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34. On Aitken Like Acceleration of Schwarz Domain
Decomposition Method Using Generalized Fourier

J.Baranger1, M.Garbey2 and F.Oudin-Dardun3

1. Introduction. The idea of using Aitken acceleration [5] [11], on the classical
Schwarz additive domain decomposition (dd) method [9] [7] [8] [6] has been introduced in
[3]. For an elliptic operator with constant coefficients on a regular grid, this method is called
Aitken-Schwarz (AS) procedure, and is a direct solver. This method has shown very good
numerical performance, and has been used in more complex situations [4]. We have also
extended the Aitken-Schwarz procedure to the case of a 2-D cartesian grid, not necessarily
regular, with two subdomains [1].

In the present paper, we extend this method to more complex situations and give a general
framework for our method. We first consider overlapping strip domain decomposition with
P domains on a non-uniform Cartesian grid. The key idea is the replacement of the 1-D
Fourier transform used on the regular space step discretization of the artificial interface grid
by a transform using the eigenvectors of a suitable 1-D operator. We give a direct solver
version of the Aitken-Schwarz algorithm for arbitrary number of subdomains, as well as an
iterative version when acceleration is applied to dominant modes only. In this last case, the
number of iterates is not sensitive to the number of subdomains with overlap of few mesh
steps. Second, we consider non-matching grids to apply our method to non-trivial geometries.
We present some experimental results for the Poisson and Helmholtz operator and comment
on an adaptive version of our acceleration technique for incompressible unsteady flow in a
channel past a disc. This paper is restricted to problems in two space dimensions, but most
of the concepts introduced here can be extended to 3 space dimensions.

2. A general framework. We briefly describe a general framework for AS method.
For more details see [2]. The AS method is built on three ideas:

- Schwarz’s method is an iterative method on a trace transfer operator acting on functions
defined on the interfaces. Sparsity of the Jacobian of this operator is related to the domain
decomposition (dd).

- discretization and choice of the interface representation may in some cases, and if well
chosen, increase this sparsity.

- for an operator with a sparse matrix, simple acceleration processes can be constructed.
The Aitken process, for example, provides an exact solver in the linear case if the trace
transfer operator can be diagonallized .

• Trace transfer operator for Schwarz iterative method: we consider a bounded
domain Ω in R

N with a strip dd in P domains Ωp, i.e Ωp only intersects Ωp−1 and Ωp+1, with
obvious modifications for p=1 and P.

The boundary Γp of Ωp is decomposed into three subsets: Γl
p (resp.Γr

p) included in Ωp−1

(resp.Ωp+1) and the remaining part Γ̃p.

Let (Π) be a boundary value problem (bvp) well posed in Ω. One step of the additive
Schwartz dd method with Dirichlet-Dirichlet boundary conditions (bc) is: for all p, given
the Dirichlet bc lp (resp.rp) on Γl

p (resp.Γr
p) solve the problem (Πp) the restriction of (Π) to

Ωp with these bc and the one of (Π) on Γ̃p.

(Πp) is assumed to be well posed. We denote r̄p−1 (resp. l̄p+1) the trace of the solution of
(Πp) on Γr

p−1 (resp. Γl
p+1). So, one step of Schwarz method is described by one application
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of the trace transfer operator

(l̄2, r̄1, . . . , l̄P , r̄P−1) = T (l2, r1, . . . , lp, rp−1, . . . , lP , rP−1)

acting on trace spaces of functions or distributions adapted to the bvp.
T has the special structure:

l̄2 = T r
1 (r1), . . . ,

{
r̄p−1 = T l

p(lp, rp)
l̄p+1 = T r

p (lp, rp)

}
p = 2 to P − 1, . . . , r̄P−1 = T l

P (lP )

Here (r̄p−1, l̄p+1) = Tp(lp, rp) is composed of a local solver of the bvp (Πp) and the trace
operators on Γr

p−1 and Γl
p+1. These operators can be exact or approximated.

Formally, the 2(P-1) Jacobian matrix of T has the pentadiagonal structure, pointed out
for a special case in [3]:




0 δrr
1 0 0

δll
2 0 0 δlr

2 0

δrl
2 0 0 δrr

2 0 0

0 0 δll
3 0 0 δlr

3

. . .

