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Preface

The annual International Conference on Domain Decomposition Methods for Partial
Differential Equations has been a major event in Applied Mathematics and Engi-
neering for the last fifteen years. The proceedings of the Conferences have become a
standard reference in the field, publishing seminal papers as well as the latest theo-
retical results and reports on practical applications.

The Fourteenth International Conference on Domain Decomposition Methods, was
hosted by the Universidad Nacional Autónoma de México (UNAM) at Hacienda de
Cocoyoc in Morelos, Mexico, January 6-12, 2002. It was organized by Ismael Herrera,
Institute of Geophysics, of the National Autonomous University of Mexico (UNAM).
He was assisted by a Local Organizing Committee headed by Robert Yates, with the
active participation of Gustavo Ayala-Milian, Martin Diaz and Gerardo Zenteno.

This was the sixth of the meetings in this nearly annual conference to be hosted
in the Americas, but the first such outside of the United States. It was stimulating
and rewarding to have the participation of many practicing scientists and graduate
students from Mexico’s growing applied mathematics community. Approximately one
hundred mathematicians, engineers, physical scientists, and computer scientists from
17 countries spanning five continents participated. This volume captures 52 of the 78
presentations of the Conference.

Since three parallel sessions were employed at the conference in order to accommo-
date as many presenters as possible, attendees and non-attendees alike may turn to
this volume to keep up with the diversity of subject matter that the topical umbrella
of “domain decomposition” inspires throughout the community. The interest of so
many authors in meeting the editorial demands of this proceedings volume demon-
strates that the common thread of domain decomposition continues to justify a regular
meeting. “Divide and conquer” may be the most basic of algorithmic paradigms, but
theoreticians and practitioners alike continue to seek — and find — incrementally
more effective forms, and value the interdisciplinary forum provided by this proceed-
ings series.

Domain decomposition is indeed a basic concept of numerical methods for partial
differential equations (PDE’s) in general, although this fact is not always recognized
explicitly. It is enlightening to interpret many numerical methods for PDE’s as do-
main decomposition procedures and, therefore, the advances in Domain Decomposition
Methods are opening new avenues of research in this general area. This is exhibited in
this volume. In particular, using a continuous approach an elegant general theory of
domain decomposition methods (DDM’s) is explained, which incorporates direct and
a new class of indirect methods in a single framework. This general theory interprets
DDM’s as procedures for gathering a target of information, on the internal bound-
ary -’the sought information’-, that is chosen beforehand and is sufficient for defining
well-posed local problems in each one of the subdomains of the partition. There are
two main procedures for gathering the ’sought information’: the direct method, which
applies local solutions of the original differential equation, and the indirect method,
which uses local solutions of the adjoint differential equation. Several advantages of
the ’indirect method’ are exhibited.
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Besides inspiring elegant theory, domain decomposition methodology satisfies the
architectural imperatives of high-performance computers better than methods op-
erating only on the finest scale of the discretization and over the global data set.
These imperatives include: concurrency on the scale of the number of available pro-
cessors, spatial data locality, temporal data locality, reasonably small communication-
to-computation ratios, and reasonably infrequent process synchronization (measured
by the number of useful floating-point operations performed between synchroniza-
tions). Spatial data locality refers to the proximity of the addresses of successively
used elements, and temporal data locality refers to the proximity in time of successive
references to a given element.

Spatial and temporal locality are both enhanced when a large computation based
on nearest-neighbor updates is processed in contiguous blocks. On cache-based com-
puters, subdomain blocks may be tuned for workingset sizes that reside in cache. On
message-passing or cache-coherent nonuniform memory access (cc-NUMA) parallel
computers, the concentration of gridpoint-oriented computations — proportional to
subdomain volume — between external stencil edge-oriented communications — pro-
portional to subdomain surface area, combined with a synchronization frequency of
at most once per volume computation, gives domain decomposition excellent parallel
scalability on a per iteration basis, over a range of problem size and concurrency. In
view of these important architectural advantages for domain decomposition methods,
it is fortunate, indeed, that mathematicians studied the convergence behavior aspects
of the subject in advance of the wide availability of these cost-effective architectures,
and showed how to endow domain decomposition iterative methods with algorithmic
scalability, as well.

Domain decomposition has proved to be an ideal paradigm not only for execu-
tion on advanced architecture computers, but also for the development of reusable,
portable software. Since the most complex operation in a Schwarz-type domain de-
composition iterative method — the application of the preconditioner — is logically
equivalent in each subdomain to a conventional preconditioner applied to the global
domain, software developed for the global problem can readily be adapted to the local
problem, instantly presenting lots of “legacy” scientific code for to be harvested for
parallel implementations. Furthermore, since the majority of data sharing between
subdomains in domain decomposition codes occurs in two archetypal communication
operations — ghost point updates in overlapping zones between neighboring subdo-
mains, and global reduction operations, as in forming an inner product — domain
decomposition methods map readily onto optimized, standardized message-passing
environments, such as MPI.

The same arguments for reuse of existing serial methods in a parallel environ-
ment can be made for Schur-type or substructuring forms of domain decomposition,
although in the substructuring case, there are additional types of operations to be
performed on interfaces that are absent in the undecomposed original problem. Of
course, treatment of the interface problem is where the art continues to undergo de-
velopment, as the overall convergence depends upon this aspect when the subdomain
problems are solved exactly.

Finally, it should be noted that domain decomposition is often a natural paradigm
for the modeling community. Physical systems are often decomposed into two or more
contiguous subdomains based on phenomenological considerations, such as the impor-
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tance or negligibility of viscosity or reactivity, or any other feature, and the subdomains
are discretized accordingly, as independent tasks. This physically-based domain de-
composition may be mirrored in the software engineering of the corresponding code,
and leads to threads of execution that operate on contiguous subdomain blocks, which
can either be further subdivided or aggregated to fit the granularity of an available
parallel computer, and have the correct topological and mathematical characteristics
for scalability.

The organization of the present proceedings differs from that of previous volumes
in that many of the papers are grouped into minisymposia, which provides a finer-
grained topical grouping.

These proceedings will be of interest to mathematicians, computer scientists, and
computational scientists, so we project its contents onto some relevant classification
schemes below.

American Mathematical Society (AMS) 2000 subject classifications
(http://www.ams.org/msc/) include:

65C20 Numerical simulation, modeling

65F10 Iterative methods for linear systems

65F15 Eigenvalue problems

65M55 Multigrid methods, domain decomposition for IVPs

65N30 Finite elements, Rayleigh-Ritz and Galerkin methods, finite methods

65N35 Spectral, collocation and related methods

65N55 Multigrid methods, domain decomposition for BVPs

65Y05 Parallel computation

68N99 Mathematical software

Association for Computing Machinery (ACM) 1998 subject classifications (http://www.acm.org/class/1998/)
include:

D2 Programming environments, reusable libraries

F2 Analysis and complexity of numerical algorithms

G1 Numerical linear algebra, optimization, differential equations

G4 Mathematical software, parallel implementations, portability

J2 Applications in physical sciences and engineering

Applications for which domain decomposition methods have been specialized in
this proceedings include:

fluids Stokes, Navier-Stokes, multiphase flow, dynamics of arteries, pipes, and rivers
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materials phase change, composites

structures linear and nonlinear elasticity, fluid-structure interaction

other electrostatics, obstacle problems

For the convenience of readers coming recently into the subject of domain decom-
position methods, a bibliography of previous proceedings is provided below, along
with some major recent review articles and related special interest volumes. This list
will inevitably be found embarrassingly incomplete. (No attempt has been made to
supplement this list with the larger and closely related literature of multigrid and
general iterative methods, except for the books by Hackbusch and Saad, which have
significant domain decomposition components.)

1. P. Bjørstad, M. Espedal and D. E. Keyes, eds., Proc. Ninth Int. Symp. on
Domain Decomposition Methods for Partial Differential Equations (Ullensvang,
1997), Wiley, New York, 1999.

2. T. F. Chan and T. P. Mathew, Domain Decomposition Algorithms, Acta Nu-
merica, 1994, pp. 61-143.

3. T. F. Chan, R. Glowinski, J. Périaux and O. B. Widlund, eds., Proc. Second Int.
Symp. on Domain Decomposition Methods for Partial Differential Equations
(Los Angeles, 1988), SIAM, Philadelphia, 1989.

4. T. F. Chan, R. Glowinski, J. Périaux, O. B. Widlund, eds., Proc. Third Int.
Symp. on Domain Decomposition Methods for Partial Differential Equations
(Houston, 1989), SIAM, Philadelphia, 1990.

5. T. Chan, T. Kako, H. Kawarada and O. Pironneau, eds., Proc. Twelfth Int.
Conf. on Domain Decomposition Methods for Partial Differential Equations
(Chiba, 1999), DDM.org, Bergen, 2001.

6. N. Débit, M. Garbey, R. Hoppe, D. Keyes, Y. Kuznetsov and J. Périaux, eds.,
Proc. Thirteenth Int. Conf. on Domain Decomposition Methods for Partial
Differential Equations (Lyon, 2000), CINME, Barcelona, 2002.

7. C. Farhat and F.-X. Roux, Implicit Parallel Processing in Structural Mechanics,
Computational Mechanics Advances 2, 1994, pp. 1–124.

8. R. Glowinski, G. H. Golub, G. A. Meurant and J. Périaux, eds., Proc. First Int.
Symp. on Domain Decomposition Methods for Partial Differential Equations
(Paris, 1987), SIAM, Philadelphia, 1988.

9. R. Glowinski, Yu. A. Kuznetsov, G. A. Meurant, J. Périaux and O. B. Widlund,
eds., Proc. Fourth Int. Symp. on Domain Decomposition Methods for Partial
Differential Equations (Moscow, 1990), SIAM, Philadelphia, 1991.

10. R. Glowinski, J. Périaux, Z.-C. Shi and O. B. Widlund, eds., Eighth Inter-
national Conference of Domain Decomposition Methods (Beijing, 1995), Wiley,
Strasbourg, 1997.
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11. W. Hackbusch, Iterative Methods for Large Sparse Linear Systems, Springer,
Heidelberg, 1993.

12. I. Herrera, R. Yates and M. Diaz, General Theory of Domain Decomposition:
Indirect Methods, Numerical Methods for Partial Differential Equations, 18(3),
pp 296-322, 2002.

13. D. E. Keyes, T. F. Chan, G. A. Meurant, J. S. Scroggs and R. G. Voigt, eds.,
Proc. Fifth Int. Conf. on Domain Decomposition Methods for Partial Differen-
tial Equations (Norfolk, 1991), SIAM, Philadelphia, 1992.

14. D. E. Keyes, Y. Saad and D. G. Truhlar, eds., Domain-based Parallelism and
Problem Decomposition Methods in Science and Engineering, SIAM, Philadel-
phia, 1995.

15. D. E. Keyes and J. Xu, eds. Proc. Seventh Int. Conf. on Domain Decomposition
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We also mention the homepage for domain decomposition on the World Wide Web,
www.ddm.org, maintained by Professor Martin Gander of McGill University. This site
features links to conference, bibliographic, and personal information pertaining to
domain decomposition, internationally.

Previous proceedings of the International Conferences on Domain Decomposition
were published by SIAM, AMS, John Wiley and Sons and CIMNE. This time the
publisher has been the National University of Mexico (UNAM), with the assistance of
Impretei S.A. de C.V.

We wish to thank the members of the International Scientific Committee, and in
particular the Chair, Ronald H.W. Hoppe, for their help in setting the scientific di-
rection of the Conference. We are also grateful to the organizers of the mini-symposia
for attracting high-quality presentations. The timely production of these Proceedings
would not have been possible without the cooperation of the authors and the anony-
mous referees. We would like to thank them all for their graceful and timely response
to our various demands.

The organizers of the Conference would like to acknowledge the sponsors of the
Conference, namely UNAM through its Institute of Geophysics, the Instituto Nacional
de Tecnoloǵıa del Agua (IMTA) and the newly created Sociedad Mexicana de Métodos
Numéricos en Ingenieŕıa y Ciencia Aplicada (SMMNICA). Thanks are also due to
Roland Glowinski and Yuri A. Kuznetsov, for their participation in the American
Committee of the Conference, and to Alvaro Aldama, Fabian Garcia-Nocetti, Jaime
Urrutia-Fucugauchi, Francisco Sanchez-Bernabe and Carlos Signoret-Poillon, for their
participation in the Local Organizing Committee. Finally, we would like to express
our appreciation to Ms. Marthita Cerrilla, the Secretary of the Conference, who made
all the organizational details run smoothly, together with Martin Diaz and Ernesto
Rubio, the Technical Editors of these Proceedings, who finalized the formatting of the
papers in LATEX and prepared the whole book for printing.

Ismael Herrera
Mexico City, Mexico

David E. Keyes
Norfolk, USA

Olof B. Widlund
New York, USA

Robert Yates
Mexico City, Mexico
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42 Error Estimation, Multilevel Method and Robust Extrapolation in
the Numerical Solution of PDEs (GARBEY, SHYY) 403

43 A Robin-Robin preconditioner for strongly heterogeneous advection-
diffusion problems (GERARDO GIORDA, LE TALLEC, NATAF) 411

44 On a selective reuse of Krylov subspaces in Newton-Krylov approaches
for nonlinear elasticity (GOSSELET, REY) 419

45 Fast Solvers and Schwarz Preconditioners for Spectral Nédélec Ele-
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Fourteenth International Conference on Domain Decomposition Methods
Editors: Ismael Herrera , David E. Keyes, Olof B. Widlund, Robert Yates c©2003 DDM.org

1. Nonlinearity, numerics and propagation of information

A. A. Aldama1

1. Introduction. In the study of evolution equations that describe the dynam-
ics of natural and man-made systems, it is always useful to determine the way in
which information is propagated by the said equations. In other words, the manner
in which different scales present in the solution of an evolution equation travel and
decay through space and time. The ideal tool to determine the propagation proper-
ties of (continuous or discrete) evolution equations is Fourier or harmonic analysis.
In the case of continuous systems, the study of propagation properties allows the
understanding of their stability. On the other hand, much insight regarding the be-
havior of discrete approximations of partial differential equations may be gained by
comparing the propagation properties of a continuous equation and its corresponding
discrete analogue. Thus, so-called amplitude and phase portraits that respectively
depict the ratio of numerical and analytical amplification factor amplitudes and the
difference between analytical and numerical phases, both as functions of wavenumber,
may be developed (see, for example, Abbot [1] and Vichenevsky and Bowles [17]).
These portraits show in a very objective way the effects of “numerical diffusion” and
“numerical dispersion” associated to each wave number. Furthermore, the determi-
nation of the stability of numerical approximations may be viewed as a by-product
of their amplitude propagation properties. Interestingly enough, a similar approach
may be applied to study of the convergence properties of iterative schemes for the
solution of systems of equations, a fact that has been exploited by the champions of
the multigrid approach (see, for instance, [9]). The author and his collaborators have
demonstrated the power of Fourier techniques in the study of the propagation proper-
ties of non-orthodox approximations of the linear transport equation, via least-squares
collocation (Bentley et al., [10]) and the Eulerian-Lagrangian localized adjoint method
(Aldama and Arroyo, [6]). Moreover, they have established the existence of an ordi-
nary differential analogy that simplifies the determination of the stability conditions
for high order time discretizations of the linear transport equation (Aldama, [3], and
Aldama and Aparicio, [5]). Finally, they have studied the convergence properties of
a semi-iterative scheme for the solution of a coupled diffusion-reaction system that
describes the decay of argon in rocks and minerals (Lee and Aldama, [15]).

Unfortunately, the application of Fourier methods is limited to linear and constant
coefficient equations, subject to periodic boundary conditions or to linear and constant
coefficient pure initial value problems occurring in infinite spatial domains. The author
has developed an approach that allows the use of Fourier techniques in finite spatial
domains, variable coefficient or nonlinear problems. Such approach consists of an
asymptotic approximation that is constructed by employing Taylor-Fréchet expansions
of the differential operators arising in evolution equations, the method of multiple
scales and local analysis. Numerical experiments have shown excellent results of the
application of the said approach. This paper reviews the general theory on which the
approach is based and presents a number of applications made by the author and his

1Mexican Institute of Water Technology, Mexican Academy of Engineering and School of Engi-
neering and National Autonomous University of Mexico, aaldama@tlaloc.imta.mx
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collaborators that have produced excellent results.

2. Nonlinear evolution problems. Let us consider the following nonlinear
evolution problem for the components of the N -dimensional vector U = U(x, t) ≡
[U1(x, t), U2(x, t), ..., UN (x, t)]T , dependent on the three-dimensional position vector
x and time t:

∂Ui

∂t
−Ni (Uj) = 0, x ∈ Ω, t > 0; i = 1, 2, ..., N (2.1)

Bk(Uj) = 0, x ∈ ∂Ω, t > 0; k = 1, 2, ...,M (2.2)

Ui(x, 0) = Fj(x), x ∈ Ω; i = 1, 2, ..., N (2.3)

where (2.1) represents a set of N evolution equations, involving a like number of spa-
tial differential operators, Ni(·), acting upon the components of U; Ω is the spatial
domain of interest and ∂Ω its boundary; equation (2.2) represents a set of M bound-
ary conditions involving a like number of differential operators, Bk(·); equation (2.3)
represents a set of N initial conditions, where Fj(x) stands for a like number of pre-
scribed functions. The number M is determined by the order of the operators Ni(·)
and by the number N .

Examples of evolution equations of the kind represented by equation (2.1) abound.
Take, for example, the celebrated Navier-Stokes equations for incompressible flow:

∂ui

∂t
+ uj

∂ui

∂xj
= −1

ρ

∂p

∂xi
+ ν

∂2ui

∂xj∂xj
(2.4)

where ui (i = 1, 2, 3) are the components of the velocity vector, p is the dynamic
pressure, ρ is the density, ν is the kinematic viscosity, t is time, and xi (i = 1, 2, 3)
are the components of the position vector; or the shallow water equations:

∂h
∂t + ∂Uh

∂x + ∂V h
∂y = 0

∂U
∂t + U ∂U

∂x + V ∂U
∂y − fV = −g ∂(zb+h)

∂x + 1
ρhτbx(h,U, V )

∂V
∂t + U ∂V

∂x + V ∂V
∂y + fU = −g ∂(zb+h)

∂y + 1
ρhτby(h,U, V )

(2.5)

where U and V are the components of the velocity vector, h is the depth, ρ is the
density, zb is the bottom elevation, zbx and zby are the x and y components of the
bottom shear stress, t is time, and x and y are the components of the position vector;
or Richards equation:

S(ψ)
∂ψ

∂t
=

∂

∂xj

[
K(ψ)

∂

∂xj
(ψ + z)

]
(2.6)

where ψ is the pressure head, S is the specific moisture capacity, K is the unsaturated
hydraulic conductivity, z is the vertical coordinate, t is time, and xi (i = 1, 2, 3) are
the components of the position vector; or the two-species advection diffusion reaction
system:

∂C1
∂t + V ∂C1

∂x = D ∂2C1
∂x2 −K1(C1)C1 + f1(C2)

∂C2
∂t + V ∂C2

∂x = D ∂2C2
∂x2 −K2(C2)C2 + f2(C1)

(2.7)
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where C1 and C2 are the concentrations of species 1 and 2, V is the advective velocity,
D is the diffusion/dispersion coefficient, K1(·) and K2(·) are nonlinear decay functions,
f1(·) and f2(·)are nonlinear source/sink functions, t is time, and x is the spatial
coordinate.

Evidently, the problem (2.1)-(2.3) is continuous in space and time. Discrete ana-
logues of such a problem may be developed through numerical approximations of the
differential operators.

3. Taylor-Fréchet expansions of nonlinear operators. Let us decompose
the dependent variable appearing in equation (2.1), Ui, as follows:

Ui = Ūi + ui (3.1)

where Ūi represents a reference solution of problem (2.1)-(2.3) and ui is a small per-
turbation around it, such that

‖ui‖ <<
∥∥Ūi

∥∥ (3.2)

where ‖·‖ is a properly defined norm. The assumed nature of Ūi implies that

∂Ūi

∂t
−Ni

(
Ūj

)
= 0 (3.3)

Substituting (3.1) in (2.1) yields:

∂Ūi

∂t
+

∂ui

∂t
−Ni

(
Ūj + uj

)
= 0 (3.4)

Employing a Taylor-Fréchet expansion (Milne, [16]) of the nonlinear operator that
appears as the last term on the left hand side of the last equation results in:

Ni(Ūj + uj) = Nj(Ūj) + ∂Uk
Ni(Ūj) ◦ uk + O( ‖ukuk‖ ) (3.5)

where ∂Uk
Ni(Ūj) ◦ (·) stands for the first partial Fréchet derivative of the nonlinear

differential operator Ni(·), which possesses a nonlinear parametric dependence on the
reference solution and acts upon the perturbation uk. It may be shown that first order
Fréchet derivatives of nonlinear differential operators are themselves linear differential
operators (Milne, [16]). Substituting (3.5) in (3.4) and accounting for (3.3) yields:

∂ui

∂t
− ∂Uk

Ni(Ūj) ◦ uk + O( ‖ukuk‖ ) = 0 (3.6)

As may be observed, to first order in ui, equation (3.6) (for i=1,2,. . . ,N) is linear,
a fact that will be exploited later on.

4. Multiple scale analysis. Let (x0, t0) be a fixed reference point in space and
time, with x0i representing the components of x0. Thus, let us define “slow” space
and time variables as follows:

Xi = xi−xio

L
T = t−to

T

(4.1)
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where L and T respectively represent characteristic “large” length and time scales
present in Ui. Similarly, let us define “fast” space an time variables as follows:

χi = xi−xio

Λx

τ = t−to

Λt

(4.2)

where Λx and Λt respectively represent characteristic “small” length and time scales
present in Ui. We will now assume that the following holds true:

ε =
Λx

L
=

Λt

T
<< 1 (4.3)

Now we are in position of introducing the separation of scales hypothesis:

Ūj = Ūj (Xi,T) (4.4)

uj = uj (χi, τ) (4.5)

Equations (4.4) and (4.5) express the assumption that the reference solution only
depends on the slow variables, whereas the perturbation only depends on the fast
variables. Hence the large and small length and time scales take on a more precise
meaning. Indeed, L and T respectively represent the length and time scales character-
istic of the reference solution, Ūi, and Λx and Λt respectively represent the length and
time scales characteristic of the perturbation, ui. As will be shown later, the separa-
tion of scales hypothesis (4.4)-(4.5) has proven to be valid in a number of specific cases.
The reason for this is that it is very often the case that when stability or nonlinear
iteration convergence are of interest, it is often the case that the most unstable or the
most resistant modes correspond to small scale (i.e., high wavenumber) components
of the solution, which through (4.4)-(4.5) may be isolated from a smoothly varying
reference solution.

5. Localization. Now let us expand the reference solution, Ūi(x, t), and the
perturbation, ui(x, t), around the reference point (x0, t0), assuming the space and
time displacements are of the same order of magnitude as Λx and Λt:

Ūi(x, t) = Ūi(x0, t0) + (xj − x0j) ∂Ūi

∂xj

∣∣∣
(x0,t0)

+ (t− t0) ∂Ūi

∂t

∣∣∣
(x0,t0)

+ ...

ui(x, t) = ui(x0, t0) + (xj − x0j) ∂ui

∂xj

∣∣∣
(x0,t0)

+ (t− t0) ∂ui

∂t

∣∣
(x0,t0)

+ ...
(5.1)

where

|x− x0|
Λx

= O(1) (5.2)

|t− t0|
Λt

= O(1) (5.3)

We may now introduce characteristic scales for the magnitudes of Ūi and ui:

Ūi = UŪ∗
i (5.4)
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ui = uu∗
i (5.5)

where, say:

U =
∥∥Ūi(x0, t0)

∥∥ (5.6)

u = ‖ui(x0, t0)‖ (5.7)

and

Ū∗
i = O(1) (5.8)

u∗
i = O(1) (5.9)

and Ū∗
i = O(1), u∗

i = O(1). On account of equation (3.2), we may further assume
that:

u = εU (5.10)

Now, from the separation of scales hypothesis (4.4)-(4.5), we get:

∂Ūi

∂xj
= ∂Ūi

∂Xk

∂Xk

∂xj
= U

L δjk
∂Ū∗

i

∂Xk
= U

L
∂Ū∗

i

∂Xj

∂Ūi

∂t = ∂Ūi

∂T
∂T
∂t = U

T

∂Ū∗
j

∂T

(5.11)

∂ui

∂xj
= ∂ui

∂χk

∂χk

∂xj
= u

Λx
δjk

∂u∗
i

∂χk
= u

Λx

∂u∗
i

∂χj

∂ui

∂t = ∂ui

∂τ
∂τ
∂t = u

Λt

∂u∗
i

∂τ

(5.12)

where (4.1), (4.2), (5.4) and (5.5) have been used. Employing now (5.2), (5.3), (5.8),
(5.9), (5.11), and (5.12) in (5.1) it is readily shown that:

Ūi(x, t) = Ūi(x0, t0) [1 + O(ε)] ≡ U [1 + O(ε)] (5.13)

ui(x, t) = ui(x0, t0) [1 + O(1)] (5.14)

Equation (5.13) shows that whereas the reference solution, Ūi, may be localized
in the neighborhood of the reference point (x0, t0) at space and time displacements
commensurate with the small scales Λx and Λt, the perturbation, ui, may not. In
other words, an observer sensitive to the scales Λx and Λt, would only perceive the
variations in the perturbation, and would view the reference solution as a constant.
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6. Asymptotics. We now may seek an asymptotic solution to equation (3.6),
of the form:

ui = u
(0)
i + εu

(1)
i + ε2u

(2)
i + ... ≡ εU

[
u

(0)∗
i + εu

(1)∗
i + ε2u

(2)∗
i + ...

]
(6.1)

where u
(k)∗
i (k=0,1,2,. . . ) are dimensionless and of O(1), and (5.5) and (5.10) have

been accounted for. Substituting (5.13) and (6.1) in (3.6) we get the following evolution
system for the zeroth order approximation u

(0)
i (i=1,2,. . . ,N):

∂u
(0)
i

∂t
− ∂Uk

Ni(Uj) ◦ u
(0)
i = 0 ; j = 1, 2, ..., N (6.2)

It must be noted that equation (6.2) is linear and with constant coefficients that
parametrically depend (alas, nonlinearly) on the constants Uj (j=1,2,. . . ,N). Thus,
equation (6.2) captures the dominant nonlinear behavior of equation (2.1) in the scales
of Λx and Λt. Furthermore, the previously presented localization analysis was based
on the assumption that:

|χi| = |xi − xio| /Λx = |xi − xio| / ( εL) = O(1) (6.3)

Therefore, as ε ↓ 0, the domain corresponding to the zeroth order approximation
u

(0)
i (i=1,2,. . . ,N) becomes unbounded.

7. Fourier analysis. In view of the above, the most general form of equation
(6.2) may be written as follows in three-dimensional space:

∂tu
(0)
j =

N∑
r=1

∑
p∈P

αjr,p∂pu(0)
r ; j = 1, 2, ..., N ; in x ∈ Ω∞ (7.1)

where Ω∞ ≡ (−∞,∞)3; ∂t ≡ ∂/∂t; p ≡ (p1, p2, p3) represents a multi-index; P ≡
{(p1, p2, p3 |0 ≤ p1 + p2 + p3 ≤ R}, where R is the maximum order of the spatial
derivatives present in (7.1); αjr,p are constant coefficients; ∂p(·) ≡ ∂p1+p2+p3 (·)

∂x
p1
1 ∂x

p2
2 ∂x

p3
3

, and
the summation convention is understood in p.

Now, assuming the functions prescribed in the initial conditions (2.3) are of the
form

Fj = F̄j + fj , fj/F̄j = O(ε) ; j = 1, 2, ..., N (7.2)

it is consistent to write that the initial conditions that equation (7.1) is subject to,
are:

u
(0)
j = fj ; j = 1, 2, ..., N (7.3)

Equations (7.1) and (7.3) constitute a pure initial value problem, that may be
tackled via Fourier methods. With that purpose in mind, the following Fourier repre-
sentation may be used (Champeney, [12]):

u
(0)
j (x, t) =

1
(2π)3/2

∫
Ω∞

û
(0)
j (k, t) exp(−ik · x)dk (7.4)
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where i ≡
√

- 1, k ≡ (k1, k2, k3) is the wavenumber vector, dk ≡ dk1dk2dk3, and the
Fourier coefficients û

(0)
j are given by the following Fourier transforms:

û
(0)
j (k, t) ≡ 


{
u

(0)
j (x, t)

}
=

1
(2π)3/2

∫
Ω∞

u
(0)
j (x, t) exp(ik · x)dx (7.5)

Now, it may be shown that the Fourier coefficients û
(0)
j may be determined by

employing the initial conditions (7.3). Nevertheless, when the propagation properties
of the equation (7.1) and, in particular, its stability are of interest, the initial values
of u

(0)
j are inconsequential. In effect, the stability of equation (7.1) is determined by

finding whether û
(0)
j (k, t) grows or decays in time.

8. Discrete systems. An analysis similar to that presented earlier may be per-
formed for discrete systems, that may correspond to numerical approximations of
partial differential evolution equations, such as equation (2.1). In such a case, the
only additional aspect of the analysis that must be considered is the determination
of the modified partial differential equations that are satisfied when the discrete equa-
tions in terms of the perturbation quantities are solved. This consideration allows a
local analysis such as the one presented for the continuous case. In addition, instead
of using a continuous Fourier pair, like (7.4)-(7.5), a semidiscrete one must be used
(i.e., an integral representation for the physical space variables and a Fourier series
representation for the wavenumber space variables). Examples of the use of such a
technique follow.

9. The one-dimensional Richards equation. Let us consider the one - di-
mensional analogue of equation (2.6):

S(ψ)
∂ψ

∂t
=

∂

∂z

[
K(ψ)

∂(ψ)
∂z

]
+

∂K(ψ)
∂z

(9.1)

The θ-central difference or θ-lumped finite element (with constant element size)
approximation of equation (9.1) is:

F (ψn
j ) ≡ θ(Sj)

δn+ 1
2 ψj

∆t − θ

{
K

j+ 1
2

δ
j+ 1

2
ψ−K

j− 1
2

δ
j− 1

2
ψ

∆z2 +
(δ

j+ 1
2
−δ

j− 1
2
)K

2∆z

}
= 0

(9.2)

where θ̄(φ) = θ(φn+1) + (1− θ)(φn), δn+ 1
2 φ = φn+1 − φn, δj+ 1

2
φ = φj+1 − φj and the

usual notation for discrete approximations in space and time is employed.
Now, since Richards’ equation is a nonlinear diffusion (i.e., parabolic) equation, a

simple frozen coefficient analysis yields unconditional stability for the Crank-Nicolson
scheme (θ = 1/2). This result is contradicted by computational evidence, which shows
that the said scheme often becomes unstable. This led the author to believe that the
explanation for the emergence of instabilities should lie on nonlinear effects. Thus, it
is apparent that the theory presented herein may be of use.

The solution of equation (9.2) may be decomposed as follows:

ψn
j = ψ̃n

j + εn
j (9.3)
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where ψ̃n
j is the exact solution of equation (9.2) and εn

j a roundoff error. Substituting
(9.3) in (9.2), employing a Taylor-Fréchet expansion and localizing the result yields
the following equation for the roundoff error:

S(ψ̃0)
δn+ 1

2 εj

∆t −K ′(ψ̃0)
[
2
(

∂ψ̃
∂z

)
0

+ 1
]
θ

[
(δ

j+ 1
2
+δ

j+ 1
2
)ε

2∆z

]
= K(ψ̃0)×

×θ

[
(δ

j+ 1
2
−δ

j− 1
2
)ε

∆z2

]
+ K ′′(ψ̃0)

(
∂ψ̃
∂z

)
0

[
2
(

∂ψ̃
∂z

)
0

+ 1
]
θ

[
εn+1

j+1 +εn+1
j−1

2

]
+

+K ′(ψ̃0)
(

∂2ψ̃
∂z2

)
0
θ

[
ε

j+ 1
2
+ε

j− 1
2

2

]
− S′(ψ̃0)

(
∂ψ̃
∂z

)
0
θ̄(εj)

(9.4)

Since equation (9.4) is linear and with constant coefficients, without the loss of
generality, the behavior of a single (but arbitrary) Fourier mode may be studied.
Thus let us employ the following Fourier representation:

εn
j = Ekξn

k exp(ijβk) (9.5)

where Ek is the amplitude associated with the wavenumber k, ξk is the corresponding
amplification factor and βk ≡ k∆x is a dimensionless wavenumber. Substituting (9.5)
in (9.4) results in:

ξk =
1 + (1− θ)µk

1− θµk
(9.6)

where µk = (µk)R + i(µk)R and

(µk)R =
{

K′′(ψ̃0)

S(ψ̃0)

(
∂ψ̃
∂z

)
0

[(
∂ψ̃
∂z

)
0

+ 1
]
cos βk + 1

2
K′(ψ̃0)

S(ψ̃0)

(
∂2ψ̃
∂z2

)
0
×

×(1 + cos βk)− S′(ψ̃0)

S(ψ̃0)

(
∂ψ̃
∂ z

)
0
− 2

∆z2
K(ψ̃0)

S(ψ̃0)
(1− cos βk)

}
∆t

(µk)I = K′(ψ̃0)

S(ψ̃0)

[
2
(

∂ψ̃0
∂z

)
0

+ 1
]
sin βk

∆t
∆z

(9.7)

The stability condition for Crank-Nicolson scheme θ = 1/2is (µk)R ≤ 0, ∀k. Al-
dama and Aparicio ([5]) have shown that this condition is often violated in the nu-
merical solution of Richards’ equation. This explains the computational evidence
that indicates that the Crank-Nicolson scheme becomes unstable in the solution of
Richards’ equation.

