
Fourteenth International Conference on Domain Decomposition Methods
Editors: Ismael Herrera , David E. Keyes, Olof B. Widlund, Robert Yates c©2003 DDM.org

33. Flow in complex river networks simulation through a
domain decomposition method
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1. Introduction. Lower river basins are characterized by rivers flowing on flood-
plains, usually forming interconnecting networks of streams that frequently interact with
lagoons directly or indirectly connecting to the stream reaches. The flood plains both in the
Pacific and in the Atlantic coasts of México have experienced, during the last few decades, an
accelerated economic development and therefore an appreciable population growth, and some
flood-related disasters have occurred in this zones recently. In order to avoid this kind of
disasters and the consequent loss of human lives and property, the need to build flood defense
infrastructure arises, constituted for instance by levees or dikes, and/or to develop real time
flood-warning systems. In any case, computational models are needed to adequately simu-
late the passage of floods through the river networks. These computational models should
take into account the fact that when river reaches flow into or from lagoons, their length is
modified according to whether the free surface level in the lagoon is rising or lowering. A
model of this kind is presented in this paper. Aldama and Aparicio (1994) [1] presented the
fundamentals of this model elsewhere. Here, the complete development is addressed and an
application to a real case in the lower Grijalva River is presented.

2. Fundamental equations. The equations on which the model is based are the
one-dimensional, free surface Saint-Venant equations: [4]
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where B is the free surface width; H, free surface elevation or level; U , velocity; A,
hydraulic area; q, lateral inflow per unit length; g, acceleration of gravity; n, Manning
roughness coefficient; R, hydraulic radius and x and t represent distance and time respectively.

In a channel network such as that shown in fig. 1, two types of flooding areas (heretofore
called “lagoons”) may be formed: those directly connected to one or more channel reaches,
which will be called interconnecting lagoons and those receiving or delivering water from or
to the river, but not having any influence in the water level of any reach, which will be called
lateral lagoons.

Interconnecting lagoons will be linked to the corresponding channel reaches by means of
a mass conservation equation of the form
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where V is the lagoon volume, sc is the control surface defined by the lagoon boundaries
and the scalar product U • dA represents the outflow discharge from the lagoon (see fig. 2;
note that inflow to the lagoon is negative).
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On the other hand, lateral lagoons are connected to the channel reaches by means of the
riverbanks. The unit discharge between river reaches and lateral lagoons will be assumed to
be governed by a long-crested weir law:

q = Cqh
√

|h| (2.4)

where Cq is a discharge coefficient and h is the net head. Cq is assumed to be a function
of the parameter [3]

φ =
|η2 − η1|
η − E

(2.5)

where η2 and η1 are, respectively, the water surface elevation in the river reach and in
the lagoon and E is the elevation of the river bank (see fig. 3). η = η1 when flow is from
lagoon to river and η = η2 when the river flows into the lagoon. The discharge coefficient is
then computed as [3]
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Due to the fact that flow in these conditions occurs in extremely flat terrain, only storage
effects are taken into account and no dynamical effects will be considered neither in the
interconnecting nor in the lateral lagoons.

3. Transformed equations. River reaches in flat floodplains are frequently confined
between lagoons that change in size as floods progress, therefore changing the reach length,
which requires solving eqs. (2.1) and (2.2) in variable domains. To avoid the sometimes
severe inaccuracies arising from the use of fixed grids in these cases, and following Austria &
Aldama [2] and Aldama & Aparicio [1], a coordinate transformation strategy of the following
form is employed:

ξ =
x − xr(t)

xf (t) − xr(t)
(3.1)

τ = t (3.2)

where xr(t)and xf (t)are, respectively, the position of the rear and front of the size-
changing river reach and ξ and τ are the transformed coordinates. Applying the coordinate
transformation to eqs. (2.1) and (2.2), the following transformed equations are obtained: [1]
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4. Domain decomposition and numerical solution. Eqs. (3.3) and (3.4) are
solved using an implicit, fractional step scheme [5], which leads to a system of algebraic linear
equations of the form [1]

[A]k {H}k+1 = {C}k (4.1)

where [A]k and {C}k are respectively a matrix and a vector which depend on known values
at time level k. Matrix [A] is tridiagonal for a single channel, which makes the solution of eq.
(3.1) very efficient, while preserving a second order accuracy. However, in a complex channel



FLOW IN COMPLEX RIVER NETWORKS 335

network such as that shown in fig. 1, due to interactions between the different reaches,
nonzero elements appear outside the three main diagonals, thus making the solution far less
efficient. Therefore, Aldama & Aparicio [1] proposed a solution algorithm based on the use
of numerical Green’s functions consisting of writing eq. (4.1) as

[AR]k {HR}k+1 + Bk
R,r {HR,r}k+1 + Bk

R,f {HR,f}k+1 = {CR}k (4.2)

where [A]k is a tridiagonal coefficients matrix, {HR}k+1 is the unknown water surface ele-

vations vector within the reach, Bk
R,r and Bk

R,f are scalars and {HR,r}k+1 ≡
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, Hk+1
R,r and Hk+1

R,f representing the water surface eleva-

tions at the rear and front ends of the reach. The vector of unknowns is decomposed as the
sum of a homogeneous and an inhomogeneous solutions:

