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53 Schur Complement Based Preconditionersfor
Compressible Flow Computations

Marzio Sala

I ntroduction

The solution of linear systems arising from compressible flow computations is a great chal-
lenge in the field of scientific computing. Modern high-performance computers are very often
organised as a distributed environment, and every efficient solver must account for their mul-
tiprocessor nature. Domain decomposition (DD) techniques provide a natural possibility to
combine classical and well-tested single-processor algorithms with parallel new ones. The
basic idea is to decompose the original computational domain Q into M smaller parts, called
subdomains Q, 4 = 1,..., M, such that UM, Q® = Q. Then we replace the global
problem on ©Q with M problems on Q). Of course, additional interface conditions must be
provided.

The DD methods can roughly be classified into two groups [QV99, SBG96, CM94]. In the
former, named after Schwarz, the computational domain is subdivided into overlapping sub-
domains, and local Dirichlet-type problems are then solved on each subdomain. The latter
group, instead, uses non-overlapping subdomains. It is thus possible to decompose the un-
knowns into two sets: one formed by the unknowns on the interface between subdomains, and
another formed by the unknowns associated to nodes internal to the subdomains. One may
then compute a Schur complement (SC) matrix by “condensing” the unknowns in the second
set. The system is then solved by first computing the interface unknowns and then solving the
independent problems for the internal unknowns.

It can be shown [QV99] that the SC system is better conditioned than the global system. How-
ever, the solution of this system requires computing as many linear problems as the number of
subdomains used. The dimension of these problems can be very large, unless the number of
processors used is sufficiently high. A possible solution can be to solve the internal problems
inexactly, using, for example, an incomplete factorisation [Saa96], or few steps of an iterative
solver. The resulting approximate SC matrix can be seen as a preconditioner for the global
system. Here we present some numerical results concerning the application of the SC matrix
as a preconditioner for the global (unreduced) system. We have tested an elliptic problem, as
well as a hyperbolic one. In the former the matrix arises from the Laplace operator, while in
the latter from the compressible Euler equations.

This paper is organised as follows. Section 53 describes the SC system, showing two possible
formulations, named element-oriented and vertex-oriented. Differences between the element-
oriented and vertex-oriented SC matrix are here outlined. Section 53 describes the use of the
SC system as a preconditioner for the global system. Numerical results for an elliptic test
case and for the compressible Euler equations are reported in Section 53 . The tests have been
conducted on a distributed memory parallel machine. Conclusions are drawn in Section 53.
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The Schur complement M ethod

Let us consider the solution of the following linear system:
Au=f, 1)

where A € R™*™ is a (sparse) real matrix, u and f € R™ two column vectors. In general, we
can think of (1) as begin the algebraic counterpart of a variational boundary value problem
which reads

find up, € V}, such that:
a (up,vp) = (f,vn) forVu, €V,

where V}, is a finite dimensional space generated from finite element basis functions. For an
elliptic problem a(up,vy,) is bilinear form and uy, the discrete solution, while for the com-
pressible Euler equations a(up,vp) should be regarded as the bilinear form expressing the
Jacobian of the Euler system (after time and space discretisation), and u, plays the role of the
increment of the physical variables.

We now consider a partition of the domain Q c R?, d = 2, 3, made in the following way. We
first triangulate ©2 and we indicate by 771(9) the corresponding mesh. For the sake of simplicity
we assume that the boundary of Q coincides with the boundary of the triangulation. We then
partition 771(9) into 3 parts, namely 771(1) : h(z) and 771(F) such that7}1(1) U7jl(2) U771(F) = 771(9).
We may associate to 7, and 7,*) two disjoint subdomains Q(*) and (> formed by the
interior of the union of the elements of 7;1(1) and 7;1(2) respectively, while T1:2) is formed by
the “elements” contained on 7;1(”.