Since Richards equation (9.1) is nonlinear, its discrete analogue (9.2) generates an
algebraic system of equations that is nonlinear as well. Thus, equation (9.2) must be
solved in practice via an iterative scheme. The Picard or successive approximation
iterative scheme for equation (9.2) may be written as follows:
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[
θ Sn+1,m

j + (1− θ) Sn
j

] ψ
n+1,m+1

j
−ψn

j

∆t

−θ
{

1
2∆z2

[(
K

n+1,m

j+1
+ K

n+1,m

j

)(
ψn+1,m+1

j+1
− ψn+1,m+1

j

)
−
(
K

n+1,m

j
+ K

n+1,m

j−1

)(
ψn+1,m+1

j − ψ
n+1,m+1

j−1

)]
+

Kn+1,m

j+1
−K

n+1,m

j−1

2∆z

}
− (1− θ)

{
1

2∆z2

[(
Kn

j+1
+ Kn

j

) (
ψn

j+1
− ψn

j

)
−
(
Kn

j + Kn
j−1

) (
ψn

j − ψn
j−1

)]
+ Kn

j+1−Kn
j−1

2∆z

}
= 0

(9.8)

where the superindex m refers to iteration number. Now, a frozen coefficients analysis
predicts unconditional convergence for scheme (9.8). This is not consistent with the
observations of Huyarkon et al ([13]) and Celia et al ([11]), who have reported that
the Picard scheme (9.8) sometimes diverges. In particular, it has been observed that
it converges for small values of the time step, ∆t, diverges for intermediate values
and converges again for large values. This behavior would not be expected were the
equation under study a linear one and, thus, may be attributed to nonlinearity.

In order to properly characterize the behavior of the Picard scheme applied to the
solution of the discrete Richards equation, the theory presented in this paper may be
applied. With that purpose in mind, let us express the (m+1)th iterate in equation
(9.8) as follows:

ψn+1,m+1
j = ψ̃n+1

j + δm+1
j (9.9)

where, as before, ψ̃n+1
j represents the exact solution of equation (9.2) and δm+1

j , the
error corresponding to iteration m+1. Substituting (9.9) in equation (9.8), performing
a Taylor-Fréchet expansion and localizing the result yields:

S (ψ0)
δn+1

j

∆t − θK ′ (ψ0)
(

∂ψ
∂z

)
0

(
δm+1

j+1 −δm+1
j−1

2∆z + δm
j+1−δm

j−1
2∆z

)
−θK ′ (ψ0)

δm
j+1−δm

j−1
2∆z θK (ψ0)

δm+1
j+1 −δm+1

j +δm+1
j−1

∆z2

+K ′′ (ψ0)
(

∂ψ
∂z

)
0

[(
∂ψ
∂z

)
0

+ 1
]

+ δm
j+1+δm

j−1
2

+K ′ (ψ0)
(

∂2ψ
∂z2

)
0

δm
j+1+2δm

j +δm
j−1

4 −+θS′ (ψ0)
(

∂ψ
∂z

)
0

(
δm+1
j − δm

j

)
(9.10)

Let us now study the behavior of a single (but arbitrary) Fourier mode in the
solution of equation (9.10), by employing the following representation for the iteration
error:

δm
j = ∆kξm

k exp(ijβk) (9.11)

where ∆k is the amplitude associated with the wavenumber k, ξk is the corresponding
amplification factor and βk ≡ k∆x is a dimensionless wavenumber. Substituting (9.5)
in (9.4) results in:

ξk =
µ2,k

1 + µ1,k
(9.12)
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where µ1,k = µ1R,k + iµ1I,k, µ2,k = µ2R,k + iµ2I,k and:

µ1R,k = 2θ K(ψ0)
S(ψ0)

(1− cos βk) ∆t
∆z2 + θ S′(ψ0)

S(ψ0)

(
∂ψ
∂t

)
0
∆t

µ1I,k = −θ K′(ψ0)
S(ψ0)

(
∂ψ
∂z

)
0

∆t
∆z2 sin βk∆t

µ2R,k = θ K′′(ψ0)
S(ψ0)

(
∂ψ
∂z

)
0

[(
∂ψ
∂z

)
0

+ 1
]
cos βk∆t + 1

2θ K′(ψ0)
S(ψ0)

× (+1 cos βk) ∆t
(

∂2ψ
∂z2

)
0
− θ S′(ψ0)

S(ψ0)

(
∂ψ
∂t

)
0
∆t

µ2I,k = −µ1I,k

[
1 +
(

∂ψ
∂z

)−1

0

]
(9.13)

The convergence condition for the Picard iterative scheme may be written as fol-
lows:

| ξk| < 1 ∀ k (9.14)

It may be shown that the above inequality leads to a quadratic inequality in ∆t,
which explains the observation that Picard iterations are sometimes convergent for
“small” values of ∆t, divergent for “intermediate” values, and convergent again for
“large” values. Numerical experiments performed by Aldama and Paniconi ([8]) have
validated such theoretical considerations.

10. The Saint-Venant equations. Another nonlinear evolution system that
commonly arises in applications is the one constituted by the Saint-Venant equations
that govern nonuniform, transient open channel flow:

∂A

∂t
+

∂Q

∂x
= 0 (10.1)

∂Q

∂t
+

∂

∂x

(
Q2

A

)
+ gA

∂h

∂x
+ gA

∂z

∂x
+ gSf = 0 (10.2)

where equation (10.1) expresses the conservation of mass principle and equation (10.2),
the momentum principle. There, A represents the hydraulic area; Q, the discharge;
h, the depth; z, the bottom elevation; Sf , the frictional slope; g, the acceleration of
gravity; x, the spatial coordinate along the channel, and t, time. When Manning’s
formula is employed, the frictional slope may be expressed as follows:

Sf = α

(
ks

R

)1/3
Q |Q|
A2R

(10.3)

where α ∼= 17/100 (Aldama and Ocón, [7]); ks is Nikuradse’s equivalent roughness
and R is the hydraulic radius.

The so-called generalized Preismann scheme ([1]) for the numerical solution of the
Saint-Venant system (10.1)-(10.2) may be written as follows:

An+1
j+1 −An

j+1

∆t
+ (1− θ)

Qn
j+1 −Qn

j

∆x
+ θ

Qn+1
j+1 −Qn+1

j

∆x
= 0 (10.4)
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(1− ψ)
Qn+1

j −Qn
j

∆t + ψ
Qn+1

j+1 −Qn
j+1

∆t + (1− θ)

(
Q2

A

)n

j+1
−
(

Q2

A

)n

j

∆x + θ

(
Q2

A

)n+1

j+1
−
(

Q2

A

)n+1

j

∆x +
+g
{
(1− θ)

[
(1− ψ) An

j + ψAn
j+1

]
+ θ
[
(1− ψ) An+1

j + ψAn+1
j+1

] }[
(1− θ) hn

j+1−hn
j

∆x + θ
hn+1

j+1 −hn+1
j

∆x + zj+1−zj

∆x

]
+ (1− θ)

[
(1− ψ) An

j Sn
fj + ψAn

j+1S
n
fj+1

]
+θ
[
(1− ψ) An+1

j Sn+1
fj + ψAn+1

j+1 Sn+1
fj+1

]
= 0

(10.5)
where ψ ∈ [0 , 1] is a space weighting factor and θ ∈ [0 , 1] is a time weighting factor.

By applying the theory presented herein, it may be shown that the stability con-
ditions for the generalized Preismann scheme (10.4)-(10.5) are:

|Ve | ≤ 1, ψ = 0.5, θ ≥ 0.5 (10.6)

where Ve is the Vedernikov number. The validity of the conditions (10.6) has been
assessed via numerical experimentation (Aguilar, [2]).

11. The shallow water equations. The one-dimensional version of the shallow
water equations may be written as follows:

Ma(h,U) ≡ ∂h
∂t + ∂Uh

∂x = 0
M0(h,U) ≡ ∂U

∂t + U ∂U
∂x + g ∂(zb+h)

∂x + gSf = 0
(11.1)

where Ma(·, ·) is the mass conservation operator and Mo(·, ·) is the momentum opera-
tor. The Generalized Wave Continuity Equation (GWCE) formulation was introduced
in order to eliminate the spurious oscillations that arise in the numerical solution of
the shallow water equations, in their primitive formulation (11.1), when collocated
grids are used (see, for example Kinmark, [14]). The GWCE formulation introduces
the following equation, which is derived from (11.1):

W (h,U) ≡ ∂Ma(h,U)
∂t

− ∂Mo(h,U)
∂x

+ GMa(h,U) = 0 (11.2)

where W (·, ·) is the so-called GWCE operator. The GWCE formulation consists of
solving the coupled equations and Mo(h,U) = 0. As is apparent, when G → ∞,
the GWCE formulation approaches the primitive formulation, and when G → 0, the
equation W (h,U) = 0 approaches a nonlinear wave equation.

A number of investigators have become concerned with the fact that, apparently,
the GWCE formulation does not possess good mass conservation properties (see Al-
dama et al., [4], for details). It may be shown, by applying the theory presented in
this paper that such formulation does not satisfies the continuity equation and that
the error is larger for high wavenumbers. This theoretical result is consistent with ob-
servations that indicate that relatively large mass conservation errors arise in refined
grids.

12. Conclusions. A theory that consists of the Taylor-Fréchet expansion of
nonlinear operators, multiple scale analysis, localization and asymptotic analysis has
been presented in order to include dominant nonlinear effects in the study of the
propagation properties (stability, amplitude and phase portraits, nonlinear iteration
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convergence) of nonlinear evolution systems. The theory presented has been tested
via a number of applications, a few of which are presented in this paper, with excellent
results.
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2. Non conforming domain decomposition: the
Steklov-Poincaré operator point of view

S. Bertoluzza1

1. Introduction. One of the common approaches to solve the linear system
arising in the domain decomposition method is to formally reduce it, by a Schur com-
plement argument, to a lower dimensional linear system whose unknown is the value
of the (discrete) solution on the interface of the decomposition. Solving such reduced
linear system by any iterative technique implies the need of solving, at each iteration,
independent discrete Dirichlet problems in the subdomains. Such Dirichlet problems
constitute the most relevant part of the computational cost of such an approach and
therefore attention needs to be paid in reducing the actual computational cost of the
subdomain solvers. A key observation in this respect is that what one expects as an
output of the iterative procedure is a (correct order) approximation of the trace of the
solution u on the interface. There is no direct need of solving correctly the Dirichlet
problems in the subdomains. The precision with which such problems are solved is
only as relevant as its influence on the error on the trace of u on the interface. Only
once the trace of u on the interface has been computed correctly, one will actually
need to retrieve the solution in some or all of the subdomains.

In order to take advantage of this observation it is useful to look at the Schur
complement linear system as non conforming discretization of the Steklov-Poicaré
operator, mapping a function ϕ defined on the interface, to the jump of the normal
derivative of its harmonic lifting (computed subdomain-wise). The non-conformity
stems from replacing the harmonic lifting with its discretization. If we look at the
Schur complement system from this point of view, a straightforward application of
the first Strang Lemma, shows that the discretization in the subdomains needs to be
designed in order to provide a correct order approximation of outer normal derivative,
while there is no direct need to actually provide a good approximation of the solution
u in the interior of the subdomains.

The aim of this paper is to formalise the above considerations in the case in which
the starting domain decomposition formulation is the three fields formulation, and
to provide a rigorous error estimate for the trace of u on the the interface, showing
that the mesh can actually be chosen to be sensibly coarser in the interior of the
subdomains without affecting the precision of the interface approximation, resulting
in a sensible reduction in computational cost of the subdomain solvers.

2. The three fields formulation and the Steklov-Poincaré operator. Here
and in the following we will use the notation A � B and A � B to indicate that the
quantity A is bounded from above – resp. from below – by a positive constant times
the quantity B, the constant being independent of any relevant parameter, like the
mesh size. The expression A � B will stand for A � B � A.

1IMATI-CNR, Pavia (Italy), silvia.bertoluzza@ian.pv.cnr.it



16 BERTOLUZZA

Let Ω ⊂ R
2 be a polygonal domain. We will consider the following simple model

problem: given f ∈ L2(Ω), find u satisfying

−∆u = f in Ω, u = 0 on ∂Ω. (2.1)

To fix the ideas, we will consider consider the three fields domain decomposition
formulation of such a problem [4]. We want to underline however that the general
ideas presented here carry over to many other domain decomposition formulations,
both conforming and non-conforming. Considering for simplicity a geometrically con-
forming decomposition Ω = ∪kΩk, with Ωk convex shape-regular polygons, Γk = ∂Ωk,
and letting Σ = ∪kΓk, we introduce the following functional spaces

V =
∏
k

H1(Ωk), Λ =
∏
k

H−1/2(Γk),

Φ = {ϕ ∈ L2(Σ) : there exists u ∈ H1
0 (Ω), u = ϕ on Σ} = H1

0 (Ω)|Σ,

respectively equipped with the norms:

‖u‖2V =
∑

k

‖uk‖2H1(Ωk), ‖λ‖2Λ =
∑

k

‖λk‖2H−1/2(Γk),

and (see [2])

‖ϕ‖2Φ = inf
u∈H1

0 (Ω):u=ϕ on Σ
‖u‖2H1(Ω) �

∑
k

|ϕ|2H1/2(Γk).

Let ak : H1(Ωk) × H1(Ωk) → R denote the bilinear form corresponding to the
Laplace operator:

ak(w, v) =
∫

Ωk

∇w∇v.

The continuous three fields formulation of equation (2.1) is the following ([4]): find
(u, λ, ϕ) ∈ V × Λ× Φ such that

∀k, ∀vk ∈ H1(Ωk), ∀µk ∈ H−1/2(Γk) :

ak(uk, vk) −
∫
Γk

vkλk =
∫
Ωk

fvk,

−
∫
Γk

ukµk +
∫
Γk

µkϕ = 0,

and ∀ψ ∈ Φ : ∑
k

∫
Γk

λkψ = 0.

(2.2)

It is known that this problem admits a unique solution (u, λ, ϕ), where u is indeed
the solution of (2.1) and such that λk = ∂uk/∂νk on Γk, and ϕ = u on Σ, where νk

denotes the outer normal derivative to the subdomain Ωk.

After choosing discretization spaces Vh =
∏

k V k
h ⊂ V , Λh =

∏
k Λk

h ⊂ Λ and
Φh ⊂ Φ, equation (2.2) can be discretized by a Galerkin scheme, yielding the following
problem: find (uh, λh, ϕh) ∈ Vh × Λh × Φh such that
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∀k, ∀vk
h ∈ V k

h , ∀µk
h ∈ Λk

h :

ak(uk
h, vk

h) −
∫
Γk

vk
hλk

h =
∫
Ωk

fvk
h,

−
∫
Γk

uk
hµk

h +
∫
Γk

µk
hϕh = 0,

and ∀ψh ∈ Φh : ∑
k

∫
Γk

λk
hψh = 0.

(2.3)

Existence, uniqueness and stability of the solution of the discretized problem rely on
the validity of two inf-sup conditions,

inf
λh∈Λh

sup
uh∈Vh

∑
k

∫
Γk

λk
huk

h

‖uh‖V ‖λh‖Λ
≥ β1 > 0, inf

ϕh∈Φh

sup
λh∈Λh

∑
k

∫
Γk

λk
hϕh

‖ϕh‖Φ‖λh‖Λ
≥ β2 > 0 (2.4)

respectively coupling Vh with Λh, and Λh with Φh. Provided (2.4) holds, it is well
known ([3]) that we can derive the following error estimate:

‖u−uh‖V +‖λ−λh‖Λ+‖ϕ−ϕh‖Φ � inf
vh∈Vh

‖u−vh‖V + inf
µh∈Λ

‖λ−µh‖Λ+ inf
ψh∈Φh

‖ϕ−ψh‖Φ.

The linear system stemming from such an approximation takes the form A BT 0
B 0 CT

0 C 0

 ·
 uh

λh

ϕ
h

 =

 f
0
0

 , (2.5)

(uh, λh, and ϕ
h

being the vectors of the coefficients of uh, λh and ϕh in the bases
chosen for Vh, Λh and Φh respectively). The usual approach to the solution of such
linear system is to reduce it, by a Schur complement argument, to the solution of a
system in the unknown ϕ

h
, which takes the form

CA−1CT ϕ
h

= −CA−1

(
f
0

)
, C = [ 0 C ], A =

(
A BT

B 0

)
. (2.6)

The matrix S = CA−1CT does not need to be assembled. The system (2.6) is then
solved by an iterative technique (like for instance a conjugate gradient method), for
which only the action of S on a given vector needs to be implemented. In particular,
multiplying by S implies the need for solving a linear system with matrix A. This
reduces, by a proper reordering of the unknowns, to independently solving a discrete
Dirichlet problem with Lagrange multipliers in each subdomain. A key observation
is that the significant unknown that one is looking for is ϕ, that is the trace on Σ of
the solution u of the equation considered. The actual value of the function uh and
of the multiplier λh is only needed at the end of the iterative procedure and possibly
only in some of the subdomains, namely the ones in which the end user is actually
interested in computing the solution. Along the iterations, the precisions with which
uh and λh approximate u and λ respectively is only as important as its effect on
the precision with which ϕ is approximated. From this point of view it would for
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instance make sense to replace, along the iterations, the discretization spaces Vh and
Λh with two other spaces V ∗

h and Λ∗
h with dim(V ∗

h ⊕Λ∗
h)� dim(Vh ⊕Λh) – resulting

in a reduction of CPU time in the solution of the discrete Dirichlet problems at each
iteration – provided this does not reduce the precision of the approximation of the
unknown ϕ. In this respect, the above mentioned error estimate is pessimistic. In
order to obtain a sharper error estimate on the error ‖ϕ − ϕh‖Φ we can look at the
linear system (2.6) as a non conforming discretization of the Steklov-Poincaré problem

Sϕ = g (2.7)

where we recall that the Steklov-Poincaré operator S : Φ→ Φ′ is defined as

〈Sϕ,ψ〉 =
∑

k

〈∂νkLk
Hϕ,ψ〉

where Lk
H : H1/2(Γk)→ H1(Ωk) denotes the harmonic lifting:

−∆(Lk
Hϕ) = 0, on Ωk, Lk

Hϕ = ϕ, on Γk,

and where g = g(f) is the jump along the interface of the normal derivative of the
function uf verifying −∆uf = f in each Ωk and uf = 0 on Σ.

The linear system (2.6) is indeed a discrete version of (2.7), the non conformity
stemming from the fact that in the computation of the Steklov-Poincaré operator the
Dirichlet problem is solved approximatively and the Lagrange multiplier is used to
approximate the normal derivative. We can then introduce the notation

Shϕ =
∑

k

〈λk
h(ϕ), ψ〉

where the λk
h(ϕ)’s are obtained by solving: find uh(ϕ) = (uk

h(ϕ))k ∈ Vh, λh(ϕ) =
(λk

h(ϕ))k ∈ Λh such that
∀k, ∀vh ∈ V k

h , ∀µh ∈ Λk
h∫

Ωk
∇uk

h(ϕ)∇vh −
∫
Γk

λk
h(ϕ)v = 0∫

Γk
uk

h(ϕ)µh =
∫
Γk

ϕµh.

(2.8)

In order to give an estimate on the ϕ component of the error we can use the first
Strang Lemma ([5]), which yields

‖ϕ− ϕh‖Φ � inf
ζ∈Φh

{
‖ϕ− ζ‖Φ + sup

ψh∈Φh

〈(S − Sh)ζ, ψh〉
‖ψh‖Φ

+ sup
ψh∈Φh

〈g − gh, ψh〉
‖ψh‖Φ

}
.

Let us better analyse the first consistency error term: setting λk(ϕ) = ∂νkLk
Hϕ we

have

〈(S − Sh)ζ, ψh〉 =
∑

k

〈λk(ζ)− λk
h(ζ), ψh〉 �

(∑
k

‖λk(ζ)− λk
h(ζ)‖−1/2,Γ

)1/2

‖ψh‖Φ
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which yields

sup
ψh∈Φh

〈(S − Sh)ζ, ψh〉
‖ψh‖Φ

�
(∑

k

‖λk(ζ)− λk
h(ζ)‖−1/2,Γ

)1/2

.

It is not difficult to check that a similar result holds also for the second of the
two consistency terms. The error ‖ϕ − ϕh‖Φ is thus not directly influenced by the
precision with which the unknown u is approximated. The subdomain meshes should
not necessarily be chosen by aiming at a good approximation of the whole u but only
to a good approximation of its outer conormal derivative λ.

3. The mono-domain problem: local estimates. Let us from now on con-
centrate on one of the subdomain problems. For the sake of simplicity we will omit
the subscript/superscript k. Ω will then denote a polygonal subdomain, Γ its bound-
ary, and, given ϕ ∈ H1/2(Γ) and f ∈ L2(Ω) we will consider the problem of finding
u ∈ H1(Ω) and λ ∈ H−1/2(Γ) such that

∀v ∈ H1(Ω), ∀µ ∈ H−1/2(Γ)∫
Ω
∇u∇v −

∫
Γ

λv =
∫
Ω

fv∫
Γ

uµ =
∫
Γ

ϕµ.

(3.1)

Again, we consider a Galerkin discretization: letting Vh ∈ H1(Ω), Λh ∈ H−1/2(Γ)
be two finite dimensional subspaces we look for uh ∈ Vh, λh ∈ Λh such that

∀vh ∈ Vh, ∀µh ∈ Λh∫
Ω
∇uh∇vh −

∫
Γ

λhvh =
∫
Ω

fvh∫
Γ

uhµh =
∫
Γ

ϕµh.

(3.2)

For the reasons explained in the previous section we are interested in giving a sharp
bound on the λ component of the error. Under the usual classical assumptions needed
for stability of the discrete problem (see (A4) in the following), the standard techniques
yield estimates of the form

‖λ− λh‖−1/2,Γ ≤ ‖λ− λh‖−1/2,Γ + ‖u− uh‖1,Ω

� inf
ηh∈Λh

‖λ− ηh‖−1/2,Γ + inf
wh∈Vh

‖u− wh‖1,Ω.

Such estimate provides a bound for the error on the multiplier λ depending not only
on the regularity of λ and the approximation properties of the space Λh, but also on
the overall regularity of the solution u and on the overall approximation property of
the discretization space Vh. If we however try to estimate the error on λ directly, using
a very simple argument, we could write

‖λ− λh‖−1/2,Γ = sup
v∈H1/2(Γ)

∫
Γ
(λ− λh)v
‖v‖1/2,Γ

= sup
v∈H1/2(Γ)

{∫
Γ
(λ− λh)(v − vh)
‖v‖1/2,Γ

+

∫
Γ
(λ− λh)vh

‖v‖1/2,Γ

}
,
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where vh ∈ Vh|Γ is the (unique) element such that
∫
Γ

µh(v − vh) = 0 for all µh in Λh,
which exists and depends continuously on v, provided the standard inf-sup condition
needed for stability of problem (3.2) holds. We can then easily bound the two terms
on the right hand side thanks to the following bounds∫

Γ

(λ− λh)(v − vh) =
∫

Γ

(λ− µh)(v − vh) ≤ ‖λ− µh‖−1/2,Γ‖v‖1/2,Γ

which yields, thanks to the arbitrariness of µh,∫
Γ

(λ− λh)(v − vh) � inf
µh∈Λh

‖λ− µh‖−1/2,Γ‖v‖1/2,Γ.

The second term can be bound by observing that for all wh ∈ Vh, Galerkin orthog-
onality yields ∫

Γ

(λ− λh)wh =
∫

Ω

∇(u− uh)∇wh.

We can then choose any (fixed) subdomain Ω0 ⊂ Ω such that Γ ⊂ ∂Ω0, construct a
lifting wh ∈ Vh of vh verifying

wh|Γ = vh, suppwh ⊂ Ω0, ‖wh‖1,Ω � ‖vh‖1/2,Γ

(the constant in the last bound naturally depending on the subdomain Ω0), and we
would get ∫

Γ

(λ− λh)vh � ‖u− uh‖1,Ω0‖vh‖1/2,Γ.

Now, we recall that we are dealing with the Galerkin solution an elliptic problem. If Ω0

was an interior subdomain (Ω̄0 ⊂⊂ Ω) and letting Ω1 be an intermediate subdomain,
by applying a result by Nitsche and Schatz ([7]) we could bound ‖u− uh‖1,Ω0 as

‖u− uh‖1,Ω0 � hs−1‖u‖1,Ω1 + ‖u− uh‖−p,Ω. (3.3)

h being the mesh size of the discretization relative to the subdomain Ω1 and p being
any positive integer, arbitrary but fixed. Again the constants in the bound depends
on the two subdomains Ω0 and Ω1. Since the global mesh size enters only through a
negative norm of the error, and therefore, under suitable assumptions, with an higher
order, its influence on the local error on Ω0 is reduced.

In order to apply such kind of reasoning to the estimate of the error on the multi-
plier we need then to provide an estimate of the form (3.3) in the case in which Ω0 is
roughly speaking a strip all along the boundary. It turns out (see [1]) that in proving
such an estimate we will also directly prove an estimate on the error ‖λ − λh‖−1/2,Γ

without need of using the above argument.

Let ei, i = 1, · · · , N be the edges of Γ and let θi, i = 1, · · · , N be the interior angles.
Let θ0 = maxi θi be the maximum angle, and recall that the polygon is convex, that
is θ0 < π. Assume that the discretization spaces Vh and Λh satisfy
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(A1) Global Approximation for u. Let 1 ≤ s ≤ k1, 0 ≤ � ≤ r1. For each
u ∈ H(Ω), there exists an element w ∈ Vh such that

‖u− w‖s,Ω � H−s‖u‖,Ω;

Let now Ω1 ⊂ Ω be an open subdomain of Ω such that

Γ ⊂ ∂Ω1, ∂Ω1 \ Γ is of class C∞.

(see figure 3.1) and assume that the space Vh has, when restricted to Ω1, better
approximation properties. More precisely assume that for any two open subdomains
G0 ⊂ G ⊆ Ω1 satisfying

Γ = ∂G0 ∩ ∂G, ∂G \ Γ and ∂G0 \ Γ are of class C∞, ∂G0 \ Γ ⊂ G

there exists an h0 such that if h ≤ h0 then

G
0

Ω1

G

Figure 3.1: Subdomains G0 ⊂ G ⊂ Ω1

(A2) Local approximation for u. Let 1 ≤ s ≤ k1, s ≤ � ≤ r1. For each u ∈ H(G),
there exists an element w ∈ Vh such that

‖u− w‖s,G � h−s‖u‖,G;

moreover if u is supported in G0 then w can be chosen to be supported in G.

(A3) Discrete commutator property. Let ω ∈ C∞(G), ω = 0 in G \ G0, and let
vh ∈ Vh. Then there exists wh ∈ Vh such that wh = 0 in Ω \G0 and such that

‖ωvh − wh‖1,G � h‖vh‖1,G.

Remark 3.1 Assumption A3 is a classical assumption that is usually made when
some localization technique needs to be applied. It can be shown to hold under some
standard assumptions, see [6]

Finally, assume that the multiplier space Λh satisfies
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(A4) Stability conditions. We have that

inf
µh∈Λh

sup
vh∈Vh

∫
Γ

µhvh

‖µh‖−1/2,Γ‖vh‖1,Ω
≥ α > 0.

and for all vh in Vh such that
∫
Γ

vhµh = 0 forall µh ∈ Λh, we have∫
Γ

|∇vh|2 � ‖vh‖21,Ω.

(A5) Approximation for λ. Let −1/2 < � ≤ r2. For each λ ∈ H(Γ), there exists
an element µ ∈ Λh such that

‖λ− µ‖−1/2,Γ � h+1/2
N∑

i=1

‖λ‖,ei
;

Let now Ω0 ⊂ Ω1 be an open subdomain satisfying

Γ ⊂ ∂Ω0, ∂Ω0 \ Γ ⊂ Ω1, ∂Ω0 \ Γ is on class C∞.

Under the previous assumptions we can prove the following theorem.

Theorem 3.1 Suppose that A1–A5 are satisfied. Assume that u ∈ Hs(Ω), Then, for
t0 positive arbitrary but fixed verifying t0 < s0, if h is sufficiently small the following
bound holds

‖u− uh‖1,Ω0 + ‖λ− λh‖−1/2,Γ � (hτ + Hσ+t0)‖u‖s,Ω.

with τ = min{s− 1, r1 − 1, r2 + 1/2} and σ = min{s, r1, r2 + 3/2}. where the implicit
constant in the inequality depends on Ω0, Ω1 and t0.

Trivially this yields the following corollary

Corollary 3.1 Under the same assumptions of theorem 3.1 it holds

‖λ− λh‖−1/2,Γ � (hτ + Hσ+t0)‖u‖s,Ω.

By applying such corollary, it is clear that choosing a discretization satisfying
assumptions A1−−A5 with

H = hτ/(σ+t0)

yields the optimal error estimate

‖λ− λh‖−1/2,Γ � hτ‖u‖s,Ω.

In particular, the above results implies that, as far as the approximation of the
Lagrange multiplier λ is concerned it is possible to chose the mesh in the interior of
the subdomain sensibly coarser than the mesh that would be needed to approximate
the function u with the same accuracy.
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4. Numerical results. Let us test the theoreical results of the previous section
on a simple example. Let Ω =]− 1, 1[2 and consider the following model problem:

−∆u = 13 sin(2x) cos(3x), in Ω, u = sin(2x) cos(3y), on Γ. (4.1)

It is not difficult to verify that the solution of such a problem is the function
u = sin(2x) cos(3y) (see Figure 4.1).

Figure 4.1: Solution of the model problem

In order to approximate u we consider a Lagrange multiplier formulation in the
form (3.2) of the above problem, where Vh is chosen to be a P1 finite element space
and Λh is defined as the trace of Vh on the boundary Γ. It is not difficult to check
that if the triangulation on the boundary is quasi-uniform then assumptions A1–A5
are satisfied with r1 = 2 and r2 = 1/2− ε (ε > 0 arbitrary but fixed).

Letting δ ∈]0, 1[ be a fixed parameter, we consider triangulations of Ω constructed
in the following way: starting from a quasi uniform triangulation TH of the whole Ω,
set T 0

h = TH , and let T j
h be obtained from T j−1

h by “refining” (precisare) all those
triangles T in T j−1

h such that suppT ∩ Ω\]− 1 + δ, 1− δ[2 �= ∅.

We compare the solution of problem (4.1) obtained with a quasi uniform triangu-
lation of mesh-size h = H/2j , with the one obtained using the triangulation T j

H for
j = 1, · · · , 4 and for different values of the parameter δ. In the following figures we
display both the H1(Ω) and the L2(Ω) norms of the error u−uh, and the L2(Ω) norm
of the error λ − λh (which for computational simplicity we prefer to the H−1/2(Γ)).
As one can expect, for the boundary refined triangulations, both the H1(Ω) and the
L2(Ω) norms of the error on u are mainly influenced from coarse triangulations in the
interior of Ω and do not sensibly vary as j increases, while they decrease with the ex-
pected rates when considering the quasi uniform mesh. Conversely, when considering
the L2(Γ) norm of the error on λ, the boundary refined and the quasi uniform meshes
display the same behaviour as j increases. However, the boundary refined meshes
allows to get the same error with considerably less degrees of freedoms – and therefore
with considerably lower computational cost.
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3. A Generalized FETI - DP Method for a Mortar
Discretization of Elliptic Problems

M. Dryja1, O. B. Widlund2

1. Introduction. In this paper, an iterative substructuring method with La-
grange multipliers is proposed for discrete problems arising from approximations of
elliptic problem in two dimensions on non-matching meshes. The problem is formu-
lated using a mortar technique. The algorithm belongs to the family of dual-primal
FETI (Finite Element Tearing and Interconnecting) methods which has been ana-
lyzed recently for discretization on matching meshes. In this method the unknowns at
the vertices of substructures are eliminated together with those of the interior nodal
points of these substructures. It is proved that the preconditioner proposed is almost
optimal; it is also well suited for parallel computations.

We will consider a dual-primal FETI (FETI-DP) method, see [5], [9], and [6], for
solving discrete problems arising from the approximation of the Dirichlet problem de-
fined on a union of substructures Ωi. Each substructure is the union of a number of
elements of a coarse, shape-regular triangulation and the number of these triangles,
which form such a substructure, is assumed to be uniformly bounded. The discretiza-
tion is obtained by a mortar method on nonmatching meshes across the interface Γ; see
[1], [2]. As in all other iterative substructuring methods, the unknowns corresponding
to the interior nodal points are eliminated; in this dual-primal FETI method those at
the vertices of Ωi are eliminated as well. The remaining Schur complement system is
solved by a FETI method; see Section 3 for details.

