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1. Nonlinearity, numerics and propagation of information

A. A. Aldama1

1. Introduction. In the study of evolution equations that describe the dynam-
ics of natural and man-made systems, it is always useful to determine the way in
which information is propagated by the said equations. In other words, the manner
in which different scales present in the solution of an evolution equation travel and
decay through space and time. The ideal tool to determine the propagation proper-
ties of (continuous or discrete) evolution equations is Fourier or harmonic analysis.
In the case of continuous systems, the study of propagation properties allows the
understanding of their stability. On the other hand, much insight regarding the be-
havior of discrete approximations of partial differential equations may be gained by
comparing the propagation properties of a continuous equation and its corresponding
discrete analogue. Thus, so-called amplitude and phase portraits that respectively
depict the ratio of numerical and analytical amplification factor amplitudes and the
difference between analytical and numerical phases, both as functions of wavenumber,
may be developed (see, for example, Abbot [1] and Vichenevsky and Bowles [17]).
These portraits show in a very objective way the effects of “numerical diffusion” and
“numerical dispersion” associated to each wave number. Furthermore, the determi-
nation of the stability of numerical approximations may be viewed as a by-product
of their amplitude propagation properties. Interestingly enough, a similar approach
may be applied to study of the convergence properties of iterative schemes for the
solution of systems of equations, a fact that has been exploited by the champions of
the multigrid approach (see, for instance, [9]). The author and his collaborators have
demonstrated the power of Fourier techniques in the study of the propagation proper-
ties of non-orthodox approximations of the linear transport equation, via least-squares
collocation (Bentley et al., [10]) and the Eulerian-Lagrangian localized adjoint method
(Aldama and Arroyo, [6]). Moreover, they have established the existence of an ordi-
nary differential analogy that simplifies the determination of the stability conditions
for high order time discretizations of the linear transport equation (Aldama, [3], and
Aldama and Aparicio, [5]). Finally, they have studied the convergence properties of
a semi-iterative scheme for the solution of a coupled diffusion-reaction system that
describes the decay of argon in rocks and minerals (Lee and Aldama, [15]).

Unfortunately, the application of Fourier methods is limited to linear and constant
coefficient equations, subject to periodic boundary conditions or to linear and constant
coefficient pure initial value problems occurring in infinite spatial domains. The author
has developed an approach that allows the use of Fourier techniques in finite spatial
domains, variable coefficient or nonlinear problems. Such approach consists of an
asymptotic approximation that is constructed by employing Taylor-Fréchet expansions
of the differential operators arising in evolution equations, the method of multiple
scales and local analysis. Numerical experiments have shown excellent results of the
application of the said approach. This paper reviews the general theory on which the
approach is based and presents a number of applications made by the author and his
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collaborators that have produced excellent results.

2. Nonlinear evolution problems. Let us consider the following nonlinear
evolution problem for the components of the N -dimensional vector U = U(x, t) ≡
[U1(x, t), U2(x, t), ..., UN (x, t)]T , dependent on the three-dimensional position vector
x and time t:

∂Ui

∂t
− Ni (Uj) = 0, x ∈ Ω, t > 0; i = 1, 2, ..., N (2.1)

Bk(Uj) = 0, x ∈ ∂Ω, t > 0; k = 1, 2, ...,M (2.2)

Ui(x, 0) = Fj(x), x ∈ Ω; i = 1, 2, ..., N (2.3)

where (2.1) represents a set of N evolution equations, involving a like number of spa-
tial differential operators, Ni(·), acting upon the components of U; Ω is the spatial
domain of interest and ∂Ω its boundary; equation (2.2) represents a set of M bound-
ary conditions involving a like number of differential operators, Bk(·); equation (2.3)
represents a set of N initial conditions, where Fj(x) stands for a like number of pre-
scribed functions. The number M is determined by the order of the operators Ni(·)
and by the number N .

