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38. A preconditioner for the Schur complement domain
decomposition method
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1. Introduction. This paper presents a preconditioner for the Schur complement
domain decomposition method inspired by the dual-primal FETI method [4]. Indeed the
proposed method enforces the continuity of the preconditioned gradient at cross-points di-
rectly by a reformulation of the classical Neumann-Neumann preconditioner. In the case of
elasticity problems discretized by finite elements, the degrees of freedom corresponding to the
cross-points coming from domain decomposition, in the stiffness matrix, are separated from
the rest. Elimination of the remaining degrees of freedom results in a Schur complement ma-
trix for the cross-points. This assembled matrix represents the coarse problem. The method
is not mathematically optimal as shown by numerical results but its use is rather economical.
The paper is organized as follows: in sections 2 and 3, the Schur complement method and
the formulation of the Neumann-Neumann preconditioner are briefly recalled to introduce
the notations. Section 4 is devoted to the reformulation of the Neumann-Neumann precon-
ditioner. In section 5, the proposed method is compared with other domain decomposition
methods such as generalized Neumann-Neumann algorithm [7][9], one-level FETI method
[5] and dual-primal FETI method. Performances on a parallel machine are also given for
structural analysis problems.

2. The Schur complement domain decomposition method. Let Ω denote
the computational domain of an elasticity problem. Consider a symmetric and positive
definite linear system obtained by finite element discretization of the equations of equilibrium:

K u = f, (2.1)

with the stiffness matrix K, the vector of degrees of freedom u, and the right-hand side f .
The original domain Ω is partioned into ns non-overlapping subdomains Ωs. Let Ks be the
local stiffness matrix and us the vector of degrees of freedom corresponding to subdomain Ωs.
Let Ns denote the Boolean matrix mapping the degrees of freedom us into global degrees of
freedom u:

us = NsT

u. (2.2)

Then the stiffness matrix is obtained by the standard assembly process:

K =

ns∑
s=1

Ns Ks NsT

. (2.3)

The union of all boundaries between subdomains is Γ such that Γ = ∪ns
s=1Γ

s with Γs =
∂Ωs\∂Ω. For each subdomain the total set of degrees of freedom is then split into two subsets,
the interface degrees of freedom us

b associated with Γs and the other degrees of freedom us
i of

the subdomain Ωs. After this partition, the subdomain stiffness matrix, displacement vector,
right-hand side and Boolean matrix take the following form:

Ks =

[
Ks

ii Ks
ib

KsT

ib Ks
bb

]
,

{
us} =

{
us

i

us
b

}
,

{
fs} =

{
fs

i

fs
b

}
, and Ns = [Ns

i Ns
b ]. (2.4)
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With this notation, the linear system (2.1) takes the form:


K1
ii · · · 0 K1

ibN
1T

b

...
. . .

...
...

0 · · · Kns
ii Kns

ib N
nT

s
b

N1
b K1T

ib · · · Nns
b K

nT
s

ib

ns∑
s=1

Ns
b Ks

bbN
sT

b







u1
i

...
uns

i

ub




=




f1
i

...
fns

i
ns∑

s=1

Ns
b fs

b




. (2.5)

After elimination of the interior degrees of freedom, the problem (2.5) reduces to a problem
(2.6) posed on the interface Γ:

( ns∑
s=1

Ns
b

(
Ks

bb − KsT

ib Ks−1

ii Ks
ib

)
NsT

b

)
ub =

ns∑
s=1

Ns
b

(
fs

b − KsT

ib Ks−1

ii fs
i

)
. (2.6)

Defining the global Schur complement matrix S by:

S =

ns∑
s=1

Ns
b Ss NsT

b (2.7)

where the local Schur complement matrix is given by Ss = Ks
bb − KsT

ib Ks−1

ii Ks
ib. The linear

system (2.6) is solved iteratively without assembling S, using a preconditioned conjugate
gradient algorithm.

