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Introduction

The mortar finite element method has been used to deal with non-overlapping domain de-
compositions. It can handle the situation where the mesh on different subdomains need not
align across interfaces, and the matching of discretizations on adjacent subdomains is only
enforced weakly. In [2], Bernardi, Maday and Patera introduced basic concepts of general
mortar elements, including the coupling of spectral elements with finite elements. Recently,
many works have been done in constructing efficient iteration solvers for the discrete system
resulting from the mortar element method. In [4], Gopalakrishnan and Pasciak presented a
variable V-cycle preceonditioner, while Braess, Dahmen and Wieners [3] established another
kind of W-cycle multigrid based on a hybrid formulation which gives rise to a saddle point
problem. However, there are only few papers that are concerned with nonconforming ele-
ments, e.g. Marcinkowski [5] presented a ��� nonconforming mortar element, but only for
symmetric and definite problem. Meanwhile, an optimal multigrid for this method was given
in [7].

The purpose of this paper is twofold. First, a mortar-type nonconforming element method
is suggested for nonsymmetric and indefinite problems together with optimal error estimates.
Second, a multigrid algorithm is proposed for the mortar element method which gives an
optimal convergence rate, independent of the mesh size and mesh level. Finally, we describe
the construction of the basis of the mortar-type nonconforming element space.

A model problem and the mortar element method

Consider the following model problem�����	��
��������������������������� � �"! #%$ &('� �*),+ $ -.&(' (1)

where
&0/2143

is a bounded polygonal domain,
����56�7�8�9��:<;��

is a uniformly symmetric
positive definite tensor on =& ,

�>:?;@��56��ACB � � =&D� , �E�F5���AG�9B � � =&D�H�I3 , �6�F5���AJB(K>� =&D� , and
!*AL 3@�9&D�
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The variational form of (1) is to find
�7A � �K � &D� such that����� '��>� � �9!6'��>����� A � �K �9&D� ' (2)

where the bilinear form���F� '��������9�>��� ' ����� 
J� � � ��� '��>� �"�	�� � '���� '
where

����*� 
 � � �
.

Assume problem (1) has the following regularity.
(H1). For any

! A L 3 � &D�
, it holds that


 � 
 3�� B 
 ! 
 K�
We now introduce a mortar finite element method for solving (1). First, we partition

&
into nonoverlapping polygonal subdomains such that

&C����:�� �
& :�� $	� & :	�	&�; ����'������� 

They are arranged so that the intersection of
& : � & ;

for
� ����

is either an empty set, an edge
or a vertex, i.e., the partition is geometrically conforming. The interface

! ����:�� �
-�& :#"E-.&

is broken into a set of disjoint open straight segments $	% �'& �)(*�,+ �
(that are the edges of

subdomains) called mortars, i.e.

! �.-�
% � � =$/%

' $/% � $10 �2��'	#43 ( ��65 
We denote the common open edge to

& :
and

&�;
by $/% . By $ %�7 :�8 we denote an edge of

&D:
which is a mortar and by 9 %�7 ;�8 an edge of

& ;
that geometrically occupies the same place

called nonmortar.
Let :

:� be the coarsest triangulation of
&D:

with the mesh size ;�� . The triangulation gener-
ally does not align at the subdomain interface. Denote the global mesh < : : :� by : � . We refine
the triangulation : � to produce : 3 by joining the mid-points of the edges of the triangles in: � . Obviously, the mesh size ; 3 in : 3 is ; 3 � ; �>=@? . Repeating this process, we get the A -time
refined triangulation :/B with mesh size ;	B � ; �C?1D BFE � � A �G& ' �� ' L � . Let CR nodal points
denote the nonconforming nodal points, i.e. the midpoints of the edges of the elements in:1B . Moreover, on each level A , the sets of CR nodal points belonging to

& :
,
-.& :

and
-�&

are
denoted by

&IHKJBML : ,
-.&IHNJBOL : and

-.&IHNJB , respectively.
Define P �RQC�TS �TS U	V A � � � & :9� 'W��� �R&@' �4 '�X7'N��� ) +@$ -.&�Y 
On each level A , we define the P1 nonconforming element space locally and introduce the

space Z BOL : �9& : � whose functions are piecewise linear on each triangle of :
:
B and are continuous

at the CR nodes of
&�HNJBOL : "E-.&IHKJBOL : , and equal zero at the CR nodes of

-.& HNJB .
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Let �Z	B � ��:�� � Z BOL
: � Q � B S � B S U V �6� BOL : A Z BML : Y 