Examples of evolution equations of the kind represented by equation (2.1) abound.
Take, for example, the celebrated Navier-Stokes equations for incompressible flow:

∂ui

∂t
+ uj

∂ui

∂xj
= −1

ρ

∂p

∂xi
+ ν

∂2ui

∂xj∂xj
(2.4)

where ui (i = 1, 2, 3) are the components of the velocity vector, p is the dynamic
pressure, ρ is the density, ν is the kinematic viscosity, t is time, and xi (i = 1, 2, 3)
are the components of the position vector; or the shallow water equations:

∂h
∂t + ∂Uh

∂x + ∂V h
∂y = 0

∂U
∂t + U ∂U

∂x + V ∂U
∂y − fV = −g ∂(zb+h)

∂x + 1
ρhτbx(h,U, V )

∂V
∂t + U ∂V

∂x + V ∂V
∂y + fU = −g ∂(zb+h)

∂y + 1
ρhτby(h,U, V )

(2.5)

where U and V are the components of the velocity vector, h is the depth, ρ is the
density, zb is the bottom elevation, zbx and zby are the x and y components of the
bottom shear stress, t is time, and x and y are the components of the position vector;
or Richards equation:

S(ψ)
∂ψ

∂t
=

∂

∂xj

[
K(ψ)

∂

∂xj
(ψ + z)

]
(2.6)

where ψ is the pressure head, S is the specific moisture capacity, K is the unsaturated
hydraulic conductivity, z is the vertical coordinate, t is time, and xi (i = 1, 2, 3) are
the components of the position vector; or the two-species advection diffusion reaction
system:

∂C1
∂t + V ∂C1

∂x = D ∂2C1
∂x2 − K1(C1)C1 + f1(C2)

∂C2
∂t + V ∂C2

∂x = D ∂2C2
∂x2 − K2(C2)C2 + f2(C1)

(2.7)
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where C1 and C2 are the concentrations of species 1 and 2, V is the advective velocity,
D is the diffusion/dispersion coefficient, K1(·) and K2(·) are nonlinear decay functions,
f1(·) and f2(·)are nonlinear source/sink functions, t is time, and x is the spatial
coordinate.

Evidently, the problem (2.1)-(2.3) is continuous in space and time. Discrete ana-
logues of such a problem may be developed through numerical approximations of the
differential operators.

3. Taylor-Fréchet expansions of nonlinear operators. Let us decompose
the dependent variable appearing in equation (2.1), Ui, as follows:

Ui = Ūi + ui (3.1)

where Ūi represents a reference solution of problem (2.1)-(2.3) and ui is a small per-
turbation around it, such that

‖ui‖ <<
∥∥Ūi

∥∥ (3.2)

where ‖·‖ is a properly defined norm. The assumed nature of Ūi implies that

∂Ūi

∂t
− Ni

(
Ūj

)
= 0 (3.3)

Substituting (3.1) in (2.1) yields:

∂Ūi

∂t
+

∂ui

∂t
− Ni

(
Ūj + uj

)
= 0 (3.4)

Employing a Taylor-Fréchet expansion (Milne, [16]) of the nonlinear operator that
appears as the last term on the left hand side of the last equation results in:

Ni(Ūj + uj) = Nj(Ūj) + ∂Uk
Ni(Ūj) ◦ uk + O( ‖ukuk‖ ) (3.5)

where ∂Uk
Ni(Ūj) ◦ (·) stands for the first partial Fréchet derivative of the nonlinear

differential operator Ni(·), which possesses a nonlinear parametric dependence on the
reference solution and acts upon the perturbation uk. It may be shown that first order
Fréchet derivatives of nonlinear differential operators are themselves linear differential
operators (Milne, [16]). Substituting (3.5) in (3.4) and accounting for (3.3) yields:

∂ui

∂t
− ∂Uk

Ni(Ūj) ◦ uk + O( ‖ukuk‖ ) = 0 (3.6)

As may be observed, to first order in ui, equation (3.6) (for i=1,2,. . . ,N) is linear,
a fact that will be exploited later on.

4. Multiple scale analysis. Let (x0, t0) be a fixed reference point in space and
time, with x0i representing the components of x0. Thus, let us define “slow” space
and time variables as follows:

Xi = xi−xio

L
T = t−to

T

(4.1)
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where L and T respectively represent characteristic “large” length and time scales
present in Ui. Similarly, let us define “fast” space an time variables as follows:

χi = xi−xio

Λx

τ = t−to

Λt

(4.2)

where Λx and Λt respectively represent characteristic “small” length and time scales
present in Ui. We will now assume that the following holds true:

ε =
Λx

L
=

Λt

T
<< 1 (4.3)

Now we are in position of introducing the separation of scales hypothesis:

Ūj = Ūj (Xi,T) (4.4)

uj = uj (χi, τ) (4.5)

Equations (4.4) and (4.5) express the assumption that the reference solution only
depends on the slow variables, whereas the perturbation only depends on the fast
variables. Hence the large and small length and time scales take on a more precise
meaning. Indeed, L and T respectively represent the length and time scales character-
istic of the reference solution, Ūi, and Λx and Λt respectively represent the length and
time scales characteristic of the perturbation, ui. As will be shown later, the separa-
tion of scales hypothesis (4.4)-(4.5) has proven to be valid in a number of specific cases.
The reason for this is that it is very often the case that when stability or nonlinear
iteration convergence are of interest, it is often the case that the most unstable or the
most resistant modes correspond to small scale (i.e., high wavenumber) components
of the solution, which through (4.4)-(4.5) may be isolated from a smoothly varying
reference solution.