0 δrl
3 0 0 δrr

3

. . .

0 0 δll
4 0

. . .

. . .
. . .

. . .
. . .




(2.1)

with δlr
p = ∂T l

p/∂rp(lp, rp). The derivatives are assumed to exist in some sense in the traces
functional spaces.

• Discretization and interface representation: we introduce a discrete approxima-
tion of the traces. Each trace lp (resp. rp) is approximated by J numbers lpj (resp. rpj),
j = 1 to J . These numbers may be point values, coefficients in a basis, and so on. J may
vary with p if, for example, one has non-matching grids between subdomains. Retaining the

previous notations, lp and rp are now J-vectors and δp =

(
δll

p δlr
p

δrl
p δrr

p

)
is a 2J square ma-

trix. T is an application from R
2J(P−1) into itself with a sparse Jacobian matrix. For some

problems, dd and meshes, a well-chosen change of unknowns lpj → l̂pj may greatly increase
the sparsity of the Jacobian of the transformed trace transfer operator T̂ . This idea which is
the core of AS method has been introduced on a uniform mesh -using Fourier transform- in
[3]. An extension to non-uniform rectangular meshes is given in the next section.

• Acceleration process: Schwarz method can be considered as an iterative method for
the hat transform (associated with the interface representation) of T which map vectors of
size 2J(P-1). Any acceleration process can be used. The AS method uses Aitken method,
taking advantage of the sparsity coming on the one hand from the special dd, and on the
other hand from the generalized Fourier transform.

In the next section, we describe a special situation in which a good choice of the interface
representation leads to a very sparse Jacobian. For proofs and extensions of the content of
this section, we refer the reader to[2].

3. Generalized Fourier transform and interface representation on a
non-uniform rectangular mesh. We restrict ourselves to two space dimensions and
a rectangular domain Ω with a strip dd into rectangles. The left (resp. right) boundary of
Ωp is x = xl

p (resp. xr
p). (Π) is a homogenous Dirichlet bvp whose equation Lu = f has a

separable second order operator L = L1 + L2 with

L1 = a1∂xx + b1∂x + c1, L2 = a2∂yy + b2∂y + c2.
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a1, b1, c1 are functions of x, and a2, b2, c2 functions of y.
The grid is a tensorial product of the following two irregular meshes: x-mesh xi, i ∈ I,

and y-mesh yj , j = 0 to J + 1. Lh
1 (resp.Lk

2) are discretization of L1 (resp. L2) on the
x (resp. y)-mesh. The unknowns uij are approximations of u(xi, yj) with fij some given
approximation of f(xi, yj). We use the notation Uj = (uij)i∈I.

Let [e,w]x[n,s] be the generic rectangular subdomain. The discrete approximation (Πhk
p )

of problem (Πp) can be written

Lh
1Uj + Lk

2Uj = Fj , Uj(w) and Uj(e) given, ui0 = uiJ+1 = 0, i ∈ I

The following result is proved in [2]:

Theorem 3.1 Assume that the eigenvalue problem

Lk
2Φm = λmΦm, Φm0 = ΦmJ+1 = 0 (E)

has J linearly independent real eigenvectors associated with real eigenvalues. We define the
generalized Fourier transform:

uij =
J∑

m=1

ûimΦmj , j = 1 to J.

Then (Π̂hk
p ) -the hat transform of (Πhk

p )- is a set of J uncoupled discrete one-dimensional
linear problems:

[Lh
1 + λm]Ûm = F̂m, m = 1 to J, û0m and ûI+1m given .

The hat trace transfer operator is affine on R
2J(P−1) with a block-diagonal matrix of J blocks.

The m-th diagonal block has the form (2.1) and corresponds to the mode Φm and the operator
Lh

1 + λm.

We are going to apply this result to construct the AS algorithm.