We will consider two cases:

o T'(1:2) reduces to a finite number of disjoint measurable d — 1 manifolds. This situation
represents the common case where Q) N Q(?) = T(1:2) je. T'(1:2) is the discretisation
of the common part T' of the boundary of () and Q(?). This type of decomposition will

be called element oriented (EO) decomposition, because each element of 7;5") ,i=1,2
belongs exclusively to one of the two subdomains Q1) and Q(2),

e T(1:2) ¢ R? and it is formed by only one layer of elements. That is, each node of
T'(1:2) coincides with a node of either Th(l) or 7'h(2). The portion of space I" of which
I'(1:2) js a triangulation, is now formed by the union of a finite number of “strips” laying
between (V) and Q). It will be called vertex oriented (VO) decomposition, because

each vertex belongs exclusively to one of the two subdomains Q®) i =1, 2.

A node is said to be internal if it is not connected to any node of other subdomains, while a
node that lies on I'(*:2) js said to be a border node. In the following, we will consistently use
the subscripts I and B to indicate internal and border nodes, respectively, while the superscript
(i) will denote the domain which we are referring to.
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Vertex Oriented Schur complement Matrix

Let us consider again problem (1). The block representation reads

AD 0 0 w) £
IR AN A
R A® w? [
) 2 2
0 E ul? £

where the submatrix A(?), relative to subdomain Q(%, can be written as

(4 4.
ABI ABB

In this partitioning the border nodes are subdivided into two sets: B! is the set of nodes of
the triangulation of the strips I'(*:2) which lay on the boundary of Q(), while B®) is that of

nodes lying on the boundary of 2(2), Correspondingly, we have the blocks ug) and ug) inthe

vector of unknowns and fg) and fg") in the right hand side. E(*9) represents the contribution
to the equation associated to B(¥) coming from the nodes in B(). We call the nodes of I'(1:2)
contributing to B( external nodesof domain Q(%.
We can perform a LU elimination of internal nodes (which are coupled only to border nodes),
obtaining the following Schur complement system:

g g2 ) ey ( g® )
S = . B = . , 3
voun ( E2D g2 11(;) g(2) ©)
where
. - - =1 - . - M . =1 .
SO = Al — AG AL A a0 g =€) - S REAGAT 1 @
i=1

with ¢ = 1,2. Note that Sy is in general dense on the block diagonal, while the blocks
E(i:) are sparse. The technique just shown may be extended to any number of domains.

The Schur operators built on an element-oriented or a vertex-oriented DD are clearly different.
The theoretical properties of the former are better known, since it has a more direct interpre-
tation at differential level [QV99], while the latter is normally the result of a purely algebraic
approach. Although the element-oriented decomposition has better theoretical foundations,
the literature for complex CFD computations refers more frequently to vertex-oriented de-
composition. In fact, the vertex-oriented approach is more simple derived by purely algebraic
manipulations on the original system matrix.

Although the SC matrix is better conditioned that the unreduced matrix A, a suitable pre-
conditioner has to be found. Many methods have been proposed in literature for the EO
decomposition; see for example [QV99, SBGI6] for an overview. Among them, we recall
the balancing Neumann/Neumann, the wire-basket preconditioners FETI [FPL0O] and others
[CGT98]. These methods couple a local preconditioner with a coarse correction to avoid the
degradation of the performance as the number of subdomains grows. Another possible way
to derive a preconditioner for equation (3) is to use using the relation S;}) = RpA'RL,
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where Rp the restriction operator on the interface variables. It follows that form that from
any preconditioner P4 for the matrix A one can obtain a preconditioner Pg for the matrix
Svo. The preconditioning operation for Sy o which is induced from P4 is defined by

- - 0
PS 1VB = RBPAl ( VB

) = RBPXIREVB .

For example, a Schwarz-type preconditioner can be used for the solution of the vertex-oriented
SC matrix. Infact, we recall that the SC matrix obtained from a vertex-oriented decomposition
is less dense than the one obtained from an element-oriented one. As one may note from
equation (3), Sy o has dense diagonal blocks, while the non-diagonal blocks are sparse.

The Schur Complement System as a Preconditioner

The bottleneck of the SC system is the solution of the internal problems. This step can be
done in parallel, however it can be very expensive for both memory requirement and time.
Direct solvers can be used only with small problems, while iterative solvers need to be pre-
conditioned.