5. Localization. Now let us expand the reference solution, Ūi(x, t), and the
perturbation, ui(x, t), around the reference point (x0, t0), assuming the space and
time displacements are of the same order of magnitude as Λx and Λt:

Ūi(x, t) = Ūi(x0, t0) + (xj − x0j) ∂Ūi

∂xj

∣∣∣
(x0,t0)

+ (t − t0) ∂Ūi

∂t

∣∣∣
(x0,t0)

+ ...

ui(x, t) = ui(x0, t0) + (xj − x0j) ∂ui

∂xj

∣∣∣
(x0,t0)

+ (t − t0) ∂ui

∂t

∣∣
(x0,t0)

+ ...
(5.1)

where

|x − x0|
Λx

= O(1) (5.2)

|t − t0|
Λt

= O(1) (5.3)

We may now introduce characteristic scales for the magnitudes of Ūi and ui:

Ūi = UŪ∗
i (5.4)
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ui = uu∗
i (5.5)

where, say:

U =
∥∥Ūi(x0, t0)

∥∥ (5.6)

u = ‖ui(x0, t0)‖ (5.7)

and

Ū∗
i = O(1) (5.8)

u∗
i = O(1) (5.9)

and Ū∗
i = O(1), u∗

i = O(1). On account of equation (3.2), we may further assume
that:

u = εU (5.10)

Now, from the separation of scales hypothesis (4.4)-(4.5), we get:

∂Ūi

∂xj
= ∂Ūi

∂Xk

∂Xk

∂xj
= U

L δjk
∂Ū∗

i

∂Xk
= U

L
∂Ū∗

i

∂Xj

∂Ūi

∂t = ∂Ūi

∂T
∂T
∂t = U

T

∂Ū∗
j

∂T

(5.11)

∂ui

∂xj
= ∂ui

∂χk

∂χk

∂xj
= u

Λx
δjk

∂u∗
i

∂χk
= u

Λx

∂u∗
i

∂χj

∂ui

∂t = ∂ui

∂τ
∂τ
∂t = u

Λt

∂u∗
i

∂τ

(5.12)

where (4.1), (4.2), (5.4) and (5.5) have been used. Employing now (5.2), (5.3), (5.8),
(5.9), (5.11), and (5.12) in (5.1) it is readily shown that:

Ūi(x, t) = Ūi(x0, t0) [1 + O(ε)] ≡ U [1 + O(ε)] (5.13)

ui(x, t) = ui(x0, t0) [1 + O(1)] (5.14)

Equation (5.13) shows that whereas the reference solution, Ūi, may be localized
in the neighborhood of the reference point (x0, t0) at space and time displacements
commensurate with the small scales Λx and Λt, the perturbation, ui, may not. In
other words, an observer sensitive to the scales Λx and Λt, would only perceive the
variations in the perturbation, and would view the reference solution as a constant.
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6. Asymptotics. We now may seek an asymptotic solution to equation (3.6),
of the form:

ui = u
(0)
i + εu

(1)
i + ε2u

(2)
i + ... ≡ εU

[
u

(0)∗
i + εu

(1)∗
i + ε2u

(2)∗
i + ...

]
(6.1)

where u
(k)∗
i (k=0,1,2,. . . ) are dimensionless and of O(1), and (5.5) and (5.10) have

been accounted for. Substituting (5.13) and (6.1) in (3.6) we get the following evolution
system for the zeroth order approximation u

(0)
i (i=1,2,. . . ,N):

∂u
(0)
i

∂t
− ∂Uk

Ni(Uj) ◦ u
(0)
i = 0 ; j = 1, 2, ..., N (6.2)

It must be noted that equation (6.2) is linear and with constant coefficients that
parametrically depend (alas, nonlinearly) on the constants Uj (j=1,2,. . . ,N). Thus,
equation (6.2) captures the dominant nonlinear behavior of equation (2.1) in the scales
of Λx and Λt. Furthermore, the previously presented localization analysis was based
on the assumption that:

|χi| = |xi − xio| /Λx = |xi − xio| / ( εL) = O(1) (6.3)

Therefore, as ε ↓ 0, the domain corresponding to the zeroth order approximation
u

(0)
i (i=1,2,. . . ,N) becomes unbounded.

