
Fourteenth International Conference on Domain Decomposition Methods
Editors: Ismael Herrera , David E. Keyes, Olof B. Widlund, Robert Yates c©2003 DDM.org

16. Modifications to Graph Partitioning Tools for use with
FETI methods

M.K. Bhardwaj1, D.M. Day2

1. Introduction and Summary. Engineering solutions are presented for certain
massively parallel implementation issues associated with FETI domain decomposition meth-
ods [2]. A wrapper around a graph partitioner is defined so that a computational domain
is decomposed into subdomains that may be used with FETI methods. The techniques de-
scribed here may find use with other domain decomposition methods for structural dyamics
in which the subdomain matrices are factored. Our solution methodology is imperfect, but
it is the most robust way known to the authors to use an off the shelf graph partitioner with
FETI methods.

A unique aspect of finite element methods in structual dynamics is the variety of elements
combined in a model. FETI methods employ partitions of the dual or element connectivity
graph. This article contributes a set of weights depending on the element type that improve
load balance with FETI methods.

A serious problem with FETI methods is that incompletely connected subdomains result
in subdomain mechanisms that are difficult to characterize geometrically. A general definition
of element connectivity is given, and used in a post process of the partition that further
decomposes each subdomain into its connected components.

The discussion is organized as follows. The remainder of this section reviews certain
relevant aspects of structural dynamics and describes the model problems. Section two
concerns element weights. The resulting load imbalance is presented for the more problematic
of the two models. The third section addresses subdomain mechanisms and connectivity.
Numerical results and conclusions are presented in section four. Numerical examples are also
integrated into the exposition.

The United States Department of Energy (DOE) has supported work at Sandia National
Laboratory on full systems analysis. The goal is to simulate designs of applications of interest
to DOE using massively parallel platforms. The development of hardware, software and
algorithms for these tasks is challenging.

A design cycle of component models culminates in an evaluation based on an analysis of a
few hundred of the smallest eigenvalues and eigenvectors. The first step in our design cycle is
to generate a conforming mesh for the full system using a commercial mesh generation package
such as Patran or Sandia’s Cubit framework. Second the mesh is partitioned using Chaco.
Parallel graph partitioning packages such as including METIS [4] and Zoltan are available.
Graph partitioners have also been developed specifically for use with FETI methods (e.g.
TopDomDec). Our comments apply to all of these tools. A finite element code is used to
build matrices, such as Salinas. The inverted generalized symmetric semi-definite eigenvalue
problem is solved using PARPACK. FETI methods are used to solve the resulting sequence
of linear systems [1].

Graph partitioning software packages routinely determine partitions in which processor
loads vary by less than one tenth of one percent. Domain decomposition algorithms have
more specific requirements on a partition than are addressed by graph partitioners. For
FETI methods the weight of a subdomain depends primarily on the number of nonzeros in
the Cholesky factor of the stiffness matrix, a nonlinear objective function. For FETI-DP
methods, another critical variable is the size of the resulting coarse grid linear system. The
techniques described here significantly reduce the size of the FETI-DP coarse grid linear

1Sandia National Labs, mkbhard@sandia.gov
2Sandia National Labs dmday@sandia.gov

196 BHARDWAJ, DAY

system. The interface size and roughness are secondary contributions.

Another set of problems stem from the linear elasticity equation. In the dual formulation,
FETI-1 ([3]), the subdomain stiffness matrices are singular. A six dimensional null space may
be determined from the geometry (coordinates) for each face connected component (defined
in section 3) of the subdomain. In a subdomain that is not face connected, it is possible for the
Cholesky factorization routine to incorrectly reveal the null space. The problem persists in
dual-primal methods, and is addressed through sophisticated corner node selection methods.
As the number of processors increases, the probability that an off the shelf graph partitioning
tool will introduce mechanisms also increases.