3.1. Algorithm. We apply an Aitken-like acceleration procedure to each mode of the
generalized Fourier transform of the interfaces values given by Schwarz dd method. It follows
from theorem 3.1 that the method is an exact solver in this context. The algorithm is:

Step 1: compute the eigenvectors λm, Φm, m = 1 to J solution of problem (E).
Step 2: given traces on the interfaces, perform 3 steps of the Schwarz method.
Step 3: take the generalized Fourier transform of the last 4 traces.
Step 4: apply the one-dimension Aitken acceleration formula to each mode of these

transformed traces.
Step 5: recompose the physical traces from the result of step 4.
Step 6: from these traces, make one step of the Schwarz method.
We observe that Step 1, 3, 5 and 6 can be processed in parallel. Step 2 is the additive

Schwarz algorithm that has, in general, poor numerical efficiency but scales very well on a
so called MIMD architecture. Step 4 requires global communication of the hat transform of
the traces but makes the numerical algorithm efficient.

In order to minimize the amount of global communications in the parallel algorithm
and decrease the number of arithmetic operations, it is interesting to accelerate only the
eigenvector components of the traces that correspond to dominant eigenvalues λm, m =
1..J ′, with J ′ < J. As a matter of fact, eigenvector components that corresponds to small
eigenvalues λm converge fast with the Schwarz method itself. In that case, steps 3 and 5 are
modified and the direct and inverse hat transforms use only the J ′ < J first modes. Further,
we may have to iterate step 2 to step 6 until convergence. We call this variant of our method
as the Steffensen-Schwarz method.

We are going to apply this result to the Poisson problem discretized by FE as done in [1]
on a rectangular irregular grid.
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Figure 3.1: Mesh

3.2. Numerical experiments. We consider, on the domain Ω =]0, 1[×]0, 1[, the
Poisson problem : −(uxx + uyy) = f, with u = 0 on ∂Ω, such that the exact solution is :
u(x, y) = 150x(x − 1)y(y − 1)(y − 1/2). We use a Cartesian grid of Ω with 73 × 73 elements,
uniform in x, random in y (see Figure 3.1).

In Figure 3.2, we compare the error and the residual according to the number of subdo-
maims, and the number of modes that are accelerated. The error versus the exact discrete
solution is then order 10−6, after one Aitken acceleration, and becomes of order 10−5 with
J ′ = J

2
, regardless of the number of subdomains used.

Figure 3.3 shows error and residual at the first and second iteration, for different number
of modes, and different sizes of overlap. We conclude that the larger the overlap, the better
is the acceleration. These results suggest that one should adaptively select the minimum
number of modes to accelerate as a function of the overlap and subdomain sizes. This is an
essential feature of our method that may provide parallel scalability and should be the topic
of further investigation.

We are going now to consider non-matching grids and application to CFD problems.

4. Experiments with Steffensen-Schwarz and Non-overlapping grids.
We consider elliptic solvers with Dirichlet bc in a non-trivial geometric domain that are com-
ponent of Navier Stokes incompressible flow simulations around obstacles. A good example
is the two-dimensional test case proposed by Shäfer & Turek in [10] of incompressible flow
in a straight channel around a disc. The domain Ω is (0, Lx)× (0, Ly) with a circular hole of
radius R centered in (xo, yo). ∂ΩR is the boundary of the rectangle and ∂ΩC is the boundary
of the disc. The linear elliptic solver corresponds either to the Poisson or the Helmholtz
operator −ε∆+ Id. Figure 4.1 gives an illustration of the two non-matching grids that we do
consider. This splitting of the domain is motivated by the physics for large Reynolds number.
The boundary layer is approximated on the grid ΩC in polar coordinates and the Cartesian
grid ΩR is used to approximate the main part of the flow. The overlap between subdomains
is of the order of one mesh step of ΩR.

We denote ΓR (resp. ΓC), the artificial boundary of the rectangular mesh ΩR (resp. the
mesh in polar coordinates ΩC). If LR (resp. LC) represents the standard finite difference
approximation of our linear operator on ΩR in Cartesian coordinates, (resp. on ΩC in polar
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Figure 3.2: Error and residual - Np number of subdomains
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Figure 4.1: Representation of a subset of the overlapped non matching grids around
the cylinder

coordinates), we close our discrete approximation problem by imposing:

I C
R (UR) = UC on ΓC , I R

C (UC) = UR on ΓR, (4.1)

where I R
C and I C

R are linear second-order interpolation operators that satisfy a maximum
principle. The discrete problem can be written as:

LR[UR] = fR in ΩR, LC [UC ] = fC in ΩC , (4.2)

with matching conditions (4.1), and Dirichlet bc on ∂ΩR ⋃
∂ΩC .