7. Fourier analysis. In view of the above, the most general form of equation
(6.2) may be written as follows in three-dimensional space:

∂tu
(0)
j =

N∑
r=1

∑
p∈P

αjr,p∂pu(0)
r ; j = 1, 2, ..., N ; in x ∈ Ω∞ (7.1)

where Ω∞ ≡ (−∞,∞)3; ∂t ≡ ∂/∂t; p ≡ (p1, p2, p3) represents a multi-index; P ≡
{(p1, p2, p3 |0 ≤ p1 + p2 + p3 ≤ R}, where R is the maximum order of the spatial
derivatives present in (7.1); αjr,p are constant coefficients; ∂p(·) ≡ ∂p1+p2+p3 (·)

∂x
p1
1 ∂x

p2
2 ∂x

p3
3

, and
the summation convention is understood in p.

Now, assuming the functions prescribed in the initial conditions (2.3) are of the
form

Fj = F̄j + fj , fj/F̄j = O(ε) ; j = 1, 2, ..., N (7.2)

it is consistent to write that the initial conditions that equation (7.1) is subject to,
are:

u
(0)
j = fj ; j = 1, 2, ..., N (7.3)

Equations (7.1) and (7.3) constitute a pure initial value problem, that may be
tackled via Fourier methods. With that purpose in mind, the following Fourier repre-
sentation may be used (Champeney, [12]):

u
(0)
j (x, t) =

1
(2π)3/2

∫
Ω∞

û
(0)
j (k, t) exp(−ik · x)dk (7.4)
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where i ≡
√

- 1, k ≡ (k1, k2, k3) is the wavenumber vector, dk ≡ dk1dk2dk3, and the
Fourier coefficients û

(0)
j are given by the following Fourier transforms:

û
(0)
j (k, t) ≡ 	

{
u

(0)
j (x, t)

}
=

1
(2π)3/2

∫
Ω∞

u
(0)
j (x, t) exp(ik · x)dx (7.5)

Now, it may be shown that the Fourier coefficients û
(0)
j may be determined by

employing the initial conditions (7.3). Nevertheless, when the propagation properties
of the equation (7.1) and, in particular, its stability are of interest, the initial values
of u

(0)
j are inconsequential. In effect, the stability of equation (7.1) is determined by

finding whether û
(0)
j (k, t) grows or decays in time.

8. Discrete systems. An analysis similar to that presented earlier may be per-
formed for discrete systems, that may correspond to numerical approximations of
partial differential evolution equations, such as equation (2.1). In such a case, the
only additional aspect of the analysis that must be considered is the determination
of the modified partial differential equations that are satisfied when the discrete equa-
tions in terms of the perturbation quantities are solved. This consideration allows a
local analysis such as the one presented for the continuous case. In addition, instead
of using a continuous Fourier pair, like (7.4)-(7.5), a semidiscrete one must be used
(i.e., an integral representation for the physical space variables and a Fourier series
representation for the wavenumber space variables). Examples of the use of such a
technique follow.

9. The one-dimensional Richards equation. Let us consider the one - di-
mensional analogue of equation (2.6):

S(ψ)
∂ψ

∂t
=

∂

∂z

[
K(ψ)

∂(ψ)
∂z

]
+

∂K(ψ)
∂z

(9.1)

The θ-central difference or θ-lumped finite element (with constant element size)
approximation of equation (9.1) is:

F (ψn
j ) ≡ θ(Sj)

δn+ 1
2 ψj

∆t − θ

{
K

j+ 1
2

δ
j+ 1

2
ψ−K

j− 1
2

δ
j− 1

2
ψ

∆z2 +
(δ

j+ 1
2
−δ

j− 1
2
)K

2∆z

}
= 0

(9.2)

where θ̄(φ) = θ(φn+1) + (1− θ)(φn), δn+ 1
2 φ = φn+1 − φn, δj+ 1

2
φ = φj+1 − φj and the

usual notation for discrete approximations in space and time is employed.
Now, since Richards’ equation is a nonlinear diffusion (i.e., parabolic) equation, a

simple frozen coefficient analysis yields unconditional stability for the Crank-Nicolson
scheme (θ = 1/2). This result is contradicted by computational evidence, which shows
that the said scheme often becomes unstable. This led the author to believe that the
explanation for the emergence of instabilities should lie on nonlinear effects. Thus, it
is apparent that the theory presented herein may be of use.