Let us write the matrix A in the following block form, putting before all the internal nodes,
followed by all border nodes:

_ Arr O I AI_II Arg
A_<ABII>(0 s ' ©)
A possible preconditioner is
_( Amr 0 I AjlArg
Pasc = ( Apy I ) ( 0 g . (6)

where A;r is, for example, an ILU decomposition of A7, and S is given, for instance, by
few steps of an iterative method where in the global Schur Complement the internal Dirichlet
problems are solved (approximately) using A;;. To apply P4sc to a vector, we need to solve
some local linear systems with the matrices A and a global linear system with S. In this
case, the role of S is to couple all the subdomains. In this way, we may avoid the definition of
a coarse space. In fact, the definition of the coarse problem may be difficult when dealing with
complex geometries or non-matching grids [CSZ96], especially for the choice of the boundary
conditions. On the contrary, the definition of the ASC preconditioner is purely algebraic and
it can be easily applied to any kind of matrices (provided that the incomplete factorization of
Ajy exists). This approach is similar to the one followed in [Zha00] and other papers with
the same aim to construct the preconditioner without dealing with the geometrical data of the
underline physical problem.

Numerical I mplementation

In Section 53 we present some numerical results concerning a Laplace operator, while in
Section 53 we apply the SC preconditioner to the solution of the compressible Euler equations.
All the numerical results here presented have been obtained on a SGI-Cray machine located at
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[ Nunks ]| np | swl | sw2 | ASC-2 | ASC-5 | ASC-10 |
| 4 processor |

64. 000 | 116 | 38 33 35 28 24
125. 000 || 154 | 46 39 43 36 32
216. 000 || 227 | 54 45 50 42 39
512. 000 || 253 | 66 58 66 56 51

1.000.000 || 454 | 91 66 81 67 64
| 8 processor |

64.000 || 116 | 43 | 35 32 22 14
125.000 || 154 | 51 40 38 29 20
216. 000 || 227 | 56 48 45 37 27
512. 000 || 253 | 68 59 60 49 40

1. 000. 000 || 454 | 105 67 73 64 54

Table 1: 3D Laplace problem. Number of iterations with 4 and 8 processors.

the EPFL, with 32 MIPS R14000 processors, each of them has 256Kbytes of local memory, 32
Kbytes of first level cache and 4 Mbytes of second level cache. For the solution of the linear
system, we have used the AZTEC library, developed at the Sandia National Laboratories.
The linear solver used is GMRESR, a variant of GMRES that allows the preconditioner to
be different at each iteration. We have stopped the solver after a reduction of 10~ of the
initial residual. Each processor is given a single subdomain, and the MPI communicator has
been used. About the Schwarz preconditioner, we have solved the local problem using an
ILU decomposition. For the ASC preconditioner, in the solution of the linear system with
S, we have used GMRES. The approximation is obtained replacing the exact LU of Aj;
decomposition the an incomplete factorisation ILU (0).

An Elliptic Problem: the Laplace Operator

We have considered the following linear problem:

—Au
=
where = (0,1) x (0,1) x (0,1) is discretized by piece-linear finite elements on tetrahedra
regular grids. For this simple test case we have partitioned the domain into slices, using a
vertex-oriented decomposition as indicated in Section 53. In Table 1 we have reported the
iterations to converge using 4 and 8 subdomains for different values of the numbers of the
unknowns. We indicate with np the non preconditioned case, swl the Schwarz preconditioner
with an overlap of 1 element, sw2 with an overlap of 2 elements. ASC-L represents the ASC
preconditioner, with L steps of the nested iterative solver.
One may note that the ASC preconditioner behaves better than the 1-level Schwarz precon-
ditioner for suitable values of L. This value can be increased to improve the efficacy of the
ASC preconditioner. Moreover, as the number of subdomains grows, the ASC preconditioner
requires less iterations to converge.

finQ
gonoQ, ()
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A Hyperbolic Problem: The Euler equations

Let us consider the Euler equations for compressible flows, that can be written in the following
form:

d oF; _ :
%+2j=18zj— inQ,t>0, 8)

(plus suitable boundary conditions on 052), where U and F; are, respectively, the vector of
conservative variables and the flux vector:

p pu;
U=| pu; v Fi=| puiu; +pdi; |,
pE pHu;

withi =1,...,d (2 C R?), and u is the velocity vector, p the density, p the pressure, H the
specific enthalpy and §;; the Kronecker symbol.