3. Neumann-Neumann preconditioners. For mechanical problems, the most
classical preconditioner used is the Neumann-Neumann method [1][7]. The preconditioner
(3.1) is defined by approximating the inverse of the sum of local Schur complement matrices
by the weighted sum of the inverses:

z = M r =

ns∑
s=1

Ns
b Ds Ss−1

Ds NsT

b r, (3.1)

where r is the conjugate gradient and z is the preconditioned conjugate gradient. For con-
vergence reasons [7], the diagonal weight matrices Ds must verify:

ns∑
s=1

Ns
b Ds NsT

b = IΓ. (3.2)

However, the convergence rate decreases rapidly for a large number of subdomains. Then,
the balancing domain decomposition method [8] includes a coarse problem in order to reduce
significantly this dependence on the number of subdomains. The balancing method or the
generalized Neumann-Neumann preconditioner [7] writes:

M =
(
I − G [GT S G]−1 GT S

) ns∑
s=1

Ns
b Ds S̃s−1

Ds NsT

b , (3.3)

with G = [N1
b D1Z1, ..., N

nf

b Dnf Znf ], (3.4)

where nf is the number of floating subdomains (subdomain without natural Dirichlet con-
dition), the block matrices Zs are boundary values of subdomain solutions with restriction

of rigid body modes on Γs, and S̃s−1
is the pseudo inverse of the local Schur complement

matrix. The method has been extended [9] for second or fourth order elasticity problems, by
using corner modes. By definition, a corner or a cross-point is a node belonging to more than
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two subdomains and also, for plate and shell problems, a node located at the beginning and
the end of each edge of each subdomain. Then, the block matrices Zs are boundary values of
subdomain solutions with successively one degree of freedom fixed to one at one corner, all
other corner degrees of freedom fixed to zero. The method is efficient, but the coarse matrix
[GT S G] is costly to build because it involves a product with S.

4. A new coarse problem. We propose to build a Neumann-Neumann precondi-
tioner by enforcing a continuous field at the cross-points. In the classical Neumann-Neumann
preconditioner with or without coarse problem, the field is continuous only by averaging the
contributions of each subdomain at the cross-points. Then, we introduce a new partitioning

c

c

c

Ω

c

Ω3

Ω4Ω1

2

r

rr

r

c

Figure 4.1: Mesh partition : corner (c) and remainder nodes (r)

(figure 4.1), by splitting us into two sub-vectors (4.1) where uc is a global solution vector
over all defined corner degrees of freedom and us

r is the remainder subdomain solution vector.

{
u
}

=

{
ur

uc

}
=




u1
r

...
uns

r

uc




. (4.1)

The Boolean matrix Ns
c (4.2) maps the local corner equation to the global corner equation:

us
c = NsT

c uc. (4.2)

Then, we introduce new Boolean matrices (4.3) which extract from the interface Γs, the
cross-points and the remainder unknowns:

{
us} =


 us

r = [Rs
ri Rs

rb]

{
us

i

us
b

}
us

c = Rs
c us

b


 . (4.3)

According to this new partition of the degrees of freedom, the preconditioned gradient is
the restriction on Γ of the solution of problem (4.4) with subdomains connected by the
cross-points as shown in figure 4.1:
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with fs
r = Rs

rb Ds NsT

b r (with fs
i = 0) and fs

c = Rs
c Ds NsT

b r. It is noted that by definition

of Ds, the quantity

ns∑
s=1

Ns
c fs

c =

ns∑
s=1

Ns
c Rs

c Ds NsT

b r is the restriction of gradient r at the

cross-points (rc). Thus the solution of (4.4) is written:

us
r = Ks−1

rr

(
fs

r − Ks
rc NsT

c uc

)
, (4.5)

uc =
( ns∑

s=1

Ns
c

(
Ks

cc − KsT

rc Ks−1

rr Ks
rc

)
NsT

c

)−1
ns∑

s=1

Ns
c

(
fs

c − KsT

rc Ks−1

rr fs
r

)
. (4.6)

Finally, the preconditioned gradient is given by:

z = Mr =

ns∑
s=1

Ns
b DsRsT

c NsT

c uc +

ns∑
s=1

Ns
b DsRsT

rb us
r, (4.7)

and the proposed preconditioner takes the form:

M =

ns∑
s=1

Ns
b Ds

(
Ns

c (Rs
c−KsT

rc Ks−1

rr Rs
rb)

)T

S−1
c

ns∑
s=1

(
Ns

c (Rs
c−KsT

rc Ks−1

rr Rs
rb)

)
DsNsT

b

+

ns∑
s=1

Ns
b Ds

[
RsT

rb Ks−1

rr Rs
rb

]
DsNsT

b . (4.8)

The first term is a coarse problem which couples all subdomains. We suppose that each sub-
domain owns enough cross-points to have local Neumann problems (4.5) well posed, otherwise
artificial cross-points are added. The coarse matrix is built easily by forming the matrices
Ss

c in each subdomain and by assembling Sc:

Sc =

ns∑
s=1

Ns
c

[
Ks

cc − KsT

rc Ks−1

rr Ks
rc

]
NsT

c =

ns∑
s=1

Ns
c Ss

c NsT

c . (4.9)

In comparison with coarse problem of the balancing method, the size of the coarse problem
Sc (equals to the number of degrees of freedom per node multiplied by the total number of
cross-points) is small, because of the definition of corner modes.