A full analysis of the convergence of several FETI-DP methods has been worked out
for finite element approximations on matching meshes; see [9] for the two-dimensional
case and [6] for three dimensions. This method, on nonmatching meshes and for the
mortar discretizations in the 2-D case, was analyzed in [4]. The preconditioner used
there is a standard one and the estimates are not optimal in the general case. In
this paper, our analysis is extended to the preconditioner suggested in [7] for match-
ing meshes. The results obtained for this method is better than those of [4]. The
superiority of this method is consistent with the numerical results reported on in [11].

The remainder of this paper is organized as follows. In Section 2 differential and
discrete problems are formulated while in Section 3 the dual-primal formulation is
introduced. Sections 4 is are devoted to the analysis of the proposed preconditioner.

2. Differential and discrete problems. We will consider the following elliptic
problem: find u∗ ∈ H1

0 (Ω) such that

a(u∗, v) = f(v), v ∈ H1
0 (Ω), (2.1)

where
a(u, v) =

∫
Ω

∇u · ∇vdx, f(v) =
∫

Ω

fv dx

1Department of Mathematics, Warsaw University, Warsaw, Banacha 2, 02-097 Warsaw, Poland,
E-mail: dryja@mimuw.edu.pl

2Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York,
NY 10012, USA, E-mail: widlund@cs.nyu.edu
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and Ω is a polygonal 2-D region which is a union of polygons Ωi, i = 1, . . . , N. These
subregions form a coarse partitioning of Ω with subdomains with diameters on the or-
der of H. In each Ωi, we introduce a quasi-uniform, but otherwise arbitrary, triangula-
tion of the subregion with a mesh parameter hi; generally the resulting triangulations
do not match across the edges of the Ωi.

Let
W (Ω) = W (Ω1)× · · · ×W (ΩN ),

where W (Ωi) are the finite element spaces of piecewise linear, continuous functions
on the triangulation of Ωi and which vanish on ∂Ω and let the interface be defined by
Γ = (∪∂Ωi)\∂Ω. We choose mortar and nonmortar edges of Γ, and denote them by
γm(j) and δm(i). In the analysis of the proposed preconditioner, we need a uniform
bound on the ratios hγm(j)/hδm(i) where hγm(j) and hδm(i) are the mesh parameters
of γm(j) ⊂ ∂Ωj and δm(i) ⊂ ∂Ωi, (γm(j) = δm(i)), respectively. The problem (2.1)
is approximated in X(Ω), a subspace of W (Ω), of functions which satisfy the mortar
condition, see [1], [2],

b(u, ψ) ≡
N∑

i=1

∑
δm(i)⊂∂Ωi

∫
δm(i)

(ui − uj)ψds = 0, ψ ∈M(Γ), (2.2)

where M(Γ) = ΠiΠδm(i)⊂∂Ωi
M(δm(i)) and M(δm(i)) is the standard mortar space

defined on δm(i), i.e., piecewise linear continuous functions which are constant on the
elements which intersect ∂δm(i). Additionally, we assume that the functions of X(Ω)
are continuous at the vertices of Ωi, i.e., they take the same values, see [2]. In (2.2)
ui ∈W (Ωi) and uj ∈W (Ωj) are the restrictions of u to δm(i) and γm(j), respectively.

3. A dual-primal formulation of the problem. We will use some of the
notations of [9], [6]. Let

K := diagN
j=1(K

(j)), (3.1)

where K(j) is the local stiffness matrix with respect to the standard basis functions
of W (Ωj). We eliminate the unknown variables corresponding to the interior nodal
points and the vertices of Ωi. A Schur complement S̃ results which is of the form:

S̃ := Krr −
(

Kri Krc

) (
Kii Kic

Kci Kcc

)−1 (
Kir

Kcr

)
. (3.2)

Here,

K̃ :=


Kii Kic Kir

Kci Kcc Kcr

Kri Krc Krr

 ,

where the rows correspond to the interior, vertex, and remaining (edge) nodal points,
respectively. It is obtained from K by reordering the unknowns and taking into account
that the functions of X(Ω) are continuous at the subdomain vertices.

Let
W (Γ) = W (∂Ω1)× · · · ×W (∂ΩN )
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and let Wr(Γ) denote the space of functions defined at the edge nodal points and which
vanish at the vertices of Ωi, and let Wc(Γ) be the subspace of W (Γ) of functions that
are continuous at the vertices.

The dual-primal formulation of the mortar discretization of (2.1) is: find u∗
r ∈

Wr(Γ) such that

J(u∗
r) = min

vr ∈Wr

Bvr = 0

J(vr), J(v) := 1/2〈S̃v, v〉 − 〈fr, v〉, (3.3)

where < , > means the scalar product in l2. B is defined by the mortar condition (2.2)
as follows: on δm(i) ⊂ ∂Ωi , δm(i) = γm(j), the matrix form of (2.2) is

Bδm(i)ui|δm(i)
−Bγm(j)uj|γm(j)

= 0. (3.4)

Here,
Bδm(i) = {(ψl, ϕp)L2(δm(i))

}, l, p = 1, ..., nm(i),

ϕp ∈Wi(∂Ωi)|δm(i)
, ψl ∈M(δm(i)) ,

Bγm(j) = {(ψl, ϕk)L2(δm(i))
}, l = 1, ..., nm(i), k = 1, ..., nm(j),

and ϕk ∈ Wj(∂Ωj)|γm(j)
;nm(i) and nm(j) are the number of interior nodal points of

δm(i) and γm(j), respectively. Condition (3.4) can be rewritten as

ui|δm(i)
−B−1

δm(i)
Bγm(j)uj|γm(j)

= 0, (3.5)

since the matrix Bδm(i) = BT
δm(i)

> 0. We note that Bγm(j) is generally a rectangular
matrix.

The matrix B is block-diagonal,

B = blockdiag{Dδm(i)} (3.6)

for i = 1,. . . ,N, and δm(i) ⊂ ∂Ωi where

Dδm(i)

(
ui|δm(i)

uj|γm(j)

)
≡ (I (−B−1

δm(i)
Bγm(j)))

(
ui|δm(i)

uj|γm(j)

)
. (3.7)

Introducing a space of Lagrange multipliers V := Im(B) to enforce the constraints
Bvr = 0, we obtain a saddle point formulation of (3.3),(

S̃ BT

B 0

)(
u∗

r

λ∗

)
=
(

f̃r

0

)
, (3.8)

where u∗
r ∈Wr(Γ) and λ∗ ∈ V . We obtain the problem

Fλ∗ = d, (3.9)

where
F = BS̃−1BT , d = BS̃−1f̃r.
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We now define a preconditioner for F. Let

S(j) = K
(j)
bb −K

(j)
bi (K(j)

ii )−1K
(j)
ib , (3.10)

be the standard Schur complement of K(j) where K
(j)
ii and K

(j)
bb are the submatrices

of K(j) corresponding to the interior and boundary unknowns of Ω̄j , respectively. Let

S(j)
rr = K(j)

rr −K
(j)
ri (K(j)

ii )−1K
(j)
ir (3.11)

denote the Schur complement of K(j), without the rows and columns corresponding
to the vertices. It is the restriction of S(j) to the space of functions which vanish at
the vertices. Let

S := diagN
i=1(S

(i)), Srr := diagN
i=1(S

(i)
rr ).

We can take a preconditioner M of F of the form

M = (BSrrB
T )−1, M−1 = BSrrB

T . (3.12)

This preconditioner, called the standard one, was analyzed in [4] for two cases.
In the first case there is Neumann-Dirichlet (N-D) ordering of substructures Ωi; a
Neumann substructure Ωi is one where all sides are chosen as mortars while for a
Dirichlet substructure all sides are nonmortars. In the second case, we do not have
such ordering. For this preconditioner a bound was established for the condition
number of FETI-DP method which is proportional to (1+ log(H/h))2 in the first case
while we need (1 + log(H/h))4 in the second case.

We will now design a preconditioner for FETI-DP method which is similar to
the one used in a FETI method on matching meshes in [7]. It is analyzed in the
general case and a bound is obtained for the condition number of this method that is
proportional to (1 + log(H/h))2 only.

Let us introduce a scaling in Dδm(i) , cf. (3.7), given by

D̃δm(i)

(
ui|δm(i)

uj|γm(j)

)
≡ {I (−α

(m)
ij B−1

δm(i)
Bγm(j))}

(
ui|δm(i)

uj|γm(j)

)
(3.13)

where α
(m)
ij = (hδm(i)/hγm(j)) and, cf. (3.6), let

B̃ = blockdiag(D̃δm(i)) (3.14)

for i = 1, . . . , N, and δm(i) ⊂ ∂Ωi. The preconditioner M̃ for F is of the form

M̃−1 = (BB̃T )−1B̃SrrB̃
T (B̃BT )−1. (3.15)

Remark We could also take

M̂−1 = diag(BBT )−1BSrrB
T diag(BBT )−1 (3.16)

This corresponds to the preconditioner introduced in [8] for a FETI method on match-
ing and nonmatching triangulations. To our knowledge, there is no full analysis of that
method.
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4. Convergence analysis. In this section we prove that the preconditioner M̃
is spectrally equivalent to F, except for a (1 + log(H/h))2 factor; see Theorem 1. We
follow the approach of [9], [6]. We first prove two auxiliary results.

Let us introduce the operator P = B̃T (BB̃T )−1B defined on Wr. We note that P
is a projection, P 2 = P .

Lemma 1 Let hδm(i) ∼ hγm(j) , δm(i) ⊂ ∂Ωi , i = 1,. . . , N be satisfied. Then for
wr ∈Wr

|Pwr|2Srr
≤ C(1 + log(H/h))2|wr|2S̃ (4.1)

holds where the constant C is independent of H = maxiHi and h = minihi.
Proof Let w be the discrete harmonic extension of wr to the interior points and

to the vertices in the sense of < S̃u, u >. We have

|wr|2S̃ = |w|2S , w ∈Wc. (4.2)

Using this fact, we estimate |Pwr|Srr
in terms of |w|2S . We construct IHw the function

which is linear on the edges and which takes the values of w at the vertices. Setting
u ≡ w − IHw and noting that BIHw = 0, we have

|Pwr|2Srr
= |Pu|2Srr

=
N∑

i=1

|Pu|2S(i) . (4.3)

We note that Pu = 0 at the vertices. Using that and setting v = (BB̃T )−1Bu, we
have

|Pwr|2S(i) = |B̃T v|2S(i) ≤ C{
∑

δm(i)⊂∂Ωi

|B̃T v|2Sδm(i)
+ (4.4)

∑
γm(i)⊂∂Ωi

|B̃T v|2Sγm(i)
},

where Sδm(i) and Sγm(i) are matrix representations of the H
1/2
00 - norm on δm(i) and

γm(i), respectively; see Lemma 2 below. From the structure of B̃, see (3.13) and (3.14),
it follows that

|B̃T v|2Sδm(i)
= |vi|2Sδm(i)

(4.5)

and that
|B̃T v|2Sγm(i)

= |B̃T
jivj |2Sγm(i)

where, here and below, B̃ji = α
(m)
ji B−1

δm(j)
Bγm(i) ≡ α

(m)
ji Bji, γm(i) = δm(j), δm(j) ⊂

∂Ωj , and vi and vj are restrictions of v to Ω̄i and Ω̄j , respectively.
We now prove that

|B̃T
jivj |2Sγm(i)

≤ C|vj |2Sδm(j)
. (4.6)

We note that v = 0 at the cross points. We have

|B̃T
jivj |2Sγm(i)

= sup
ϕ

| < S
1/2
γm(i)B̃

T
jivj , ϕ >γm(i) |2

|ϕ|2γm(i)

=
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= sup
t

| < vj , B̃jit >δm(j) |2

|S−1/2
γm(i)t|2γm(i)

,

where < ·, · >γm(i) and < ·, · >δm(j) are �2−inner products. Hence,

|B̃T
jivj |2Sγm(i)

≤ |S1/2
δm(j)

vj |2δm(j)
sup

t

|S−1/2
δm(j)

B̃jit|2δm(j)

|S−1/2
γm(i)t|2γm(i)

. (4.7)

Let, here and below, πδm(j)(t, 0) correspond to Bjit for a piecewise linear, continuous
function, also denoted by t, and defined on γm(i) by a vector t with components that
vanish at the end of γm(i). Using Lemma 2, below, and the H−1/2-stability of πδm(j) ,
see [1], we get

|S−1/2
δm(j)

B̃jit|2δm(j)
≤ Ch−2

γm(i)
||πδm(j)(t, 0)||2H−1/2(δm(j))

≤

≤ Ch−2
γm(i)

‖ t ‖2H−1/2(γm(i))
≤ C|S−1/2

γm(i)
t|2.

Here H−1/2 is the dual to H
1/2
00 . Using this bound in (4.7), we get

|B̃T
jivj |2Sγm(i)

≤ C|S1/2
δm(j)

vj |2δm(j)
,

which proves (4.6). Using (4.5) and (4.6) in (4.4), we have

|B̃T v|2S(i) ≤ C{
∑

δm(i)⊂∂Ωi

|vi|2Sδm(i)
+
∑
δm(j)

|vj |2Sδm(j)
}, (4.8)

where the second sum is taken over δm(j) ⊂ Ωj such that γm(i) = δm(j) with γm(i) ⊂
∂Ωi.

We now estimate the term |S1/2
δm(i)

vi|2 of (4.8) as follows. We have

|v|2Sδm(i)
≤ 2{|(BB̃T )−1Bu− 1

2
Bu|2Sδm(i)

+
1
4
|Bu|2Sδm(i)

}. (4.9)

We first estimate the second term. Using the structure of B, see (3.7), we have

|Bu|2Sδm(i)
≤ 2{|ui|2Sδm(i)

+ |Bijuj |2Sδm(i)
}, (4.10)

where δm(i) = γm(j), γm(j) ⊂ Ωj . We note that

|Bijuj |2Sδm(i)
≤ C ‖ πδm(i)(uj , 0) ‖2

H
1/2
00 (δm(i))

≤

≤ C|uj |2H1/2
00 (γm(j))

≤ C|uj |2Sγm(j)
.

Here we have used the H
1/2
00 - stability of πδm(i) , see [1]. Using this in (4.10), we have

|Bu|2Sδm(i)
≤ C

{
|ui|2Sδm(i)

+ |uj |2Sγm(j)

}
. (4.11)
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To estimate the first term of (4.9), we first use the fact that |(BB̃T )−1| ≤ 1 since
BB̃T = Iδm(i) + BijB̃

T
ij on δm(i); this follows from the structure of B. Here Iδm(i) is

the identity matrix of a dimension equal to the number of nodal points of δm(i). Using
that and Sδm(i) ≤ CIδm(i) , we have

|(BB̃T )−1Bu− 1
2
Bu|2Sδm(i)

≤ C|(BB̃T )−1(Bu− 1
2
(BB̃T )Bu)|22 (4.12)

≤ C|Bu− 1
2
BB̃T Bu|22 .

Setting z = Bu and noting that on δm(i)

(z − 1
2
BB̃T z)|δm(i)

=
1
2
(zi −BijB̃

T
ijzi),

we have
|z − 1

2
BB̃T z|22 =

1
4
|zi −BijB̃

T
ijzi|22 .

Let g ≡ B̃T
ijzi. We note that zi = π(zi, 0) on δm(i). Using that

|zi −Bijg|22 ≤ C

hδm(i)

‖ zi − πδm(i)(g, 0) ‖2L2(δm(i))
= (4.13)

=
C

hδm(i)

‖ πδm(i)(zi − g, 0) ‖2L2(δm(i))
≤

≤ C

hδm(i)

‖ zi − g ‖2L2(δm(i))
,

in view of the L2 - stability of πδm(i)); see [1].
The question is now how to estimate the right hand side of (4.13). We do that as

follows. Let z̄i be a piecewise constant function on δm(i) with respect to the triangu-
lation on δm(i) and with values zi(xk) at xk ∈ δm(i)h, the set of nodal points on δm(i).
Using this, we get

1
hδm(i)

‖ zi − g ‖2L2(δm(i))
≤ 2

hδm(i)

‖ z̄i − g ‖2L2(δm(i))
+C|zi|2Sδm(i)

, (4.14)

since

‖ zi − z̄i ‖2L2(δm(i))
≤ Chδm(i) ‖ zi ‖2H1/2

00 (δm(i))
≤ Chδm(i) |zi|2Sδm(i)

, (4.15)

in view of a known estimate and Lemma 2.
There remains to prove that

1
hδm(i)

‖ z̄i − g ‖2L2(δm(i))
≤ C|z|2Sδm(i)

. (4.16)

We do this as follows. Let ḡγ be a piecewise constant function on γm(j) with respect
to the triangulation on γm(j) and with values g(xk) = (B̃T

ijzi)k at xk ∈ γm(j)h, the set
of nodal points on γm(j). We have,

1
hδm(i)

‖ z̄i − g ‖2L2≤
2

hδm(i)

{‖ z̄i − ḡγ ‖2L2 + ‖ g − ḡγ ‖2L2}. (4.17)
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It is known that

‖ g − ḡγ ‖2L2(γm(j))
≤ Chγm(j) ‖ g ‖2

H
1/2
00 (γm(j))

.

On the other hand,
‖ g ‖2

H
1/2
00 (γm(j))

≤ C|zi|2Sδm(i)
,

in view of (4.6). Hence,

1
hδm(i)

‖ g − ḡγ ‖2L(δm(i))
≤ C

hγm(j)

hδm(i)

|zi|2Sδm(i)
≤ C|zi|2Sδm(i)

. (4.18)

We now estimate h−1
δm(i)

‖ z̄i − ḡγ ‖2L2 of (4.17) as follows. We have

‖ z̄i − ḡγ ‖2L2(δm(i))
= sup

ϕ

|(z̄i − ḡγ , ϕ)L2 |2
‖ ϕ ‖2L2

. (4.19)

Let Qδϕ and Qγϕ be the L2 - projections on the spaces of piecewise constant functions
on the triangulations of δm(i) and γm(j), respectively. It is known that,

‖ zi −Qδzi ‖2L2(δm(i))
≤ Chδm(i) |zi|2H1/2

00 (δm(i))

and
‖ zi −Qγzi ‖2L2(γm(j))

≤ Chγm(j) |zi|2H1/2
00 (γm(j))

.

Using the projections, we have

(z̄i − ḡγ , ϕ)L2(δm(i)) = (z̄i, Qδϕ)L2(δm(i)) − (ḡγ , Qγϕ)L2(γm(j)). (4.20)

We note that

(ḡγ , Qγϕ)L2(γm(j)) = hγm(j)

∑
xk∈γm(j)h

gγ(xk)(Qγϕ)(xk) =

= α
(m)
ij hγm(j)(B

T
ijzi, Qγϕ)2 =

= hδm(i)(zi, BijQγϕ)2 = (z̄i, BijQγϕ)L2(δm(i)),

where BijQγϕ is a piecewise constant function with respect to the δm(i) triangulation.
Using this in (4.20), we have

(z̄i − ḡγ , ϕ)L2(δm(i)) = (z̄i, Qδϕ−BijQγϕ)L2(δm(i)).

Hence,

(z̄i − ḡγ , ϕ)L2(δm(i)) ≤ ‖ zi − z̄i ‖L2‖ Qδϕ−BijQγϕ ‖L2 + (4.21)

+ ‖ zi ‖H1/2
00 (δm(i))

‖ Qδϕ−BijQγϕ ‖H−1/2(δm(i))
.

We note that BijQγϕ = πδm(i)(Qγϕ, 0). Using that, we have

‖ Qδϕ−BijQγϕ ‖H−1/2(δm(i))
≤‖ Qδϕ− ϕ ‖H−1/2(δm(i))

+
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‖ ϕ− πδm(i)(Qγϕ, 0) ‖H−1/2(δm(i))
+ ‖ πδm(i)(Qγϕ, 0)− πδm(i)(Qγϕ, 0) ‖H−1/2(δm(i))

.

Using known estimates for these terms, we get

‖ Qδϕ−BijQγϕ ‖2H−1/2(δm(i))
≤ C(hδm(i) + hγm(j)) ‖ ϕ ‖2L2(δm(i))

. (4.22)

It is easy to see that

‖ Qδϕ−BijQγϕ ‖2L2(δm(i))
≤ C ‖ ϕ ‖2L2(δm(i))

. (4.23)

Using the estimates (4.22), (4.23), and (4.15) in (4.21), we get

(z̄i − ḡγ , ϕ)L2(δm(i)) ≤ Chδm(i) ‖ zi ‖H1/2
00 (δm(i))

‖ ϕ ‖L2(δm(i)) .

In turn, substituting this into (4.19), we have

‖ z̄i − ḡγ ‖2L2(δm(i))
≤ Chδm(i) ‖ zi ‖2H1/2

00 (δm(i))
≤ Chδm(i) |zi|2Sδm(i)

.

Using this and (4.18) in (4.17) and the resulting inequality in (4.14), we get

1
hδm(i)

‖ zi − g ‖2L2(δm(i))
≤ C|zi|2Sδm(i)

.

In turn, using this estimate in (4.13) and the resulting inequality in (4.12), we have

|(BB̃T )−1Bu− 1/2Bu|2Sδm(i)
≤ C|Bu|2Sδm(i)

≤ C{|ui|2Sδm(i)
+ |uj |2Sγm(j)

};

we have also used (4.11). Using this and again (4.11) in (4.9) and the resulting
inequality in (4.8), we get, cf. (4.4),

|Pwr|2S(i) ≤ C{
∑

δm(i)⊂∂Ωi

|ui|2Sδm(i)
+

∑
γm(i)=δm(j)

|uj |2Sγm(j)
}, (4.24)

where the second sum is taken over γm(i) ⊂ Ωi. It is known that for u = w− IHw we
have

|ui|2Sδm(i)
≤ C(1 + log(H/h))2|wi|2Si

Using this in (4.24) and summing the resulting inequality with respect i, we get (4.1),
in view of (4.2). The proof is complete.

Lemma 2 Let hδm(i) ∼ hγm(j) . Then for u ∈W (δm(i)), which vanishes at the ends
of δm(i) the following hold:

C0 < Sδm(i)u, u >2≤‖ u ‖2H1/2(δm(i))
≤ C1 < Sδm(i)u, u >2 . (4.25)

and

C2h
2
δm(i)

< S−1
δm(i)

u, u >≤‖ u ‖2H−1/2(δm(i))
≤ C3h

2
δm(i)

< S−1
δm(i)

u, u > (4.26)

where Ci are positive constants independent of hδm(i) .
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Proof The proof of (4.25) can be found for example in [3]. The proof of (4.26)
follows from Proposition 7.5 in [10].
Cororally (see the proof of Lemma 1 in [4])

|Bijt|2S−1
δm(i)

≤ C|t|2
S−1

γm(j)
. (4.27)

Proof Let πδm(i)(t, 0) correspond to Bijt on δm(i) where t is a piecewise linear
continuous function, also denoted by t, and defined by the vector t. Using (4.26), we
have

h2
δm(i)
|Bijt|2S−1

δm(i)

≤ C ‖ πδm(i)(t, 0) ‖2H−1/2(δm(i))
. (4.28)

We show below that

‖ πδm(i)(t, 0) ‖2H−1/2(δm(i))
≤ C(1 +

hδm(i)

hγm(j)

) ‖ t ‖2H−1/2(γm(j))
. (4.29)

Using this in (4.28), that hδm(i) ∼ hγm(j) , and (4.26), we get (4.27).
There remains to prove (4.29). We have

‖ πδm(i)(t, 0) ‖H−1/2(δm(i))
≤ ‖ t ‖H−1/2(δm(i))

(4.30)

+ ‖ πδm(i)(t, 0)− t ‖H−1/2(δm(i))

and

‖ πδm(i)(t, 0)− t ‖H−1/2(δm(i))
= (4.31)

= max
g

(πδm(i)(t, 0)− t, g −Qδm(i)g)L2(δm(i))

‖ g ‖
H

1/2
00 (δm(i))

.

Here Qδm(i) is the L2 orthogonal projection onto the mortar space M(δm(i)). Using a
known estimate for g −Qδm(i)g, the L2 - stability of πδm(i) , and an inverse inequality,
we get

‖ πδm(i)(t, 0)− t ‖H−1/2(δm(i))
≤ C

(hδm(i)

hγm(i)

)1/2 ‖ t ‖H−1/2(δm(i))
.

Using this bound in (4.30), we get (4.29). The proof is complete.
We now in the position to formulate and prove the main result.

Theorem 1 Let the assumptions of Lemma 1 be satisfied. Then for λ ∈ V =
Im(B)

< M̃λ, λ >≤< Fλ, λ >≤ C(1 + log(H/h))2 < M̃λ, λ > (4.32)

holds, where C is independent of h and H.
Proof The right hand side of (4.32): We have, cf. [9],

< Fλ, λ >= max
wr∈Wr

| < λ,Bwr > |2
|wr|2S̃

.

Using Lemma 1, we get

< Fλ, λ >≤ C(1 + log(H/h))2 max
wr

| < λ,Bwr > |2
|Pwr|2Srr

,
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where P = B̃T (BB̃T )−1B. In turn, by straightforward manipulations, see also (3.15),
we have

< Fλ, λ >≤ C(1 + log(H/h))2 max
wr

| < λ,Bwr > |2

< (BB̃T )−1B̃SrrB̃T (BB̃T )−1Bwr, Bwr >
=

= C(1 + log(H/h))2 max
wr

| < M̃1/2λ, M̃−1/2Bwr > |2

< M̃−1/2Bwr, M̃−1/2Bwr >
=

= C(1 + log(H/h))2 < M̃λ, λ >

This proves the right hand side of (4.32).
The left hand side of (4.32): We have, cf. [9],

< Fλ, λ >=‖ S̃−1/2BT λ ‖2= max
v

| < λ,Bv > |2

‖ S̃1/2v ‖2
.

Taking v ∈ range (P) and using that v = Pv, and (4.2), we get

< Fλ, λ >≥ max
v

< λ,Bv >

< Pv, Pv >Srr

.

Setting µ = Bv and using the definition of P, we have

< Fλ, λ >≥ max
µ

| < λ, µ > |2

< M̃−1µ, µ >
=

= max
µ

| < M̃1/2λ, M̃−1/2µ > |2

< M̃−1/2µ, M̃−1/2µ
=< M̃λ, λ > .

This proves the left-hand side of (4.32). The proof of Theorem 1 is complete.
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4. Direct Domain Decomposition using the Hierarchical
Matrix Technique

W. Hackbusch1

1. Introduction. In the time when the domain decomposition technique devel-
oped, direct solvers were quite common. We come back to direct methods; however,
the term “direct” has another meaning. The usual understanding of a direct method
is:

Given a matrix A and a vector b,
produce the solution x of Ax = b.

Here, we require a much more mighty procedure:

Given a matrix A and a vector b,

approximate the inverse A−1 and x =
(
A−1

)
∗ b.

The technique of hierarchical matrices allows to perform this step with an almost
optimal storage and operation cost Õ(n) for n×n matrices related to elliptic operators.
The symbol Õ(n) means the order O(n) up to a logarithmic factor, i.e., there is a
(small) number α such that

Õ(n) = O (n logα n) .

In Section 2, we describe the underlying problem of a non-overlapping domain
decomposition and the corresponding system of equations. It is interesting to remark
that

• rough (exterior and) interior boundaries are allowed, i.e., no smoothness condi-
tions on the subdomains or the interior boundary (skeleton) are necessary.

• inside of the subdomains, L∞-coefficients are allowed (i.e., jumping coefficients,
oscillatory coefficients, etc.). There is no need to place the skeleton along jump
lines. A proof concerning robustness against rough boundaries and non-smooth
coefficients is given in [1]. If, however, it happens that the coefficients are piece-
wise constant or analytic in the subdomains, a further improvement is possible
using a new technique of Khoromskij and Melenk [7] (see Subsection 3.2).

The two items mentioned above allow to create the subdomains independent of
smoothness considerations; instead we may use load balancing arguments.

Further advantages will be mentioned in the Section 3, where the direct solution
is explained.

The basic of the solution method are the hierarchical matrices which are already
described in several papers (cf. [4], [5]). An introduction is given in [2]. We give an
outline of the method in Section 4.

1Max-Planck-Institut Mathematik in den Naturwissenschaften, wh@mis.mpg.de
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Although the method of hierarchical matrices could be applied immediately to the
global problem, the domain decomposition helps to achieve a parallelisation of the
solution process. The details are discussed in Section 5.

We conclude this contribution in Section 6 with numerical example for the inversion
of finite element stiffness matrices. We take an example with extremely non-smooth
coefficients to support the remark above.

Figure 1.1: Domain decomposition with non-smooth interfaces

2. Non-Overlapping Domain Decomposition. Let the domain Ω be decom-
posed into p non-overlapping subdomains Ωi, i = 1, . . . , p (cf. Figure 1.1). The
skeleton Σ consists of the interior interfaces:

Σ :=
(⋃p

i=1
∂Ωi

)
\ ∂Ω.

For a simpler finite element realisation we may assume (in 2D) that Ωi are polygons.
Then Σ is a union of straight lines. In 3D, Σ may consist of flat faces. As mentioned
in the introduction, there is no need for Ωi to form a regular macro element. Later, we
will assume that all Ωi contain a comparable number of degrees of freedom to achieve
a load balance in the parallelisation process.

Let Ii be the index set of interior degrees of freedom in Ωi (the precise definition
of j ∈ Ii is that the corresponding basis function bj satisfies2 supp (bj) ⊂ Ωi ). All
remaining indices are associated with the skeleton and its set is denoted by IΣ. Hence,
we arrive at the decomposition of the global index set I into

I = I1 ∪ · · · ∪ Ip ∪ IΣ (disjoint union).

As usual, the total dimension is denoted by

n := #I. (2.1)

2Note that by definition the support supp (bj) is always in Ω, also if the nodal point lies on ∂Ω.
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The FE system Au = f has the structure
A11 O · · · O A1,Σ

O A22 · · · O A2,Σ

...
...

. . .
...

...
O O · · · App Ap,Σ

AΣ,1 AΣ,2 · · · AΣ,p AΣΣ




u1

u2

...
up

uΣ

 =


f1

f2

...
fp

fΣ

 (2.2)

when we order the unknowns in the sequence I1, . . . , Ip, IΣ.

As usual in domain decomposition, we assume that besides A all submatrices Aii

are invertible, i.e., the subdomain problems are solvable.
In the case of a non-matching domain decomposition (mortar FEM), the elimina-

tion of all slave nodes by means of the mortar condition yields again the system (2.2),
where IΣ is the index set of all mortar nodes (cf. [3]).

3. Direct Solution Process.

3.1. Description of Single Steps. The system (2.2) can be reduced to the
Schur complement equation

SuΣ = gΣ, (3.1)

where

S := AΣΣ −
p∑

i=1

AΣ,iA
−1
ii Ai,Σ, (3.2)

gΣ := fΣ −
p∑

i=1

AΣ,iA
−1
ii fi. (3.3)

The remaining variables ui are the result of

ui := A−1
ii (fi −Ai,ΣuΣ) for i = 1, . . . , p. (3.4)

An obvious solution method which is usually not used because one is afraid of the
bad complexity up to O(n3) of standard solvers is the following:

Step 1a produce the inverse matrix A−1
ii ,

Step 1b form the products AΣ,i ∗
(
A−1

ii

)
and

(
AΣ,iA

−1
ii

)
∗Ai,Σ,

Step 1c compute the vectors
(
AΣ,iA

−1
ii

)
∗ fi,

Step 2a form the sum S = AΣΣ −
∑p

i=1

(
AΣ,iA

−1
ii Ai,Σ

)
,

Step 2b compute the vector gΣ = fΣ −
∑p

i=1

(
AΣ,iA

−1
ii fi

)
,

Step 3a produce the inverse matrix S−1,

Step 3b compute the vector uΣ =
(
S−1
)
∗ gΣ,

Step 4 compute the vectors ui =
(
A−1

ii

)
∗ [fi −Ai,Σ ∗ uΣ] .

Terms in round brackets are already computed quantities. The necessary operations
are indicated by ◦−1, ∗, −,

∑
.
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In the sequel we follow the Steps 1-4 with the following modifications: Steps
1a,1b,2a,3a are performed only approximately up to an error ε. Usually3, one wants ε
to be similar to the discretisation error, i.e.,

ε = O(hκ) = O(n−β), (3.5)

where h is the step size (if there is a quasi-uniform one) and κ is the consistency order.
Then β = κ/d holds, where d is the spatial dimension:

Ω ⊂ R
d. (3.6)

In the non-uniform finite element case, one expects an discretisation error O(n−β) for
an appropriate triangulation. In that case ignore the middle term in (3.5).