Figure 1.1: Engine model

Model problem one is an engine manifold (see Figure 1.1) and model problem two is the
electronics package from a structure of interest at Sandia (see Figure 1.2. For both problems
PARPACK needs to solve 31 linear systems in order to approximate the ten smallest modes.
The engine model has 203894 nodes (three unknowns per node) and 193960 elements. Most
of the elements are eight node hexagons, and the other elements are six node wedge elements
and six node triangles. The computations on the engine model were performed on the ASCI
Red platform (see http://www.sandia.gov/ASCI/Red/). The component model has 248226
nodes (three unknowns per node) and 167928 elements. The elements are six node triangles
and ten node tetrahedrons. Computations with the component model were performed on
the CPLANT platform (see http://www.cs.sandia.gov/cplant/), the worlds fastest Linux
cluster. The CPLANT platform is composed of 1536 Compag DS10L 1U servers connected
via Myrinet networking hardware.

2. Elements and Weights. Finite element models of aerospace structures routinely
contain many different element types. The ratio of unknowns to elements is asymptotically
constant on homogeneous submeshes with simple topologies. Unfortunately the load balance
problem for FETI methods is not linear, depending on the number of nonzeros in the Cholesky
factor of each subdomain matrix.

The nonlinear load balance problem is addressed by the selection of element weights.
Initially a nearby linear problem is solved. The asymptotic ratio of unknowns to elements
for a regular mesh is used as an initial guess for the element weight. The weights were then

GRAPH PARTITIONING 197

Figure 1.2: Component model

calibrated on a few model problems.

Structural dynamics models make use of a one, two and three dimensional elements. One
dimensional elements, including truss and bar elements, are all converted to beam elements
in our finite element code. The shell elements are quadrilateral and triangular. Beam and
shell elements have six unknowns per node. The additional drilling degrees of freedom at each
node are essential for maintaining subdomain connectivity. The solid elements are hexagonal,
prismatic or tetrahedral, and all have three unknowns per node. An element may have nodes
only at the vertices (linear shape functions) or nodes at both the vertices and the midpoints
of the edges (quadratic shape functions).

Element weights balancing the number of subdomain unknowns for models with regular
meshes are known. The element weight is the ratio of the number of unknowns to the number
of elements. In two dimensions the number of knowns is asymptotically equal to the sum
of the unknowns per node and three times the number of nodes per edge (see §1.9 of [5]).
There are similar formulas for solid elements. These element weights vary by an order of
magnitude.

Balancing the unknowns per subdomain does not solve the load balance problem for
FETI methods. Subdomains consisting of irregular solid elements may have Cholesky factors
with relatively large numbers of nonzeros. An example of such a subdomain is presented in
Figure 2.1. Furthermore a subdomain that consists entirely of shell elements usually comes
from a two dimensional subcomponent (e.g. an aero-shell); such a subdomain has a relatively
sparse Cholesky factorization and a one dimensional boundaries.

The weights of the solid elements have been experimentally increased to decrease the load
imbalance. One set of sub-optimal weights are used for all models. Reports of load imbalance
problems ceased once the graph partitioner was modified to use the weights listed in 2.1.

The load balance for the component model partitioned into 540 subdomains using the
weights is depicted in Figure 2.2. The data for partitions into 137 and 277 is similar. In each
case the ratio of the maximum to the average for both unknowns and nonzeros is 3/2;

The subdomain stiffness matrices with the most nonzeros still correspond to irregularly
meshed solid elements. The large spread in the number of nonzeros in the Cholesky factoriza-
tion represented how inexactly the nonlinear load balance problem is solved. The processors

198 BHARDWAJ, DAY

Figure 2.1: The subdomain with largest Cholesky factor in the 137 subdomain parti-
tion of the component is shown

with large numbers of unknowns are subdomains of the aero-shell. The source of the ex-
tremely small subdomains will be explained in the next section.

