
Fourteenth International Conference on Domain Decomposition Methods
Editors: Ismael Herrera , David E. Keyes, Olof B. Widlund, Robert Yates c©2003 DDM.org

37. Generic parallel multithreaded programming of domain
decomposition methods on PC clusters

A.S. Charão1, I. Charpentier2, B. Plateau3, B. Stein1

1. Introduction. Since the early implementations of domain decomposition methods
on parallel computers, programming techniques and computer architectures have significantly
evolved. Due to the increasing availability of powerful microprocessors and high-speed net-
works, clusters of PCs become an attractive, low cost option for high-performance computing.
While this trend makes parallel computing much more accessible, developing efficient pro-
grams for these architectures needs in general some expertise in parallel programming. In
this paper we focus our attention on generic and object-oriented programming techniques for
parallel implementation of domain decomposition methods. These techniques are central to
Ahpik, our multithreaded programming tool targeted to such families of numerical methods.

Parallel efficiency is not the only goal when developing applications based on domain
decomposition: flexibility and portability of parallel codes are also essential to preserve in-
vestments made in their development. Some existing parallel libraries, like PSPARSLIB[12]
and PETSc[4], offer a compromise among all these goals. They provide a large set of linear
equation system solvers which use domain decomposition methods as parallel precondition-
ers. Ahpik differs from these tools as it is rather an experimental library for doing research
and experimentation involving parallel computing and numerical methods. It does not aim to
provide a fairly complete set of algorithms and data structures for numerical computations,
however it has some “plug-in” points allowing for easy integration of such components.

Ahpik offers a highly modular support for developing parallel domain decomposition
solvers where numerical aspects are completely decoupled from parallel implementation de-
tails. This tool includes patterns of parallel coordination (task identification, communication
and synchronization) that can be reused to implement different domain decomposition meth-
ods for the resolution of a PDE problem. These patterns can be viewed as drivers for parallel
iterative computations, provided as C++ templates that must be “filled-in” with computa-
tions characterizing each numerical method. Performance results obtained with Ahpik were
published in [2, 3, 1]. In this paper we concentrate on qualitative aspects of our approach. To
do so, our evaluation criteria are based on the visualization of the parallel, multithreaded exe-
cution of some domain decomposition methods within different scenarios (good/bad workload
distribution, synchronous/asynchronous iterations).

The outline of the paper is as follows. Our experience with a generic programming
approach for parallel implementation of a large spectrum of domain decomposition methods
is reported in section 2. Execution traces of a multithreaded driver are presented in section
3.

2. Genericity. A key idea within Ahpik is the representation of a parallel program
as a graph of interacting tasks, namely internal and interface tasks. As far as domain de-
composition methods are concerned, internal tasks correspond to local computations, i.e.
computations that require only data local to a sub-domain (solving the linear system asso-
ciated to a sub-domain for instance). Besides, interface tasks carry out operations requiring
data from neighboring sub-domains.

1Departmento de Eletrônica e Computação (DELC-UFSM), Universidade Federal de Santa Maria,
Brazil, andrea@inf.ufsm.br, benhur@inf.ufsm.br

2Projet Idopt (CNRS-INRIA-UJF-INPG), Laboratoire de Modélisation et Calcul (LMC-IMAG),
Grenoble, France, Isabelle.Charpentier@imag.fr

3Projet Apache (CNRS-INRIA-UJF-INPG), Laboratoire Informatique et Distribution (ID-
IMAG), Brigitte.Plateau@imag.fr

366 CHARÃO, CHARPENTIER, PLATEAU, STEIN

In previous works[2, 3, 1] Ahpik was presented as a three level library: the domain de-
composition level containing specificities of some mainstream methods (Schwarz[13], FETI[8],
Mortar[5]), the parallel drivers level (fixed-point, conjugate gradient and generalized mini-
mum residual schemes), and the kernel of Ahpik which is based on a communicating threads
library named Athapascan[6]. In this paper, Ahpik is described in an enhanced manner in
order to point out the genericity of its parallel patterns and its abilities in the context of
experimental studies.