Allowing approximation errors of order O(ε), the technique of hierarchical matrices
explained in the next section will be able to perform all Steps 1a-4 with storage
and computer time of order Õ(n). Hence, the costs are similar to usual iterative DD
methods. One of the advantages of the direct method is its robustness and the relative
easy implementation. To be precise: It is not so simple to implement the hierarchical
matrix method for the first time, but as soon as one has programmed this method, it
can be used without modification for different FE applications as well as for the Schur
equation SuΣ = gΣ with the (fully populated) matrix S.

Finally we remark that A−1 can be computed in Step 5:

A−1 =


. . .

... · · ·
...

· · · δijA
−1
ii + A−1

ii Ai,ΣS−1AΣ,jA
−1
jj · · · −A−1

ii Ai,ΣS−1

...
. . .

...
· · · −S−1AΣ,jA

−1
jj · · · S−1

 .

However, we should make use of the representation by

A−1 =


A−1

11 O O O

O
. . . O O

O O A−1
pp O

O O O O

 (3.7)

+


A−1

11 A1,Σ

...
A−1

pp Ap,Σ

−I

 [ S−1AΣ,1A
−1
11 · · · S−1AΣ,pA

−1
pp −S−1

]
.

3.2. Improvement for Piecewise Smooth Coefficients. We mentioned that
the approach from above works also efficiently if the subproblems corresponding to the
FE matrices Aii involve non-smooth coefficients of the elliptic differential equation.
If, on the other hand, we know that the coefficients in one subdomain are constant (or

3If one performs only the Steps 1a,1b,2a and 3a to get a rough approximation of S−1 for the
purpose of preconditioning, ε may be of fixed order O(1), e.g., ε = 1/10.
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analytic), one can exploit this fact by applying a more appropriate finite element dis-
cretisation. In [7] a so-called boundary concentrated finite element method is described
which allows to solve the local problem with a number of unknowns proportional to
area(∂Ωi)/hd−1. This number is usually smaller by a factor of h than the number of
degrees of freedom in a classical FEM, although the same resolution is obtained at the
boundary.

We do not discuss this modification in the subdomains in the following, i.e., we
consider a traditional FEM.

4. Hierarchical Matrices. It is to be remarked that the method of hierarchical
matrices does not apply to any matrix but only to those related to elliptic (pseudo-)
differential operators. In our application, Aii as well as their inverse matrices are
related to the local elliptic problem, while S is a nicely behaving pseudo-differential
operator composed from local Steklov operators. Nevertheless, the method is of black-
box character since its description does not depend on specific features of the involved
matrices. The success of this kind of approximation depends only on the ellipticity
properties.

In the following, we give an introduction into the definition and construction of
H-matrices. The interested reader will find more details in [4], [5] and [2].

4.1. The Main Ingredients. We have to introduce

1. the index set I and the geometric properties of its indices;
2. the cluster tree T (I);
3. the block-cluster tree T (I × I);
4. the admissibility criterion;
5. the (minimal admissible) partitioning of the matrix;
6. rank-k matrices;
7. the definition of an H-matrix;
8. the (approximations of the) operations A + B, A ∗B, A−1;
9. the estimates for the storage and operation costs.

First, we give a preview of these topics. The cluster tree T (I) describes how the
whole index set can be partitioned into smaller pieces, which are needed, e.g., when
we want to define a subblock of a vector. The block-cluster tree T (I×I) does the same
for the matrix. Among the blocks contained in T (I × I) we can choose a collection of
disjoint blocks covering I × I. Then we get a partitioning of the matrix into various
blocks. An example is given in Fig. 4.1.

The choice of this partitioning P is the essential part. It should contain as few
blocks as possible to make the costs as low as possible. On the other hand, the
approximation error must be sufficiently small. For this purpose, all blocks have to
satisfy an admissibility condition. Then, filling all blocks (e.g., in Fig. 4.1) by matrices
of rank smaller or equal some k, we obtain an H-matrix from the class H(P, k). The
results of A + B, A ∗ B, A−1 for A,B ∈ H(P, k) will, in general, not be again in
H(P, k), but they can be approximated in this class by a cost of O(n).

4.2. The Index Set and the Geometrical Data. As input for the algorithm
we only need the description of the index set I (e.g., {1, . . . , n} or list of nodal points,
etc.) and a characteristic subset X(i) ⊂ R

d associated with i ∈ I. For a collocation
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Figure 4.1: Block partitioning P for the unit circle

method, this may be the nodal point, i.e., X(i) = {xi} . The appropriate choice for a
Galerkin method is

X(i) = supp (φi) , where φi is the FE-basis function associated with i ∈ I. (4.1)

4.3. The Cluster Tree T (I). Formally, the cluster tree T (I) has to satisfy

1. T (I) ⊆ P(I) (i.e., each node of T (I) is a subset of the index set I).

2. I is the root of T (I).

3. If τ ∈ T (I) is a leaf, then #τ = 1 (i.e., the leaves consist only one index, τ = {i}).

4. If τ ∈ T (I) is not a leaf, then it has exactly two sons and is their disjoint union.

All nodes of T (I) are called “clusters”. For each τ ∈ T (I), we denote the set of its
sons by S(τ) ⊂ T (I).

In practice, the condition #τ = 1 is replaced by #τ ≤ CT , e.g., with CT = 32. The
condition for a binary tree (“exactly two sons”) in Part 4 can easily be generalised,
although a binary tree is quite reasonable.

The sets X(i) introduced above can immediately be generalised to all clusters by

X(τ) =
⋃
i∈τ

X(i) ⊂ R
d for all τ ∈ T (I). (4.2)

Using the Euclidean metric in R
d, we define the diameter of a cluster and the distance

of a pair of clusters:

diam (τ) = sup {|x− y| : x, y ∈ X(τ)} for τ ∈ T (I),
dist (τ, σ) = inf {|x− y| : x ∈ X(τ), y ∈ X(σ)} for τ, σ ∈ T (I).

The practical construction of T (I) must take care that the clusters are as compact
as possible, i.e., diam (τ) should be as small as possible for a fixed number #τ of
indices. One possible construction is the recursive halving of bounding boxes as illus-
trated in Fig. 4.2. Note that this procedure applies to any irregular FE-triangulation
in any spatial dimension.
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Figure 4.2: Dyadic clustering of the unit circle.

4.4. The Block-Cluster Tree T (I×I). The tree T (I×I) is completely defined
by means of T (I) when we use the following canonical choice. Let I × I belong to
T (I × I). For all τ × σ ∈ T (I × I) with τ and σ not being leaves, assign the sons
τ ′ × σ′ to T (I × I), where τ ′ ∈ S(τ) and σ′ ∈ S(σ). Again, we write S(τ × σ) for the
set of sons of τ × σ.

Remark 4.1 a) If T (I) is a binary tree (as described by condition 4 from above),
then T (I × I) is quad-tree.

b) All “blocks” or “block-clusters” b from T (I× I) have the product form b = τ ×σ
with τ, σ ∈ T (I). Indices i ∈ τ belong the rows of b, while j ∈ σ are column indices.

The set T (I × I) provides a rich choice of larger and smaller blocks, which we can
select to construct the partitioning of Subsection 4.6.

4.5. The Admissibility Condition. Let b = τ × σ be a block from T (I × I).
If τ or σ is a leaf in T (I) (i.e., #τ = 1 or #σ = 1), then also b is a leaf in T (I × I).
In this case, b is accepted as “admissible”. Otherwise, we recall diam and dist defined
via (4.2) and require an admissibility condition like

max (diam (τ) ,diam (σ)) ≥ 2η dist (τ, σ) , (4.3)

where, e.g., η may be chosen as 1
2 . Even the weaker requirement

min (diam (τ) ,diam (σ)) ≥ 2η dist (τ, σ)

makes sense. Conditions of this form are known from panel clustering or from matrix
compression in the case of wavelet bases.

It turns out that (4.3) is the appropriate condition to ensure that the rank-k
matrices introduced below will lead to the desired accuracy.

4.6. The Partitioning. A partitioning of I × I is a set P ⊂ T (I × I), so that
all elements (blocks) are disjoint and I × I = ∪b∈P b. The coarsest partitioning is
P = {I × I}, while the finest one consists of all leaves of T (I × I). In the first case
we consider the matrix as one block, in the latter case each entry forms a one-by-one
block.

We say that P is an admissible partitioning, if all b ∈ P are admissible. The
second of the trivial examples is such an admissible partitioning, since by definition
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one-by-one blocks are admissible. However, the second example leads to the standard
(costly) representation.

To obtain a representation which is as data-sparse as possible but still ensures the
desired accuracy, we choose the admissible partitioning with the minimal number of
blocks. The construction of this optimal P is as follows. Start with P := {I × I}.
Since I × I is definitely not admissible, we divide it into its sons s ∈ S(I × I) and
replace I × I by the sons: P := (P\ {I × I}) ∪ S(I × I). Similarly, we check for every
new b ∈ P, whether it is admissible. If not, P := (P\ {b}) ∪ S(b).

Under mild conditions, one proves that the construction of T (I) by means of
bounding boxes explained above, leads to #P = Õ(n).

4.7. Rk-Matrices. Except when #τ = 1 or #σ = 1, we represent all block
matrices as so-called Rk-matrices represented by 2k vectors aι ∈ R

τ , b�ι ∈ R
σ,

M =
∑k

ι�=1
aιb

�
ι

or in matrix form: M = AB� with A ∈ R
τ,k, B ∈ R

k,σ. Note that all matrices of rank
≤ k can be represented in this form. The storage equals k ∗ (#τ + #σ) .

4.8. H(P, k)-Matrices. For any partition P and all k ∈ N, we define

H(P, k) :=
{
A ∈ R

I×I : rank(A|b) ≤ k for all b ∈ P
}

as the set of hierarchical matrices for the partitioning P of I × I and the maximal
rank k. Here, A|b = (Aij)(i,j)∈b is the block matrix corresponding to b ∈ P. A|b is
represented as Rk-matrix.

There are generalisations i) where the integer k is replaced by a function k : P → N

(variable rank) and ii) where the condition rank(A|b) ≤ k is replaced by the stronger
requirement that A|b belongs to a tensor space Vτ ⊗Vσ with min (dimVτ ,dim Vσ) = k
(see [6]).

4.9. H-Matrix Operations. The simplest operation is the matrix-vector oper-
ation (A, x) �→ A ∗ x. Obviously, subblocks of x must be multiplied by A|b and the
partial results are summed up. Since A|b are Rk-matrices, A|b ∗x|σ needs only simple
scalar products. The overall cost is Õ(n).

The addition of two H(P, k)-matrices can be performed blockwise and yields a
result in H(P, 2k). Truncating all blocks to rank ≤ k (e.g., by means of SVD) gives
the approximate result in H(P, k) with a cost of Õ(n).

The approximative multiplication of two matrices can be performed recursively
exploiting the hierarchical structure of the partitioning P (see [2]). The costs are
again Õ(n).

The block Gauss elimination (of a 2×2 block matrix) allows to reduce the inversion
of the whole matrix to the inversion of the first block and Schur complement together
with additions and multiplications. This yields a recursive algorithm for computing
the inverse matrix approximately with cost Õ(n).

5. Parallelisation.
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5.1. First Approach. We recall the disjoint splitting of I into the subsets
I1, . . . , Ip, IΣ. For the purpose of load balance we assume that p processors are available
and that the cardinalities #Ii (i = 1, . . . , p) are of similar size, i.e.,

#Ii ∼
n

p
(i = 1, . . . , p) . (5.1)

The computations in Steps 1a-4 of Section 3 contain three different phases:

Phase I Steps 1a-c
Phase II Steps 2a-3b
Phase III Step 4

Obviously, Phases I and III contain completely independent tasks for each i = 1, . . . , p.
Hence, assuming p processors, these phases are parallelisable without any communi-
cation. The work cost for each processor is Õ(#Ii) = Õ(n

p ) according to (5.1).
The summation

∑p
i=1 in Steps 2a,b needs log2 (p) steps4 to collect and add the

terms. The computations of the Steps 3a,b are performed on one processor, i.e., no
parallelisation is used in Phase II. The cost of Phase II amounts to Õ(#IΣ).

In Phase III, uΣ has to be copied to each processor. Then Step 4 can be performed
with a cost of Õ(#Ii) = Õ(n

p ).
Similarly, the data can be distributed so that all p processors in Phase I,III need

Õ(#Ii) storage, while the one processor of Phase II requires a storage of Õ(#IΣ).
We may add a Phase IV, where Step 5 (computation of A−1) is performed.

For this purpose, the quantities A−1
ii Ai,Σ, S−1

(
AΣ,iA

−1
ii

)
from (3.7) are still to be

computed, while AΣ,iA
−1
ii are already known from Step 1b.

In total, the whole computation of the phases I-III leads to a cost of Õ(n
p )+Õ(#IΣ).

We next assume that subdomains related to Ii are determined such there surface is
of minimal order, i.e., the set IΣ,i = {j ∈ IΣ : j neighboured to some k ∈ Ii} has a

cardinality of O
(
(#Ii)

(d−1)/d
)

= O
(
(n

p )(d−1)/d
)

. Hence,

O(#IΣ) = O

(
p

(
n

p

)(d−1)/d
)

= O
(
p1/dn(d−1)/d

)
, (5.2)

where d is the spatial dimension. Under the assumption (5.2), the work equals
W = Õ

(
n
p + p1/dn(d−1)/d

)
. If n is fixed, the optimal number of processors is p =

O
(
n1/(d+1)

)
and leads to W = Õ

(
nd/(d+1)

)
. If, alternatively, the number p of pro-

cessors is given, the right scaling of n yields n = O
(
pd+1

)
.

We summarise in

Remark 5.1 A parallel treatment in the Phases I and III with p = O(n1/(d+1)) pro-
cessors leads to a work W = Õ(nd/(d+1)). The distributed memory requirements are
also Õ(nd/(d+1)). A possible Phase IV requires a work and local storage of the same
size.

4We remark that the log2 (p) factor can be ignored because of our definition of Õ(·).
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5.2. Multiple DD Levels in Phase I. In the previous subsection it was as-
sumed that the Steps 1a-c are performed by means of the H-matrix arithmetic. An
alternative is to compute A−1

ii in Step 1a again by a DD approach using a further
subdivision of Ii into Ii,j (j = 1, . . . , qi) and Ii,Σ. Due to the representation (3.7), the
matrix multiplication in Step 1b can be parallel in qi processors. The vector operation
in Step 1c needs O(pi) communications to add up all partial results. The work needed
to perform Steps 1a-c for a particular i is given by Remark 5.1: Under the natural
assumptions from above about the subdivision into Ii,1, . . . , Ii,qi

, Ii,Σ and assuming
qi = O((#Ii)

1/(d+1)), the work for Phase I is reduced to Õ((#Ii)
d/(d+1)) (instead of

Õ(#Ii)).
Assume (5.1) and qi = q = O((n

p )1/(d+1)) for all i, the total work is W =

Õ
(
(n

p )
d

d+1 + p1/dn
d−1

d

)
, which is minimal for p = n

1
d+1+d2 , when W = Õ(n

d2

d+1+d2 ).

Remark 5.2 a) The parallel two-level DD approach as described above reduces the

work and storage to Õ(n
d2

d+1+d2 ), where P = pq = O(n
d+1

d+1+d2 ) processors are used.
These exponents are 4

7 and 3
7 in the case of d = 2. Note that three different kinds of

parallelism appear: i) there are P = pq problems to be solved in parallel for the index
sets Ii,j (i = 1, . . . , p and j = 1, . . . , q) , ii) p tasks on Ii,Σ, iii) 1 task on IΣ.

b) There is an obvious generalisation to an L-level DD approach. The exponents

for the three-level case are W = Õ(n
d3

(d+1)(1+d2) ), P = O(n
d+1+d2

(d+1)(1+d2) ). The numbers
for d = 2 and L = 3 are W = Õ(n

8
15 ) and P = O(n

7
15 ). For general L, W = Õ(nωL)

and P = O(n1−ωL), where the exponents ωL converges to lim ωL = d−1
d , i.e.,

W → Õ(n
d−1

d ), P → O(n
1
d ).

5.3. DD in Phase II. In the previous subsection, we have improved the per-
formance in Phase I, while Phase II (Steps 2a-3b) remains unparallelised. The only
side effect was that the number p of subdomains (of the first level) could be chosen
smaller so that #IΣ was decreasing.

Now we also parallelise Phase II, but it turns out that this approach is equivalent
with the approach in Subsection 5.2. Consider a non-overlapping domain decompo-
sition of Ω by Ωi, i = 1, . . . , p, which is organised in a hierarchical way, i.e., there is
a coarser decomposition Ω̂k, k = 1, . . . ,K, so that Ω̂k ⊃

⋃
i∈Jk

Ωi for disjoint subsets
satisfying

⋃K
k=1 Jk = {1, . . . , p}.

Ω1 Ω2

Ω3 Ω4

Ω5 Ω6

Ω7 Ω8

Ω9 Ω10

Ω11 Ω12

Ω13 Ω14

Ω15 Ω16

Coarse DD (double lines) and fine DD (single lines)

In the picture above, the first coarse subset is Ω̂1 corresponding to the fine subsets
Ωi for i ∈ J1 = {1, . . . , 4}. The skeleton Σ̂ of the coarse domain decomposition (double
lines in the picture) is a subset of the skeleton Σ of the fine domain decomposition:
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Σ̂ ⊂ Σ. The set Σ\Σ̂ consists of non-connected parts Σk ⊂ Ω̂k, k = 1, . . . , K. The
Schur complement system corresponding to Σ has again the structure of system (2.2),
where now the sets I1, . . . , Ip, IΣ correspond to Σ1, . . . ,Σp, Σ̂. Hence, the methods from
Subsection 5.1 apply again. The multiple application can be done as in Subsection
5.2.

Remark 5.3 The Schur complement system for the skeleton Σ̂ from above can (iden-
tically) obtained in three different ways: a) eliminate directly all interior nodes in
Ω̂k, k = 1, . . . ,K; b) follow Subsection 5.2 and eliminate the interior nodes in Ω̂k

by means of the secondary domain decomposition by Ωi, i ∈ Jk; c) compute first the
Schur complement system for the finer skeleton Σ and eliminate the nodes from Σk,
k = 1, . . . ,K. The approaches b) and c) differ only in the ordering of the unknowns.

6. Numerical Example. Since the critical question is the ability to compute
the approximate inverse of a FE matrix, we give numerical results for this step. Fur-
thermore, we choose an example with jumping coefficients.

Consider the differential equation

−div (σ(x)∇u(x)) = f(x) in Ω = [0, 1]2,
u = 0 on Γ = ∂Ω,

where the function σ : R
2 → R>0 defined on Ω has values depicted in the following

figure:

σ=1

σ=100

σ=0.01

σ(x, y) =



0.01 |x + y − 1| < 0.05 or
(0.1 ≤ ‖(x, y)‖ < 0.2)
and (|x− y| ≥ 0.05)

100 |x− y| < 0.05 or
(0.3 ≤ ‖(x, y)‖ < 0.4)
and (|x + y − 1| ≥ 0.05)

1 otherwise

We introduce a regular finite element discretisation which leads to the sparse n × n
matrix, where n ∈ {322, 642, 1282, 2562}. The inversion algorithm applied to A yields
the approximation A−1

H . The relative error ‖A−1 −A−1
H ‖2/‖A−1‖2 is ≤ ‖I −A−1

H A‖2.
The later values are given in



50 HACKBUSCH

n = degree of freedom
k 322 642 1282 2562

1 3.5+1 1.1+2 3.1+2 9.5+2
2 2.4-0 1.7+1 1.3+2 4.3+2
3 6.0-1 3.9-0 1.3+1 5.4+1
4 9.4-2 1.0-0 3.4-0 1.0+1
5 2.6-2 2.8-1 7.6-1 6.6-0
6 1.1-3 7.7-2 2.8-1 1.3-0
7 3.9-5 2.1-2 4.8-2 2.3-1
8 9.6-6 1.3-3 1.6-2 4.2-2
9 7.8-6 4.5-4 3.4-3 6.2-3
10 7.0-7 2.9-4 9.7-4 2.5-3
15 5.1-12 7.9-9 8.3-7 1.6-6
20 5.9-12 2.5-11 4.5-9 6.3-9

Due to the multiplication by A, these values increase with n like ‖I − A−1
H A‖2 ≈

n
10 ∗ 0.26k, confirming the exponential convergence with respect to the rank k. Note
that equal approximation errors are obtained when k is chosen proportional to log n.

Quite similar numbers as above are obtained in the case of a differential equa-
tion with smooth coefficient σ. This underlines that the smoothness or regularity of
the boundary value problem does not deteriorate the approximation by H-matrices.
Tests with irregular triangulations in more complicated domains give again similar
approximations.

Further examples can be seen in [1].

Acknowledgment. The numerical tests from the previous section are produced by
Dr. L. Grasedyck (Leipzig).
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5. The Indirect Approach To Domain Decomposition

I. Herrera1, R. Yates,2 M.A. Diaz3

1. Introduction. The main objective of DDM is, when a domain Ω and one of
its partitions are given, to obtain the solution of a boundary value problem defined
on it (the ’global problem’), by solving problems formulated on the subdomains of
the partition (the ’local problems’), exclusively. This objective can be achieved if
sufficient information about the global solution is known, on the internal boundary
(which separates the subdomains from each other and to be denoted by Σ), for defining
well-posed problems in each one of the subdomains of the partition. Herrera proposed
recently a general and unifying theory [15],[14], in which DDM are interpreted as
methods for gathering such information. According to it, one defines an information-
target on Σ, referred as the sought information [15], and the objective of DDM is
to obtain such information. There are two main procedures for gathering the sought
information, which yield two broad categories of DDM: direct methods and indirect
(or Trefftz-Herrera) methods. This paper belongs to a sequence of papers [15],[6],[5],
[4],[21], included in this Proceedings, in which an overview of Herrera’s unified theory
is given. In particular, the present paper is devoted to a systematic presentation of
indirect methods, and a companion paper deals with direct methods [6].

Herrera et al. [18],[9],[16], [10],[11],[17], [13] introduced indirect methods in numer-
ical analysis. They are based on the Herrera’s Algebraic Theory of boundary value
problems [9],[10],[8]. Numerical procedures such as Localized Adjoint Methods (LAM)
and Eulerian-Lagrangian LAM (ELLAM) are representative applications [17],[3]. A
large number of transport problems in several dimensions have been treated using
ELLAM [20]. Indirect Methods of domain decomposition stem from the following
observation: when the method of weighted residuals is applied, the information about
the exact solution that is contained in the approximate one is determined by the fam-
ily of test functions that is used, exclusively [9],[16],[10]. This opens the possibility
of constructing and applying a special kind of weighting functions, which have the
property of yielding the sought information at the internal boundary Σ, exclusively,
as it is done in Trefftz-Herrera Methods.

The construction of such weighting functions requires having available an instru-
ment of analysis of the information supplied by different test functions. The natural
framework for such analysis is given by Green’s formulas. However, the conventional
approach to this matter is not sufficiently informative for applications to domain de-
composition methods. Indeed, in the usual approach [19], one considers the Green’s
formula ∫

Ω

wLudx =
∫

Ω

uL∗wdx (1.1)

1Instituto de Geof́ısica Universidad Nacional Autónoma de México (UNAM) , iher-
rera@servidor.unam.mx

2Instituto de Geof́ısica Universidad Nacional Autónoma de México (UNAM),
yates@altcomp.com.mx

3Instituto de Geof́ısica Universidad Nacional Autónoma de México (UNAM),
mdiaz@tonatiuh.igeofcu.unam.mx
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where Ω is a given region and, L and L∗ are a differential operator and its adjoint,
respectively. Then, given a family of functions

{
w1, ..., wN

}
, any approximate solu-

tion, û, obtained with the method of weighted residuals, and with such family of test
functions, fulfills

∫
Ω

wα (Lû− fΩ) dx =
∫

Ω

wα (Lû− Lu) dx =
∫

Ω

(û− u)L∗wαdx = 0 (1.2)

In this manner, the conclusion is reached that the error u− û is orthogonal to the
space spanned by the family of functions

{
L∗w1, ...,L∗wN

}
. However, this result is of

little use when dealing with domain decomposition methods. For them, it is necessary
to have a theory which is applicable to situations in which both trial and test functions
may be discontinuous simultaneously. This was done introducing a kind of Green’s
formulas (”Green-Herrera formulas”) especially developed for operators defined on
discontinuous fields (see [9],[16],[10]). They are based on the Herrera’s abstract al-
gebraic theory of boundary value problems, which possesses great generality; it was
presented in a preliminary form in [8] and, later, further developed [9],[16],[10] and
applied to the numerical treatment of differential equations [17],[12]. This kind of
Green’s formulas have been formulated in a special kind of function-spaces, in which
their elements have jump discontinuities across the internal boundary. In particular,
a special class of Sobolev spaces is constructed in this manner [2].

2. Notation. Consider a region Ω, with boundary ∂Ω and a partition {Ω1, ...,ΩE}
of Ω. Let

Σ ≡
⋃
i�=j

(
Ω̄i ∩ Ω̄j

)
(2.1)

then Σ will be referred as the ’internal boundary’ and ∂Ω as the ’external (or outer)
boundary’. For each i = 1, ..., E, D1 (Ωi) and D2 (Ωi) will be two linear spaces of
functions defined on Ωi; then the spaces of trial (or base) and test (or weighting)
functions are defined to be

D̂1 (Ω) ≡ D1 (Ω1)⊕ ...⊕D1 (ΩE) ; (2.2)

and

D̂2 (Ω) ≡ D2 (Ω1)⊕ ...⊕D2 (ΩE) ; (2.3)

respectively. In what follows we write D̂1 and D̂2, instead of D̂1 (Ω) and D̂2 (Ω), in
order to simplify the notation. Functions belonging either to D̂1 and D̂2, are finite
sequences of functions belonging to each one of the sub-domains of the partition. It
will be assumed that for each i = 1, ..., E, and α = 1, 2, the traces on Σ of functions
belonging Dα (Ωi) exist, and the jump and average of test or weighting functions is
defined by

[u] ≡ u+ − u−; and u̇ ≡ (u+ + u−)/2; (2.4)
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where u+ and u− are the traces from one and the other side of Σ. Here, the unit
normal vector to Σ is chosen arbitrarily, but the convention is such that it points
towards the positive side of Σ. The special class of Sobolev spaces defined by

Ĥ
s (Ω) ≡ H

s (Ω1)⊕ ...⊕H
s (ΩE) ; (2.5)

has special interest and was considered in [13].

3. Scope. It must be emphasized that the scope of the general theory presented
in this paper, Herrera’s unified theory of domain decomposition [15],[14], is quite
wide, since it is applicable to any linear partial differential equation or system of such
equations independently of its type. It handles problems with prescribed jumps on the
internal boundary, Σ, and discontinuous equation coefficients, although every kind of
equation has its own peculiarities. In particular, we would like to mention explicitly
the following:

1. A SINGLE EQUATION

(a) Elliptic

i. Second Order

ii. Higher-Order

A. Biharmonic

(b) Parabolic

i. Heat Equation

(c) Hyperbolic

i. Wave Equation

2. SYSTEMS OF EQUATIONS

(a) Stokes Problems

(b) Mixed Methods (Raviart-Thomas)

(c) Elasticity

The general form of the boundary value problem with prescribed jumps (BVPJ),
to be considered, is

Lu = LuΩ ≡ fΩ; in Ωi i = 1, ..., E (3.1)

Bju = Bju∂ ≡ gj ; on ∂Ω (3.2)

and

[Jku] = [JkuΣ] ≡ jk; on Σ (3.3)
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where the B′
js and J ′

ks are certain differential operators (the j′s and k′s run over
suitable finite ranges of natural numbers). Here, in addition, uΩ ≡

(
u1

Ω, ..., uE
Ω

)
,

u∂ and uΣ are given functions belonging to D̂1 (i.e., ’trial functions’ ), which fulfill
Eqs.(2.1), (2.2) and (2.3), respectively. Moreover, fΩ, gj and jk may be defined by
Eqs. (2.1) to (2.3).

In what follows, it will be assumed that the boundary conditions and jump condi-
tions of this BVPJ can be brought into the point-wise variational form:

B (u,w) = B (u∂ , w) ≡ g∂ (w) ; ∀w ∈ D̂2 (3.4)

and

J (u,w) = J (uΣ, w) ≡ jΣ (w) ; ∀w ∈ D̂2 (3.5)

where B (u,w) and J (u,w), are bilinear functions defined point-wise.

4. Trefftz-Herrera Approach to DDM. Let us recall a few basic points of
Herrera’s unified theory (see [15]). The information that one deals with, when formu-
lating and treating partial differential equations (i.e., the BVPJ), is classified in two
broad categories: ’data of the problem’ and ’complementary information’. In turn,
three classes of data can be distinguished: data in the interior of the subdomains
of the partition (given by the differential equation, which in the BVPJ is fulfilled
in the interior of the subdomains, exclusively), the data on the external boundary
(Bju, on ∂Ω) and the data on the internal boundary (namely, [Jku], on Σ). The
complementary information can be classified in a similar fashion: the values of the
sought solution in the interior of the subdomains (ui ∈ D (Ωi), for i = 1, ..., E); the
complementary information on the outer boundary (for example, the normal deriva-
tive in the case of Dirichlet problems for Laplace’s equation); and the complementary
information on the internal boundary Σ (for example, the average of the function and
the average of the normal derivative across the discontinuity for elliptic problems of
second order [5]). In the unified theory of DDM, a target of information, which is
contained in the complementary information on Σ, is defined; it is called ’the sought
information’. It is required that the sought information, when complemented with the
data of the problem, be sufficient for determining uniquely the solution of BVPJ in
each one of the subdomains of the partition.

In general, however, the sought information may satisfy this property and yet be
redundant, in the sense that if all of it is used simultaneously together with the data
of the problem, ill-posed problems are obtained. Consider for example, a Dirichlet
problem of an elliptic-type second order equation (see [5]), for which the jumps of the
function and of its normal derivative have been prescribed. If for such problem the
sought information is taken to be the average of the function -i.e., (u+ + u−) /2- and
the average of the normal derivative -i.e., 1

2∂ (u+ + u−) /∂n, on Σ-, then it may be
seen that it contains redundant information. Indeed, u+ = 1

2 (u+ + u−)+ 1
2 (u+ − u−),

u− = 1
2 (u+ + u−)− 1

2 (u+ − u−), and a similar relation holds for the normal deriva-
tives. Therefore, if the ’sought information’ and the ’data of the problem’ are used
simultaneously, one may derive not only the value of the BVPJ solution on the bound-
ary of each one of the subdomains, but also the normal derivative, at least in a non-void
section of those boundaries. As it is well known, this is an ill-posed problem, because
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Dirichlet problem is already well-posed in each one of the subdomains. Thus, the
sought information contains redundant information in this case.

Generally, in the numerical treatment of partial differential equations, efficiency
requires eliminating redundant information. Due to this fact, when the choice of the
sought information is such that there is a family of well-posed problems -one for each
subdomain of the partition- which uses all the sought information, together with all
the data of the BVPJ, such choice is said to be ’optimal’. Once the information-target
constituted by the sought information has been chosen, it is necessary to design a
procedure for gathering it. There are two main ways of proceeding to achieve this goal:
direct methods and indirect (or Trefftz-Herrera) methods. In the following Sections
the general framework for designing indirect procedures is constructed.

Firstly, Green-Herrera formulas, which were originally derived in 1985 [9],[16],[10]
will be presented. They are equations that relate the ’data of the problem’ with ’the
complementary information’. Then, a general variational principle of the usual kind,
in terms of the data of the problem, which applies to any BVPJ, is introduced. Using
Green-Herrera formula the variational formulation in terms of the data of the prob-
lem, is transformed into one in terms of the complementary information. Among the
complementary information the sought information is singled out and the conditions
that the test functions must satisfy in order to eliminate all the complementary infor-
mation, except the sought information, are identified. When the variational principle
in terms of the complementary information is applied, with weighting functions that
fulfill such conditions, a variational principle which characterizes the sought informa-
tion is derived. This principle provides a very general, although somewhat abstract,
basis of Trefftz-Herrera Method (this is given by Theorem 7.1 Eq. 7.4).