The solution of equation (9.2) may be decomposed as follows:

ψn
j = ψ̃n

j + εn
j (9.3)
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where ψ̃n
j is the exact solution of equation (9.2) and εn

j a roundoff error. Substituting
(9.3) in (9.2), employing a Taylor-Fréchet expansion and localizing the result yields
the following equation for the roundoff error:

S(ψ̃0)
δn+ 1

2 εj

∆t − K ′(ψ̃0)
[
2
(

∂ψ̃
∂z

)
0

+ 1
]
θ

[
(δ

j+ 1
2
+δ

j+ 1
2
)ε

2∆z

]
= K(ψ̃0)×

×θ

[
(δ

j+ 1
2
−δ

j− 1
2
)ε

∆z2

]
+ K ′′(ψ̃0)

(
∂ψ̃
∂z

)
0

[
2
(

∂ψ̃
∂z

)
0

+ 1
]
θ

[
εn+1

j+1 +εn+1
j−1

2

]
+

+K ′(ψ̃0)
(

∂2ψ̃
∂z2

)
0
θ

[
ε

j+ 1
2
+ε

j− 1
2

2

]
− S′(ψ̃0)

(
∂ψ̃
∂z

)
0
θ̄(εj)

(9.4)

Since equation (9.4) is linear and with constant coefficients, without the loss of
generality, the behavior of a single (but arbitrary) Fourier mode may be studied.
Thus let us employ the following Fourier representation:

εn
j = Ekξn

k exp(ijβk) (9.5)

where Ek is the amplitude associated with the wavenumber k, ξk is the corresponding
amplification factor and βk ≡ k∆x is a dimensionless wavenumber. Substituting (9.5)
in (9.4) results in:

ξk =
1 + (1 − θ)µk

1 − θµk
(9.6)

where µk = (µk)R + i(µk)R and

(µk)R =
{

K′′(ψ̃0)

S(ψ̃0)

(
∂ψ̃
∂z

)
0

[(
∂ψ̃
∂z

)
0

+ 1
]
cos βk + 1

2
K′(ψ̃0)

S(ψ̃0)

(
∂2ψ̃
∂z2

)
0
×

×(1 + cos βk) − S′(ψ̃0)

S(ψ̃0)

(
∂ψ̃
∂ z

)
0
− 2

∆z2
K(ψ̃0)

S(ψ̃0)
(1 − cos βk)

}
∆t

(µk)I = K′(ψ̃0)

S(ψ̃0)

[
2
(

∂ψ̃0
∂z

)
0

+ 1
]
sin βk

∆t
∆z

(9.7)

The stability condition for Crank-Nicolson scheme θ = 1/2is (µk)R ≤ 0, ∀k. Al-
dama and Aparicio ([5]) have shown that this condition is often violated in the nu-
merical solution of Richards’ equation. This explains the computational evidence
that indicates that the Crank-Nicolson scheme becomes unstable in the solution of
Richards’ equation.

Since Richards equation (9.1) is nonlinear, its discrete analogue (9.2) generates an
algebraic system of equations that is nonlinear as well. Thus, equation (9.2) must be
solved in practice via an iterative scheme. The Picard or successive approximation
iterative scheme for equation (9.2) may be written as follows:
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[
θ Sn+1,m

j + (1 − θ) Sn
j

] ψ
n+1,m+1

j
−ψn

j

∆t

−θ
{

1
2∆z2

[(
K

n+1,m

j+1
+ K

n+1,m

j

)(
ψn+1,m+1

j+1
− ψn+1,m+1

j

)
−

(
K

n+1,m

j
+ K

n+1,m

j−1

) (
ψn+1,m+1

j − ψ
n+1,m+1

j−1

)]
+

Kn+1,m

j+1
−K

n+1,m

j−1

2∆z

}
− (1 − θ)

{
1

2∆z2

[(
Kn

j+1
+ Kn

j

) (
ψn

j+1
− ψn

j

)
−

(
Kn

j + Kn
j−1

) (
ψn

j − ψn
j−1

)]
+ Kn

j+1−Kn
j−1

2∆z

}
= 0

(9.8)

where the superindex m refers to iteration number. Now, a frozen coefficients analysis
predicts unconditional convergence for scheme (9.8). This is not consistent with the
observations of Huyarkon et al ([13]) and Celia et al ([11]), who have reported that
the Picard scheme (9.8) sometimes diverges. In particular, it has been observed that
it converges for small values of the time step, ∆t, diverges for intermediate values
and converges again for large values. This behavior would not be expected were the
equation under study a linear one and, thus, may be attributed to nonlinearity.