5. Numerical results. The parallel implementation of the different methods has
been developed within message passing programming environment. Each subdomain is al-
located to one processor. All coarse problems are assembled and solved by a skyline solver
during the iterations of the preconditioned conjugate gradient algorithm.

In all the tables below, GNN denotes the Neumann-Neumann preconditioner with coarse
grid solver based on rigid body modes (RBM) [8] or corner modes (CM) [9], NN+C is the
proposed Neumann-Neumann preconditioner with coarse grid solver, FETI-DP is a dual-
primal Finite Element Tearing and Interconnecting method [4] and FETI-1 is a classical
FETI method [5]. In the absence of other specification, the FETI methods are equipped with
the Dirichlet preconditioner. The stopping criterion to monitor the convergence is the same
in all cases presented and it is related to the global residual:

‖ K u − f ‖ / ‖ f ‖ ≤ 10−6. (5.1)

We investigate the numerical scalability of the proposed method with respect to the mesh
size h and to the number of subdomains ns. For this purpose, we consider a cylindrical shell
roof (figure 5.1) subjected to a loading of its own weight. The roof is supported by walls
at each end and is free along the sides. For symmetry reasons only a quarter of the roof is
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considered and is meshed with 3-node shell elements. We study three discretizations denoted
respectively by h (3,750 degrees of freedom), h/2 (14,406 degrees of freedom) and h/4 (56,454
degrees of freedom). The meshes h/2 et h/4 are obtained from the first one by global regular
refinement.

R
 = 7,62 m

 7,
62

 m
40°

Figure 5.1: A cylindrical shell roof, mesh h/2 decomposed into 24 subdomains

First, the three meshes were decomposed into 24 subdomains, we note (figure 5.1) that
automatic decomposition by METIS [6] induces rugged interfaces. The results were obtained
on a Origin 2000 system (64 processors) of “Pôle Parallélisme Île de France Sud”. We report

Table 5.1: A cylindrical shell roof, numerical scalability, ns = 24
MESH THICKNESS (m) GNN (CM) NN+C FETI-DP

h 0.1 30 iter. (726) 42 iter. (270) 44 iter. (270)
0.01 31 iter. 48 iter. 50 iter.
0.001 54 iter. 99 iter. 106 iter.

h/2 0.1 36 iter. (714) 41 iter. (270) 44 iter. (270)
0.01 37 iter. 48 iter. 50 iter.
0.001 45 iter. 74 iter. 80 iter.

h/4 0.1 39 iter. (738) 40 iter. (276) 45 iter. (276)
0.01 39 iter. 44 iter. 47 iter.
0.001 42 iter. 67 iter. 73 iter.

(table 5.1) the number of iterations to converge for the different methods and in brackets
the size of the coarse problem. The number of iterations remains roughly constant for the
different methods (thickness = 0.1 m and 0.01 m). However all the methods are sensitive to
the small thickness of the roof, and especially the FETI-DP method and the NN+C method.

The second test (table 5.2) consists in fixing the size of the problem (h/4, 56,454 degrees
of freedom, thickness = 0.1 m) but we change the number of subdomains (12, 24, 48). The
CPU times are reported (table 5.2) for both the preparation step (finite element operations,
building of coarse problem,...) and for the solution. It appears clearly that the building of
coarse problem takes a large part of the cpu time for GNN method. The two other methods
have a good speed-up.

We consider now the modal analysis of a plate (1×1 m) embeded on one side. The problem
is discretized in 10,086 degrees of freedom with 3-node shell elements. The mesh is partitioned
into 20 subdomains. The two lowest eigenmodes are obtained in five iterations of the subspace
iteration method. The conjugate gradient method with restart technique [2][5] is used to deal
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Table 5.2: A cylindrical shell roof, parallel scalability, mesh h/4
ns INTERFACE METHOD ITERATION CPU (sec.)