2.1. Parallel patterns. While mathematical arguments differ significantly from one
domain decomposition method to another, the parallel behavior of such methods is generally
the same: it is dictated by the iterative, intrinsically synchronous, resolution procedure.
In a traditional parallel programming method, the internal task (local computation) and
three interface tasks (send, receive, interface computations) corresponding to a subdomain
are gathered and executed sequentially on a unique UNIX process. Using multithreading,
these four independent tasks may be assigned to different threads that are gathered on a
UNIX process. There is no real order between them until one applies a parallel pattern
for scheduling these tasks. This property eases the balancing of the computations and the
implementation of asynchronous algorithms that allow for masking communication overhead.
Such a programming model is particularly interesting when using clusters of shared-memory
multiprocessors[10].

The assignment of the tasks onto threads depends on the iterative method one chooses to
drive the parallel resolution of the domain decomposition problem. For the sake of simplicity,
we present the fixed point parallel driver (coded in Ahpik) within a domain decomposition
into two subdomains. Since we work with threads, we distinguish read and write tasks that
are carried out through the memory shared by the threads associated to the same subdomain,
from send and receive tasks that require communication through message passing. Threads
are denoted using letters and numbers, the latter is equal to 1 (resp. 2) for threads of
subdomain 1 (resp. 2), and equal to 0 for the thread devoted to the verification of the
stopping criterion related to the convergence of the scheme. According to these definitions,
threads perform the following tasks:

1. Internal Thread IT1: computes local PDE solutions, writes data for ST1, reads data
from ST1, computes a local error and sends it to CT0, and finally reads data from CT1,

2. Send Thread ST1: reads data from IT1, sends them to RT2, reads data from RT1,
computes and updates interface contributions and writes them for IT1,

3. Receive Thread RT1: receives data from ST2 and writes them for ST1,

4. Convergence Thread CT1: receives data from CT0 and writes them for IT1,

5. Convergence Thread CT0: receives data from IT1 and IT2, computes a global error
as specified by the user and sends it to CT1 and CT2.

Send and receive tasks are assigned to different threads: this allows for overlapping
communication with computations, because no sequential order is imposed between send
and receive operations. For example, thread RT1 may receive data from ST2 before IT1 has
finished its computations. There exist other manners of achieving that (for example using
non-blocking send and receive primitives), but multithreading is a more elegant alternative.

When the fixed point driver is a synchronous one, these tasks are ordered uniquely. This
may be observed on figure 2.1. In that picture, we draw the activity of threads, during one
iteration, with respect to the execution time: a colored box signifies that the thread is active,
a white box indicates the thread is blocked, waiting for data. Threads assigned to the same
processor communicate through shared memory: a red arrow represents a synchronization
point where one thread must wait for data made available by another. Message passing (blue
arrows) is used to exchange data between threads running on different processing nodes. For
the sake of clarity, the size of colored boxes corresponding to interface tasks has been enlarged

GENERIC PARALLEL MULTITHREADED PROGRAMMING OF DDM 367

computations
local

interface or
convergence
computation

send/receive
read/write

synchronization

communication

idle time

IT1

ST1

RT1

CT0

CT1

IT2

ST2

RT2

CT2

(a)

su
bd

om
ai

n
2

su
bd

om
ai

n
1

(b)

new iterationnew iteration

Figure 2.1: Theoretical traces for a synchronous “fixed point” parallel driver: (a)
well-balanced workload (b) non-balanced workload

in order to avoid the superposition of blue and red arrows as it happens in actual execution
traces presented in section 3.

Figure 2.1.a corresponds to a well-balanced domain decomposition in which the internal
tasks of the two subdomains have the same computational cost. One observes that the two
sets of threads have the same activity: the main steps described before are drawn on the
scheme. In figure 2.1.b the two internal tasks have different computational costs. Since IT1

performs less local computations than IT2, data are sent by ST1 before the termination of
local computations perfomed by IT2. In that case these data may be received by RT2 quite
immediately, this is why a break in the activity of IT2 can occur4. Other steps are similar to
those of figure 2.1.a. One observes that the four threads of subdomain 1 are inactive in the
shadowed time interval. They wait for data sent by ST2, available only at the end of local
computations performed by IT2. This induces idle times that may be reduced by placing
multiple subdomains on each processing node.