5. Green-Herrera Formulas. To start, let L and L∗ be a differential operator
and its formal adjoint; then there exists a vector-valued bilinear function D, which
satisfies

wLu− uL∗w ≡ ∇ · D(u,w) (5.1)

It will also be assumed that there are bilinear functions B(u,w), C(w, u), J (u,w)
and K(w, u), the first two defined on ∂Ω and the last two on Σ, such that

D(u,w) · n = B(u,w)− C(w, u); on ∂Ω (5.2)

and

−[D(u,w) · n] = J (u,w)−K(w, u); on Σ (5.3)

Generally, the definitions of B and C depend on the kind of boundary conditions
and the ”smoothness criterion” of the specific problem considered [9],[16]. For the case
when the coefficients of the differential operators are continuous, Herrera has given
very general formulas for J and K [18]; they are:

J (u,w) = −D([u], ẇ) · n and K(w, u) = D(u̇, [w]) · n (5.4)

Applying the generalized divergence theorem [2], this implies the following Green-
Herrera formula [18]:
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∫
Ω

wLudx−
∫

∂Ω
B(u,w)dx−

∫
Σ
J (u,w)dx

=
∫
Ω

uL∗wdx−
∫

∂Ω
C∗(u,w)dx−

∫
Σ
K∗(u,w)dx

(5.5)

Introduce the following notation:

〈Pu,w〉 =
∫

Ω

wLudx; 〈Q∗u,w〉 =
∫

Ω

uL∗wdx (5.6)

〈Bu,w〉 =
∫

∂Ω

B(u,w)dx; 〈C∗u,w〉 =
∫

∂Ω

C∗(u,w)dx (5.7)

〈Ju,w〉 =
∫

Σ

J (u,w)dx; 〈K∗u,w〉 =
∫

Σ

K∗(u,w)dx (5.8)

With these definitions, each one of P, B, J, Q∗, C∗ and K∗, are real-valued
bilinear functionals defined on D̂1 × D̂2, and Eq.(5.5) can be written as

〈(P −B − J)u,w〉 ≡ 〈(Q∗ − C∗ −K∗)u,w〉; ∀(u,w) ∈ D̂1 × D̂2 (5.9)

or more briefly

P −B − J ≡ Q∗ − C∗ −K∗; (5.10)

6. Variational Formulations of the Problem with Prescribed Jumps. A
weak formulation of the BVPJ is

〈(P −B − J)u,w〉 ≡ 〈f − g − j, w〉; ∀w ∈ D̂2 (6.1)

where f , g and j ∈ D∗
2 . This equation is equivalent to

〈(Q∗ − C∗ −K∗)u,w〉 ≡ 〈f − g − j, w〉; ∀w ∈ D̂2 (6.2)

by virtue of Green-Herrera formula of Eq. (5.10). Necessary conditions for the exis-
tence of solution of this problem is that there exist uΩ ∈ D̂1, u∂ ∈ D̂1 and uΣ ∈ D̂1,
such that:

f ≡ PuΩ, g ≡ Bu∂ and j ≡ JuΣ (6.3)

Thus, it is assumed that such functions exist. From now on, the following notation
is adopted: u ∈ D̂1 will be a solution of the BVPJ, which is assumed to exist and
to be unique; therefore, u ∈ D̂1 fulfills Eq. (6.1). Observe that Eqs. (6.1) and (6.2)
supply two different but equivalent variational formulations of the BVPJ. The first one
will be referred as the ’variational formulation in terms of the data’, while the second
one will be referred as the ’variational formulation in terms of the complementary
information’ (this latter variational principle was introduced in [18] with the title
”variational formulation in terms of the sought information” but it is more convenient
to reserve such name for another formulation that will be introduced later).

Eqs. (6.1) and (6.2), can also be written as equalities between linear funtionals:

(P −B − J)u = f − g − j; (6.4)
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and

(Q∗ − C∗ −K∗)u = f − g − j; (6.5)

respectively.

7. Variational Formulation of Trefftz-Herrera Method. A first step to de-
rive Trefftz-Herrera procedures is to use the variational formulation in terms of the
complementary information of Eq.(6.2) to establish conditions that a weighting func-
tion must fulfill in order to yield information on the internal boundary Σ, exclusively.
What is required is to eliminate the terms containing Q∗u and C∗u in that equation.
This is achieved if the test functions satisfy Qw = 0 and Cw = 0, simultaneously,
because 〈Q∗u,w〉 ≡ 〈Qw, u〉 and 〈C∗u,w〉 ≡ 〈Cw, u〉. Thus, in view of Eq. (6.2), one
has

−〈K∗u,w〉 = 〈f − g − j, w〉; ∀w ∈ NQ ∩NC ⊂ D̂2 (7.1)

where NQ and NC are null subspaces of the operators Q and C respectively.
Observe that the left-hand side of Eq.(7.1) involves the complementary information

on Σ, exclusively, as desired. Generally, the complementary information on Σ, K∗u, is
sufficient to define well-posed problems in each one of the subdomains of the domain
decomposition, when the boundary data is added to it. However, it can be seen
through specific examples that the complementary information K∗u is more than
what is essential to achieve this goal and handling excessive information, in general,
requires carrying too many degrees of freedom in the computational process, which in
many cases is inconvenient. Thus, generally, to develop numerical methods of optimal
efficiency, it is better to eliminate part of such information.

The general procedure for carrying out such elimination consists in introducing
a ’weak decomposition’ {S,R} of the bilinear functional K (for a definition of weak
decomposition, see [10]). Then, S and R are bilinear functionals and fulfill

K ≡ S + R; (7.2)

Then ’the sought information’ is defined to be S∗u, where u ∈ D̂1 is the solution of
the BVPJ. In particular, a function ũ ∈ D̂1 is said to ’contain the sought information’
when S∗ũ=S∗u.

Let Ñ2 ⊂ D̂2 be defined by Ñ2 ≡ NQ ∩ NC ∩ NR. An auxiliary concept, quite
useful for formulating Trefftz-Herrera domain decomposition procedures, which was
originally introduced in 1980 [7], is the following (see [1]).

Definition 7.1.- A subset of weighting functions, E ⊂ Ñ2 ≡ NQ ∩ NC ∩ NR, is
said to be TH-complete for S∗, when for any û ∈ D̂1, one has:

〈S∗û, w〉 = 0,∀w ∈ E ⇒ S∗û = 0; (7.3)

Clearly, a necessary and sufficient condition for the existence of TH-complete sys-
tems, is that Ñ2 ≡ NQ ∩NC ∩NR be, itself, a TH-complete system.
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Theorem 7.1 Let E ⊂ Ñ2 be a system of TH-complete weighting functions for S∗,
and let u ∈ D̂1 be the solution of the BVPJ. Then, a necessary and sufficient condition
for û ∈ D̂1 to contain the sought information, is that

−〈S∗û, w〉 = 〈f − g − j, w〉 ; ∀w ∈ E (7.4)

Proof. If u ∈ D̂1 is the solution of the BVPJ, one has

−〈S∗u,w〉 = 〈f − g − j, w〉 ; ∀w ∈ E (7.5)

Hence

−〈S∗(û− u), w〉 = 0; ∀w ∈ E (7.6)

and, therefore, S∗û=S∗u.

Theorem 7.1, supplies a very General Formulation of Indirect Methods (or
Trefftz-Herrera Methods) of Domain Decomposition which can be applied to
any linear equation or system of such equations. When up ∈ D̂1 is a function satisfying
Pup = f and Bup = g then Eq.(7.4) can be replaced by

−〈S∗û, w〉 = −〈S∗up, w〉+ 〈J(up − uΣ), w〉 ; ∀w ∈ E (7.7)

In applications, Eq.(7.7) determines the average of the solution and/or its deriva-
tives on Σ.

8. Unified Approach to DDM: Abstract Formulation. The concepts and
notations of the previous Sections, can be used to give an abstract expression to the
unified formulation of Domain Decomposition Methods.

In this Section a pair of weak decomposition {SJ , RJ} and {S,R} of J and K,
respectively, will be considered. This assumption implies that [10]

J = SJ + RJ (8.1)

in addition to Eq. (7.2). Even more, under the above assumption a function û ∈ D̂1

fulfills Eq. (6.4), if and only if

(P −B −RJ) û = PuΩ −Bu∂ −RJuΣ (8.2)

and

SJ û = SJuΣ (8.3)

It has interest to consider the case when Eq. (8.3) can be replaced by the condition
that û contains the sought information; i.e., when Eq. (8.3) can be replaced by

S∗û = S∗u (8.4)

because this leads to a quite general formulation of DDM.
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Definition 8.1.- The pair of weak decompositions {SJ , RJ} and {S,R} of J and
K, respectively, is said to be optimal, when given any uΩ ∈ D̂1, u∂ ∈ D̂1, uΣ ∈ D̂1

and uI ∈ D̂1, the problem of finding û ∈ D̂1, such that

(P −B −RJ) û = PuΩ −Bu∂ −RJuΣ (8.5)

and

S∗û = S∗uI (8.6)

is local and well-posed.

Lemma 8.1 Assume û ∈ D̂1 is solution of the local problems defined by Eqs. (8.5)
and (8.6), for some uI ∈ D̂1, then the following assertions are equivalent

i).- uI contains the sought information,

ii).- Jû = Ju,

iii).- û is the solution of the BVPJ.

Proof. First, we show that ii) and iii) are equivalent. To this end, assuming ii)
observe that Eq. (8.5) together with ii) imply that û ∈ D̂1 is the solution of the
BVPJ. Conversely, if û ∈ D̂1 is solution of the BVPJ, then Jû = Ju. The equivalence
between i) and iii) is immediate. Indeed, assume iii) then S∗uI = S∗û = S∗u; i.e.,
uI contains the sought information. If i) holds, then

(P −B −RJ) û = (P −B −RJ) u (8.7)

together with
S∗û = S∗u (8.8)

and iii) follows from the uniqueness of solution of the local problems.

Definition 8.2 (Steklov-Poincaré Operator).- Given any v ∈ D̂1, define τ :
D1 → D∗

2 , by

τ (v) = Jv̂ (8.9)

where v̂ ∈ D̂1 is the solution of the local boundary value problems with uI = v .

Lemma 8.2 A function û ∈ D̂1, contains the sought information if and only if

τ (û) = Ju (8.10)

Proof. It is immediate in view of the previous Lemma.
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9. The Second Order Elliptic Equation. As an illustration, consider the
BVPJ for an elliptic operator of second order

Lu ≡ −∇ · (a · ∇u) +∇ · (bu) + cu = fΩ; in Ω, (9.1)

subjected to the boundary conditions

u = u∂ ; on ∂Ω, (9.2)

and the jump conditions

[u] = [uΣ] ≡ j0
Σ and [a · ∇u] · n = [a · ∇uΣ] · n ≡ j1

Σ; on Σ, (9.3)

The numerical treatment of this problem, using both a Direct Method and a
Trefftz-Herrera Method, is explained in [6] and [5]. When the differential operator
is given as in Eq. (9.1), then,

wLu− uL∗w ≡ ∇ · D (u,w) (9.4)

where

D (u,w) ≡ u (an · ∇w + bnw)− wan · ∇u (9.5)

Define the following bilinear functionals:

B (u,w) ≡ u (an · ∇w + bnw) · n, C (w, u) ≡ wan · ∇u (9.6)

J (u,w) ≡ ẇ [an · ∇u]− [u] ˙(an · ∇w + bnw) (9.7)

K (w, u) ≡ u̇ [an · ∇w + bnw]− [w] ˙(an · ∇u) (9.8)

SJ (u,w) ≡ ẇ [an · ∇u] , RJ (u,w) ≡ − [u] ˙(an · ∇w + bnw) (9.9)

S (w, u) ≡ u̇ [an · ∇w + bnw] and R (w, u) ≡ − [w] ˙(an · ∇u) (9.10)

In addition, define the bilinear functionals SJ , RJ , S and R in a similar fashion to
Eqs. (5.6)-(5.8), by means of corresponding integrals.

Then Green-Herrera formula of Eq. (5.10) holds. Even more, Eqs. (7.2) and
(8.1) are fulfilled and the pair {SJ , RJ} and {S,R} constitute an optimal pair of weak
decompositions, because the local problems are well posed. Indeed, Eq.(8.2) is the
BVPJ of Eqs.(9.1) to (9.3) except that the jump condition associated with this latter
equation has been omitted. However, the jump of the function, of Eq.(9.2), is indeed
prescribed. This problem has many solutions. However, with the above definition of
S, the sought information is the average of the function on the internal boundary Σ.
When this information is complemented with the jump of the function, which is the
data given by Eq.(9.2), the values of the function on both sides of Σ are determined
by the identities
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u+ ≡ u̇ + 1/2 [u] and u− ≡ u̇− 1/2 [u] (9.11)

This information together with the boundary conditions in the external boundary per-
mits establishing well-posed problems in each one of the subdomains of the partition.

10. Optimal Interpolation. The Indirect Method yields information on the
internal boundary Σ, exclusively. To extend that information into the interior of the
subdomains of the partition, it is necessary to solve the local problems [5],[21]. The
following results will be useful in applications, to carry out such step.

Let Ñ1 ⊂ D̂1 be defined by Ñ1 ≡ NP ∩NB ∩NRJ
.

Theorem 10.1 Let uP ∈ D̂1 be such that

PuP = PuΩ, BuP = Bu∂ and RJuP = RJuΣ. (10.1)

Then there exists v ∈ Ñ1 such that

−〈S∗v, w〉 = 〈SJ (uP − uΣ) , w〉 ; ∀w ∈ Ñ2 (10.2)

In addition, define û ∈ D̂1 by û ≡ uP + v. Then û ∈ D̂1 contains the sought informa-
tion. Even more, û ≡ u, where u is the solution of the BVPJ.

Proof. Take u ∈ D̂1 as in the Theorem, then this function contains the sought infor-
mation and, in view of Eq. (10.1), Eq. (10.2) can be applied, with û ≡ u. Define
v ≡ u− uP , then

−〈S∗v, w〉 = 〈J (uP − uΣ) , w〉 = 〈SJ (uP − uΣ) , w〉 ; ∀w ∈ Ñ2 (10.3)

because RJ (uP − uΣ) = 0. However, from Eq. (10.1), it follows that v ∈ Ñ1 ≡
NP ∩NB ∩NRJ

. When ũ ∈ D̂1 is defined as in the Theorem, then it fulfills

(P −B −RJ) (û− u) = 0 and S∗(û− u) = 0 (10.4)

Therefore, û− u = 0, since the problem of Eqs. (10.4), is well-posed.

The Symmetric Case: In this case D̂1 = D̂2 ≡ D̂, P = Q, B = C, J = K, S ≡
SJ and R ≡ RJ . Then Ñ ≡ Ñ2 ≡ NQ∩NC∩NR = NP∩NB∩NRJ

≡ Ñ1. If it is further
assumed that the bilinear functional −〈S∗u,w〉 is symmetric and positive definite
∀u,w ∈ Ñ , it can be shown that the quadratic functional −〈S∗ũ, ũ〉 − 2 〈f − g − j, ũ〉
attains its minimum over Ñ , at ũ ∈ Ñ , if and only if ũ ∈ Ñ contains the sought
information.
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6. Applications of Domain Decomposition and Partition of
Unity Methods in Physics and Geometry

M. Holst1

1. Introduction. In this article we consider a class of adaptive multilevel do-
main decomposition-like algorithms, built from a combination of adaptive multilevel
finite element, domain decomposition, and partition of unity methods. These algo-
rithms have several interesting features such as very low communication requirements,
and they inherit a simple and elegant approximation theory framework from partition
of unity methods. They are also very easy to use with highly complex sequential
adaptive finite element packages, requiring little or no modification of the underly-
ing sequential finite element software. The parallel algorithm can be implemented
as a simple loop which starts off a sequential local adaptive solve on a collection of
processors simultaneously.

We first review the Partition of Unity Method (PUM) of Babuška and Melenk in
Section 2, and outline the PUM approximation theory framework. In Section 3, we
describe a variant we refer to here as the Parallel Partition of Unity Method (PPUM),
which is a combination of the Partition of Unity Method with the parallel adaptive
algorithm from [4]. We then derive two global error estimates for PPUM, by exploiting
the PUM analysis framework it inherits, and by employing some recent local estimates
of Xu and Zhou [22]. We then discuss a duality-based variant of PPUM in Section 4
which is more appropriate for certain applications, and we derive a suitable variant
of the PPUM approximation theory framework. Our implementation of PPUM-type
algorithms using the FEtk and MC software packages is described in Section 5. We
then present a short numerical example in Section 6 involving the Einstein constraints
arising in gravitational wave models.

2. The Partition of Unity Method (PUM) of Babuška and Melenk. We
first briefly review the partition of unity method (PUM) of Babuška and Melenk [1].
Let Ω ⊂ R

d be an open set and let {Ωi} be an open cover of Ω with a bounded local
overlap property: For all x ∈ Ω, there exists a constant M such that

sup
i
{ i | x ∈ Ωi } ≤M. (2.1)

A Lipschitz partition of unity {φi} subordinate to the cover {Ωi} satisfies the following
five conditions: ∑

i

φi(x) ≡ 1, ∀x ∈ Ω, (2.2)

φi ∈ Ck(Ω) ∀i, (k ≥ 0), (2.3)
supp φi ⊂ Ωi, ∀i, (2.4)

‖φi‖L∞(Ω) ≤ C∞, ∀i, (2.5)

‖∇φi‖L∞(Ω) ≤ CG

diam(Ωi)
, ∀i. (2.6)

1UC San Diego, mholst@ucsd.edu
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Several explicit constructions of partitions of unity satisfying (2.2)–(2.6) exist. The
simplest construction in the case of a polygon Ω ⊂ R

d employs global C0 piecewise
linear finite element basis functions defined on a simplex mesh subdivision S of Ω. The
{Ωi} are first built by first constructing a disjoint partitioning {Ω◦

i } of S using e.g.
spectral or inertial bisection [4]. Each of the disjoint Ω◦

i are extended to define Ωi by
considering all boundary vertices of Ω◦

i ; all simplices of neighboring Ω◦
j , j �= i which

are contained in the boundary vertex 1-rings of Ω◦
i are added to Ω◦

i to form Ωi. This
procedure produces the smallest overlap for the {Ωi}, such that the properties (2.2)–
(2.5) are satisfied by the resulting {φi} built from the nodal C0 piecewise linear finite
element basis functions. Property (2.6) is also satisfied, but CG will depend on the
diameter of the overlap simplices. More sophisticated constructions with superior
properties are possible; see e.g. [8, 19].

The partition of unity method (PUM) builds an approximation uap =
∑

i φivi

where the vi are taken from the local approximation spaces:

Vi ⊂ Ck(Ω ∩ Ωi) ⊂ H1(Ω ∩ Ωi), ∀i, (k ≥ 0). (2.7)

The following simple lemma makes possible several useful results.

Lemma 2.1 Let w,wi ∈ H1(Ω) with supp wi ⊆ Ω ∩ Ωi. Then∑
i

‖w‖2Hk(Ωi)
≤ M‖w‖2Hk(Ω), k = 0, 1

‖
∑

i

wi‖2Hk(Ω) ≤ M
∑

i

‖wi‖2Hk(Ω∩Ωi)
, k = 0, 1

Proof. The proof follows from (2.1) and (2.2)–(2.6); see [1].
The basic approximation properties of PUM following from 2.1 are as follows.

Theorem 2.1 (Babuška and Melenk [1]) If the local spaces Vi have the following
approximation properties:

‖u− vi‖L2(Ω∩Ωi) ≤ ε0(i), ∀i,
‖∇(u− vi)‖L2(Ω∩Ωi) ≤ ε1(i), ∀i,

then the following a priori global error estimates hold:

‖u− uap‖L2(Ω) ≤
√

MC∞

(∑
i

ε20(i)

)1/2

,

‖∇(u− uap)‖L2(Ω) ≤
√

2M

(∑
i

(
CG

diam(Ωi)

)2

ε21(i) + C2
∞ε20(i)

)1/2

.

Proof. This follows from Lemma 2.1 by taking u − uap =
∑

i φi(u − vi) and then by
using wi = φi(u− vi) in Lemma 2.1.
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Consider now the following linear elliptic problem:

−∇ · (a∇u) = f in Ω,
u = 0 on ∂Ω,

(2.8)

where aij ∈ W 1,∞(Ω), f ∈ L2(Ω), aijξiξj ≥ a0 > 0, ∀ξi �= 0, where Ω ⊂ R
d is a

convex polyhedral domain. A weak formulation is:

Find u ∈ H1
0 (Ω) such that 〈F (u), v〉 = 0, ∀v ∈ H1

0 (Ω), (2.9)

where
〈F (u), v〉 =

∫
Ω

a∇u · ∇v dx−
∫

Ω

fv dx.

A general Galerkin approximation is the solution to the subspace problem:

Find uap ∈ V ⊂ H1
0 (Ω) s.t. 〈F (uap), v〉 = 0, ∀v ∈ V ⊂ H1

0 (Ω). (2.10)

With PUM, the subspace V for the Galerkin approximation is taken to be the globally
coupled PUM space (cf. [8]):

V =

{
v | v =

∑
i

φivi, vi ∈ Vi

}
⊂ H1(Ω),

If error estimates are available for the quality of the local solutions produced in the
local spaces, then the PUM approximation theory framework given in Theorem 2.1
guarantees a global solution quality.

3. A Parallel Partition of Unity Method (PPUM). A new approach to the
use of parallel computers with adaptive finite element methods was presented recently
in [4]. The following variant of the algorithm in [4] is described in [9], which we refer to
as the Parallel Partition of Unity Method (or PPUM). This variant replaces the final
global smoothing iteration in [4] with a reconstruction based on Babuška and Melenk’s
original Partition of Unity Method [1], which provides some additional approximation
theory structure.
Algorithm (PPUM - Parallel Partition of Unity Method [4, 9])

1. Discretize and solve the problem using a global coarse mesh.

2. Compute a posteriori error estimates using the coarse solution, and decompose
the mesh to achieve equal error using weighted spectral or inertial bisection.

3. Give the entire mesh to a collection of processors, where each processor will
perform a completely independent multilevel adaptive solve, restricting local
refinement to only an assigned portion of the domain. The portion of the
domain assigned to each processor coincides with one of the domains produced
by spectral bisection with some overlap (produced by conformity algorithms, or
by explicitly enforcing substantial overlap). When a processor has reached an
error tolerance locally, computation stops on that processor.

4. Combine the independently produced solutions using a partition of unity sub-
ordinate to the overlapping subdomains.
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While the PPUM algorithm seems to ignore the global coupling of the elliptic
problem, recent results on local error estimation [22], as well as some not-so-recent
results on interior estimates [17], support this as provably good in some sense. The
principle idea underlying the results in [17, 22] is that while elliptic problems are glob-
ally coupled, this global coupling is essentially a “low-frequency” coupling, and can be
handled on the initial mesh which is much coarser than that required for approxima-
tion accuracy considerations. This idea has been exploited, for example, in [21, 22],
and is why the construction of a coarse problem in overlapping domain decomposition
methods is the key to obtaining convergence rates which are independent of the num-
ber of subdomains (c.f. [20]). An example showing the types of local refinements that
occur within each subdomain is depicted in Figure 3.1.

Figure 3.1: Example showing the types of local refinements created by PPUM.

To illustrate how PPUM can produce a quality global solution, we will give a global
error estimate for PPUM solutions. This analysis can also be found in [9]. We can
view PPUM as building a PUM approximation upp =

∑
i φivi where the vi are taken

from the local spaces:

Vi = XiV
g
i ⊂ Ck(Ω ∩ Ωi) ⊂ H1(Ω ∩ Ωi), ∀i, (k ≥ 0), (3.1)

where Xi is the characteristic function for Ωi, and where

V g
i ⊂ Ck(Ω) ⊂ H1(Ω), ∀i, (k ≥ 0). (3.2)

In PPUM, the global spaces V g
i in (3.1)–(3.2) are built from locally enriching an initial

coarse global space V0 by locally adapting the finite element mesh on which V0 is built.
(This is in contrast to classical overlapping Schwarz methods where local spaces are
often built through enrichment of V0 by locally adapting the mesh on which V0 is
built, and then removing the portions of the mesh exterior to the adapted region.)
The PUM space V is then

V =

{
v | v =

∑
i

φivi, vi ∈ Vi

}

=

{
v | v =

∑
i

φiXiv
g
i =

∑
i

φiv
g
i , vg

i ∈ V g
i

}
⊂ H1(Ω).
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In contrast to the approach in PUM where one seeks a global Galerkin solution
in the PUM space as in (2.10), the PPUM algorithm described here and in [9] builds
a global approximation upp to the solution to (2.9) from decoupled local Galerkin
solutions:

upp =
∑

i

φiui =
∑

i

φiu
g
i , (3.3)

where each ug
i satisfies:

Find ug
i ∈ V g

i such that 〈F (ug
i ), v

g
i 〉 = 0, ∀vg

i ∈ V g
i . (3.4)

We have the following global error estimate for the approximation upp in (3.3) built
from (3.4) using the local PPUM parallel algorithm.

Theorem 3.1 Assume the solution to (2.8) satisfies u ∈ H1+α(Ω), α > 0, that quasi-
uniform meshes of sizes h and H > h are used for Ω0

i and Ω\Ω0
i respectively, and that

diam(Ωi) ≥ 1/Q > 0 ∀i. If the local solutions are built from C0 piecewise linear finite
elements, then the global solution upp in (3.3) produced by Algorithm PPUM satisfies
the following global error bounds:

‖u− upp‖L2(Ω) ≤
√

PMC∞
(
C1h

α + C2H
1+α
)
,

‖∇(u− upp)‖L2(Ω) ≤
√

2PM(Q2C2
G + C2∞)

(
C1h

α + C2H
1+α
)
,

where P = number of local spaces Vi. Further, if H ≤ hα/(1+α) then:

‖u− upp‖L2(Ω) ≤
√

PMC∞ max{C1, C2}hα,

‖∇(u− upp)‖L2(Ω) ≤
√

2PM(Q2C2
G + C2∞) max{C1, C2}hα,

so that the solution produced by Algorithm PPUM is of optimal order in the H1-norm.

Proof. Viewing PPUM as a PUM gives access to the a priori estimates in Theorem 2.1;
these require local estimates of the form:

‖u− ui‖L2(Ω∩Ωi) = ‖u− ug
i ‖L2(Ω∩Ωi) ≤ ε0(i),

‖∇(u− ui)‖L2(Ω∩Ωi) = ‖∇(u− ug
i )‖L2(Ω∩Ωi) ≤ ε1(i).

Such local a priori estimates are available for problems of the form (2.8) [17, 22]. They
can be shown to take the following form:

‖u− ug
i ‖H1(Ωi∩Ω) ≤ C

(
inf

v0
i ∈V 0

i

‖u− v0
i ‖H1(Ω0

i∩Ω) + ‖u− ug
i ‖L2(Ω)

)
where

V 0
i ⊂ Ck(Ω0

i ∩ Ω) ⊂ H1(Ωi ∩ Ω),

and where
Ωi ⊂⊂ Ω0

i , Ωij = Ω0
i

⋂
Ω0

i , |Ωij | ≈ |Ωi| ≈ |Ωj |.
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Since we assume u ∈ H1+α(Ω), α > 0, and since quasi-uniform meshes of sizes h and
H > h are used for Ω0

i and Ω\Ω0
i respectively, we have:

‖u− ug
i ‖H1(Ωi∩Ω) =

(
‖u− ug

i ‖2L2(Ωi∩Ω) + ‖∇(u− ug
i )‖2L2(Ωi∩Ω)

)1/2

≤ C1h
α + C2H

1+α.

I.e., in this setting we can use ε0(i) = ε1(i) = C1h
α + C2H

1+α. The a priori PUM
estimates in Theorem 2.1 then become:

‖u− upp‖L2(Ω) ≤
√

MC∞

(∑
i

(C1h
α + C2H

1+α)2
)1/2

,

‖∇(u− upp)‖L2(Ω) ≤
√

2M

·
([∑

i

(
CG

diam(Ωi)

)2

+ C2
∞

]
(C1h

α + C2H
1+α)2

)1/2

.

If P = number of local spaces Vi, and if diam(Ωi) ≥ 1/Q > 0 ∀i, this is simply:

‖u− upp‖L2(Ω) ≤
√

PMC∞
(
C1h

α + C2H
1+α
)
,

‖∇(u− upp)‖L2(Ω) ≤
√

2PM(Q2C2
G + C2∞)

(
C1h

α + C2H
1+α
)
.

If H ≤ hα/(1+α) then upp from PPUM is asymptotically as good as a global Galerkin
solution when the error is measured in the H1-norm.
Local versions of Theorem 3.1 appear in [22] for a variety of related parallel algorithms.
Note that the local estimates in [22] hold more generally for nonlinear versions of (2.8),
so that Theorem 3.1 can be shown to hold in a more general setting. Finally, it should
be noted that improving the estimates in the L2-norm is not generally possible; the
required local estimates simply do not hold. Improving the solution quality in the
L2-norm generally requires more global information. However, for some applications
one is more interested in a quality approximation of the gradient or the energy of the
solution rather than to the solution itself.

4. Duality-based PPUM. We first briefly review a standard approach to the
use of duality methods in error estimation. (cf. [6, 7] for a more complete discussion).
Consider the weak formulation (2.9) involving a possibly nonlinear differential operator
F : H1

0 (Ω) �→ H−1(Ω), and a Galerkin approximation uap satisfying (2.10). If F ∈ C1,
the generalized Taylor expansion exists:

F (u + h) = F (u) +
{∫ 1

0

DF (u + ξh)dξ

}
h.

With e = u− uap, and with F (u) = 0, leads to the linearized error equation:

F (uap) = F (u− e) = F (u) +A(uap − u) = −Ae,

where the linearization operator A is defined as:

A =
∫ 1

0

DF (u + ξh)dξ.
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Assume now we are interested in a linear functional of the error l(e) = 〈e, ψ〉, where
ψ is the (assumed accessible) Riesz-representer of l(·). If φ ∈ H1

0 (Ω) is the solution to
the linearized dual problem:

AT φ = ψ,

then we can exploit the linearization operator A and its adjoint AT to give the fol-
lowing identity:

〈e, ψ〉 = 〈e,AT φ〉 = 〈Ae, φ〉 = −〈F (uap), φ〉. (4.1)

If we can compute an approximation φap ∈ V ⊂ H1
0 (Ω) to the linearized dual problem

then we can estimate the error by combining this with the (computable) residual
F (uap):

|〈e, ψ〉| = |〈F (uap), φ〉| = |〈F (uap), φ− φap〉|,
where the last term is a result of (2.10). The term on the right is then estimated
locally using assumptions on the quality of the approximation φap and by various
numerical techniques; cf. [6]. The local estimates are then used to drive adaptive
mesh refinement. This type of duality-based error estimation has been shown to be
useful for certain applications in engineering and other areas where accuracy in a
linear functional of the solution is important, but accuracy in the solution itself is not
(cf. [7]).

Consider now this type of error estimation in the context of domain decomposition
and PPUM. Given a linear or nonlinear weak formulation as in (2.9), we are interested
in the solution u as well as in the error in PPUM approximations upp as defined
in (3.3)–(3.4). If a global linear functional l(u− upp) of the error u− upp is of interest
rather than the error itself, then we can formulate a variant of the PPUM parallel
algorithm which has in some sense a more general approximation theory framework
than that of the previous section. There are no assumptions beyond solvability of the
local problems and of the global dual problems with localized data, and perhaps some
minimal smoothness assumptions on the dual solution. In particular, the theory does
not require local a priori error estimates; the local a priori estimates are replaced by
solving global dual problem problems with localized data, and then incorporating the
dual solutions explictly into the a posteriori error estimate. As a result, the large
overlap assumption needed for the local estimates in the proof of Theorem 3.1 is
unnecessary. Similarly, the large overlap assumption needed to achieve the bounded
gradient property (2.6) is no longer needed.

The following result gives a global bound on a linear functional of the error based
on satisfying local computable a posteriori bounds involving localized dual problems.

Theorem 4.1 Let {φi} be a partition of unity subordinate to a cover {Ωi}. If ψ is
the Riesz-representer for a linear functional l(u), then the functional of the error in
the PPUM approximation upp from (3.3) satisfies

l(u− upp) = −
p∑

k=1

〈F (ug
i ), ωi〉,

where ug
i are the solutions to the subspace problems in (3.4), and where the ωi are the

solutions to the following global dual problems with localized data:

Find ωi ∈ H1
0 (Ω) such that (AT ωi, v)L2(Ω) = (φiψ, v)L2(Ω), ∀v ∈ H1

0 (Ω). (4.2)
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Moreover, if the local residual F (ug
i ), weighted by the localized dual solution ωi, satisfies

the following error tolerance in each subspace:

|〈F (ug
i ), ωi〉| <

ε

p
, i = 1, . . . , p (4.3)

then the linear functional of the global error u− upp satisfies

|l(u− upp)| < ε. (4.4)

Proof. With l(u− upp) = (u− upp, ψ)L2(Ω), the localized representation comes from:

(u− upp, ψ)L2(Ω) = (
p∑

k=1

φiu−
p∑

i=1

φiu
g
i , ψ)L2(Ω) =

p∑
k=1

(φi(u− ug
i ), ψ)L2(Ω∩Ωi).

From (4.1) and (4.2), each term in the sum can be written in terms of the local residual
F (ug

i ) as follows:

(φi(u− ug
i ), ψ)L2(Ω∩Ωi) = (u− ug

i , φiψ)L2(Ω∩Ωi)

= (u− ug
i ,AT ωi)L2(Ω)

= (A(u− ug
i ), ωi)L2(Ω)

= −(F (ug
i ), ωi)L2(Ω).

This gives then

|(u− upp, ψ)L2(Ω)| ≤
p∑

k=1

|〈F (ug
i ), ψ〉| <

p∑
k=1

ε

p
= ε.