GNN (CM) 38 iter. (426) 46.22 + 9.81 = 56.03
12 3,144 NN+C 40 iter. (216) 6.42 + 10.38 = 16.80

FETI-DP 45 iter. (216) 6.38 + 12.79 = 19.17

GNN (CM) 39 iter. (738) 18.82 + 5.30 = 24.12
24 4,818 NN+C 40 iter. (276) 1.59 + 5.21 = 6.80

FETI-DP 45 iter. (276) 1.52 + 5.45 = 6.97

GNN (CM) 45 iter. (1602) 18.67 + 8.18 = 26.85
48 7,295 NN+C 51 iter. (630) 0.81 + 3.21 = 4.02

FETI-DP 56 iter. (630) 0.86 + 3.64 = 4.50

with successive and multiple right-hand sides. This technique is based on the exploitation
of previously computed conjugate directions. Figure 5.2 shows the iteration history with
respect to the number of right-hand sides using different methods, and we report also the
total number of iterations, the size of the coarse problem (in brackets) and the CPU times.
The GNN (CM) method converges quickly but the cost of one iteration is more important
than the other methods, because of the large size of the coarse problem. Similar results
are obtained for transient analysis. In addition, the solution of time-dependent problems by
the implicit Newmark algorithm calls for successive solution of the linear system with the
same matrix [M + β ∆t2 K]. In this case, there are no longer floating subdomains due to
the inertia term. Then, building a coarse grid based on the rigid body modes of stiffness
matrices Ks becomes costly [3]. While the methods using the corner modes are not affected
by this shifting of M .
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GNN (CM) : 278 itr. (582), 1.97 + 7.72 = 9.69 s
NN+C : 332 itr. (222), 0.22 + 4.00 = 4.22 s

FETI-DP : 361 itr. (222), 0.21 + 4.36 = 4.57 s

Figure 5.2: A shell problem, modal analysis

Another test example concerns a plane stress problem with a square (1×1 m) embeded on
one side and subjected to a distributed load on the opposite side. The problem is discretized
in 20,402 degrees of freedom with 3-node elements (101×101 nodes). The mesh is partitioned
into 14 and 28 subdomains. The NN+C method is proved (table 5.3) to be efficient for this
kind of problems.

Finally, we consider a three-dimensional cantilever beam (4×4×40 m) subjected to a
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Table 5.3: 2D elasticity problem, 3-node elements, 101×101 nodes, 20,402 d.o.f.
ns GNN (RBM) GNN (CM) NN+C FETI-DP FETI-1

14 24 iter. (30) 14 iter. (132) 20 iter. (52) 22 iter. (52) 24 iter. (30)

28 26 iter. (72) 14 iter. (286) 23 iter. (108) 24 iter. (108) 26 iter. (72)

bending load. The finite element discretization is done with 8-node brick elements (12×12×76
nodes, 32,832 degrees of freedom). The beam (figure 5.3) is cut into 20 and 40 subdomains.

Figure 5.3: A cantilver beam, 20 subdomains (interface 7,614 d.o.f.) and 40 subdo-
mains (interface 10,262 d.o.f.)

Table 5.4: Cantiler beam, 32,832 d.o.f.
FETI-DP FETI-1

ns GNN (RBM) NN+C DIRICHLET LUMPED DIRICHLET LUMPED

20 44 iter. 30 iter. 31 iter. 60 iter. 43 iter. 67 iter.
(102) (852) (102)

40 54 iter. 30 iter. 30 iter. 53 iter. 58 iter. 77 iter.
(216) (1968) (216)

For this analysis, the FETI methods use equally the lumped preconditioner. Table 5.4 sum-
marizes the results with the size of the coarse problem (in brackets). Methods using corner
modes have the best convergence rate, but the size of the coarse problem is very large (almost
20% of the interface for 40 subdomains). This size can be reduced easily. In fact, with brick
elements, the number of cross-points can be chosen just enough to remove the singularities
in subdomains.

6. Conclusion. In this paper, we have presented a modified Neumann-Neumann pre-
conditioner validated by several examples. The results suggest that the proposed method
(NN+C method) is numerically scalable with respect to the number of subdomains and to
the mesh size. On the representative examples considered the NN+C method has the same
performance as the FETI-DP method. Moreover, from the viewpoint of CPU time, the
proposed method outperforms the optimal but expensive GNN preconditioner. However,
the results depend largely on the implementation of the algorithm for solving the coarse
problem.
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