3. Mechanisms and Connectivity. A feature of FETI-1 methods is that singular
matrices must be accurately factored. This is possible if the subdomain is face connected
and the nodes are ordered so that either the last three nodes are 3 unknowns per node nodes
and the nodes are not collinear, or the node is a 6 unknown per node node. One of the
three main properties of FETI-DP methods is that only nonsingular matrices are factored.
The other two nice properties of FETI-DP are that the coarse problem is sparse and that
fewer iterations are required for convergence. For an arbitrary partition the null space of the
subdomain stiffness matrix could be anything.

FETI-DP is more reliable than FETI-1, but is still sensitive to the partition. If a sub-
domain is not face connected, the corner nodes may not eliminate the entire null space. A
feature of FETI-DP is that the coarse grid problem is approximately three times larger. Ev-
idence will be presented in the next section that the load balance techniques developed here
usually result in smaller coarse grid problems.

Figure 3.1 depicts the subgraph assigned to one processor. If we define two elements that
share a node to be connected (nodal connectivity), then the subgraph has four connected
components. Note that there is a triangular element that shares a node but not an edge with
it’s neighbors.

Here a more restrictive definition of connectivity is used, face connectivity. Two solid
elements (or a solid and a shell) are face connected if they share a face. A shell element and a
solid element that share three or more nodes are face connected. Two shell elements are face
connected if they share an edge. A beam element is face connected if it shares a node with
another beam element or a shell element. The subgraph in Figure 3.1 has five face connected
components. In the remainder of this work connectivity always refers to face connectivity.

Connectivity is ensured by assigning each extra connected component of each subdomain
to an additional processor. For the models considered, this results in a modest increase in
the number of processors (see Figure 3.2).

GRAPH PARTITIONING 199

Element Number of Nodes Weight
Wedge 6 2
Wedge 15 12
Tet 4 1
Tet 10 3
Hex 8 3
Hex 20 12
Tri 3 3
Tri 6 12

Quad 4 6
Quad 8 12
Beam 2 1

Table 2.1: graph weights for elements with linear (e.g. Tet4) or quadratic (c.f. Tet10)
shape functions.

The number of face connected components of a partition may be acceptably large. Ex-
amples of such meshes have come to the attention of the authors in which beam elements
have been painstakingly used to sow together nonconformal solid meshes.

4. Results and Conclusions. Results are presented for the engine and component
models.

The engine model problem is solved efficiently on 27 or 28 processors. Though the engine
model consists mostly of hexagonal elements, the modified graph partitioner is noticably more
efficient. On approximately 28 processors the improved partitions reduce the time required
to solve 31 linear systems from 261 seconds to 172 seconds.

The 29 processor runs illustrate different failure modes with two different corner selection
strategies. For one corner selection strategy, with the improved partition the factorization of
the coarse grid nonetheless erroneously detects zero pivots, and slow convergence results. It
is noteworthy that our framework is not yet robust. For the other corner selection strategy,
the improved partition is much more efficient due to the reduction in the size of the coarse
grid problem.

The component model contains many triangular elements, and better illustrates the im-
provements in the partitions. Only results for the component model with the improved
partition are presented. For the standard partition, initially FETI-DP broke down due to
singular subdomain matrices across the processor range. Singular subdomain matrices were
avoided by solving the shifted problem (K + M105). Unfortunately memory is insufficient
to factor the shifted stiffness matrices on 128, 256 or 512 processors using a serial or a parallel
linear solver for the coarse grid.

For the improved partitions and using the serial coarse grid solver FETI-DP is successful
on 137 or 277 subdomain partitions, but on the 540 subdomain partition, memory was
exhausted. For the 540 subdomain partition, FETI-DP succeeded using the DSCPACK
parallel coarse grid linear solver.

In summary a technique for improving the partitions determined by an off-the-shelf graph
partitioner have been presented. A carefully calibrated set of element weights is used to main-
tain load balance. Furthermore extra subdomains are added to ensure the face connectivity
of the subdomains. The technique also results in smaller coarse grid problems for FETI-DP.