We will make a few additional remarks about the parallel adaptive algorithm which
arises naturally from Theorem 4.1. Unlike the case in Theorem 3.1, the constants
C∞ and CG in (2.5) and (2.6) do not impact the error estimate in Theorem 4.1,
removing the need for the a priori large overlap assumptions. Moreover, local a priori
estimates are not required either, removing a second separate large overlap assumption
that must be made to prove results such as Theorem 3.1. Using large overlap of
a priori unknown size to satisfy the requirements for Theorem 3.1 seems unrealistic
for implementations. On the other hand, no such a priori assumptions are required
to use the result in Theorem 4.1 as the basis for a parallel adaptive algorithm. One
simply solves the local dual problems (4.2) on each processor independently, adapts
the mesh on each processor independently until the computable local error estimate
satisfies the tolerance (4.3), which then guarantees that the functional of the global
error meets the target in (4.4).

Whether such a duality-based approach will produce an efficient parallel algorithm
is not at all clear; however, it is at least a mechanism for decomposing the solution
to an elliptic problem over a number of subdomains. Note that ellipticity is not
used in Theorem 4.1, so that the approach is also likely reasonable for other classes of
PDE. These questions, together with a number of related duality-based decomposition
algorithms are examined in more detail in [5]. The analysis in [5] is based on a different
approach involving estimates of Green function decay rather than through partition
of unity methods.
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5. Implementation in FEtk and MC. Our implementations are performed
using FEtk and MC (see [9] for a more complete discussion of MC and FEtk).
MC is the adaptive multilevel finite element software kernel within FEtk, a large
collection of collaboratively developed finite element software tools based at UC San
Diego (see www.fetk.org). MC is written in ANSI C (as is most of FEtk), and is
designed to produce highly accurate numerical solutions to nonlinear covariant elliptic
systems of tensor equations on 2- and 3-manifolds in an optimal or nearly-optimal way.
MC employs a posteriori error estimation, adaptive simplex subdivision, unstructured
algebraic multilevel methods, global inexact Newton methods, and numerical continu-
ation methods. Several of the features of MC are somewhat unusual, allowing for the
treatment of very general nonlinear elliptic systems of tensor equations on domains
with the structure of (Riemannian) 2- and 3-manifolds. Some of these features are:

• Abstraction of the elliptic system: The elliptic system is defined only through
a nonlinear weak form over the domain manifold, along with an associated lin-
earization form, also defined everywhere on the domain manifold (precisely the
forms 〈F (u), v〉 and 〈DF (u)w, v〉 in the discussions above).

• Abstraction of the domain manifold: The domain manifold is specified by giving
a polyhedral representation of the topology, along with an abstract set of coor-
dinate labels of the user’s interpretation, possibly consisting of multiple charts.
MC works only with the topology of the domain, the connectivity of the poly-
hedral representation. The geometry of the domain manifold is provided only
through the form definitions, which contain the manifold metric information.

• Dimension independence: Exactly the same code paths in MC are taken for
both two- and three-dimensional problems (as well as for higher-dimensional
problems). To achieve this dimension independence, MC employs the simplex
as its fundamental geometrical object for defining finite element bases.

As a consequence of the abstract weak form approach to defining the problem, the
complete definition of a complex nonlinear tensor system such as large deformation
nonlinear elasticity requires writing only a few hundred lines of C to define the two
weak forms. Changing to a different tensor system (e.g. the example later in the
paper involving the constraints in the Einstein equations) involves providing only a
different definition of the forms and a different domain description.

A datastructure referred to as the ringed-vertex (cf. [9]) is used to represent meshes
of d-simplices of arbitrary topology. This datastructure is illustrated in Figure 5.1.
The ringed-vertex datastructure is similar to the winged-edge, quad-edge, and edge-
facet datastructures commonly used in the computational geometry community for
representing 2-manifolds [15], but it can be used more generally to represent arbitrary
d-manifolds, d ≥ 2. It maintains a mesh of d-simplices with near minimal storage,
yet for shape-regular (non-degenerate) meshes, it provides O(1)-time access to all in-
formation necessary for refinement, un-refinement, and Petrov-Galerkin discretization
of a differential operator. The ringed-vertex datastructure also allows for dimension
independent implementations of mesh refinement and mesh manipulation, with one
implementation (the same code path) covering arbitrary dimension d. An interest-
ing feature of this datastructure is that the C structures used for vertices, simplices,



72 HOLST

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������f

. .
ϕ

2
ϕ

1
(ϕ

1
)

ωf

Rd R

ϕ
1

.

−1
d( )( )

p

p

p

p)
)(ϕ

2

(
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������

ωs

s

Figure 5.1: Polyhedral manifold representation. The figure on the left shows two over-
lapping polyhedral (vertex) charts consisting of the two rings of simplices around two
vertices sharing an edge. The region consisting of the two darkened triangles around
the face f is denoted ωf , and represents the overlap of the two vertex charts. Poly-
hedral manifold topology is represented by MC using the ringed-vertex (or RIVER)
datastructure. The datastructure is illustrated for a given simplex s in the figure on
the right; the topology primitives are vertices and d-simplices. The collection of the
simplices which meet the simplex s at its vertices (which then includes those simplices
that share faces as well) is denoted as ωs.

and edges are all of fixed size, so that a fast array-based implementation is possible,
as opposed to a less-efficient list-based approach commonly taken for finite element
implementations on unstructured meshes. A detailed description of the ringed-vertex
datastructure, along with a complexity analysis of various traversal algorithms, can
be found in [9].

Our modifications to MC to implement PPUM are minimal, and are described in
detail in [4]. These modifications involve primarily forcing the error indicator to ignore
regions outside the subdomain assigned to the particular processor. The implementa-
tion does not form an explicit partition of unity or a final global solution; the solution
must be evaluated locally by locating the disjoint subdomain containing the physical
region of interest, and then by using the solution produced by the processor assigned
to that particular subdomain. Note that forming a global conforming mesh as needed
to build a global partition of unity is possible even in a very loosely coupled par-
allel environment, due to the deterministic nature of the bisection-based algorithms
we use for simplex subdivision (see [9]). For example, if bisection by longest edge
(supplemented with tie-breaking) is used to subdivide any simplex that is refined on
any processor, then the progeny types, shapes, and configurations can be predicted
in a completely determinstic way. If two simplices share faces across a subdomain
boundary, then they are either compatible (their triangular faces exactly match), or
one of the simplices has been bisected more times than its neighbor. By exchanging
only the generation numbers between subdomains, a global conforming mesh can be
reached using only additional bisection.
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6. Example 1: The Einstein Constraints in Gravitation. The evolution of
the gravitational field was conjectured by Einstein to be governed by twelve coupled
first-order hyperbolic equations for the metric of space-time and its time derivative,
where the evolution is constrained for all time by a coupled four-component elliptic
system. The theory basically gives what is viewed as the correct interpretation of
the graviational field as a bending of space and time around matter and energy, as
opposed to the classical Newtonian view of the gravitational field as analogous to
the electrostatic field; cf. Figure 6.1. The four-component elliptic constraint system

Figure 6.1: Newtonian versus general relativistic explanations of gravitation: the small
mass simply follows a geodesic on the curved surface created by the large mass.

consists of a nonlinear scalar Hamiltonian constraint, and a linear 3-vector momen-
tum constraint. The evolution and constraint equations, similar in some respects to
Maxwell’s equations, are collectively referred to as the Einstein equations. Solving the
constraint equations numerically, separately or together with the evolution equations,
is currently of great interest to the physics community due to the recent construc-
tion of a new generation of gravitational wave detectors (cf. [12, 11] for more detailed
discussions of this application).

Allowing for both Dirichlet and Robin boundary conditions on a 3-manifold M
with boundary ∂M = ∂0M∪ ∂1M, as typically the case in black hole and neutron
star models (cf. [12, 11]), the strong form of the constraints can be written as:

∆̂φ =
1
8
R̂φ +

1
12

(trK)2φ5 (6.1)

−1
8
(∗Âab + (L̂W )ab)2φ−7 − 2πρ̂φ−3 inM,

n̂aD̂aφ + cφ = z on ∂1M, (6.2)
φ = f on ∂0M, (6.3)

D̂b(L̂W )ab =
2
3
φ6D̂atrK + 8πĵa inM, (6.4)

(L̂W )abn̂b + Ca
bW

b = Za on ∂1M, (6.5)
W a = F a on ∂0M, (6.6)

where the following standard notation has been employed:

∆̂φ = D̂aD̂aφ,

(L̂W )ab = D̂aW b + D̂bW a − 2
3
γ̂abD̂cW

c,

trK = γabKab,

(Cab)2 = CabCab.
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In the tensor expressions above, there is an implicit sum on all repeated indices in
products, and the covariant derivative with respect to the fixed background metric γ̂ab

is denoted as D̂a The remaining symbols in the equations (R̂, K, ∗Âab, ρ̂, ĵa, z, Za,
f , F a, c, and Ca

b ) represent various physical parameters, and are described in detail
in [12, 11] and the referenences therein. Stating the system as set of tensor equations
comes from the need to work with domains which generally have the structure of
3-manifolds rather than single open sets in R

3 (cf. [9]).
Equations (6.1)–(6.6) are known to be well-posed only for certain problem data

and manifold topologies [16, 13]. Note that if multiple solutions in the form of folds
or bifurcations are present in solutions of (6.1)–(6.6) then path-following numerical
methods will be required for numerical solution [14]. For our purposes here, we select
the problem data and manifold topology such that the assumptions for the two general
well-posedness results in [12] hold for (6.1)–(6.6). The assumptions required for the
two results in [12] are quite weak, and are, for the most part, minimal assumptions
beyond those required to give a well-defined weak formulation in Lp-based Sobolev
spaces.

In [9], two quasi-optimal a priori error estimates are established for Galerkin ap-
proximations to the solutions to (6.1)–(6.6). These take the form (see Theorems 4.3
and 4.4 in [9]):

‖u− uh‖H1(M) ≤ C inf
v∈Vh

‖u− v‖H1(M) (6.7)

‖u− uh‖L2(M) ≤ Cah inf
v∈Vh

‖u− v‖H1(M), (6.8)

where Vh ⊂ H1(M) is e.g. a finite element space. In the case of the momentum
constraint, there is a restriction on the size of the elements in the underlying finite
element mesh for the above results to hold, characterized above by the parameter ah.
This restriction is due to the fact that the result is established through of the G̊arding
inequality result due to Schatz [18]. In the case of the Hamiltonian constraint, there
are no restrictions on the approximation spaces.

To use MC to calculate the initial bending of space and time around a single
massive black hole by solving the above constraint equations, we place a spherical
object of unit radius in space, and infinite space is truncated with an enclosing sphere
of radius 100. (This outer boundary may be moved further from the object to im-
prove the accuracy of boundary condition approximations.) Reasonable choices for
the remaining functions and parameters appearing in the equations are used below to
completely specify the problem for use as an illustrative numerical example. (More
careful examination of the various functions and parameters appear in [12], and a
number of detailed experiments with more physically meaningful data appear in [11].)

We then generate an initial (coarse) mesh of tetrahedra inside the enclosing sphere,
exterior to the spherical object within the enclosing sphere. The mesh is generated
by adaptively bisecting an initial mesh consisting of an icosahedron volume filled with
tetrahedra. The bisection procedure simply bisects any tetrahedron which touches
the surface of the small spherical object. When a reasonable approximation to the
surface of the sphere is obtained, the tetrahedra completely inside the small spherical
object are removed, and the points forming the surface of the small spherical object
are projected to the spherical surface exactly. This projection involves solving a linear
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elasticity problem, together with the use of a shape-optimization-based smoothing
procedure. The smoothing procedure locally optimizes the shape measure function
described in [9] in an iterative fashion. A much improved binary black hole mesh
generator has been developed by D. Bernstein; the new mesh generator is described
in [11] along with a number of more detailed examples using MC.

The initial coarse mesh is shown in Figure 6.2, generated using the procedure de-
scribed above, has approximately 30,000 tetrahedral elements and 5,000 vertices. To
solve the problem on a 4-processor computing cluster using a PPUM-like algorithm,
we begin by partitioning the domain into four subdomains (shown in Figure 6.3) with
approximately equal error using the recursive spectral bisection algorithm described
in [4]. The four subdomain problems are then solved independently by MC, starting
from the complete coarse mesh and coarse mesh solution. The mesh is adaptively re-
fined in each subdomain until a mesh with roughly 50000 vertices is obtained (yielding
subdomains with about 250000 simplices each).

The refinement performed by MC is confined primarily to the given region as driven
by the weighted residual error indicator described in [9], with some refinement into
adjacent regions due to the closure algorithm which maintains conformity and shape
regularity. The four problems are solved completely independently by the sequential
adaptive software package MC. One component of the solution (the conformal factor
φ) of the elliptic system is depicted in Figures 6.4 (the subdomain 0 and subdomain
1 solutions).

A number of more detailed examples involving the contraints, using more phys-
ically meaningful data, appear in [11]. Application of PPUM to massively parallel
simulations of microtubules and other extremely large and complex biological struc-
tures can be found in [3, 2]. The results in [3, 2] demonstrate both good parallel scaling
of PPUM as well as quality approximation of the gradient of electrostatic potentials
(solutions to the Poisson-Boltzmann equation; cf. [10]).

Figure 6.2: Recursize spectral bisection of the single hole domain into four subdomains
(boundary surfaces of three of the four subdomains are shown).
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Figure 6.3: Recursize spectral bisection of the single hole domain into four subdomains.
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Figure 6.4: Decoupling of the scalar conformal factor in the initial data using PPUM;
domain 0 in the left column, and domain 1 on the right.
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7. Domain Decomposition in the Mainstream of
Computational Science

D. E. Keyes1 2

1. Introduction. Computational peak performance on full-scale scientific appli-
cations, as tracked by the Gordon Bell prize, has increased by four orders of magnitude
since the prize was first awarded in 1988 — twenty-five times faster than can accounted
for by Moore’s Law alone. The extra factor comes from process concurrency, which is
as much as 8,192-fold on the $100M “ASCI White” machine at Lawrence Livermore,
currently ranked as the world’s second most powerful, after the new Japanese “Earth
Simulator”. The latter was recently clocked at more than 35 trillion floating point
operations per second (Tflop/s) on the LINPACK benchmark and at 26.6 Tflop/s on
a climate application [27]. Though architectural concurrency is easy to achieve, algo-
rithmic concurrency to match is less so in scientific codes. Intuitively, this is due to
global domains of influence in many problems presented to the computer as implicitly
discretized operator equations — implicitness being all but legislated for the multi-
scale systems of global climate, transonic airliners, petroleum reservoirs, tokamaks,
etc., the simulation of which justifies expenditures for the highest-end machines.

A key requirement of candidate solution algorithms is mathematical optimality.
This means a convergence rate as independent as possible of discretization param-
eters. In practice, linear systems require a hierarchical, multilevel approach to ob-
tain rapid linear convergence. Nonlinear systems require a Newton-like approach to
obtain asymptotically quadratic convergence. The concept of optimality can also
be extended into the physical modeling regime to include continuation schemes and
physics-informed preconditioning, so that multiple scale problems are attacked with a
manageable number of scales visible to the numerics at any given stage.

In this context, optimal parallel algorithms for PDE simulations of Jacobian-free
Newton-Krylov type, preconditioned with Schwarz and Schur domain decompositions,
including multilevel generalizations of Schwarz, are coming into prominence. One of
the main benefits of the Jacobian-free Newton-Krylov approach is the exploitation of
multiple discrete representations of the underlying continuous operator, the idea being
to converge fully to a representation of high fidelity through a series of inexpensive
and stable steps based on representations of lower fidelity. Simultaneous advances in
object-oriented software engineering have enabled the construction of internally com-
plex software systems in which these algorithmic elements can be combined modularly,
recursively, and relatively efficiently in parallel, while presenting a programming envi-
ronment that allows the user to function at a rather high level. For large systems with
strong nonlinearities robustification techniques have been developed, including pseudo-
transient continuation, parameter continuation, grid sequencing, model sequencing,

1Mathematics & Statistics Department, Old Dominion University, Norfolk, VA 23529-0077 and
ISCR, Lawrence Livermore Nat. Lab., Livermore, CA 94551-9989 and ICASE, NASA Langley Res.
Ctr., Hampton, VA 23681-2199, keyes@icase.edu

2Supported in part by the U.S. Department of Energy under SciDAC subcontract FC02-
01ER25476 to Old Dominion University, by Lawrence Livermore National Laboratory under ASCI
Level-2 subcontract B347882 to Old Dominion University, and by NASA under contract NAS1-19480
to ICASE.
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and nonlinear preconditioning. These improvements in nonlinear rootfinding have
made it possible for large-scale PDE-constrained optimization problems (e.g., design,
control, parameter identification — usually the ultimate problems behind the proxi-
mate PDEs) to be placed into the same domain-decomposed algorithmic framework
as the PDE, itself.

The architecture of the terascale systems available in the United States, built
around hierarchical distributed memory, appears hostile to conventional sequential
optimal PDE algorithms, but is ultimately suitable apart from reservations about
limited memory bandwidth. The distributed aspects must be overcome with judi-
cious combinations of message-passing and/or shared memory program models. The
hierarchical aspects must be overcome with register blocking, cache blocking, and
prefetching. Algorithms for these PDE-based simulations must be highly concurrent,
straightforward to load balance, latency tolerant, cache friendly (with strong tempo-
ral and spatial locality of reference), and highly scalable (in the sense of convergence
rate) as problem size and processor number are increased in proportion. The goal
for algorithmic scalability is to fill up the memory of arbitrarily large machines while
preserving constant (or at most logarithmically growing) running times with respect
to a proportionally smaller problem on one processor. Domain-decomposed multilevel
methods are natural for all of these desiderata. Domain decomposition is also natural
for the software engineering of simulation codes: valuable extent code designed for a
sequential PDE analysis can often be “componentized” and made part of an effective
domain-decomposed, operator-split preconditioner.

For a pair of web-downloadable full-scale reviews documenting these themes more
fully, see [17, 18]. This page-limited chapter skims these reviews at a high level, em-
phasizing the importance of domain decomposition to large-scale scientific computing.

2. The Newton-Krylov-Schwarz Family of Algorithms. Many problems
in engineering and applied physics can be written in the form

V
∂u
∂t

+ F(u) = 0, (2.1)

where u is a vector of functions depending upon spatial variables x and t, F is a
vector of spatial differential operators acting on u, and V is a diagonal scaling matrix
with nonnegative diagonal entries. If all of the equations are “prognostic” then V has
strictly positive diagonal entries; but we may also accommodate the case of entirely
steady-state equations, V = 0, or some combination of positive and zero diagonal
entries, corresponding to prognostic equations for some variables and steady-state
constraints for others. Steady-state equations often arise from a priori equilibrium
assumptions designed to suppress timescales faster than those of dynamical interest,
e.g., acoustic waves in aerodynamics, gravity waves in geophysics, Alfvén waves in
magnetohydrodynamics, etc.

Semidiscretizing in space to approximate F(u) with f(u), and in time with implicit
Euler, we get the algebraic system:

(
V

τ 
)u + f(u) = (

V

τ 
)u−1. (2.2)

Higher-order temporal schemes are easily put into this framework with the incorpora-
tion of additional history vectors with appropriate weights on the right-hand side. We
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are not directly concerned with discretization or the adaptivity of the discretization
to the solution in this chapter. However, the achievement of nonlinear consistency by
Newton’s method on each time step is motivated by a desire to go to higher order
than the pervasive standard of no better than first-order in time and second-order in
space. Because f may be highly nonlinear, even a steady-state numerical analysis is
often made to follow a pseudo-transient continuation until the ball of convergence for
Newton’s method for the steady-state problem is reached. In this case, time accuracy
is not an issue, and τ  becomes a parameter to be placed at the service of the algorithm
[16].

Whether discretized time accurately or not, we are left at each time step with a
system of nonlinear algebraic equations (2.2), written abstractly as F(u) = 0. We
solve these systems in sequence for each set of discretized spatial grid functions, u,
using an inexact Newton method. The resulting linear systems for the Newton cor-
rections involving the Jacobian of F with respect to instantaneous or lagged iterates
u,k, are solved with a Krylov method, relying only on Jacobian-vector multiplica-
tions. (Here, u,0 ≡ u−1, and u,k → u, as k → ∞ in a Newton iteration loop on
inner index k.) The Krylov method needs to be preconditioned for acceptable inner
iteration convergence rates, and the preconditioning is the “make-or-break” aspect
of an implicit code. The other phases possess high concurrency and parallelize well
already, if properly load balanced, being made up of vector updates, inner products,
and sparse matrix-vector products.

The job of the preconditioner is to approximate the action of the Jacobian inverse
in a way that does not make it the dominant consumer of memory or cycles in the
overall algorithm and (most importantly) does not introduce idleness through chained
data dependencies, as in Gaussian elimination. The true inverse of the Jacobian
is usually dense, reflecting the global Green’s function of the continuous linearized
PDE operator it approximates, and it is not obvious that a good preconditioner ap-
proximating this inverse action can avoid extensive global communication. A good
preconditioner saves time and space by permitting fewer iterations in the Krylov loop
and smaller storage for the Krylov subspace than would be required in its absence.
An additive Schwarz preconditioner accomplishes this in a localized manner, with an
approximate solve in each subdomain of a partitioning of the global PDE domain.
Applying any subdomain preconditioner within an additive Schwarz framework tends
to increases floating point rates over the same preconditioner applied globally, since
the smaller subdomain blocks maintain better cache residency. Combining a Schwarz
preconditioner with a Krylov iteration method inside an inexact Newton method leads
to a synergistic parallelizable nonlinear boundary value problem solver with a classical
name: Newton-Krylov-Schwarz (NKS). In the remainder of this section, we build up
NKS from the outside inwards.

Inexact Newton Methods. We use the term “inexact Newton method” to
denote any nonlinear iterative method for solving F(u) = 0 through a sequence uk =
uk−1 +λkδuk, where δuk approximately satisfies the true Newton correction equation

F′(uk−1)δuk = −F(uk−1), (2.3)

in the sense that the linear residual norm ||F′(uk−1)δuk + F(uk−1)|| is sufficiently
small. Typically the right-hand side of the linear Newton correction equation, which
is the nonlinear residual F(uk−1), is evaluated to full precision, so the inexactness
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arises from incomplete convergence employing the true Jacobian, freshly evaluated at
uk−1, or from the employment of an inexact Jacobian for F′(uk−1).

Newton-Krylov Methods. A Newton-Krylov (NK) method uses a Krylov
method, such as GMRES [26], to solve (2.3) for δu. From a computational point
of view, one of the most important characteristics of a Krylov method for the linear
system Ax = b is that information about the matrix A needs to be accessed only in
the form of matrix-vector products in a relatively small number of carefully chosen di-
rections. When the matrix A represents the Jacobian of a discretized system of PDEs,
each of these matrix-vector products is similar in computational and communication
cost to a stencil update phase (or “global flux balance”) of an explicit method applied
to the same set of discrete conservation equations, or to a single finest-grid “work
unit” in a multigrid method. NK methods are suited for nonlinear problems in which
it is unreasonable to compute or store a true full Jacobian, where the action of A can
be approximated by discrete directional derivatives.

Newton-Krylov-Schwarz Methods. A Newton-Krylov-Schwarz (NKS) method
combines a Newton-Krylov method, such as Newton-GMRES [6], with a Krylov-
Schwarz (KS) method, such as restricted additive Schwarz [9]. If the Jacobian A
is ill-conditioned, the Krylov method will require an unacceptably large number of it-
erations. In order to control the number of Krylov iterations, while obtaining concur-
rency proportional to the number of processors, they are preconditioned with domain-
decomposed additive Schwarz methods [28]. The system is transformed into the equiv-
alent form B−1Ax = B−1b through the action of a preconditioner, B, whose inverse
action approximates that of A, but at smaller cost. It is in the choice of precondi-
tioning that the battle for low computational cost and scalable parallelism is usually
won or lost. In KS methods, the preconditioning is introduced on a subdomain-by-
subdomain basis through a conveniently computable approximation to a local Jaco-
bian. Such Schwarz-type preconditioning provides good data locality for parallel im-
plementations over a range of parallel granularities, allowing significant architectural
adaptability.

Schwarz Methods. Schwarz methods [7, 11, 28, 32] create concurrency at a
desired granularity algorithmically and explicitly through partitioning, without the
necessity of any code dependence analysis or special compiler. Generically, in continu-
ous or discrete settings, Schwarz partitions a solution space into n subspaces, possibly
overlapping, whose union is the original space, and forms an approximate inverse of the
operator in each subspace. Algebraically, to solve the discrete linear system, Ax = f ,
let Boolean rectangular matrix Ri extract the ith subset of the elements of x defining
an algebraic subspace: xi = Rix, and let Ai ≡ RiART

i be invertible within the ith

subspace. Then the additive Schwarz approximate inverse is defined as

B−1
ASM =

∑
i

Ri
T A−1

i Ri. (2.4)

From the PDE perspective, subspace decomposition is domain decomposition. B−1 is
formed out of (approximate) local solves on (possibly overlapping) subdomains.

In the grid-based context of a PDE, Boolean operators Ri and RT
i , i = 1, . . . , n,

represent gather and scatter (communication) operations, mapping between a global
vector and its ith subdomain support. When A derives from an elliptic operator and
Ri is the characteristic function of unknowns in a subdomain, optimal convergence
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(independent of dim(x) and the number of partitions) can be proved, with the ad-
dition of a coarse grid, which is denoted with subscript “0”: B−1

ASM = RT
0 A−1

0 R0 +∑
i>0 RT

i A−1
i Ri. Here, R0 is a conventional geometrically based multilevel interpola-

tion operator. It is an important freedom in practical implementations that the coarse
grid space need not be related to the fine grid space or to the subdomain partitioning.
The A−1

i (i > 0) in B−1 are often replaced with inexact solves in practice, such as
a multigrid V-cycle. The exact forward matrix-vector action of A in B−1A is still
required, even if inexact solves are employed in the preconditioner.

Table 2.1: Theoretical condition number estimates κ(B−1A), for self-adjoint positive-definite

elliptic problems [28] and corresponding iteration count estimates for Krylov-Schwarz based

on an idealized isotropic partitioning of the domain in dimensions 2 or 3.

Preconditioning κ(B−1A) 2D Iter. 3D Iter.
Point Jacobi O(h−2) O(N1/2) O(N1/3)

Domain Jacobi O((hH)−1) O((NP )1/4) O((NP )1/6)
1-level Additive Schwarz O(H−2) O(P 1/2) O(P 1/3)
2-level Additive Schwarz O(1) O(1) O(1)

Condition number estimates for B−1A are given in the first column of Table 1
in terms of the quasi-uniform mesh parameter h, and subdomain parameter H. The
two-level Schwarz method with generous overlap has a condition number that is inde-
pendent of the fineness of the discretization and the granularity of the decomposition,
which implies perfect algorithmic scalability. However, there is an increasing imple-
mentation overhead in the coarse-grid solution required in the two-level method that
offsets this perfect algorithmic scalability. In practice, a one-level method is often
used, since it is amenable to a perfectly scalable implementation. Alternatively, a
two-level method is used but the coarse level is solved only approximately, in a trade-
off that depends upon the application and the architecture. These condition number
results are extensible to nonself-adjointness, mild indefiniteness, and inexact subdo-
main solvers. The theory requires a “sufficiently fine” coarse mesh, H, for the first
two of these extensions, but computational experience shows that the theory is often
pessimistic.

The restricted additive Schwarz Method (RASM) eliminates interprocess commu-
nication during the interpolation phase of the additive Schwarz technique [9]. In
particular, if we decompose a problem into a set of overlapping subdomains Ωi, the
conventional additive Schwarz method is a three-phase process consisting of first col-
lecting data from neighboring subdomains via global-to-local restriction operators Ri,
then performing a local linear solve on each subdomain A−1

i , and finally sending par-
tial solutions to neighboring subdomains via the local-to-global prolongation operators
Ri

T . The RASM preconditioner performs a complete restriction operation but does
not use any communication during the interpolation phase, denoted instead as R′

i
T .

This provides the obvious benefit of a 50% reduction in nearest-neighbor communica-
tion overhead. In addition, experimentally, it preconditions better than the original
additive Schwarz method over a broad class of problems [9], for reasons that are be-
ginning to be understood [8].
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Although the spectral radius, ρ(I − B−1A), may exceed unity, the spectrum,
σ(B−1A), is profoundly clustered, so Krylov acceleration methods work well on the
preconditioned solution of B−1Ax = B−1f . Krylov-Schwarz methods typically con-
verge in a number of iterations that scales as the square-root of the condition number
of the Schwarz-preconditioned system. For convergence scalability estimates, assume
one subdomain per processor in a d-dimensional isotropic problem, where N = h−d

and P = H−d. Then iteration counts may be estimated as in the last two columns of
Table 1.

The proof of these estimates is generally approached via an algebra of projec-
tion operators, Pi ≡ Ri

T A−1
i RiA. The ratio of upper bound to lower bound of the

spectrum of the sum of the orthogonal projections Pi is an estimate of the condition
number for B−1A =

∑
i Pi. Since ||Pi|| ≤ 1, the upper bound follows easily from the

geometry of the decomposition and is a generally a constant related to the number
of colors required to color the subdomains. The lower bound depends crucially upon
the partitioning of the solution space. Without a coarse subspace to support the so-
lution at subdomain boundaries, the fine space contributions must fall rapidly to zero
from finite values in the subdomain interiors, resulting in high H1 “energy” inversely
proportional to the overlap distance over which the solutions must decay.

For simple intuition behind this table consider the following: errors propagate
from the interior to the boundary in steps that are proportional to the largest implicit
aggregate in the preconditioner, whether pointwise (in N) or subdomainwise (in P ).
The use of overlap in going from Domain Jacobi to Additive Schwarz avoids the
introduction of high energy at near discontinuities at subdomain boundaries. The
two-level method projects out low-wavenumber errors rapidly at the price of solving
a global problem.

Only the two-level method scales perfectly in convergence rate (constant, indepen-
dent of N and P ), like a traditional multilevel iterative method [4, 5, 14, 30]. However,
the two-level method shares with multilevel methods a nonscalable cost-per-iteration
from the necessity of solving a coarse-grid system of size O(P ). Unlike recursive mul-
tilevel methods, a two-level Schwarz method may have a rather fine coarse grid, for
example, H = O(h1/2), which potentially makes it less scalable overall. Parallelizing
the coarse grid solve is necessary. Neither extreme of a fully distributed or a fully
redundant coarse solve is optimal, but rather something in between. When reuse is
possible, storing a parallel inverse can be cost-effective [31].

When it appears additively in the Schwarz preconditioner, the coarse grid injects
some work that potentially spoils the “single-program, multiple data” (SPMD) par-
allel programming paradigm, in which each processor runs an identical image over
local data. For instance, the SPMD model would not hold if one subset of processors
worked on the coarse grid problem concurrently to the others each working on subdo-
mains. Therefore, in two-level SPMD implementations, other Schwarz preconditioner
polynomials than the purely additive are used in practice. A preconditioner may be
defined that solves the fine subdomains concurrently in the standard way, and then
assembles a new residual and solves the coarse grid in a separate phase. This leads to
the method denoted “Hybrid II” in [28]:

B−1 = A−1
0 + (I −A−1

0 A)(
n∑

i=1

A−1
i ).
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The subspace inverses are typically done approximately, as in the purely additive case.
Readers uncomfortable with the appearance of the Schwarz formula A−1 ≈

∑
i Ri

T A−1
i Ri,

implying that the inverse of the sum is well approximated by the sum of the inverses in
subspaces, may benefit from recalling an exact result from eigenanalysis. Let {ri}Ni=1

be a complete set of orthonormal row (left) eigenvectors for an SPD matrix A. Then
riA = airi, or ai = riArT

i , for corresponding eigenvalues ai. Then, we have the
representations of A and A−1 as sums over subspaces,

A =
N∑

i=1

rT
i airi and A−1 =

N∑
i=1

rT
i a−1

i ri =
N∑

i=1

rT
i (riArT

i )−1ri.

The latter is nothing but a special case of the Schwarz formula! In practice, invariant
subspaces are far too expensive to obtain for practical use in Schwarz, and their basis
vectors are general globally dense, resulting in too much storage and communication
in forming restrictions and prolongations. Characteristic subspaces of subdomains, in
contrast, provide locality and sparsity, but are not invariant upon multiplication by
A, since the stencils overlap subdomain boundaries. Choosing good decompositions is
a balance between conditioning and parallel complexity, in practice.

Contrast of Domain Decomposition with Other Decompositions. It is
worthwhile to emphasize the architectural advantages of Schwarz-type domain de-
composition methods vis-à-vis other mathematically useful decompositions.

