #+� : $ ��� : @,&)( :$ ��� � @,& (� $ �%� � � & ( � # @ #	� �
"""""".-

where 	 �'� a 	 ��M a 	 � a 	 ��6�*Y� M a =��#M a , � �+* �
,���[ , follows from our assumption.
A straightforward calculation reveals that

W'�<* � 6 [ � < 60/ = � � � ; 60/ = � � ��1S62/ �3� � =t=F�
where � ; 6543=o� � ; � � < � � � , � < 6543=o��� ; � < � � < � � � � � � ; for any 4 OfP � , and

1S62/ �3� � =��X� < 60� � =I�6� � ; 6kM < �_M � = ��� �< 6qM � � M ; =I�6� �� 6kM ; �_M < = ^
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The global minimum of 1 with respect to the cube � � a O ; � M a � M a ? , � �+* �
,���[ , is attained on
the boundary of this cube, and can be determined easily:

1S60/ �3� � =�� � < 62/v=�� � � !�� 6qM ; M < �sM < M � �sM � M ; = �/� [=� < 60/v=
holds for all �'� a of interest. Substitution gives

W � � � 6<� ; 60/ = �$* =�� � � ^ (12)

since M:a � � , � � * ��,V��[ . This shows the assertions of Lemma 3 under the geometric
assumptions made. The continuous dependence of the determinant and thus the inverse of
, { / 1 ] / on the local topology is obvious.

It remains to provide a counterexample that shows that the above choice for ) ; may fail to
guarantee the invertibility of , { / 1 ] / . The right part of Figure 2 contains the counterexample.
We claim that if c ; is moved to the left, the determinant of , { / 1 ] / will vanish at some point.
Indeed, the specification of the example is such that M � M ; � M < ��M � � * , both 3
and 3 < are equilateral (thus, �&�< � � ), and �&�� � * since c � belongs to the extension of � ; .
Thus, according to the above formula, W�� � � � ; � �

is a linear function with respect to � � ; ,
with slope � � * � 60�&�< � �'�� �AM < � M � = � * � and

� �+, 2 � (since for �'� ; �<� the geometric
assumption is satisfied and therefore (12) is valid). Thus, moving c ; sufficiently far to the
left or, equivalently, decreasing �&� ; , we finally hit a zero value for W . This proves our claim.

Remark 1 One possible modification is to start the construction of dual bases with a finite
element space 	 corresponding to a refined partition 0W� rather than with the space of non-
smooth piecewise polynomials on the same 0 . This could make the resulting � suitable
for applications, where higher smoothness of the functions in the dual system is required.
However, for use as Lagrange multiplier subspaces of � J ;�� < in the mortar finite element
method this is not essential.

Remark 2 In contrast to constructions of biorthogonal wavelet systems [DKU99, DS97,
Ste00], the spaces � obtained here are not refinable, i.e., if 0W� is a proper refinement of 0 ,
we cannot expect to have � � ! � . However, as suggested in a similar problem in [Osw99],
we still have refinability 	 � ![	 for the container spaces of piecewise polynomials which
enables the use of our systems in a multilevel setup.

Acknowledgement: The authors would like to thank C. de Boor and R. Verfürth for their
interest and fruitful comments.
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