Of course, we have �Z�� �� � � �N�� �Z�� 
Moreover, the P1 linear continuous finite element space over the triangulation :

:
B is denoted

by � BML : ' whose functions have zero trace on
-.&

. Let

�� B ����:�� � � BOL
:H'

for all A � &@' �4 ' L 
Obviously, �� � � � � � � ���� 

and �� B � �Z B 
For any interface $/% � $ % 7 :48 � 9 %�7 ;�8 '�& � ( � + , there are two different and inde-

pendent 1D triangulations : B � $ %�7 :�8 � and : B � 9 %�7 ;�8 � . Moreover, there are two sets of CR nodes
belonging to $/% : the midpoints of the elements belonging to : B � $ %�7 :48 � and to : B � 9 %�7 ;�8 � de-
noted by $ HKJBML % 7 :48 and 9 HNJBOL %�7 ;�8 respectively. Additionly, we need an auxiliary test space � B � 9 %�7 ;�8 �
which is defined by

� B � 9 % 7 ;�8 ���� Q ��S � A L 3 � 9 %�7 ;�8 �K� $ � � #
	�� #
�����D#�	��� +@$�	�� � $��+ $��������
��� $�� +�3 ���� $ + $�� +"!�� �#!$��!H# � $�%'&�� �(� #%+@$ : B � 9 %�7 ;�8 � Y 
The dimension of � B � 9 % 7 ;�8 � is equal to the number of midpoints on the 9 %�7 ;�8 , i.e. the number
of elements on 9 %�7 ;�8 .

For each nonmortar 9 %�7 ;�8 , define an
L 3

-projection operator ) BOL *,+.-0/21�3 L 3@� $/% �54 � B � 9 %�7 ;�8 �
by � ) BOL *,+�- /21 � '76 � ��8>7 * +.-0/21 8 � �M�6'�6 � ��8>7 * +.- /91 8 �:6 A ��B � 9 %�7 ;�8 � '
where

� �%' � � � 8 7 *,+.-0/21 8 denotes the
L 3

inner product over the space
L 3 � 9 %�7 ;�8 � .

Now we can introduce the following mortar finite element space for P1 nonconforming
element on each level A :
Z B � Q � B S � B A �Z	B ' ) BML *,+.- /21 �M� B S *,+.-0/21 � � ) BOL *,+�- /21 �M� B S ; +.- V 1 � 'K3F+'!N� $ % � $ %�7 :�8 � 9 %�7 ;�8 A ! Y 

Define 
 � 
 BOL :<��>=
?A@"B VC

D
? � ��� �����@5 � � A Z BOL : '

and let 
 � 
 3B �� �= :�� �

 � 
 3BOL : 

We know that

 � 
 B is a norm over the space Z B (see [5] for details).
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Then the mortar element approximation of the problem (2) is to find
� B A Z B such that� B �F� B '�� B � � �9!6'�� B ��� � B A Z B ' (3)

where � B �F� B '�� B � � � �B �F� B '�� B � ��� B ��� B '�� B �
� �B �F� B '�� B � � �= :�� �

=
?A@"B VC

������� B ' � � B � ?
� B ��� B '�� B � � �= :4� �

=
?A@"B VC


 �9� � ��� B '�� B � ? � � ���� B '�� B � 
we can prove the following result.