Given the operator equation Lu = f in Ω, and a desire for either concurrent or
sequential “divide-and-conquer,” one can devise operator decompositions L =

∑
j Lj ,

function-space decompositions u =
∑

j ujφj , or domain decompositions Ω = ∪j Ωj .
Let us contrast an example of each on the parabolic PDE in two space dimensions

∂u

∂t
+ [Lx + Ly]u = f(x, y, t) in Ω, (2.5)

with u = 0 on ∂Ω, where Lx ≡ − ∂
∂xax(x, y) ∂

∂x + bx(x, y) ∂
∂x , (ax > 0) and with a

corresponding form for Ly. Upon implicit time discretization[
I

∆t
+ Lx + Ly

]
u(+1) =

[
I

∆t

]
u() + f ≡ f̃ ,

we get an elliptic problem at each time step.
The Alternating Direction Implicit (ADI) method is an example of operator de-

composition. Proceeding in half-steps, one each devoted to the x- and y-directions,
we write [

I

∆t/2
+ Lx

]
u(+1/2) =

[
I

∆t/2
− Ly

]
u() + f[

I

∆t/2
+ Ly

]
u(+1) =

[
I

∆t/2
− Lx

]
u(+1/2) + f.

The overall iteration matrix mapping u() to u(+1) is factored into four sequential sub-
steps per time step: two sparse matrix-vector multiplies and two sets of unidirectional
bandsolves. If the data is alternately laid out in unidirectional slabs on the proces-
sors, so as to allow each set of unidirectional bandsolves to be executed independently,
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then we have perfect parallelism within substeps, but, global data exchanges between
substeps. In other words, computation and communication each scale with the bulk
size of the data of the problem.

A Fourier or spectral method is an example of a function-space decomposition. We
expand

u(x, y, t) =
N∑

j=1

aj(t)φj(x, y).

Enforcing Galerkin conditions on (2.5) with the basis functions φi, we get

d

dt
(φi, u) = (φi,Lu) + (φi, f), i = 1, . . . , N.

Plugging the expansion into the Galerkin form,

N∑
j=1

(φi, φj)
daj

dt
=

N∑
j=1

(φi,Lφj)aj + (φi, f), i = 1, . . . , N.

Inverting the mass matrix, M ≡ [(φj , φi)] on both sides, and denoting the stiffness
matrix by K ≡ [(φj ,Lφi)], we get a set of ordinary differential equations for the
expansion coefficients:

ȧ = M−1Ka + M−1g.

If the basis functions are orthogonal and diagonalize the operator, then M and K
are diagonal, and these equations perfectly decouple, creating N -fold concurrency for
the evolution of the spectral components. However, in applications, it is necessary
to frequently reconstitute the physical variable u. This is true for interpreting or
visualizing the model and also for handling possible additional terms of the PDE in
physical space in a “pseudo-spectral” approach, since it is unlikely that practically
arising operators readily lead to orthogonal eigenfunctions for which there are fast
transforms. Transforming back and forth from physical to spectral space on each
iteration leads, again, to an algorithm where the computation and the communication
together scale with the problem size, and there is all-to-all communication.

An additive Schwarz domain decomposition method for this problem has been de-
scribed already. We replace Au = f by B−1

ASMAu = B−1
ASMf and solve by a Krylov

method. There are several Krylov steps per time step, each requiring a matrix-vector
multiplies with B−1

ASMA. Due to the concurrency implied by the sum, there is paral-
lelism on each subregion. However the dominant communication is nearest-neighbor
data exchange, whose size scales as the perimeter (resp., surface in three dimensions),
compared to the computation, whose size scales as the area (resp., volume). Therefore,
domain decomposition possesses excellent scalability properties with respect to imple-
mentation on distributed memory computers. There is a need for a small global sparse
linear system solve in some problems, to obtain mathematical optimality. (This is not
necessary for the parabolic problem considered above.) Though this small problem
requires global communication (either to set up redundant instances, solved concur-
rently, or to carry out a collaborative solution) and demands analysis and extreme
care to keep subdominant, it escapes the bulk communication burdens of the other
approaches.
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Physics-based Preconditioning. An important class of preconditioners for the
Jacobian-free Newton-Krylov method, complementary to the domain-split parallelism
of Schwarz, is physics-based operator splitting. The operator notation for the right-
preconditioned, matrix-free form of the method is:

J(u)B−1
splitv ≈

F(u + εB−1
splitv)− F(u)

ε
, (2.6)

where “split” denotes a preconditioning process handled in an operator-split manner.
Many operator-split time integration methods have been developed based on insight
from the physics of the underlying system. It is well understood that operator-split
methods have limitations as solvers, thus they most likely also have limitations as
preconditioners. However, they still provide an interesting class of preconditioners for
the Jacobian-free Newton-Krylov method.

The essential insight of physics-based preconditioning is that preconditioner in a
Newton-Krylov method maps a nonlinear residual to an approximate state-vector cor-
rection, namely, the Newton update. Such a map implicitly resides in most interative
procedures of computational physics. The use of operator-split solvers as precondition-
ers for Jacobian-free Newton-Krylov appears not to have a long history, but is rapidly
developing. See instances for time-independent reaction diffusion equations [24], time-
dependent MHD equations [10], steady state incompressible Navier-Stokes equations
[19, 25], and time-dependent incompressible Navier-Stokes equations [20, 25]. Also in
[20], a standard approximate linearization method used for phase-change heat con-
duction problems, has been employed as a preconditioner for a JFNK solution of
phase-change heat conduction problems.

3. Parallel Implementation of NKS Using PETSc. To implement NKS
methods on distributed memory parallel computers, we employ the “Portable, Ex-
tensible Toolkit for Scientific Computing” (PETSc) [1, 2], a library that attempts
to handle through a uniform interface, in a highly efficient way, the low-level details
of the distributed memory hierarchy. Examples of such details include striking the
right balance between buffering messages and minimizing buffer copies, overlapping
communication and computation, organizing node code for strong cache locality, pre-
allocating memory in sizable chunks rather than incrementally, and separating tasks
into one-time and every-time subtasks using the inspector/executor paradigm. The
benefits to be gained from these and from other numerically neutral but architecturally
sensitive techniques are so significant that it is efficient in both the programmer-time
and execution-time senses to express them in general purpose code. Among other
important packages implementing Newton-Krylov in parallel, we mention Aztec [15],
KINSOL [29], NITSOL [23], and the Iterative Template Library (ITL) [21].

PETSc is a large and versatile package integrating distributed vectors, distributed
matrices in several sparse storage formats, Krylov subspace methods, preconditioners,
and Newton-like nonlinear methods with built-in trust region or linesearch strategies
and continuation for robustness. It has been designed to provide the numerical in-
frastructure for application codes involving the implicit numerical solution of PDEs,
and it sits atop MPI for portability to most parallel machines. The PETSc library
is written in C, but may be accessed from user codes written in C, FORTRAN, and
C++. PETSc version 2, first released in June 1995, has been downloaded thousands
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of times by users worldwide. PETSc has many features relevant to PDE analysis,
including matrix-free Krylov methods, blocked forms of parallel preconditioners, and
various types of time-stepping.

When well tuned, large-scale PDE codes spend almost all of their time in two
phases: flux computations to evaluate conservation law residuals, where one aims
to have such codes spent almost all their time, and sparse linear algebraic kernels,
which are a fact of life in implicit methods. Altogether, four basic groups of tasks
can be identified based on the criteria of arithmetic concurrency, communication pat-
terns, and the ratio of operation complexity to data size within the task. These four
distinct phases, present in most implicit codes, are vertex-based loops, edge-based
loops, recurrences, and global reductions. Each of these groups of tasks has a distinct
proportion of work to datasize to communication requirements and each stresses a
different subsystem of contemporary high-performance computers. In the language of
a vertex-centered code, in which the data is

• Vertex-based loops

– state vector and auxiliary vector updates

• Edge-based “stencil op” loops

– residual evaluation, Jacobian evaluation

– Jacobian-vector product (often replaced with matrix-free form, involving
residual evaluation)

– interpolation between grid levels

• Sparse, narrow-band recurrences

– (approximate) factorization, back substitution, relaxation/smoothing

• Vector inner products and norms

– orthogonalization/conjugation

– convergence progress checks and stability heuristics

Vertex-based loops are characterized by work closely proportional to datasize,
pointwise concurrency, and no communication.

Edge-based “stencil op” loops have a large ratio of work to datasize, since each
vertex is used in many discrete stencil operations, and each degree of freedom at a point
(momenta, energy, density, species concentration) generally interacts with all others in
the conservation laws—through constitutive and state relationships or directly. There
is concurrency at the level of the number of edges between vertices (or, at worst,
the number of edges of a given “color” when write consistency needs to be protected
through mesh coloring). There is local communication between processors sharing
ownership of the vertices in a stencil.
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Sparse, narrow-band recurrences involve work closely proportional to data size,
the matrix being the largest data object and each of its elements typically being used
once. Concurrency is at the level of the number of fronts in the recurrence, which
may vary with the level of exactness of the recurrence. In a preconditioned iterative
method, the recurrences are typically broken to deliver a prescribed process concur-
rency; only the quality of the preconditioning is thereby affected, not the final result.
Depending upon whether one uses a pure decomposed Schwarz-type preconditioner, a
truncated incomplete solve, or an exact solve, there may be no, local only, or global
communication in this task.

Vector inner products and norms involve work closely proportional to data size,
mostly pointwise concurrency, and global communication.

Based on these characteristics, one anticipates that vertex-based loops, recurrences,
and inner products will be memory bandwidth-limited, whereas edge-based loops are
likely to be only load/store-limited. However, edge-based loops are vulnerable to in-
ternode bandwidth if the latter does not scale. Inner products are vulnerable to in-
ternode latency and network diameter. Recurrences can resemble some combination
of edge-based loops and inner products in their communication characteristics if pre-
conditioning fancier than simple Schwarz is employed. For instance, if incomplete
factorization is employed globally or a coarse grid is used in a multilevel precondi-
tioner, global recurrences ensue.

Analysis of a parallel aerodynamics code reimplemented in PETSc [13] shows that,
after tuning, as expected, the linear algebraic kernels run at close to the aggregate
memory bandwidth limit on performance, the flux computations are bounded either by
memory bandwidth or instruction scheduling (depending upon the ratio of load/store
units to floating-point units in the CPU), and parallel efficiency is bounded primarily
by slight load imbalances at synchronization points.

4. Terascale Optimal PDE Simulations (TOPS). Under the Scientific Dis-
covery through Advanced Computing (SciDAC) initiative of the U.S. Department of
Energy (http://www.science.doe.gov/scidac/), a nine-institution team is building
an integrated software infrastructure center (ISIC) that focuses on developing, imple-
menting, and supporting optimal or near optimal schemes for PDE simulations and
closely related tasks, including optimization of PDE-constrained systems, eigenanal-
ysis, and adaptive time integration, as well as implicit linear and nonlinear solvers.
The Terascale Optimal PDE Simulations (TOPS) Center is researching and develop-
ing and will deploy a toolkit of open source solvers for the nonlinear partial differential
equations that arise in many application areas, including fusion, accelerator design,
global climate change, and the collapse of supernovae. These algorithms — primar-
ily multilevel methods — aim to reduce computational bottlenecks by one or more
orders of magnitude on terascale computers, enabling scientific simulation on a scale
heretofore impossible.

Along with usability, robustness, and algorithmic efficiency, an important goal of
this ISIC is to attain the highest possible computational performance in its imple-
mentations by accommodating to the memory bandwidth limitations of hierarchical
memory architectures.

PDE simulation codes require implicit solvers for multiscale, multiphase, mul-
tiphysics phenomena from hydrodynamics, electromagnetism, radiation transport,
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Optimization

Time integration

Nonlinear solvers

Linear solvers

Eigenanalysis

Indicates usage

Common Framework

Figure 4.1: An arrow from A to B indicates that A typically uses B. Optimization of systems

governed by PDEs requires repeated access to a PDE solver. The PDE system may be steady-

state or time-dependent. Time-dependent PDEs are typically solved with implicit temporal

differencing. After choice of the time-integration scheme, they, in turn, require the same types

of nonlinear solvers that are used to solve steady-state PDEs. Many algorithms for nonlinear

problems of high dimension generate a sequence of linear problems, so linear solver capability

is at the core. Eigenanalysis arises inside of or independently of optimization. Like direct

PDE analysis, eigenanalysis generally depends upon solving a sequence of linear problems.

All of these five classes of problems, in a PDE context, share grid-based data structures and

considerable parallel software infrastructure. Therefore, it is compelling to undertake them

together.

chemical kinetics, and quantum chemistry. Problem sizes are typically now in the
millions of unknowns; and with emerging large-scale computing systems and inexpen-
sive clusters, we expect this size to increase by a factor of a thousand over the next
five years. Moreover, these simulations are increasingly used for design optimization,
parameter identification, and process control applications that require many repeated,
related simulations.

The TOPS ISIC is concerned with five PDE simulation capabilities: adaptive time
integrators for stiff systems, nonlinear implicit solvers, optimization, linear solvers,
and eigenanalysis. The relationship between these areas is depicted in Figure 4.1. In
addition, TOPS emphasizes two cross-cutting topics: software integration (or inter-
operability) and high-performance coding techniques for PDE applications.

Optimal (and nearly optimal) complexity numerical algorithms almost invariably
depend upon a hierarchy of approximations to “bootstrap” to the required highly
accurate final solution. Generally, an underlying continuum (infinite dimensional) high
fidelity mathematical model of the physics is discretized to “high” order on a “fine”
mesh to define the top level of the hierarchy of approximations. The representations
of the problem at lower levels of the hierarchy may employ other models (possibly
of lower physical fidelity), coarser meshes, lower order discretization schemes, inexact
linearizations, and even lower floating-point precisions. The philosophy that underlies
our algorithmics and software is the same as that of this chapter — to make the
majority of progress towards the highly resolved result through possibly low-resolution
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stages that run well on high-end distributed hierarchical memory computers.
The ingredients for constructing hierarchy-of-approximations-based methods are

remarkably similar, be it for solving linear systems, nonlinear problems, eigenvalue
problems, or optimization problems, namely:

1. A method for generating several discrete problems at different resolutions (for
example on several grids),

2. An inexpensive (requiring few floating point operations, loads, and stores per
degree of freedom) method for iteratively improving an approximate solution at
a particular resolution,

3. A means of interpolating (discrete) functions at a particular resolution to the
next finer resolution,

4. A means of transferring (discrete) functions at a particular resolution to the next
coarser resolution (often obtained trivially from interpolation).

Software should reflect the simplicity and uniformity of these ingredients over the
five problem classes and over a wide range of applications. With experience we expect
to achieve a reduction in the number of lines of code that need to be written and
maintained, because the same code can be reused in many circumstances.

The efforts defined for TOPS, the co-PIs joining to undertake them, and the al-
liances proposed with other groups have been chosen to exploit the present opportunity
to revolutionize large-scale solver infrastructure, and lift the capabilities of dozens of
DOE’s computational science groups as an outcome. The co-PIs’ current software
(e.g., Hypre [12], PETSc [1], ScaLAPACK [3], SuperLU [22]), though not algorithmi-
cally optimal in many cases, and not yet as interoperable as required, is in the hands
of thousands of users, and has created a valuable experience base. Just as we expect
the user community to drive research and development, we expect to significantly im-
pact the scientific priorities of users by emphasizing optimization (inverse problems,
optimal control, optimal design) and eigenanalysis as part of the solver toolkit.

Optimization subject to PDE-constraints is a particularly active subfield of opti-
mization because the traditional means of handling constraints in black-box optimiza-
tion codes — with a call to a PDE solver in the inner loop — is too expensive. We are
emphasizing “simultaneous analysis and design” methods in which the cost of doing
the optimization is a small multiple of doing the simulation and the simulation data
structures are actually part of the optimization data structures.

Likewise, we expect that a convenient software path from PDE analysis to eige-
nanalysis will impact the scientific approach of users with complex applications. For
instance, a PDE analysis can be pipelined into the scientific added-value tasks of
stability analysis for small perturbations about a solution and reduced dimension rep-
resentations (model reduction), with reuse of distributed data structures and solver
components.

The motivation behind TOPS is that most PDE simulation is ultimately a part
of some larger scientific process that can be hosted by the same data structures and
carried out with many of the same optimized kernels as the simulation, itself. We
intend to make the connection to such processes explicit and inviting to users, and this
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will be a prime metric of our success. The organization of the effort flows directly from
this program of “holistic simulation”: Terascale software for PDEs should extend from
the analysis to the scientifically important auxiliary processes of sensitivity analysis,
modal analysis and the ultimate “prize” of optimization subject to conservation laws
embodied by the PDE system.

5. Conclusions. The emergence of the nonlinearly implicit Jacobian-free Newton-
Krylov-Schwarz family of methods has provided a pathway towards terascale simu-
lation of PDE-based systems. Domain decomposition is desirable for possessing a
communication cost that is subdominant to computation – even optimal order com-
putation, linear in the problem size – and fixed in ratio, as problem size and processor
count are scaled in proportion.

Large-scale implicit computations have matured to a point of practical use on dis-
tributed/shared memory architectures for static-grid problems. More sophisticated
algorithms, including solution adaptivity, inherit the same features within static-grid
phases, of course, but require extensive additional infrastructure for dynamic paral-
lel adaptivity, rebalancing, and maintenance of efficient, consistent distributed data
structures.

While mathematical theory has been crucial in the development of NKS methods,
their most successful application also depends upon a more-than-superficial under-
standing of the underlying architecture and of the physics being modeled. In the
future, as we head towards petascale simulation and greater integration of complex
physics codes in full system analysis and optimization, we expect that this interdisci-
plinary interdependence will only increase.
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8. Nonlinearly Preconditioned Newton’s Method

S. H. Lui1

1. Introduction. Many challenging problems in science and engineering are large
and nonlinear. Typically they are solved by Newton’s method or its many variations. If
parallel computers are available, the solution process can be sped up by the use of domain
decomposition techniques. The traditional domain decomposition approach for nonlinear
PDEs is to use the classical Newton’s method and apply classical domain decomposition
techniques such as the additive Schwarz preconditioner ([6]) to the resulting linear systems.
This is often referred to as the Newton-Krylov-Schwarz method ([1], [2]). For most nonlinear
equations, this works very well. However, for more difficult problems, the lack of a good
initial guess means that the Newton-Krylov-Schwarz iteration may not converge or may
converge very slowly. Often, the failure may be traced to boundary layers, singularities
(corners/cusps) in the domain, and/or multi–physics domains (fluid–structure interaction
problems for instance). These problematic regions slow down global convergence or cause
stagnation in the iteration. There are of course many papers on the application of domain
decomposition methods to nonlinear problems, especially those in fluid mechanics. Many
references can be found in the proceedings of the annual conference on domain decomposition
methods, starting with [7].

Meanwhile, other workers have begun to look at applying Schwarz methods directly
on the nonlinear subdomain problems: [5], [17], [18], [11], [12], and [13]. These nonlinear
Schwarz methods have the nice property that difficult regions are isolated in a small number
of subdomains where special techniques (finer grid, asymptotics, etc.) may be brought to
bear without interfering with the convergence in other parts of the domain. However, they
still require a good initial guess for convergence and their rate of convergence is usually slow
(linear).

Recently, Cai and Keyes ([3]) have proposed a new method which is a marriage of the
Newton-Krylov-Schwarz and nonlinear Schwarz methods. Their idea is to nonlinearly pre-
condition the given nonlinear equations F (u) = 0 so that the resultant equations F(u) = 0
are closer to linear equations and so amenable to solution by Newton’s method without the
necessity of a good initial guess. The nonlinear preconditioner is a nonlinear additive Schwarz
preconditioner which requires the solution of a nonlinear subdomain PDE. The new system
F(u) = 0 is solved using a modified Newton’s method where the Jacobian has the same
form as in the Newton-Krylov-Schwarz algorithm. In particular, it reduces to the additive
Schwarz algorithm when F is linear. In [3], they illustrate the impressive robustness of this
new method with the driven cavity flow problem where Newton’s method stagnates at a
moderate Reynolds number while the nonlinearly preconditioned method is able to compute
to a considerably larger Reynolds number and still maintain fast quadratic convergence.

In this paper, we carry out some preliminary convergence analysis of this nonlinearly
preconditioned method as well as estimate crudely its radius of quadratic convergence, that
is, the radius of the ball where the iterates converge quadratically. This is compared to the
corresponding quantity for the classical Newton’s method. The discussion is in the context
of semilinear elliptic PDEs which are described in the next section. In section three, we
shall examine two types of convergence theories: classical q-quadratic convergence and r-
quadratic convergence assuming data only at the initial guess. In the last section, we carry
out some numerical experiments on some quasi-linear two-point boundary value problems
and conclude.

1Department of Mathematics, University of Manitoba, Winnipeg, Manitoba, Canada
luish@cc.umanitoba.ca. This work was supported in part by a grant from NSERC of Canada.
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2. Nonlinearly preconditioned PDEs. In this section, we apply the nonlinear
preconditioner to a class of semilinear elliptic PDEs and see its relation with the Newton-
Krylov-Schwarz and nonlinear Schwarz methods.

Let Ω be a bounded domain in RN with a smooth boundary. We consider the PDE

−�u = f(x, u) on Ω (2.1)

for the solution u ∈ H1
0 (Ω). For simplicity, we write f(u) for f(x, u). Throughout this paper,

we assume that this PDE has the unique solution u.
Suppose for some fixed integer m > 1, Ω = Ω1∪· · ·∪Ωm, where the subdomains Ωi have

smooth boundaries and are overlapping, meaning that H1
0 (Ω) = H1

0 (Ω1) + · · ·+ H1
0 (Ωm). In

this paper, a function in H1
0 (Ωi) is considered as a function in H1

0 (Ω) by extension by zero.
Let ‖ · ‖ be the norm on H1

0 (Ω), that is,

‖v‖2 =

∫
Ω

|∇v|2

and ‖ · ‖−1 be the norm on the dual space H−1(Ω). Let Pi denote the projection PiH
1
0 (Ω) =

H1
0 (Ωi) in the H1

0 (Ω)–norm.
It is more convenient to express the PDE as the nonlinear operator equation

F (u) ≡ u +�−1f(u) = 0,

where F : H1
0 (Ω) → H1

0 (Ω), and�−1 : H−1(Ω)→ H1
0 (Ω) denotes the inverse of the Laplacian

operator on Ω with homogeneous Dirichlet boundary conditions. Define the new nonlinear
equations ([3])

F(u) ≡
m∑

i=1

Ti(u) = 0

where Ti : H1
0 (Ω) → H1

0 (Ωi) satisfies

PiF (v + Ti(v)) = 0, v ∈ H1
0 (Ω).

It is assumed that this solution exists and is unique given v. One can think of Ti(v) as
a correction to the current guess v obtained by solving a nonlinear subdomain PDE. Let
yi = Ti(v) and using the definition of F , we obtain

yi + Pi�−1f(v + yi) = −Piv (2.2)

or
−�iyi − f(v + yi) = �v on Ωi. (2.3)

This nonlinear subdomain PDE is very much like that in nonlinear Schwarz algorithms men-
tioned above.

The nonlinearly preconditioned method solves the new nonlinear equations using New-
ton’s method. That is given u(0), it produces the sequence

u(n+1) = u(n) −F ′(u(n))−1F(u(n)).

In practice, a Krylov subspace method such as GMRES ([15]) is used to solve the above linear
equations. These methods only require that we supply a procedure to compute F ′(u(n))w
for an arbitrary w ∈ H1

0 (Ω). Let us look at this in a little more detail. Let

F ′(u(n))w =
m∑

i=1

zi, zi =
∂Ti(u

(n))

∂v
w ∈ H1

0 (Ωi).
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From (2.2) and abbreviating Ti(u
(n)) by yi,

zi +�−1
i f ′(u(n) + yi)(w + zi) = −Piw

or equivalently
[−�i − f ′(u(n) + yi)] zi = [�+ f ′(u(n) + yi)] w. (2.4)

This scheme will be referred to as the nonlinearly preconditioned Newton’s method (NP1).
Other variations are possible. The original scheme of Cai and Keyes (henceforth called NP0)

replaces F ′(u(n)) by ˜F ′(u(n)) whose action on w yields

[−�i − f ′(u(n))] zi = [�+ f ′(u(n))] w.

Note that this has the same form as applying the additive Schwarz preconditioner to solve a
linear system for operator F ′(u(n)). While this gives a nice connection to the well-understood
Newton-Krylov-Schwarz algorithm, it does not use the most up-to-date information (Ti(u

(n)))
and this sometimes compromises the robustness of the algorithm. For some examples, see
the section on numerical experiments.

A third variation (NP2) replaces (2.4) by

[−�i − f ′(u(n) + y)] zi = [�+ f ′(u(n) + y)] w

where y =

m∑
i=1

yi = F(u(n)). The reasoning here is that y incorporates information from

neighboring subdomains and may lead to a better estimate. We assume that zi exists and is
unique in all three cases.

The following is a version of the partition lemma ([14], [10]) for bounded linear operators.

Lemma 2.1 Let A be a bounded linear operator on a Hilbert space H. Suppose H = H1 +
· · · + Hm and A = A1 + · · · + Am where Hi are Hilbert spaces and Ai are bounded linear
operators on Hi. Then there is some constant Cm such that

‖A‖ ≥ Cm

m∑
i=1

‖Ai‖.

Finally, we collect together the definitions of all constants which will appear later. Let

1. r denote the radius of Br(u), the open ball with center at u;

2. α0(u
(0)) denote the eigenvalue of F ′(u(0)) = I + �−1f ′(u(0)) of smallest magnitude

and α0 = α0(u);

3. γ denote the Lipschitz constant for f ′:

‖f ′(w)− f ′(v)‖−1 ≤ γ ‖w − v‖, w, v ∈ Br(u);

4. αi denote the eigenvalue of I+�−1
i f ′(u) on Ωi of smallest magnitude with correspond-

ing eigenfunction φi ∈ H1
0 (Ωi) and |αmax| = max

1≤i≤m
|αi|;

5. αi(u
(0)) denote the eigenvalue of I+�−1

i f ′(u(0)+Ti(u
(0))) on Ωi of smallest magnitude

and |αmax(u(0))| = max
1≤i≤m

|αi(u
(0))|; note αi = αi(u);

6. ρi = sup
w∈Br(u)

‖ [I +�−1
i f ′(w)]−1Pi[I +�−1f ′(w)] ‖ and ρmax = max

1≤i≤m
ρi;

7. βi = sup
w∈Br(u)

‖ [I +�−1
i f ′(w)]−1‖ and βmax = max

1≤i≤m
βi.

Note that r must be sufficiently small so that the Newton iteration is well defined and all
iterates remain in Br(u).
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3. Convergence Theory. Newton’s method is one of the oldest, simplest and most
efficient methods for solving nonlinear equations. Most of the best algorithms today are
modifications of Newton’s method. It is not surprising that many types of convergence
theories exist, depending on the hypotheses and the convergence result. We shall examine two
such theories. Recall that iterates {e(n)} converge q-quadratically to 0 if ‖e(n+1)‖ ≤ c ‖e(n)‖2
for some constant c while it converges r-quadratically to 0 if ‖e(n)‖ ≤ cn where {cn} converges
q-quadratically to 0.

The first theory is well known and is concerned with the q-quadratic convergence of New-
ton’s method. The second theory is rather special in that all assumptions are at one point,
the initial iterate – there is no Lipschitz condition in a region which is required in the other
theory. It is unfortunate that we are unable to do much analysis for the nonlinearly precon-
ditioned method in regard to this theory and must resort to some numerical experiments.
For the first theory, we attempt to contrast the rate of convergence of the nonlinearly pre-
conditioned method versus that of the classical Newton’s method, and the radii of quadratic
convergence of the two methods.

3.1. q-quadratic convergence. The first convergence theory assumes that F ′(u)
has a bounded inverse with ‖F ′(u)−1‖ ≤ η and ‖F ′(u)−F ′(v)‖ ≤ Γ‖u−v‖ for all v ∈ Br(u).
Then the (classical) Newton iterates {u(n)} for F (u) = 0 are well defined and the error

e
(n)
N = u(n) − u satisfies

‖e(n+1)
N ‖ ≤ ηΓ ‖e(n)

N ‖2

provided the initial iterate u(0) ∈ BεN (u), where

εN = min

(
r,

1

2ηΓ

)
.

See, for instance, [4] or [9]. We use the subscript N to describe the relevant quantity for
the classical Newton’s method. Hence εN is a lower bound of the radius of the ball where
quadratic convergence takes place.

Applying the classical Newton’s method to our semilinear elliptic PDE F (u) = 0, we find
that η = |α0|−1 and for any v ∈ Br(u),

‖F ′(u)− F ′(v)‖ = ‖�−1(f ′(u)− f ′(v))‖
= ‖f ′(u)− f ′(v)‖−1

≤ γ ‖u− v‖.

Thus provided u(0) ∈ BεN (u),

‖e(n+1)
N ‖ ≤ γ

|α0|
‖e(n)

N ‖2, εN = min

(
r,
|α0|
2γ

)
. (3.1)

Now we compute these same quantities for the nonlinear preconditioned Newton’s method
which employs the classical Newton’s method to solve F(u) = 0. By some straightforward
calculations,

‖F ′(u)‖ ≥ Cm |α0|
m∑

i=1

1

|αi|

and for v ∈ Br(u),

‖F ′(u)−F ′(v)‖ ≤ γ
m∑

i=1

(1 + ρi)
2

|αi|
‖u− v‖.
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Putting everything together, we obtain the error relation for the nonlinearly preconditioned
Newton’s method

‖e(n+1)
NP1 ‖ ≤

γ
∑m

i=1
(1+ρi)

2

|αi|
Cm |α0|

∑m
i=1

1
|αi|

‖e(n)
NP1‖

2 ≤ γ

|α0|
(1 + ρmax)2

Cm
‖e(n)

NP1‖
2,

provided that u(0) ∈ BεNP1(u), where

εNP1 = min

(
r,
|α0|
2γ

Cm

(1 + ρmax)2

)
.

These can be compared directly with (3.1), unfortunately to the detriment of NP1. To obtain
a sharper estimate, we believe that it is necessary to restrict the class of PDEs. Note if f ′ ≡ 0,
then ρmax = 1 while if f ′ ≤ 0, then ρmax ≤ C for some constant C. With a suitable finite
element discretization, C is independent of the mesh size but can increase with the number
of subdomains.

It is not difficult to deduce similar estimates for NP0, the original scheme of Cai and
Keyes:

‖e(n+1)
NP0 ‖ ≤ K

(
1 + γ

m∑
i=1

βi(1 + ρi)ρi

)
‖e(n)

NP0‖
2

for some constant K.
We have examined two other r-quadratic convergence theories that are similar to the

first theory above. They differ in the Lipschitz condition ([19], [21]) or the assumption that
F ′(u(0)) is invertible (rather than F ′(u)) ([8], [20]). The results of the analysis are similar to
those of the first theory and will be reported elsewhere.

3.2. r-quadratic convergence. In this theory due to Smale [16], we no longer
assume a Lipschitz condition in a ball. Instead, all assumptions are at the initial point u(0)

of the iteration. However, we need to assume that F is an analytic operator. Define

ω(u(0)) = ‖F ′(u(0))−1F (u(0))‖ sup
j>1

∥∥∥∥F ′(u(0))−1F (j)(u(0))

j!

∥∥∥∥
1

j−1

,

where F (j) denotes the jth derivative of F . If ω(u(0)) < ω0 = .13 · · · which is a universal
constant, then Newton’s method for F (u) = 0 with initial guess u(0) converges quadratically
in the manner

‖u(n) − u‖ ≤
(

1

2

)2n−1
7 ‖u(1) − u(0)‖

4
.

This theory is extremely interesting. It is more practical in the sense that no Lipschitz
condition in a region is necessary. However, the computation of ω can be a daunting task.
For some problems, the nonlinearity is quadratic (Navier-Stokes equations, for instance) and
the supremum in the definition of ω is taken over j = 2 only.

For Newton’s method applied to our semilinear elliptic PDE,

ω(u(0)) ≤ ‖ [I +�−1f ′(u(0))]−1 [u(0) +�−1f(u(0))] ‖ sup
j>1

∥∥∥∥ f (j)(u(0))

|α0(u(0))| j!

∥∥∥∥
1

j−1

−1

which can usually be worked out in practice. However, for the nonlinear preconditioned
Newton’s method,

ω(u(0)) = ‖F ′(u(0))−1F(u(0))‖ sup
j>1

∥∥∥∥F ′(u(0))−1F (j)(u(0))

j!

∥∥∥∥
1

j−1
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N NP0 NP1 NP2
f1 19, 19 5, 7 4, 6 4, 9
f2 F, F 8, F 6, 6 6, 6
f3 12, 12 6, 6 4, 5 4, 5
f4 8, 8 F, F 4, 4 4, 4
f5 40, 40 F, F F, F F, F
f6 15, 15 9, 7 8, 6 8, 5

Table 4.1: Comparison of the number of Newton iterations to convergence. F denotes
not converged after 100 iterations. The first entry of each pair refers to the number
of iterations for an overlap of one point while the second refers to that for an overlap
of 10 points.

and we are unable to give a more explicit expression.
Another related result in [16] states that if

‖e(0)
N ‖ < χ, χ ≡ 3−

√
7

2

sup
j>1

∥∥∥∥F ′(u)−1F (j)(u)

j!

∥∥∥∥
1

j−1

−1

, (3.2)

then the Newton iteration converges r-quadratically:

‖e(n)
N ‖ ≤

(
1

2

)2n−1

‖e(0)
N ‖.

