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35. An Aitken-Schwarz method for efficient metacomputing of
elliptic equations

N. Barberou1, M. Garbey1,2, M. Hess3, M. Resch2,3, T. Rossi4, J. Toivanen4, D. Tromeur-
Dervout1

1. Introduction. Metacomputing as defined by Larry Smarr [13] has been imple-
mented in many projects among which GLOBUS is the most widely developed one [2].
Experiments with large configurations have however shown that the latency of wide area
networks is prohibitively high and that substantial bandwidth can hardly be achieved [10].
From that some people have concluded that metacomputing does not make sense.

However, there are two strong arguments for metacomputing. First, with the introduction
of clusters of fat nodes, varying latencies, and bandwidths are a characteristic feature of any
modern hardware. Algorithms developed in metacomputing environments are therefore well
suited also for such systems. Second, some large problems require a level of computing power
not available on a single system. Especially in cases of industrial or natural disasters reliable
predictions based on extremely large models may only be achievable on clustered supercom-
puters in a metacomputing environment. Such simulations of emergency scenarios will again
need clever algorithms that can tolerate the bad performance of wide area communication
networks.

The development of such algorithms is difficult. For Poisson or Helmholtz operators the
speed of propagation of information in the spatial domain is infinite. However, two factors
help to design latency-aware algorithms; firstly information propagating at infinite speed can
be damped in space relatively fast, secondly, more than 90 percent of the information carried
in a practical computation is noise.

In this paper, we address the significant challenge to build a fast solver for the Helmholtz
operator. It combines the Aitken-Schwarz domain decomposition method [4, 5] associated
with the Partial Solution variant of Cyclic Reduction (PSCR) method [11, 12] on large scale
parallel computers.

2. Numerical methods.

2.1. The PDC3D inner solver. The parallel solver PDC3D developed by T. Rossi
and J. Toivanen [11] [12] following the ideas of Y. Kuznetsov [9] and P. Vassilevski [15] is
a parallel fast direct solution method for linear systems with separable block tridiagonal
matrices. Such systems appear, for example, when discretizing the Poisson equation in a
rectangular domain using the seven-point finite difference scheme or piecewise linear finite
elements on a triangulated, possibly nonuniform rectangular mesh. The method under con-
sideration has the arithmetical complexity O(N log2 N) and is closely related to the cyclic
reduction method. But instead of using the matrix polynomial factorization the so-called
partial solution technique is employed. Based on the analysis of [12], the radix-4 variant
is chosen for the parallel implementation using the MPI standard. However, the method
works for blocks of arbitrary dimension. [11] [12] show that the sequential efficiency and
numerical stability of the PSCR method compares favorably to the well-known BLKTRI im-
plementation of the generalized cyclic reduction method. The current PDC3D code is using
a two-dimensional domain decomposition. It requires a high performance communication
network mainly because of global reduction operations to gather the partial solution. Its
very good scalability has been shown on a CrayT3E (table 4.2).
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2.2. The Aitken-Schwarz outer solver. Following a different approach than the
PDC3D solver, M. Garbey and D. Tromeur-Dervout [4] [5] [6] have developed an Aitken-
Schwarz algorithm (respectively Steffensen-Schwarz) for the Helmholtz operator, (respec-
tively for general linear and non linear elliptic problems) that is highly tolerant to low band-
width and high latency. In the specific case of separable elliptic operators, the Aitken-Schwarz
algorithm might be less efficient in terms of arithmetic complexity than PDC3D as the num-
ber of processors increases [5], but it is very competitive when using O(10) sub-domains.

Let us recall briefly the salient feature of the method in 1D to solve

L[u] = f, on Ω = [0, 1] (2.1)

B[u] = 0 (2.2)

where operator B denotes the linear operator on boundary conditions, and L is some linear
operator. Let Ωi = (xl
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In practice the last matrix on the right hand side of the previous equation is non singular
and Pi can be computed, but it cannot be guaranteed. However, one can always compute
beforehand the coefficients of Pi -see [4]. For the Helmholtz operator L[u] = u′′ − λu,
or generally speaking elliptic problems with constant coefficients, the matrix P is known
analytically.