An alternate solution relies on asynchronous iterations. As described in [9], an asyn-
chronous scheme may be designed for the Schwarz alternating method. A theoretical trace
is proposed in figure 2.2. There are no more synchronization points (no red arrows) between
RT and ST threads (resp. CT and IT threads) because ST threads (resp. IT) do not wait
for data made available by their RT (resp. CT) counterparts. In practice, ST and IT threads
simply read data from shared memory without concern on the moment these data have been
updated. As a consequence, there is always an active thread at any time.

On our trial trace, one observes that IT1 is performing twice the same computation (first
two iterations) because it uses the same interface data. The latter are updated when IT2

has finished its first iteration. In more general situations (large number of subdomains),
this problem is not so glaring because some interface data are usually updated before a new
iteration begins.

2.2. An experimental library for domain decomposition methods. Ah-
pik is a generic parallel multithreaded environment that allows for the implementation of
domain decomposition methods. We have been using generic programming facilities of the
C++ programming language to allow users of Ahpik for a rather easy modification of the
library with respect to the PDE problem of interest. This is why we decide to build Ahpik
with regards to usual mathematical components. Moreover many “plug-in” points exist for

4Such breaks actually depend on the threads package and the operating system, they are not
visible in the traces presented on section 3.

368 CHARÃO, CHARPENTIER, PLATEAU, STEIN

IT1

ST1

RT1

CT1

IT2

ST2

RT2

CT2

CT0

su
bd

om
ai

n
2

su
bd

om
ai

n
1

computations
local

interface or
convergence
computation

send/receive
read/write

synchronization

communication

Figure 2.2: Theoretical trace for a non-balanced asynchronous “fixed point” parallel
driver

coupling Ahpik with other existing libraries. The following classes and C++ templates are
part of Ahpik5:

1. mesh capabilities: mesh data structures, mesh partitioning algorithms, subdomain
and interface;

2. some discretization methods;
3. domain decomposition methods: additive Schwarz method as well as FETI and

mortar methods;
4. local solvers: these are provided by SuperLU[7] for a LU direct solver and IML++[11]

for iterative solvers. When appropriate, one may also define a matrix-vector product to
perform local computation tasks;

5. generic parallel drivers: fixed point and conjugate gradient.

On one hand, Ahpik classes may be viewed as model classes for experimental solution of a
PDE problem by a parallel domain decomposition method. Any user may plug his own C++
library at the level of interest (local solver, domain decomposition, discretization, etc.) as far
as the mathematical aspects have been verified. For instance, changing the data structures
representing matrices and vectors does not affect the code corresponding to subdomain or
interface computations because these functions occur as C++ templates.

It is also possible to develop a new multithreaded parallel pattern that takes into account
a preconditioner for example. Whatever the parallel pattern is, the management of the
multithreading implementation remains hidden in the Ahpik kernel. Such an implementation
allows to use Ahpik in a more general framework: grid-nesting and multigrid schemes are
potential targets for our future works.

One the other hand, Ahpik is an experimental library devoted to parallel implementation
of domain decomposition methods. It can be viewed as a set of trial problems (Laplace equa-
tion, various DDM, ...) for the evaluation of parallel programming alternatives. Developing
new strategies to deal with parallelism only affects the kernel of Ahpik: the trial applications
included in the object-oriented library are reusable.

3. Visualizing the execution of parallel drivers. Ahpik generates execution
traces compatible with the post-processing tool Pajé[14]. This allows to make clear the role
of each thread and the interactions between threads. Execution traces we present in this
section are relative to a fixed point parallel driver again. The choice of this method against a

5More information on these components along with examples of their utilization will be included
in the Ahpik distribution: http://www.inf.ufsm.br/ahpik

GENERIC PARALLEL MULTITHREADED PROGRAMMING OF DDM 369

laplace-uzawa-sync-3nodes-iter.trace — ~/Traces

 6.757652

Thread State Communication

Synchronization

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Node 0 CT 0

Node 1 CT 1

IT 1

ST 1-2

RT 1-2

Node 2 CT 2

IT 2

ST 2-1

RT 2-1

s

Figure 3.1: Synchronous fixed point driver, iterative local solver

conjugate gradient method is done for the sake of clarity of the drawings: the former induces
a unique global synchronization point per iteration (global error computation), while the
latter requires two global synchronizations (descent step and global error computation).