In order to properly characterize the behavior of the Picard scheme applied to the
solution of the discrete Richards equation, the theory presented in this paper may be
applied. With that purpose in mind, let us express the (m+1)th iterate in equation
(9.8) as follows:

ψn+1,m+1
j = ψ̃n+1

j + δm+1
j (9.9)

where, as before, ψ̃n+1
j represents the exact solution of equation (9.2) and δm+1

j , the
error corresponding to iteration m+1. Substituting (9.9) in equation (9.8), performing
a Taylor-Fréchet expansion and localizing the result yields:

S (ψ0)
δn+1

j

∆t − θK ′ (ψ0)
(

∂ψ
∂z

)
0

(
δm+1

j+1 −δm+1
j−1

2∆z + δm
j+1−δm

j−1
2∆z

)
−θK ′ (ψ0)

δm
j+1−δm

j−1
2∆z θK (ψ0)

δm+1
j+1 −δm+1

j +δm+1
j−1

∆z2

+K ′′ (ψ0)
(

∂ψ
∂z

)
0

[(
∂ψ
∂z

)
0

+ 1
]

+ δm
j+1+δm

j−1
2

+K ′ (ψ0)
(

∂2ψ
∂z2

)
0

δm
j+1+2δm

j +δm
j−1

4 − +θS′ (ψ0)
(

∂ψ
∂z

)
0

(
δm+1
j − δm

j

)
(9.10)

Let us now study the behavior of a single (but arbitrary) Fourier mode in the
solution of equation (9.10), by employing the following representation for the iteration
error:

δm
j = ∆kξm

k exp(ijβk) (9.11)

where ∆k is the amplitude associated with the wavenumber k, ξk is the corresponding
amplification factor and βk ≡ k∆x is a dimensionless wavenumber. Substituting (9.5)
in (9.4) results in:

ξk =
µ2,k

1 + µ1,k
(9.12)
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where µ1,k = µ1R,k + iµ1I,k, µ2,k = µ2R,k + iµ2I,k and:

µ1R,k = 2θ K(ψ0)
S(ψ0)

(1 − cos βk) ∆t
∆z2 + θ S′(ψ0)

S(ψ0)

(
∂ψ
∂t

)
0
∆t

µ1I,k = −θ K′(ψ0)
S(ψ0)

(
∂ψ
∂z

)
0

∆t
∆z2 sin βk∆t

µ2R,k = θ K′′(ψ0)
S(ψ0)

(
∂ψ
∂z

)
0

[(
∂ψ
∂z

)
0

+ 1
]
cos βk∆t + 1

2θ K′(ψ0)
S(ψ0)

× (+1 cos βk) ∆t
(

∂2ψ
∂z2

)
0
− θ S′(ψ0)

S(ψ0)

(
∂ψ
∂t

)
0
∆t

µ2I,k = −µ1I,k

[
1 +

(
∂ψ
∂z

)−1

0

]
(9.13)

The convergence condition for the Picard iterative scheme may be written as fol-
lows:

| ξk| < 1 ∀ k (9.14)

It may be shown that the above inequality leads to a quadratic inequality in ∆t,
which explains the observation that Picard iterations are sometimes convergent for
“small” values of ∆t, divergent for “intermediate” values, and convergent again for
“large” values. Numerical experiments performed by Aldama and Paniconi ([8]) have
validated such theoretical considerations.