Theorem 1 Assume that
�

is the solution of (2), and
� B A Z	B is the solution of (3). Then if ; B

is sufficiently small, we have


 � 
 � B 
 B � B �I�= :4� � ;
3BOL : 
 � 
 33 L U V ���8 

Proof. We only give a brief sketch. First we can prove

 � 
 � B 
 B � B�Q 
 � 
 � B 
 K � #%$/3

� C @�� C Q 
 � 
 � B 
 K � 
 � 
 � B 
 B Y
� 	7&��

� C @�� C
S � B �F� '�6 B � 
J� !6'�6 B �>S
 6 B 
 � L B Y 

Then we can show that there exists an element
� B A Z B such that


 � 
 � B 
 K � B � �= :4� � ;
�BOL : 
 � 
 33 L U V � �	� 3 '


 � 
 � B 
 B � B � �= :�� � ;
3BOL : 
 � 
 33 L U V � �
� 3 '

	7&��
� C @�� C

S � B ��� '76 B � 
J� !6'�6 B �>S
 6 B 
 � L B � B � �= :4� � ;
3BOL : 
 � 
 33 L U	V � �	� 3 

Finally, using the idea of Schatz in [6], we can complete the proof.

Multigrid method

Due to the nonnestedness of the mesh spaces, we first introduce an intergrid transfer operator
in this section. Based on this operator, a multigrid iterative method is suggested for solving
(3). Some preliminary results are given in this section, which will be used to derive the
convergence results of the multigrid. In the following, we always assume that the mesh sizes
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; BOL : for all
�

are comparable. The reason is that the convergence of multigrid always requires
similar mesh parameters.

Define the operator
� B�3 Z B 4 Z B as:� � B � '76 ��� � B �M�6'�6 � � �6'�6 A Z B 

and � �� B � '76 ��� � �B �M�6'�6 � � �6'�6 A Z B ��� B � '76 ���G� B �M�6'�6(� � �6'�6 A Z B 
It is easy to check that � B � �� B ��� B 
Then (3) can be written as � B � B �"! B '
where

� ! B '��>� �G! �M��� ' ��� A Z B 
Before describing the algorithm, we must define a suitable intergrid transfer operator for

the nonnested mesh space Z B . First, we give an operator �
:
B 3 Z B D � L : 4 � BOL : (see [7] for

details) as follows:
� Case 1. If �

A &IHKJB D � L : , �
�
:
B ��� � � ���6��� � � 

� Case 2. If �
A & �BML : " & HNJB D � L : and �

�A -.&
,

�
�
:
B �>� � � ���

&
X��
�
� = ? V �TS ? V � � �

where
& �BOL : is the set of the vertices of the triangulation :

:
B that are in =& : and the sum is

taken over all triangles �
: A : :B with the common vertex � and

X �
�
�

is the number of
those triangles.

� Case 3. If �
A -.& �	-.& �BML : , then �

�
:
B ��� � � ��� ) '

where
-.& �BOL : is the set of the vertices of the triangulation :

:
B that are in

-�&D:
.

Remark 1 Note that for different � , the value of
X �
�
�

may be different. For example,
if � is the vertex of triangular substructure

&D:
(see Fig.1 in [7]), then

X �
�
�4� &

and if �
A& �BOL : "E-.&IHNJB D � L : , but �

�A�-.& �BOL : , then
X �
�
�7�	�

, and if �
A -.& �BML : , but is not the vertex of

substructure
& :

and �
�A -�&

, then
X �
�
� ��


(see Fig. 1. in [7] for details).
For the operator �

:
B , we have[7]

Lemma 1 For
� A Z B D � L : , it holds that��& �  
 � :B � 
 BOL : � B 
 � 
 B D � L : � ? �  
 � :B � 
 � 
 K � B ; B 
 � 
 B D � L : ��
@�  
 � :B � 
 � 
 K L ; + � B ; �	� 3B 
 � 
 B D � L : 

where $/% is an edge of
&D:

.
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Proof. Please refer to [7] for details.
Based on the operator �

:
B , we define an intergrid transfer operator � B 3 �Z B D � 4 �Z B as

follows:
For any

� ��� � � ' 4�� '�� � � A �Z B D � ,
�@B �����

� �B � � ' �� ' �T�B � � � A �Z	B 
Moreover, the operator

� BML *,+.- /21 3 �Z B 4 �Z	B is defined by

� � BOL *,+.-0/21 � �>�H� � ( B � � � � ) BML *,+.- /21 �M�TS ; +�- V 1 
 �TS *,+�- /21 � � � ( B � ( B A 9 HNJBOL %�7 ;�8 ') +#�����!��D#�	� 
Based on above preparation, we now define an intergrid transfer operator � B 3 �Z B D � 4 Z B