REFERENCES

200 BHARDWAJ, DAY

0 100 200 300 400 500 600
0

500

1000

1500

2000

2500

U
nk

no
w

ns

Component: 540 Subdomains

0 100 200 300 400 500 600
0

1

2

3

4

5

6
x 10

5

N
on

ze
ro

s

Subdomain

Nonzeros in Cholesky Factors

Figure 2.2: The processor loads for the component model partitioned into 540 subdo-
mains is displayed. For both the number of unknowns and the number of nonzeros, the
ratio to the maximum to the average is 3/2. Similar results are observed for partitions
into 137 and 277 subdomains.

[1] M. Bhardwaj, D. Day, C. Farhat, M. Lesoinne, K. Pierson, and D. Rixen. Application of the FETI
method to ASCI problems - scalability results on one thousand processors and discussion of
highly heterogeneous problems. Int. J. Numer. Meth. Engrg., 47:513–535, 2000.

[2] C. Farhat, M. Lesoinne, P. Le Tallec, K. Pierson, and D. Rixen. FETI-DP: A dual-primal unified
FETI method – part I: A faster alternative to the two-level FETI method. Int. J. Numer.
Meth. Engrg., 50:1523–1544, 2001.

[3] C. Farhat, J. Mandel, and F.-X. Roux. Optimal convergence properties of the FETI domain
decomposition method. Comput. Methods Appl. Mech. Engrg., 115:367–388, 1994.

[4] G. Karypis and V. Kumar. Metis, unstructured graph partitioning and sparse matrix ordering
system. version 2.0. Technical report, University of Minnesota, Department of Computer
Science, Minneapolis, MN 55455, August 1995.

[5] G. Strang and G. J. Fix. An Analysis of the Finite Element Method. Prentice-Hall, Englewood
Cliffs, N.J., 1973.

GRAPH PARTITIONING 201

Figure 3.1: A disconnected subdomain computed by a graph partitioner for a 128
subdomain partition of the component model is depicted. The subdomain has four
node-connected components, and five face-connected components.

0 50 100 150 200 250 300 350 400 450 500 550
0

50

100

150

200

250

300

350

400

450

500

550

T
ot

al
 S

ub
dm

ai
ns

Requested Subdomains

Connected Subdomains: Engine (o) and Component (+)

Figure 3.2: The figure displays the number of subdomains determined if 128, 256 and
512 subdomain partitions are requested for both the engine and the component model.
The solid * line depicts no extra subdomains. The dash dot + line corresponds to
the component model, and the dotted o line corresponds to the engine model. In the
latter two cases each extra connected component of each subdomain is assigned to an
additional subdomain.

202 BHARDWAJ, DAY

100 150 200 250 300 350 400 450 500 550
0

200

400

600

800

1000

1200

1400

S
ec

on
ds

Engine: Init(+) Solve(x) Total(*)

100 150 200 250 300 350 400 450 500 550
2000

4000

6000

8000

10000

12000

14000

U
nk

no
w

ns

Processors

Coarse Grid Size: Standard (o), Connected (+)

Figure 4.1: The figure displays the results for the engine model. The upper figure
shows the initialization time (+), solve time (gap between (x) and (+)) and total
time to compute the ten lowest modes on different numbers of processors. The lower
figure shows the corresponding number of coarse grid unknowns for FETI-DP with
the standard partition (o) and with the weighted partition maintaining connectivity
(+). The 29 processor runs were run twice with different corner selection strategies.

100 150 200 250 300 350 400 450 500 550
0

100

200

300

400

500

600

S
ec

on
ds

Init(+) Solve(x) Total(*)

100 150 200 250 300 350 400 450 500 550
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

4

U
nk

no
w

ns

Processors

Coarse Grid Size: Serial(+) Parallel(*)

Figure 4.2: The results for the component with the weighted partition maintaining
connectivity. No data is shown with the standard partitions due to break downs.