From the equality ũn+1 − ũ = P (ũn − ũ), one obtains the generalized Aitken acceleration
as follows:

ũ∞ = (Id − P )−1(ũn+1 − P ũn). (2.3)

If the additive Schwarz method converges, then ||P || < 1 and Id − P is non singular.
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The aim of our paper is therefore to combine the two methods in order to have a highly
efficient solver for the Helmholtz operator for metacomputing environments. This solver can
be used to solve the elliptic equations satisfied by the velocity components of a incompressible
Navier Stokes (NS) code written in velocity-vorticity formulation. The elliptic part of such
an NS solver is usually the most time consuming part as these equations must be solved very
accurately to satisfy the velocity divergence free constraint. Similarly this solver can be used
for the pressure solve in NS written in velocity pressure formulation using the projection
method.

Our parallel implementation is then as follows: first one decomposes the domain of com-
putation into a one-dimensional domain decomposition (DD) of O(10) macro sub-domains.
This first level of DD uses the Aitken Schwarz algorithm. The macro sub-domains are dis-
tributed among clusters or distinct parallel computers. Secondly, each macro sub-domain is
decomposed into a two-dimensional DD: this level of DD uses the PDC3D solver. Globally
we have a three-dimensional DD and a two-level algorithm that matches the hierarchy of the
network and access to memory.

3. Hardware and software components for metacomputing. Metacomput-
ing in heterogeneous environments introduces problems that are partly similar to those well
known from clusters and partly very new and specific. Among the most critical ones is the
concurrent scheduling of resources. Another one is the mapping of processes to processors.
For these problems we refer to projects like GLOBUS [2], Legion [7] or TME [14]. In this
section we focus on communication.

The communication can be done using several MPI-implementations [1] [3][8]. All these
implementations provide a simple way to start and run MPI-applications across a meta-
computer. They differ, however, in completeness of implementing the MPI-standard and
in the degree of optimization. For the experiments described in this paper we have chosen
PACX-MPI [3] from the High Performance Computing Center Stuttgart (HLRS) which al-
lows metacomputing for MPI-codes without any changes [10]. Based on the experience of
several projects the library relies on four main concepts:

• For the programmer the metacomputer looks like any other parallel system.
• Usage of communication daemons to clearly split external from internal communication

and ease support of different communication protocols (e.g. TCP/IP, ATM).
• Use of native MPI for internal communication and standard protocols for external

communication. MPI-implementations based on native protocols typically are superior in
performance to any other approach.

• Optimized global communication by minimizing traffic between systems.

4. Results. We are going to present some numerical experiences in metacomputing
environments. For simplicity, we restrict ourselves to a network of two or three parallel
computers. For large scale metacomputing experiments, we are using the hardware described
in Table 4.1. Once and for all we denote CrayS the Cray of HLRS in Stuttgart University,
CrayN of the von Neumann Institute in Jülich (NIC), CrayP of the Pittsburgh center of
high performance computing in USA and CrayH the Cray T3E of the National Scientific
Computing Center of Finland at CSC. The goal is to demonstrate on classical problems
that make intense use of Poisson solves, that efficient numerical results and high performance
are attainable in a metacomputing environment with standard network connections.

4.1. Fast Poisson solver experiment. We make three hypotheses:
• First, we restrict ourselves to the Poisson problem, i.e the Helmholtz operator with

λ = 0. As a matter of fact, it is the worst situation for metacomputing because any pertur-
bation at an artificial interface decreases linearly in space, instead of exponentially as for the
Helmholtz operator.

• Second, we do a priori load balancing on the heterogeneous network of Cray supercom-
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Machine #proc MHz
internal
latency

internal
bandwidth Localization

CrayS 512 450 12 µs 320 MB/s HLRS, Stuttgart
CrayP 512 450 12 µs 320 MB/s PSC, Pittsburgh
CrayH 512 375 12 µs 320 MB/s CSC, Helsinki
CrayN 512 375 12 µs 320 MB/s NIC , Jülich

Table 4.1: System configuration at Stuttgart, Pittsburgh, Helsinki, Jülich.

puters. We verified that PDC3D solver is roughly 30% slower on CrayH than on CrayS for
our test cases. The number of grid points in the Aitken domain decomposition is balanced in
such way that PDC3D in each parallel computer uses approximatively the same CPU time.