The spatial discretisation applied to the Euler equations leads eventually to a system of ODE
in time, which may be written as dU/dt = R (U), where U = (Uy,Us, ..., Uy, .. .)T is the
vector of unknown nodal states U; = U;(¢) and R (U) the result of the spatial discretization
of the Euler fluxes. Applying the backward Euler method to the semi-discrete equation yields

Uttt —um = AtR (U™ (9)

where At here represents a diagonal matrix of local time steps, since we are interested only
in steady-state solutions. We adopt the so-called “local time stepping” technique, where the
degrees of freedom associated to each node evolve with their own time step. This is a rather
common technique to accelerate convergence to steady state. In order to solve the nonlinear
problem (9), the Newton method is used. We refer to the literature for more detailed explana-
tions (see, for example [BCT98, SLW98, KKS98]).

For its spatial discretization, we have used the code THOR, developed at the von Karman
Institute, that makes use of the multidimensional upwind finite element discretization, while
for the vertex-oriented decomposition of the computational domain we have used the software
METIS. This decomposition is unstructured and the subdomains have no particular shape, as
one may appreciate from the picture on the left of Figure 1.

The first test case is represented by a NACA0012 airfoil with one degree of angle of attack.
The free-stream Mach number is 0.85. 41 time iterations were required to reach the conver-
gence to the steady state. The CFL number goes from 10 to 10, and it is multiplied on each
iteration by 2.

Tables 2 reports a comparison between the Schwarz and the ASC preconditioners using from
4 to 32 processors. As we can observe, the gain in terms of number of iterations using the ASC
preconditioner can be very high especially as the number of subdomains grows. Although,
the time is (slightly) bigger that the one needed by the Schwarz preconditioners.

The second test case correspond to the solution of the compressible Euler equations around
an ONERA M6 wing. The 3D unstructured grid has 94493 nodes and 555514 elements. The
free-stream Mach number is 0.84, and the angle of attack is 3.06. The CFL number goes from
10 to 108, multiplied by 2 at each time iteration. In Table 3 we have reported the CPU time
required to reach the steady state. As we can observe, few iterations in the solution of S seems
to be appropriate to reach the prescribed accuracy.
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| N.procs || swl [ sw2 | ASC-2 | ASC-5 | swl | sw2 | ASC-2 | ASC-5 |

| I Iterations | CPU-time |
4 487 | 454 370 369 124.8 | 162.7 | 312.7 276.0
8 507 | 458 357 351 56.6 65.4 125.8 165.0
16 544 | 488 329 317 36.1 40.5 60.2 66.8
32 587 | 502 311 278 21.3 24.8 29.2 42.0

Table 2; Iterations and total time (in seconds) required to reach the convergence. NACAQ0012
airfoil, 9239 nodes.

TTTTTTT
T SETSETRERALRTET
s
5o
b
o5

A
e
*47}(’,0(‘
LT
L

M_inf 0.45 Angle_of attack 1.00

Figure 1: M6 Wing. Decomposition of the elements on the surface among subdomains (left)
and particular of the unstructured 3D grid (right).

[Nprocs [ ASC-2 | ASC-4 | ASC-8 |

8 1538.4 | 1600.4 | 1859.9
16 5448 | 569.1 | 1330.5
32 2485 | 286.0 358.9

Table 3: M6 wing, 94K nodes. CPU-time (in seconds) for ASC preconditioner, using different

values of L.
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Conclusion

In this paper, a preconditioner based on an approximation of the Schur complement system
has been described. Numerical results have been presented for an elliptic problem and for the
solution of the compressible Euler equations on 2D and 3D unstructured grids. The key idea
is to use an approximate Schur complement matrix to precondition the unreduced matrix,
exploiting the good parallel properties of the SC matrix. The approximate system is then
solved by an iterative Krylov method, that couples all the subdomains.

The use of the SC system as a preconditioner for the global system seems promising, espe-
cially when the number of subdomains is large enough. The number of iterations to converge
needed by the outer iterative solver is much lower than using a Schwarz preconditioner. More-
over, the effectiveness of the ASC preconditioner increases with the number of subdomains,
even without a coarse operator, dislike the Schwarz method. Further numerical tests will be
conducted to better investigate the parallel properties of this preconditioner.
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