which will appear in the following multigrid algorithm. For any
� A �Z B D � ,

� B ���
� B � � -=

% � �
� BOL * +�- /21 � � B ��� A Z B 

Lemma 2 For the operator � B , we have��& �  
 � B � 
 B � B 
 � 
 B D ���� ? �  
 � 
 � B � 
 K � B ; B 
 � 
 B D � ' ��� A Z B 
Proof. Please refer to [7] for the proof.
Similar as in [1], we now describe an A -level scheme. The A -level iteration with initial

guess � K yields +�� � A ' � K ' � �
as an approximation solution to the following problem:

Find �
A Z B , such that� B � � '���� � � � �>� ��� A Z B ' � ���!7 � A Z��B 

For A � &
, +�� ��& '

� K ' � �
is the solution obtained by a direct method. For A
	 &

,+�� � A ' � K ' � ���
� 0 � � B��� ' where � 0 A Z B is constructed recursively from � K and the equations

�
: �

�
:
D � 
�� D �B � � 
 � B�� : D � � & � � � 5 '

where
� B is the largest eigenvalue of the operator

�� B . The coarse grid correction ��
A Z B D � is

obtained by applying the A 
)& -level iteration � times (��� ? )
� K �") '

�
: � +�� � A 
�&@' � : D � ' =� � ' & � � � � '

where =� A Z �B D � is defined by

=� �M������ � �
� B ��� 
 � B � � 0 ' � B �>����� A Z B D � 

Note that ��
A Z B D � is the approximation of =�CB D � A Z	B D � which satisfies� B D � � =� B D � '��>� � =� �M��� '�� � A Z B D � 

The main result of this paper is the following theorem
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Theorem 2 Let � � ? . If the number of the smoothing steps is large enough, and the coarsest
mesh size ;�� is sufficiently small, then there exists 9 A ��) 'C& �

, independent of A , such that if


 =� B D � 
 �  
 B D � � B 9  
 =� B D � 
 B D � '
then 
 � 
 +�� � A ' � K ' � � 
 B � 9 
 � 


� K 
 B 
Proof. Here we also only provide a brief sketch. First we introduce a projection � B D � 3Z B 4 Z B D � defined by� B D � � � B D � �6'�6 ��� � B �M�6' � B 6 � 'W��� A Z B '�6 A � B D � 

Then we can prove


 ��

� B � B D � � 
 � L B � B ; B 
 � B � 
 K ' � � A Z B ' (4)
 � B D � � 
 � L B D � � B 
 � 
 � L B ' ��� A Z B  (5)

Note that � 0 E � � � 0 

� B �  , we have


 � 0 E � 
 � L B � 
 � 0 
 � B =�>B D � 
 � L B � 
 � B � =�>B D � 
 ��
� 
 � L B�� � � � � 3 '

where =�>B D � � �KB D � � 0 .
Finally, using Lemmas 1-2 and (4)-(5) we can get

� � � B &
5 �
� 3 �'& ��B ; � � 3 0 
 � K 
 B '

� 3 � B 9  ��& ��B ;�� � 3 
 � K 
 B 
Therefore, we can choose 9 A ��) 'C& �

, and obtain the desired result for sufficiently small ; � .
Construction of the basis

Let
Q�� :B Y denote the CR nodes of : B . Define operator � BML ; 3 P 4 �Z B by

� BOL ; ��6��� :B � � � � ) BOL *,+.-0/21 � �� -; 
 �� ��-; � � ��� :B � ' #43	� :B A 9 % 7 ;�8 � $ ') ' +'�7���!7�D#�	� '
where

�� -; and
�� �I-; denote the restriction of

��*A P
on mortar $ %�7 :�8 � $ and nonmortar

9 %�7 ;�8 � $ respectively. It is easy to see that if
��

is in
�Z B then

� � ��(��
; @� � BOL ; �� is an element

of Z B .
Let

Q �� :B 3 � � &@' � � �.' �X B Y be the basis of Z	BOL : . Then the basis of Z	B consists of functions of
the form �

:
B � �� :B � =; @� � BML

; � �� :B � 
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