• Third, and this is a key point, we are running our metacomputing experiment on two or
three supercomputers with the existing ordinary area network. During all our experiments,
the bandwidth fluctuated in the range of (1.6Mb/s − 5.Mb/s) and the latency was about
30ms.

Let us show that a fast elliptic solver that is quasi optimal on a single parallel computer
gives poor performance in a metacomputing environment.

The PDC3D solver is an almost optimal solver with good parallel scalability in parallel
computers having a good balance of network and processor. By analyzing the PDC3D al-
gorithm, we can deduce that the number of communications per processor is of the order of
log(px) + (Nx/px) log(Nx) log(py) and the total length of all messages for one processor is of
the order of (Ny/py)Nz log(px) + (Nx/px) log(Nx)Nz log(py) floating point numbers.
Each processor stores (Nx/nx)(Ny/ny)Nz floating point numbers which is considerably more
than the amount of communication. Thus, the computational work per processor greatly
exceeds the amount of data to be transferred. This leads to a rather efficient code as can be
seen in Table 4.2, where the results of experiments made on CrayS are presented. Also, it
can be seen from the communication estimates and the numerical results that it is favorable
to choose py to be larger than px.

The PDC3D solver obviously cannot be used efficiently in a metacomputing environment.
Based on the performances -see Table 4.2- of the PDC3D on CrayS, we select the most
efficient data distribution and run the same problem on the metacomputing architecture, i.e
on CrayS and CrayH that share equally the total number of processors used. Table 4.2 gives a
representative set of the performance of PDC3D on the metacomputing architecture (CrayS-
CrayH). We conclude that no matter what the number of processors, most of the elapsed
time is spent in communication between the two computer sites. This conclusion holds for
a problem of smaller size, that is 2563: the elapsed time grows continuously from 0.76 s,
up to 18.73 s with 512 processors. Obviously the PDC3D performance degrades drastically
when using a slow network. In the following we show how Aitken-Schwarz can overcome this
problem.

4.2. Aitken-Schwarz experiment. We proceed with a performance evaluation of
our two level domain decomposition method combining Aitken-Schwarz and PDC3D (AS).
We define the barrier between low and medium size frequencies in each space variable to be
1/4 of the number of waves; We do not accelerate the highest half of the frequencies. We
checked that the impact on the numerical error against an exact polynomial solution is in the
interval [10−7, 10−6] for our test cases with minimum overlap between macro sub-domains.
Let us give first the performance of our method on a single Cray.

Figure 4.1 gives the elapse time for the following growing size of Poisson problems
158 × 192 × 384, 316 × 192 × 384, 633 × 192 × 384. When increasing the number of do-
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No metacomputing: localization of processors : 100% ∈ CrayS
128 procs (px × py) 256 procs (px × py) 512 procs (px × py)

25.9 s (4 x 32) 17.6s (4 x 64)
22.0 s (16 x 8) 11.5s (16 x 16) 7.2 (16 x 32)
21.8 s (64 x 2) 11.2s (64 x 4) 5.77 (64 x 8)

Metacomputing: localization of processors :50% ∈ CrayS and 50% ∈ CrayH
72.0s (64 x 2) 77.2s (64 x 4) 75.1 (64 x 8)

Table 4.2: Elapsed time in (s) for the PDC3D solver on CrayS and on
metacomputing architecture (CrayS, CrayH) to solve a problem of global
size 511 × 511 × 512

mains in the same proportion as the number of processors the elapsed time remains constant.
Our solver has therefore good scalability properties on the Cray T3E. Further, our method
requires no more than 6 seconds to solve the problem with 46 106 unknowns on a Cray T3E
with 256 processors running at 450 MHz. Figure 5.2 shows also that the speedup of our
solver is fairly good. Now let us proceed with the metacomputing experiment. We make the
two following hypothesis:

• First we fix the size of our problem in such a way that it cannot be solved on one single
computer at our disposal. As a matter of fact, we use almost all memory available on our
network of supercomputers.