The main window of Pajé provides a space-time diagram which shows the activity of
threads running on each processing node. As seen in section 2.1, Ahpik uses a set of threads
for each subdomain. A single node can deal with multiple sets of threads i.e multiple sub-
domains. In the following, all executions are realized on 3 processing nodes, the first one
checking the global convergence criterion of the domain decomposition method only.

Therefore node 0 runs a single thread (CT0) while nodes 1 and 2 run the sets of threads
devoted to subdomain computations (CT, IT, ST, RT). The thread activity along the iter-
ations is represented by a horizontal bar which is either green when the thread is working
or pink when the thread is waiting for data. Two kinds of arrows are used to represent syn-
chronization points. Red ones are synchronization between threads associated to the same
subdomain (synchronized access to shared data) whereas blue ones show communication
phases (message passing). The problem solved is the Laplace equation applied in rectangular
domains, the geometric decompositions are described gradually.

3.1. General behavior of synchronous drivers. Figure 3.1 points out idle times
that may appear when dealing with synchronous parallel drivers. For this experiment we
used the domain decomposition of a rectangular domain into two well-balanced subdomains.
Local computations are performed using a conjugate gradient solver which converges faster for
subdomain 2 than for subdomain 1. The same behavior would have been observed using either
a LU solver on a non-balanced domain decomposition or different discretization methods on
each side of the interface. There are several ways of reducing idle times. Two of them,
assignment of several process to a processor and implementation of asynchronous schemes,
are discussed below. Solutions depending on dynamic load-balancing techniques will be
discussed in a future work.

One of the key points of this work lies on the genericity of parallel drivers, which are
completely independent of computations characterizing each domain decomposition method.
As said before, the execution trace shows the behavior of a parallel driver. As a matter of
fact, a Schwarz method or a FETI method applied to a domain decomposition in vertical
stripes lead to the same kind of execution trace, the difference being in the computational
cost and the number of iterations.

370 CHARÃO, CHARPENTIER, PLATEAU, STEIN

laplace-uzawa-sync-3nodes-desequi-multi.trace — ~/Traces

 23.233918

Thread State Communication

Synchronization

20 25 30 35 40

Node 0 CT 0

Node 1 CT 1

CT 2

IT 1

IT 2

ST 1-2

ST 2-1

ST 2-3

RT 1-2

RT 2-1

RT 2-3

Node 2 CT 3

IT 3

ST 3-2

RT 3-2

s

Figure 3.2: Synchronous fixed point driver, 2 subdomains assigned to node 1.

3.2. Reducing idle times. In MPI parallel programming, diminution of idle times
can be achieved by placing multiple Unix processes (each one corresponding to a subdomain)
to a processing node. A similar solution may be adopted for threaded programming. In
that case a processor deals with a unique Unix process. The latter manages multiple sets of
threads, each one being associated to a subdomain. Such a balancing method is presented
in figure 3.2 for a decomposition of a rectangle into 3 subdomains (vertical bands). This
execution trace, as well as others presented before, was generated on uniprocessor nodes.
The first two (smaller) contiguous subdomains are assigned to node 1, while node 2 works
on a single band. Even though subdomains have different computational costs (the first two
subdomains are smaller than the third), one notices that the workload is well distributed over
the processing nodes. Indeed, each node always has at least one active thread at any time
interval. The interleaving of active threads on node 1 is due to the concurrent computation of
two neighboring subdomains. When running the same experiment on 3 multiprocessor (SMP)
nodes, the aspect of this execution trace changes for node 1 because the two subdomains can
be treated not concurrently but in parallel.

Figure 3.3 presents an execution trace corresponding to an asynchronous parallel driver
(fixed point) applied with the additive Schwarz method. The rectangular domain is decom-
posed in two overlapping (non-balanced) bands. One clearly observes that no idle times occur
for this execution. Besides, no more red arrows representing synchronizations occur between
RT and ST threads (resp. CT and IT threads). Indeed, in such asynchronous methods,
threads devoted to local computations do not block, they do not wait for data. As a conse-
quence, the overall iterative procedure is less structured and some processors may perform
more iterations than others. In this execution trace, we can assume that each arrow arriv-
ing at a receive thread (the fourth thread on each node) indicates the beginning of a new
iteration for each subdomain. Therefore node 1 performs 5 iterations while node 2 performs
only 3. As predicted in theoretical traces, a same local computation can be performed twice.
In practice, the use of asynchronous drivers could be interesting when the decomposition
involves a larger number of subdomains distributed over non-homogeneous processing nodes.