The discrete solution process is the following alternate Schwarz iterative procedure:

LR[UR
n ] = fR, in ΩR, UR

n = I R
C (UC

n−1) on ΓR,

followed by LC [UC
n ] = fC , in ΩC , UC

n = I C
R (UR

n ) on ΓC , using the corresponding Dirichlet
bc on ∂ΩR ⋃

∂ΩC , and an initial value for the artificial bc UC
0 .

From the maximum principle satisfied by the discrete operators LR and LC as well as the
maximum principle satisfied by the interpolant operator I R

C and I C
R , one concludes the linear

convergence of this iterative scheme to the unique solution of (4.2, 4.1 ), with Dirichlet bc on
∂ΩR ⋃

∂ΩC . One applies then the Steffensen-Schwarz method described in [3] on the interface
operator UC

n |ΓC → UC
n+1 |ΓC . To be more precise, let ÛC =

∑
k=−N/2,...,N/2 ÛC

k eikΘ be the

Fourier expansion of the discrete function UC restricted to the circle ΓC . The matrix P of the
interface operator (UC

n |ΓC → UC
n+1 |ΓC ) in the set of basis function eikΘ, k = −N/2, ..., N/2

satisfies
(ÛC

n+1 |ΓC − ÛC
∞ |ΓC ) = P (ÛC

n |ΓC − ÛC
∞ |ΓC ).

One reconstructs a bandwidth approximation of P of size Z from the knowledge of the partial
sequence (ÛC

0 |ΓC , ..., ÛC
n+Z+2 |ΓC ). The Aitken-like acceleration procedures can be written:

ÛC
∞ |ΓC = (Id − P )−1 (ÛC

n+1 |ΓC − P ÛC
n |ΓC ). (4.3)

We have observed that this Steffensen-Schwarz procedure is numerically most efficient with di-
agonal approximation of P . Each cycle of Steffensen-Schwarz algorithm requires two Schwarz
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iterates to get from the sequence of interfaces, the diagonal approximation of P , and then
one more Schwarz iterate to exploit the bc on the artificial interfaces (4.3). These Poisson or
Helmholtz solvers have been used to solve an unsteady incompressible Navier Stokes (NS)
equation written in Vorticity-Stream function (ω − ψ) formulation, for the two-dimensional
test case proposed by Shäfer & Turek in [10]. The main cost of the NS solution procedure
corresponds to the Poisson problem for the stream function. The application of Steffensen-
Schwarz procedure to ψ at every time step can take advantage of two interesting features.
First, the initial guess for the trace of the stream function on the circle ΓC in the iterative
procedure is a second-order extrapolation in time of this trace value of ψ using the two pre-
vious time step’s solution,i.e ΨC

0 = 2ΨC(tn)−ΨC(tn−1). The diagonal approximation of the
trace transfer operator T should be time-independent, but is in fact, with our approximation
technique, solution-dependent. In practice, one can reuse the same diagonal approximation
of P for O(10) time steps. The Steffensen-Schwarz cycle then reduces to two Schwarz iter-
ates for those time steps that keep the same P approximation than the previous time step.
For oscillatory flow with moderately large Reynolds number, time steps satisfying the CFL
condition and grids of order 100 × 100, we can typically maintain the residual of order 10−6

with only one Steffensen-Schwarz cycle per time step.

5. Conclusion. We have presented a generalization of Aitken-Schwarz method [3] to
grids that are tensorial products of one-dimensional grids with irregular mesh stepping and
domain decomposition with non-matching grids. Our current work addresses the problem of
the generalization of this method to unstructured meshes with Finite Volume approximation.
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Zürich, volume 15, 1870, pp. 272–286.
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