10. The Saint-Venant equations. Another nonlinear evolution system that
commonly arises in applications is the one constituted by the Saint-Venant equations
that govern nonuniform, transient open channel flow:

∂A

∂t
+

∂Q

∂x
= 0 (10.1)

∂Q

∂t
+

∂

∂x

(
Q2

A

)
+ gA

∂h

∂x
+ gA

∂z

∂x
+ gSf = 0 (10.2)

where equation (10.1) expresses the conservation of mass principle and equation (10.2),
the momentum principle. There, A represents the hydraulic area; Q, the discharge;
h, the depth; z, the bottom elevation; Sf , the frictional slope; g, the acceleration of
gravity; x, the spatial coordinate along the channel, and t, time. When Manning’s
formula is employed, the frictional slope may be expressed as follows:

Sf = α

(
ks

R

)1/3
Q |Q|
A2R

(10.3)

where α ∼= 17/100 (Aldama and Ocón, [7]); ks is Nikuradse’s equivalent roughness
and R is the hydraulic radius.

The so-called generalized Preismann scheme ([1]) for the numerical solution of the
Saint-Venant system (10.1)-(10.2) may be written as follows:

An+1
j+1 − An

j+1

∆t
+ (1 − θ)

Qn
j+1 − Qn

j

∆x
+ θ

Qn+1
j+1 − Qn+1

j

∆x
= 0 (10.4)
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(1 − ψ)
Qn+1

j −Qn
j

∆t + ψ
Qn+1

j+1 −Qn
j+1

∆t + (1 − θ)

(
Q2

A

)n

j+1
−

(
Q2

A

)n

j

∆x + θ

(
Q2

A

)n+1

j+1
−

(
Q2

A

)n+1

j

∆x +
+g

{
(1 − θ)

[
(1 − ψ) An

j + ψAn
j+1

]
+ θ

[
(1 − ψ) An+1

j + ψAn+1
j+1

] }[
(1 − θ) hn

j+1−hn
j

∆x + θ
hn+1

j+1 −hn+1
j

∆x + zj+1−zj

∆x

]
+ (1 − θ)

[
(1 − ψ) An

j Sn
fj + ψAn

j+1S
n
fj+1

]
+θ

[
(1 − ψ) An+1

j Sn+1
fj + ψAn+1

j+1 Sn+1
fj+1

]
= 0

(10.5)
where ψ ∈ [0 , 1] is a space weighting factor and θ ∈ [0 , 1] is a time weighting factor.

By applying the theory presented herein, it may be shown that the stability con-
ditions for the generalized Preismann scheme (10.4)-(10.5) are:

|Ve | ≤ 1, ψ = 0.5, θ ≥ 0.5 (10.6)

where Ve is the Vedernikov number. The validity of the conditions (10.6) has been
assessed via numerical experimentation (Aguilar, [2]).

11. The shallow water equations. The one-dimensional version of the shallow
water equations may be written as follows:

Ma(h,U) ≡ ∂h
∂t + ∂Uh

∂x = 0
M0(h,U) ≡ ∂U

∂t + U ∂U
∂x + g ∂(zb+h)

∂x + gSf = 0
(11.1)

where Ma(·, ·) is the mass conservation operator and Mo(·, ·) is the momentum opera-
tor. The Generalized Wave Continuity Equation (GWCE) formulation was introduced
in order to eliminate the spurious oscillations that arise in the numerical solution of
the shallow water equations, in their primitive formulation (11.1), when collocated
grids are used (see, for example Kinmark, [14]). The GWCE formulation introduces
the following equation, which is derived from (11.1):

W (h,U) ≡ ∂Ma(h,U)
∂t

− ∂Mo(h,U)
∂x

+ GMa(h,U) = 0 (11.2)

where W (·, ·) is the so-called GWCE operator. The GWCE formulation consists of
solving the coupled equations and Mo(h,U) = 0. As is apparent, when G → ∞,
the GWCE formulation approaches the primitive formulation, and when G → 0, the
equation W (h,U) = 0 approaches a nonlinear wave equation.

A number of investigators have become concerned with the fact that, apparently,
the GWCE formulation does not possess good mass conservation properties (see Al-
dama et al., [4], for details). It may be shown, by applying the theory presented in
this paper that such formulation does not satisfies the continuity equation and that
the error is larger for high wavenumbers. This theoretical result is consistent with ob-
servations that indicate that relatively large mass conservation errors arise in refined
grids.

12. Conclusions. A theory that consists of the Taylor-Fréchet expansion of
nonlinear operators, multiple scale analysis, localization and asymptotic analysis has
been presented in order to include dominant nonlinear effects in the study of the
propagation properties (stability, amplitude and phase portraits, nonlinear iteration
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convergence) of nonlinear evolution systems. The theory presented has been tested
via a number of applications, a few of which are presented in this paper, with excellent
results.
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