GENERIC PARALLEL MULTITHREADED PROGRAMMING OF DDM 371

laplace-schwarz-3nodes-desequi-iter.trace — ~/Traces

 1548.401

Thread State Communication

Synchronization

00 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500 2600 2

Node 0 CT 0

Node 1 CT 1

IT 1

ST 1-2

RT 1-2

Node 2 CT 2

IT 2

ST 2-1

RT 2-1

ms

iterations for subdomain 2

iterations for subdomain 1

Figure 3.3: Asynchronous fixed point driver.

REFERENCES

[1] A. B. Abdallah, A. S. C. ao, I. Charpentier, and B. Plateau. Ahpik: A parallel multithreaded
framework using adaptivity and domain decomposition methods for solving PDE problems.
In R. H. J. P. D. K. Y. K. N. Debit, M. Garbey, editor, 13th International Conference on
Domain Decomposition Methods, pages 295–301, 2000.

[2] A. C. ao, I. Charpentier, and B. Plateau. A framework for parallel multithreaded implementation
of domain decomposition methods. In E. H. D’Hollander, G. R. Joubert, F. J. Peters, and
H. J. Sips, editors, Parallel Computing: Fundamentals and Applications, pages 95–102.
Imperial College Press, 2000.

[3] A. S. C. ao, I. Charpentier, and B. Plateau. Programmation par objet et utilisation de processus
légers pour les méthodes de décomposition de domaine. Technique et Science Informatiques,
5(19), 2000.

[4] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith. PETSc 2.0 User Manual. Argonne
National Laboratory, http://www.mcs.anl.gov/petsc/, 1997.

[5] C. Bernardi, Y. Maday, and A. T. Patera. A new non conforming approach to domain decom-
position: The mortar element method. In H. Brezis and J.-L. Lions, editors, Collège de
France Seminar. Pitman, 1994. This paper appeared as a technical report about five years
earlier.

[6] J. Briat, I. Ginzburg, M. Pasin, and B. Plateau. Athapascan runtime : Efficiency for irregular
problems. In Proceedings of the Europar’97 Conference, pages 590–599. Springer Verlag,
august 1997.

[7] J. W. Demmel, J. R. Gilbert, and X. S. Li. An asynchronous parallel supernodal algorithm
for sparse Gaussian elimination. SIAM Journal on Matrix Analysis and Applications,
20(4):915–952, 1999.

[8] C. Farhat and F.-X. Roux. A Method of Finite Element Tearing and Interconnecting and its
Parallel Solution Algorithm. Int. J. Numer. Meth. Engrg., 32:1205–1227, 1991.

[9] R. Guivarch and P. Spiteri. Implantation de méthodes de sous-domaines asynchrones avec PVM
et MPI sur l’IBM-SP2. Calculateurs Parallèles, 10(4):431–438, 1998.

[10] E. L. Lusk and W. W. Gropp. A taxonomy of programming models for symmetric multipro-
cessors and SMP clusters. In Proceedings of Programming Models for Massively Parallel
Computers, pages 2–7, 1995.

372 CHARÃO, CHARPENTIER, PLATEAU, STEIN

[11] R. Pozo et al. IML++ WWW home page, 1997.

[12] Y. Saad and A. V. Malevsky. PSPARSLIB: A portable library of distributed memory sparse
iterative solvers. In Proceedings of Parallel Computing Technologies (PaCT-95), 1995.

[13] H. A. Schwarz. Gesammelte Mathematische Abhandlungen, volume 2, pages 133–143. Springer,
Berlin, 1890. First published in Vierteljahrsschrift der Naturforschenden Gesellschaft in
Zürich, volume 15, 1870, pp. 272–286.

[14] B. O. Stein, J. C. de Kergommeaux, and P.-E. Bernard. Pajé, an interactive visualization tool
for tuning multi-threaded parallel applications. Parallel Computing, 26:1253–1274, 2000.