{HR}k+1 = {HR,h}k+1 + {HR,i}k+1 (4.3)

where the homogeneous solution is defined by

[AR]k {HR,h}k+1 = {CR}k (4.4)

and the inhomogeneous solution is given by
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where {GR,r}k+1 and {GR,f}k+1 are rear and front numerical Green’s functions, repre-
senting the response of channel reach R to unit variations in the water surface elevations at
its rear and front ends and defined respectively by

[AR]k {GR,r}k+1 = −Bk
R,r {1, 0, ...., 0}T (4.6)

and

[AR]k {GR,f}k+1 = −Bk
R,f {0, ...., 0, 1}T (4.7)

On the other hand, the mass conservation equation for interconnecting lagoons (eq. 3) is
discretized as
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where AL is the lagoon surface area, Hc is the free surface elevation at the lagoon and Ai

are the hydraulic areas of the river reaches concurring to the lagoon. In the case of lateral
lagoons, free surface elevations and therefore stored volumes are computed simply from
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where total discharge Qi = qLi, Li being the crest length on the river bank. Note that
several river reaches can be connected to the same lateral lagoon. For the sake of simplicity,
discharges Qi are computed explicitly from the previous time step.

In this way, eqs. (4.4), (4.6) and (4.7) are tridiagonal systems and eqs. (4.3) and (4.5),
along with the mass conservation equation (4.8) for each interconnecting node, lead to a
sparse but relatively small system of equations in terms of the water surface elevation at the
node.

Therefore, with the above outlined procedure, three small tridiagonal systems for each
channel and a small sparse system for the interconnection nodes are solved, which makes the
overall solution considerably more efficient than the large, nonbanded system which would
otherwise arise.
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5. Boundary conditions. Every channel reach within the network is connected to
a node with any of the several possible boundary conditions. The most common boundary
conditions are known upstream or downstream discharge, specified upstream or downstream
water level or interconnecting lagoon. In the first case, the known discharge is susbstituted
into equation (3.3) an a two-term equation is obtained. In the second case, the known level is
directly substituted into equation (4.1) and in the third case, equation (4.8) is used to couple
the lagoon level with the corresponding channel reach level, either at the reach rear or front.

6. Application. The numerical model described above was integrated in a computa-
tional system called Trans-R and was applied to the uncontrolled part of the lower Grijalva
river basin in the Southeastern region of México (see fig. 1). This river flows from a moun-
tainous zone into a considerably flat region and finally into the Gulf of México. Four major
tributaries can be identified as part of the river network: the La Sierra, Pichucalco, Teapa
and Puyacatengo rivers. A main concern in this case is the city of Villahermosa, located
downstream of the confluence of these major tributaries as shown in fig. 1. With a fast-
growing population of about 400,000 inhabitants, the city and its surroundings are subject to
flooding caused by the intense precipitations frequently produced by cyclones. A high popu-
lation growth index produces a severe urban pressure on the Grijalva River and its naturally
flooding lagoons, therefore requiring a real-time forecasting system and quantitative aids for
the urban growth planning process. For the analysis, about 200 topographic maps of the
zone were used, and some ad hoc topographic surveys were performed, from which channel
sections for the whole network were obtained, and 21 lagoons were identified, including two
interconnecting lagoons (lagoons 3 and 8) and 19 lateral lagoons (see fig. 1).

Data for boundary conditions were provided by four gauging stations in each of the major
tributaries located at the boundary between the mountains and the floodplains and one at
the downstream end of the considered region, called Gaviotas, where Villahermosa city is
located.

Several flooding events were considered. Due to lack of space, only three of them will be
shown here. Figures 4 to 6 show the May 1970 flood; in fig. 4 the measured hydrographs
at each of the five gauging stations are shown. Only the stage-discharge relationship at
the Gaviotas Station was used for the simulation as boundary condition and the measured
hydrograph was reserved for comparison purposes. In figures 5 and 6 some of the results are
shown. Figure 5 shows a comparison between measured and computed hydrographs at the
Gaviotas gauging station. A reasonable agreement is observed. In fig. 6 a sequence of the
flood progress in plan view is shown. It can be seen that two interconnecting lagoons are
flooded in the first place (fig. 6 b); in fig. 6 c, one interconnecting lagoon is totally flooded
and one lateral lagoon is affected. In fig. 6 d, the flood hydrograph has started to recede,
one lagoon has disappeared and another has started to do so. In fig. 6 e, this interconnecting
lagoon has completely disappeared. Figures 7 and 8 show recorded and simulated limnigraphs
for the May-August, 1967 and September-October, 1999 flows at the Gaviotas Station. The
latter event produced extensive flooding and damages in Villahermosa City and vicinity.
Good agreement is observed.

7. Conclusions. A numerical model for transient flow simulation in complex river
networks with interconnecting and lateral flooding lagoons has been developed. The model
uses a coordinate transformation, which allows the channel-interconnecting lagoon interaction
simulation and numerical Green’s functions to decompose the domain and efficiently solve
the problem in the whole river reaches-lagoons hydraulic system. Lateral lagoons connected
to the river through the riverbanks are also taken into account in the model. Application
to the lower Grijalva River network shows good agreement between computed and measured
hydrographs and limnigraphs at the basin outlet.
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