• Second, we focus our study in this context on the extensibility properties of our direct
linear solver. To benefit of the Gustafson law for scalability, we believe that a direct mea-
surement of the speedup is not appropriate. We have also not estimated the speedup from a
model analysis, because our two level domain decomposition method is too complex to give
any realistic estimate in a metacomputing environment. Table 4.3 summarizes our results.
Let us notice that each case has been run several times and our measurements give elapsed
time with a variation of few seconds, depending on the quality of the network during the
experiment. We provide here an average value that corresponds to two or three consecutive
runs excluding the cases where the network died during the runs.
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Figure 4.1: Extensibility of the Aitken Schwarz algorithm for the 3D Poisson problem

Our two main observations are as follows:
• We have in our experiments an irreducible overhead that varies from 17s to 24s and
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Figure 4.2: Speedup of the Aitken Schwarz algorithm for the 3D Poisson problem

that depends mostly on the speed of the network that interlinks our supercomputers. We
recall that the bandwidth of the network was in the range of 2 to 5 Mb/s. This overhead is
quasi independent of the size of the problem considered here.

• Beside the overhead due to the network between distant sites, we observe an excellent
scalability of our Poisson solver. This result is a combination of two factors: first the arith-
metic complexity of our solver grows almost linearly with the number of macrosubdomains.
Second the ratio of computation time per macrodomains to communication time is large even
with a slow network and fast supercomputers.

Finally, we would like to underline that the conditions of our experiments were by defi-
nition difficult. It is not realistic to stop simultaneously the production of several national
computing centers for long. We had therefore few windows for experiments with few hours
each time. We are extremely grateful to all centers participating in these sets of experiments
for their cooperations. Further, to our knowledge, there are no other known results of ef-
ficient large scale metacomputing simulations of PDE problems that assume tidily coupled
computation as it is the case in a Poisson solver. This work is currently extended to 3D
Navier Stokes equation using our Poisson solver as a preconditioner.

5. Conclusions. In this paper, we demonstrate the feasibility of numerical efficient
metacomputing between distantly located parallel computing resources for tidily coupled
problems as Helmholtz solvers. In order to achieve this result, we use the best components
we can get at each stage that is to say:

• PDC3D : one of the best efficient solvers for separable operators that scales well on
homogeneous computers with fast communication network.

• PACX-MPI to achieve excellent performance of MPI communication on both the inter-
nal and external communication network.

• Aitken-Schwarz that is numerically efficient, tolerant to slow communication networks
and high latencies and scales well up to O(10) domains.

High latencies and slow communication networks with fluctuating bandwidth shared by
thousands of users are typical difficulties encountered in grid computing. The Aitken-Schwarz
DDM seems to be an example of a numerical tools that adresses to such difficulties.
Acknowledgment: The authors would like to thank the John von Neumann Institute and
the Pittsburgh Supercomputing Center for providing access to their systems for experiments.
All authors would like to thank their home organizations Cines, CSC and HLRS for sup-
port in this work. The work of T. Rossi and J. Toivanen was supported by the Academy
of Finland, grants #43066, #53588 and #66407. The work of N. Barberou was supported



EFFICIENT METACOMPUTING OF ELLIPTIC EQUATIONS 355

# of pts
in x

per MD

# of MD
per

machine

# of pts
in y, z

per proc.

# of proc.
per MD

NxJ NxS NxP MJ MS MP ny nz py pz Time (s)

225 321 0 1 1 0 49 49 16 16 60

225 321 0 1 2 0 49 49 16 16 58

0 321 0 2 0 0 49 49 8 16 30 .4

225 321 0 1 1 0 49 49 8 16 47

225 321 0 1 2 0 49 49 8 16 47

0 321 0 0 2 0 49 49 8 8 27.3

0 321 0 0 3 0 49 49 8 8 27.3

0 321 0 0 4 0 49 49 8 8 27.2

225 321 0 4 4 0 49 49 8 8 51

0 321 0 0 2 0 43 43 16 16 25,4

225 321 0 2 2 0 43 43 16 16 50

225 321 321 2 2 1 43 43 16 16 59

0 401 0 0 2 0 43 43 16 16 30.5

281 401 401 2 2 1 43 43 16 16 62

Table 4.3: Extensibility of the Aitken-Schwarz on the Poisson problem in a metacom-
puting framework
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