We shall evaluate χ numerically in the next section.

4. Numerical Experiments and Discussions. We have performed some numer-
ical experiments in MATLAB to solve two-point boundary value problems of the form

−u′′ = f(x, u, u′) on (0, 1) (4.1)

with homogeneous Dirichlet boundary conditions. The ODEs are discretized using the usual
second-order finite difference scheme with step size h = 1/160 and the resultant nonlinear
equations are solved using four methods: classical Newton’s method (N), and the three vari-
ations of the nonlinearly preconditioned Newton’s methods NP0, NP1, and NP2. For the
latter three, the domain is split into two overlapping subdomains. Two domain decompo-
sitions were tested: one with an overlap of one grid point and the other with an overlap of
10 grid points. Throughout, we employ Newton’s method (rather than an inexact Newton’s
method in [3]) and a simple backtracking algorithm where the length of the Newton step
is halved until a sufficient decrease in the residual (Algorithm 6.3.5 in [4]). ([3] uses cubic
backtracking.) For a fair comparison, all methods use the same stopping criteria: the non-
linear residual ‖v′′ + f(x, v, v′)‖L2 < 10−8 and the L2-norm of the Newton step is smaller
than h2 ≈ 4 × 10−5. (It would be more natural for the nonlinearly preconditioned methods
to base the stopping criteria on F rather than on F .) The initial iterate is always the zero
function.

We display the results for six functions

1. f1 = (10 sin(10x)− u3u′)/.02;
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Figure 4.1: Solutions of boundary value problems

2. f2 = 100e.1u/(1+u′2) + 1000 sin(10x);

3. f3 = (10 cos(10x)− uu′ + eu)/.03;

4. f4 = (10 cos(10x)− uu′)/.01;

5. f5 =

u′2 − u + 1−
(

e
−x√

ε

√
ε

+ e
−1√

ε − 1

)2

+ x(e
−x√

ε − 1)

 /ε, ε = .02;

6. f6 = −106eu;

whose solutions are illustrated in Figure 4.1. Actually we tried other functions too. Most
of them were too easy and all four methods converged rapidly. Table 4.1 shows the number
of Newton iterations for the different methods and functions. Tables 4.2 tabulates the av-
erage number of GMRES iterations to solve each global linear system (ignoring the number
of GMRES iterations in solving nonlinear subdomain problems). The number of Newton
iterations to solve each nonlinear subdomain ODE is typically four or five. Figure 4.2 shows
the convergence history of the methods for f1.

For f2, the Newton iteration failed to converge after 100 iterations. The residuals de-
creased at an extremely slow rate. NP0 also failed to converge here (for an overlap of ten) as
well as failing for f4 due to non-convergence of the nonlinear subdomain ODE solver. Here,
the algorithm neglects the most up-to-date data (Ti(u

(0))) causing one iterate to stray too far
away. For f5, Newton’s method had some difficulty but eventually converged while all three
nonlinearly preconditioned methods failed. The cause of the failures was that the Newton
iteration for the subdomain nonlinear equation did not converge, mainly because the initial
iterate is too far from the exact solution. Note that Newton’s method fails to converge if the
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N NP0 NP1 NP2
f1 3.0, 4.0 3.0, 4.0 3.0, 4.0 3.0, 4.0
f2 F, F 3.0, F 3.0, 4.0 3.0, 4.0
f3 3.0, 4.0 3.0, 4.0 3.0, 4.0 3.0, 4.0
f4 3.0, 4.0 F, F 3.0, 4.0 3.0, 4.0
f5 3.0, 4.0 F, F F, F F, F
f6 2.5, 2.9 2.9, 2.9 3.0, 3.0 3.0, 3.0

Table 4.2: Comparison of the average number of GMRES iterations per Newton step.

constant .02 in f5 is replaced by .01. Except for f5, NP1 and NP2 converge with between
1/2 and 1/4 of the iterations required by Newton’s method.

In general, the number of GMRES iterations increases from three to four as the overlap
increases from one to ten. This can be explained as follows. The matrix approximation of
F ′ has a rather simple structure:

1 *

. . . *
1 *
* 2 *

*
. . . *

* 2 *
* 1

*
. . .

* 1


with non-zero diagonal entries plus two non-zero columns indicated by ∗. Note that the
middle block corresponds to the unknowns in the overlapping region. This matrix has at
most four distinct eigenvalues, including 1 and 2. Thus GMRES converges in at most four
iterations. In the special case that the overlap is one, the the middle block does not appear
and so the matrix has a 2 × 2 block structure and has at most three distinct eigenvalues,
including 1. (Note that some authors ([3]) call this case the non-overlapping case.) We stress
that this is independent of the step size h.

Next, we numerically evaluate the radii of quadratic convergence for the first convergence
theory (q-quadratic convergence). We choose the ODE

−u′′ = f(u), f(u) ≡ −λ(u + 1)(u + 2) (4.2)

to facilitate this calculation. Initially, we take λ = 100. For this nonlinearity, γ can be
evaluated analytically, equal to 200/π2. Thus from (3.1),

εN =
|α0|π2

400
.

Note that r cannot be much larger than 1.7 because the Jacobian for N can become singular
beyond this point. As for NP1, the matrix approximation of F ′(u) is computed explicitly
while the Lipschitz constant is estimated numerically. The interval [0, 1] is divided into
160 subintervals in this calculation and overlaps of two and twenty points are considered.



NONLINEARLY PRECONDITIONED NEWTON’S METHOD 103

0 2 4 6 8 10 12 14 16 18 20
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

Newton iterations

N
on

lin
ea

r 
re

si
du

al
s

f1

N 

NP0 

NP2 

NP1 

Figure 4.2: Convergence history.

The results are shown in the left diagram of Figure 4.3, which indicates that the radius of
quadratic convergence of NP1 is larger than that of Newton’s method. This observation
should be viewed with some caution because these radii are only lower bounds for the true
radii of quadratic convergence. It would be desirable to come up with a sharp upper bound
of these radii for comparison.

We also repeated the calculation for λ = 1 (right diagram in Figure 4.3). Note that for
a small overlap, the radius of quadratic convergence of NP1 is actually smaller than that of
Newton’s method. Any theory must take this into account.

Finally, we report on numerical evaluations of some quantities in Smale’s theory for
(4.2) with λ = 100. The main difficulty is in the computation of the supremum term in χ.
Currently, we compute all terms up to j = 20 in (3.2) and then extrapolate the result (a
least squares fit of a rational function) to infinity, a highly speculative process! We obtain
χ ≈ .3 for NP1 in contrast with the corresponding value of χ for N which is .07. Thus, the
estimated radius of quadratic convergence of NP1 is four to five times larger than that of the
classical Newton’s method. For λ = 1, the results are qualitative similar, in contrast with
the first convergence theory. This may indicate the result of the first theory is not as sharp
as Smale’s.

Based on these limited experiments, the classical Newton’s method does well. Note that
each iteration of a nonlinearly preconditioned method costs about twice as much as one
iteration of a classical Newton’s method in terms of execution time because of the extra
nonlinear subdomain solves. NP1 and NP2 are better than NP0 in terms of both speed and
robustness. Assuming a parallel computing environment where each processor is assigned
to a subdomain, then the addition of yi in (2.4) involves no communication while replacing
yi by y (NP2) entails communications with all adjacent neighbors. This should not be of
much concern since y has to be formed anyway because it is the nonlinear residual F(u(n)).
Clearly, many more numerical experiments on nonlinear PDEs are necessary before any
definitive conclusion can be reached.
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Figure 4.3: Numerical evaluation of εN and εNP1, the radii of q-quadratic convergence
for N and NP1 (with overlap of two, ten, and twenty points) for u(0) ∈ Br(u) and
λ = 100 (left), λ = 1 (right).

While nonlinearly preconditioned Newton’s methods are undoubtedly more robust for
some problems, they can breakdown when the classical Newton’s method works. The main
reason is they require the solution of nonlinear subdomain problems which typically involves
another Newton’s iteration where there is a chance of non-convergence. This can be due to
the lack of a good initial guess or may be the subdomain nonlinear problem has no solution
or multiple solutions! It is not difficult to write down specific examples where NP1 will fail
in the first iteration. This will be discussed in a future report.
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9. Iterative Substructuring with Lagrange Multipliers for
Coupled Fluid-Solid Scattering

Jan Mandel1

1. Introduction. In [9], we have proposed an iterative method for the solution of
linear systems arizing from finite element discretization of the time harmonic acoustics of
coupled fluid-solid systems in fluid pressure and solid displacement formulation. The method
extended the FETI-H method for the Helmholtz equation [4, 6, 7, 12] to coupled fluid-elastic
acoustics. In this paper, we investigate a stabilization of the discrete coupled system for the
case when the solid scatterer is at resonance and investigate computationally the convergence
of the iterative substructuring method for the modified system.

The main idea of the method of [9] is as follows. The fluid and the solid domains
are decomposed into non-overlapping subdomains. Continuity of the solution is enforced
by Lagrange multipliers. To prevent singular or nearly singular subdomain matrices due
to resonance, the continuity conditions betweeen the subdomains are replaced by artificial
radiation-like conditions. Because original degrees of freedom are coupled across the wet
interface, the system is augmented by duplicating the degrees of freedom on the wet interface
and adding equations enforcing the equality of the original and the duplicate degrees of free-
doom. The original degrees of freedom can then be eliminated subdomain by subdomain and
the resulting system is solved by Krylov iterations preconditioned by a Galerkin correction
on a subspace consisting of plane waves in each subdomain. In each iteration, the method
requires the solution of one independent acoustic problem per subdomain, and the solution of
a coarse problem with several degrees of freedom per subdomain. The number of iterations
in was most cases about the same as the number of iterations of the FETI-H method for the
related Helmholtz problem with Neumann boundary condition instead of an elastic scatterer,
which was explained by numerical decoupling of the fluid and the elastic fields in the stiff
scatterer limit.

In this article, we propose a new artificial radiation-like condition on the wet interface,
and we observe in computational tests that that it it prevents deterioration of convergence
in the case of one solid subdomain at resonance. We also investigate the sensitivity of the
method to variants of artificial radiation condition between the elastic subdomains.

Our radiation-like condition between elastic subdomains has been inspired by [2], which
generalized the alternating method of [5] to elasticity. Iterative methods consisting of al-
ternating solution in the fluid and the solid region are known [1, 3]. In [3], the alternating
method of [5] was extended to the coupled problem, with the wet interface conditions re-
placed by their complex linear combinations. The resulting iterative algorithm needs either
access to normal derivatives or additional variables on the wet interface. Our radiation-like
condition on the wet interface is obtained by a simple modification of the coupled system
matrix, resulting in an equivalent algebraic system. Since this process is unrelated to the
substructuring method at hand, it may be of independent interest.

2. The scattering problem. We need to describe the scattering problem and the
discretization used. This material is standard [11, 13] and it is included only for completeness
and to introduce the notation.

We consider an acoustic scattering problem with an elastic scatterer completely immersed
in a fluid. Let Ω and Ωe be bounded domains in n, = 2, 3, Ωe ⊂ Ω, and let Ωf = Ω \ Ωe,
cf., Figure 5.1. Let ν denote the exterior normal of Ωe. Let ∂Ω be decomposed into disjoint
subsets, ∂Ω = Γd ∪ Γn ∪ Γa. The domain Ωf is filled with a fluid. The acoustic pressure at

1University of Colorado at Denver and University of Colorado at Boulder, jmandel@colorado.edu
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time t is assumed to be of the form Re peiωt, where p is complex amplitude independent of
t. The amplitude p is governed by the Helmholtz equation

∆p + k2p = 0 in Ωf , (2.1)

with the boundary conditions

p = p0 on Γd,
∂p

∂ν
= 0 on Γn,

∂p

∂ν
+ ikp = 0 on Γa, (2.2)

where k = ω/cf is the wave number and cf is the speed of sound in the fluid. The boundary
conditions (2.2) model excitation, sound hard boundary, and outgoing boundary, respectively.
The amplitude of the displacement u of the elastic body occupying the domain Ωe satisfies
the elastodynamic equation

∇ · τ + ω2ρeu = 0 in Ωe, (2.3)

where τ is the stress tensor and ρe is the density of the solid. For simplicity, we consider an
isotropic homogeneous material with

τ = λI(∇ · u) + 2µe(u), eij(u) =
1

2
(
∂ui

∂xj
+

∂uj

∂xi
), (2.4)

where λ and µ are the Lamé coefficients of the solid.

Let Γ = ∂Ωe be the wet interface. On Γ, the fluid pressure and the solid displacement
satisfy

ν · u =
1

ρfω2

∂p

∂ν
, ν · τ · ν = −p, ν × τ · ν = 0, (2.5)

where ρf is the fluid density. The interface conditions (2.5) model the continuity of normal
displacement, the balance of normal forces, and zero tangential tension, respectively.

We use the following variational form. Define the spaces Vf = {q ∈ H1(Ωf ) | q =
0 on Γd}, Ve = (H1(Ωe))

n, where H1 is the Sobolev space of generalized functions with
square integrable generalized first derivatives. Assuming that p0 on Γd is extended to a
function in H1(Ωf ), multiplying equation (2.1) by a test function q ∈ Vf , equation (2.3) by
a test function u ∈ Ve, and integrating by parts, we obtain the following variational form
of (2.1) – (2.5): Find p such that p − p0 ∈ Vf , and u ∈ Ve such that for all q ∈ Vf and all
v ∈ Ve,

−
∫
Ωf

∇p∇q + k2

∫
Ωf

pq − ik

∫
Γa

pq − ω2

∫
Γ

ρf (ν · u)q = 0,

−
∫
Ωe

(
λ(∇ · u)(∇ · v) + 2µe(u) : e(v)

)
+ ω2

∫
Ωe

ρeu · v −
∫
Γ

p(ν · v) = 0.

We replace Vf and Ve with conforming finite element spaces and obtain the algebraic system[
−Kf + k2Mf − ikGf −ρfω2T

−T′ −Ke + ω2Me

] [
p
u

]
=

[
r
0

]
. (2.6)

In the coupled system (2.6), p and u are the vectors of the (values of) degrees of freedom
of p and u, i.e., p and u are the finite element interpolations of p and u, respectively. The
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matrix blocks in (2.6) are defined by

p′Kfq =

∫
Ωf

∇p · ∇q, p′Mfq =

∫
Ωf

pq,

p′Gfq =

∫
Γa

pq, u′Kev =

∫
Ωe

(
λ(∇ · u)(∇ · v) + 2µe(u) : e(v)

)
,

u′Mev =

∫
Ωe

ρe(u · v), p′Tv =

∫
Γ

p(ν · v).

3. Iterative Substructuring. In this section, we summarize the iterative method
following [9]. Further details and a development of the method starting from FETI-H can
be found in [9]. The present method differs in the more general choice of artificial radiation
condition between elastic subdomains.

The fluid and solid domains are decomposed into nonoverlapping subdomains that consist
of unions of elements,

Ωf =

Nf⋃
s=1

Ω
s
e, Ωe =

Ne⋃
s=1

Ω
s
e. (3.1)

The fields and vectors of degrees of freedom corresponding to Ωs
f and Ωs

e are denoted by ps,
us, ps and us, respectively. The normal vector to ∂Ωs is denoted by νs.

The Helmholtz equation (2.1) is then equivalent to the same equation in each of the
subdomains Ωs

f , with the interface conditions

ps = pt,
∂ps

∂νs
+

∂pt

∂νt
= 0, on ∂Ωs

f ∩ ∂Ωt
f . (3.2)

Similarly, the elastodynamic equation (2.3) is equivalent to the same equation in each of the
subdomains Ωs

e, with the continuity of the displacement and the traction on the intersubdo-
main interfaces,

us = ut, τ(us)νs + τ(ut)νt = 0, on ∂Ωs
e ∩ ∂Ωt

e. (3.3)

The continuity of the pressure and the displacement will be enforced by Lagrange multipliers.

Define subdomain matrices by subassembly,

ps′Ks
fq =

∫
Ωs

f

∇p · ∇q, ps′Ms
fq

s =

∫
Ωs

f

pq,

ps′Gs
fq

s =

∫
∂Ωs

f
∩Γa

pq, us′Ks
ev

s =

∫
Ωs

e

λ(∇ · u)(∇ · v) + 2µe(u) : e(v),

us′Ms
ev =

∫
Ωs

e

ρe(u · v), pr′Trsvs =

∫
∂Ωr

f
∩∂Ωs

e

p(ν · v).

We will use vectors consisting of all subdomain degrees of freedom,

p̂ =

 p1

...
pNf

 , û =

 u1

...
uNe

 ,
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and the corresponding partitioned matrices,

K̂f = diag(Ks
f ) =


K1

f . . . 0
...

. . .
...

0 . . . K
Nf

f

 , K̂e = diag(Ks
e) =

 K1
e . . . 0

...
. . .

...
0 . . . KNe

e

 .

The matrices M̂f , Ĝf , and M̂e are defined similarly, and

T̂ = (Trs)rs =

 T11 . . . T1,Ne

...
. . .

...
TNf ,1 . . . TNf ,Ne

 .

Let Nf and Ne be the matrices with 0, 1 entries of the global to local maps corresponding
to the decompositions of Ωf and Ωe, respectively, cf., (3.1), so that

Kf = N′
fK̂fNf , Ke = N′

eK̂eNe.

Let Bf = (B1
f , . . . ,B

Nf

f ) and Be = (B1
e, . . . ,B

Ne
e ) be matrices of full rank such that the

conditions Bf p̂ = 0 and Beû = 0 express the constraint that the values of the same degrees
of freedom on two different subdomains coincide, that is, Bf p̂ = 0 ⇐⇒ p̂ = Nfp for some
p, and Beû = 0 ⇐⇒ û = Neu for some u. See [8] for details on the construction of such
matrices with entries 0,±1. Here, we use the matrices from [8] and orthogonalize their rows
for numerical stability; the resulting matrices are still sparse.

Multiplying the second equation in (2.6) by ω2ρf to symmetrize the off-diagonal block
and introducing Lagrange multipliers λf and λe for the constraints Bfp = 0 and Beu = 0,
we get the system of linear equations in block form,

−K̂f + k2M̂f − ikĜ −ω2ρf T̂ B′
f 0

−ω2ρf T̂
′ ω2ρf (−K̂e + ω2M̂e) 0 B′

e

Bf 0 0 0
0 Be 0 0




p̂
û
λf

λe

 =


r̂
0
0
0

 , (3.4)

where N′r̂ = r. Similarly as in [8], it can be shown that the system (3.4) is equivalent to (2.6)
in the sense that (p,u) is a solution of (2.6) if and only if (p̂, û, λf , λe) with p̂ = Nfp,
û = Neu, is a solution of (3.4) for some λf and λe.

Using the properties of the global to local maps Nf and Ne, it is easy to see that
(p̂, û, λf , λe) is a solution of (3.4) if and only if p̂ = Nfp and û = Neu, where (p,u)
solves (2.6).

We will want to eventually eliminate the variables p̂ and û. But the matrices −K̂f +k2M̂f

and −K̂e +ω2M̂e may be singular due to resonance. For this reason, the continuity of normal
derivative and traction between subdomains are replaced by artificial radiation conditions,

ps + iσstk
∂ps

∂νs
= ut + iσtsk

∂pt

∂νt
on ∂Ωs

f ∩ ∂Ωt
f (3.5)

and

us + iσtsατ(us)νs = ut + iσstατ(ut)νt, on ∂Ωs
e ∩ ∂Ωt

e. (3.6)

Here, σst = ±1 or 0, σst = −σts, and

α = α0ω
√

ρe(λ + 2µ). (3.7)
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If σst = ±1, the interface condition (3.5) allows a plane wave to pass in one normal direction
through the interface between the subdomains. Similarly, by a simple computation, the
condition (3.6) with α0 = 1 is satisfied by the plane pressure wave

u(x) = de
i

ω
cp

d · x
, |d| = 1, cp =

√
λ + 2µ

ρe
, (3.8)

in one of the normal directions, d = ±νs. An alternative form of (3.6) is

νs(us · νs) + iσtsατ(us)νs = νt(ut · νt) + iσstατ(ut)νt on ∂Ωs
f ∩ ∂Ωt

f , (3.9)

which, for α from (3.7) with α0 = 1, is also satisfied by the pressure wave (3.8) in normal
direction. In [9], the condition (3.9) with α = ωρe was used.

This change of intersubdomain interface conditions corresponds to replacing the subdo-
main matrices −K̂f + k2M̂f and −K̂e + ω2M̂e by regularized matrices

Âf = −K̂f + k2M̂f + ikĜf + R̂f ,

Âe = −K̂e + ω2M̂e + R̂e,

where the regularization matrices are given by

R̂f = diag(Rs
f ), ps′Rs

fq
s = ik

Nf∑
t=1
t �=s

σst

∫
∂Ωs

f
∩∂Ωt

f

pq

between fluid subdomains, and

R̂e = diag(Rs
e), us′Rs

ev
s = iα

Ne∑
t=1
t �=s

σst

∫
∂Ωs

e∩∂Ωt
e

u · v, (3.10)

between elastic subdomains for the interface condition (3.6) and by

R̂e = diag(Rs
e), us′Rs

ev
s = iα

Ne∑
t=1
t �=s

σst

∫
∂Ωs

e∩∂Ωt
e

(νs · u)(νs · v), (3.11)

if (3.9) is used.
It is shown in [6] for the Helmholtz equation that if for a given s, all σst ≥ 0 or all

σst ≤ 0 with some σst �= 0, then Âs
f is invertible. The case of elastic subdomains is similar.

For details on strategies for choosing σst to guarantee this, see [6]. In our computations, we
simply choose σst = +1 if s > t, σst

f = −1 if s < t.
Because

N′
fR̂fNf = 0, N′

eR̂eNe = 0,

the effect of adding the matrices R̂f , R̂f cancels in the assembled system, and the system (3.4)
is equivalent to 

Âf −ω2ρf T̂ B′
f 0

−ω2ρf T̂
′ ω2ρfÂe 0 B′

e

Bf 0 0 0
0 Be 0 0




p̂
û
λf

λe

 =


r̂
0
0
0

 (3.12)

Eliminating the original degrees of freedom at this point does not result in independent
computation in each subdomain, because of coupling of degrees of freedom across the wet
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interface by the matrix T̂. Hence, we first duplicate the interface degrees of freedom as
follows. Since the value of T̂û depends on the values of û on Γ only, we have

T̂û = T̂JeûΓ, ûΓ = J′
eû,

where Ĵe is the matrix of the operator of embedding a subvector that corresponds to degrees
of freedom on Γ into û by adding zero entries. Similarly,

T̂′p̂ = T̂′Jf p̂Γ, p̂Γ = J′
f p̂.

Therefore, we obtain the augmented system equivalent to (3.12),
Âf 0 B′

f 0 0 −ω2ρf T̂Je

0 ω2ρfÂe 0 B′
e −ω2ρf T̂

′Jf 0
Bf 0 0 0 0 0
0 Be 0 0 0 0
J′

f 0 0 0 −I 0
0 J′

e 0 0 0 −I




p̂
û
λf

λe

p̂Γ

ûΓ

 =


r̂
0
0
0
0
0

 (3.13)

Because the variables in a coupled system typically have vastly different scales, we use
symmetric diagonal scaling to get the scaled system

Ãf 0 B̃′
f 0 0 −T̃Je

0 Ãe 0 B̃′
e −T̃′Jf 0

B̃f 0 0 0 0 0

0 B̃e 0 0 0 0
J′

f 0 0 0 −I 0
0 J′

e 0 0 0 −I





p̃
ũ

λ̃f

λ̃e

p̃Γ

ũΓ

 =


r̃
0
0
0
0
0

 , (3.14)

where the matrices and the vectors scale as Ãf = DfÂfDf , Ãe = ω2ρfDeÂeDe, T̃ =
ω2ρfDf T̂De, B̃f = EfBfDf , B̃e = EeBeDe, r̃ = Df r̂, p̂ = Df p̃, û = Deũ, λf = Df λ̃f ,
λe = Deλ̃e. The scaling matrices Df , De, Ef , and Ee, are diagonal. We have chosen scaling
matrices with positive diagonal entries such that the absolute values of the diagonal entries
of Ãf and Ãe are one and the �2 norms of the columns of B̃e and B̃f are one.

Computing p̃ and ũ from the first two equations in (3.14) gives

p̃ = Ã−1
f (r̃− B̃′

f λ̃f + T̃JeũΓ) (3.15)

ũ = Ã−1
e (−B̃′

eλ̃e + T̃′Jf p̃Γ) (3.16)

Substituting p̃ and ũ from (3.15), (3.16) into the rest of the equations in (3.14), we obtain
the reduced system

Fx = b, (3.17)

where

F =


B̃fÃ

−1
f B̃′

f 0 0 −B̃fÃ
−1
f T̃Je

0 B̃eÃ
−1
e B̃e −B̃eÃ

−1
e T̃′Jf

−J′
fÃ

−1
f B̃′

f 0 −I J′
fÃ

−1
f T̃Je

0 −JeÃ
−1
e B̃e JeÃ

−1
e T̃′Jf −I

 , (3.18)

and

x =


λf

λe

p̃Γ

ũΓ

 , b =


B̃fÃ

−1
f r̃

0

−J′
fÃ

−1
f r̃

0

 .
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In equation (3.18), the first diagonal block B̃fÃ
−1
f B̃′

f is exactly same as in the FETI-H

method for the Helmholtz equation. The second diagonal block B̃fÃ
−1
f B̃′

f is the analogue
of FETI-H for the elastodynamic problem.

Evaluating the matrix vector product Fx requires the solution of one independent problem
per subdomain, because

F


λf

λe

p̃Γ

ũΓ

 =


−B̃f q̃

−B̃eṽ
J′

f q̃− p̃Γ

J′
eṽ − ũΓ

 , where

{
q̃ = Ã−1

f (−B̃′
f λ̃f + T̃JeũΓ),

ṽ = Ã−1
e (−B̃′

eλ̃e + T̃′Jf p̃Γ).

The iterative method then consists of solving the linear system (3.17) by GMRES pre-
conditioned by a subspace correction as follows. Let Q be a matrix with the same number of
rows as F and linearly independent columns. The columns of Q form the basis of the coarse
space. The orthogonality condition

Q′(Fx− b) = 0, (3.19)

is enforced through the iterations by adding a correction from the coarse space in each
iteration. That is, GMRES is applied to the preconditioned system

PFx = Pb, (3.20)

where P = (I−Q(Q′FQ)−1Q′F) and the initial approximation x = Q(Q′FQ)−1b satis-
fies (3.19). Because the increments are in the range of P and Q′FP = 0, all iterates sat-
isfy (3.19).

We choose the matrix Q of the form
DfBfdiag(Ys

f )s 0 0 0
0 DeBediag(Ys

e)s 0 0
0 0 DfJ

′
fdiag(Zs

f )s 0
0 0 0 DeJ

′
ediag(Zs

e)s

 . (3.21)

and orthogonalize its columns by the QR algorithm. For a fluid subdomain Ωs
f , we choose Ys

f

as the matrix of columns that are discrete representations of plane waves in a small number
of equally distributed directions, or discrete representation of the constant function. For a
solid subdomain Ωs

e, the columns of Ys
e are discrete representations of plane pressure and

shear waves, or of rigid body motions. The matrices Zs
f and Zs

e are chosen in the same way
as Ys

f and Ys
e. See [9] for further details and a discussion why the method for the coupled

problem can be expected to perform about as FETI-H for the fluid and the elastic parts
separately.

4. Radiation-Like Condition on the Wet Interface. For some frequencies,
the matrix −Ke + ω2Me in the coupled system (2.6) will be singular. The inverse of this
matrix is required by the method if there is only one elastic subdomain. Therefore, in this
case, we replace (2.6) by an equivalent system, obtained by adding to the second block
of equations a linear combination of the first block in such a way that the term added to
−Ke + ω2Me resembles a radiation condition:

[
−Kf + k2Mf − ikGf −ρfω2T

−T′ + i β
−ρf ω2 T′(−Kf + k2Mf − ikGf ) −Ke + ω2Me + iβT′T

] [
p
u

]
= y, (4.1)
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Figure 5.1: Model 2D Problem

Ωf

Γn

Γn

Γd ΓaΩe

� ν

where

y =

[
r

i β
−ρf ω2 T′r

]
.

To obtain an added term with consistent physical units and similar to the artificial radiation
condition (3.10), we choose

β = β0
ω
√

ρe(λ + 2µ)

‖T‖1
. (4.2)

In the case of more than several fluid subdomains and one elastic subdomain, this process
is easily implemented using the local subdomain matrices for T. For more than one elas-
tic subdomain, computational experiments indicate that introducing an artificial radiation
condition on the wet interface is not necessary.

5. Computational results. Computational results showing scalability of the method
were presented in [9]. Here, we focus on the performance of the method when k equals or
is close to a value that makes some of the subdomain matrices singular, and for different
choices of the radiation-like condition between elastic subdomains.

We consider a model 2D problem with a scatterer in the center a waveguide, cf., Fig. 5.1.
The fluid domain Ωf is a square with side 1 m, filled with water with density ρf = 1000 kg m−3

and speed of sound cf = 1500 m s−1. The scatterer is a square in the center of the fluid do-
main, consisting of aluminum with density ρe = 2700 kg m−3 and Lamé elasticity coefficients
λ = 5.5263.1010 N m−2, µ = 2.595.1010 N m−2. The domain is discretized with a mesh of 200
by 200 bilinear elements. The coarse space consists of 8 plane waves in the fluid subdomains
and 4 plane pressure waves and 4 plane shear waves in the solid subdomains (the first two
blocks of the matrix Q in (3.21)). The same number of coarse space functions is used for the
coarse space for the wet interface (the last two blocks of the matrix Q). The iterations are
terminated when the relative residual reached 10−6. Then the scaled residual in the original
variables are checked,

Res = max
i

|di −
∑

j Kijzj |∑
j |Kij | |zj |

, (5.1)
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Figure 5.2: Number of iterations for different α0 in artificial radiation condition (3.6)
between elastic subdomains

where z, K, and d are the solution vector, the matrix, and the right-hand-side, respectively,
of the coupled system (2.6). In all cases when the iterations converged, this scaled residual
was of the order 10−6 to 10−7.

Figure 5.2 shows the number of iterations for varying constant α0 in the artificial radiation
condition (3.6) between elastic subdomains. The scatter was size 0.4 by 0.4 and the fluid and
the elastic domains were decomposed into 4 subdomains each. One can see that the number
of iterations for α0 = 1 is slightly larger over all frequencies, while the iterations diverge for
frequencies equal to or very close the resonance frequencies for α0 ≤ 10−4.

The number of iterations for the same test problem and the artifical radiation condi-
tion (3.9) was almost exactly same (not shown).

Figure 5.3 reports the number of iterations for the same problem with the artificial radia-
tion condition (3.6) between elastic subdomains, but instead of orthogonalization of the rows
of the matrices B and the columns of the matrix Q, bases are selected as linearly independent
subsets. There are more iterations required and divergence occurs for more frequencies and
larger values of the parameter α0.

Figure 5.4 reports the number of iterations for decreasing strength β0 of the artificial
radiation-like term on the wet interface. The scatterer was size 0.2 by 0.2, forming one
elastic subdomain, and the fluid domain was decomposed along the midlines of the square
into 4 subdomains. One can see that the choice β0 = 1 increases the number of iterations
significantly over all frequencies, while for β0 = 10−5, the iterations diverge for frequencies
equal to or close to a resonance frequency. The elastic subdomain in this experiment is
of the same size as the elastic subdomain for the examples in Figure 5.2, so the resonance
frequencies are same.
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Figure 5.3: Number of iterations for different α0 in artificial radiation condition (3.6)
between elastic subdomains and selection of basis instead of orthogonalization of the
rows of B and the columns of Q
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Figure 5.4: Number of iterations for different β0 in artificial radiation on wet interface
by (4.1) and (4.2)
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10. Direct simulation of the motion of settling ellipsoids in
Newtonian fluid

T.-W. Pan1, R. Glowinski2, D.D. Joseph3, R. Bai4

1. Introduction. In this article we first discuss the generalization of a Lagrange
multiplier based fictitious domain method [7, 10] to the simulation of the motion of particles
of general shape in a Newtonian fluid. Unlike the cases where the particles are spheres, we
attach two points, besides the center of mass, to each particle of general shape and move
them according to the rigid-body motion of the particle in order to track this motion. The
equations describing the motion of these two points are solved by a distance preserving
scheme so that rigidity can be maintained. We then apply it to simulate ellipsoids settling
in a narrow channel filled with a Newtonian fluid. In the simulations, when there is only one
ellipsoid it turns its broadside orthogonal to the stream as expected; for the two ellipsoid
case they interact with each other as observed in experiments.

2. A model problem and fictitious domain formulation for three dimen-
sional particulate flow. To perform the direct numerical simulation of the interaction
between particles and fluid, we have developed a methodology which is a combination of
a distributed Lagrange multiplier based fictitious domain (also called domain embedding)
method and operator splitting methods [6, 8, 7, 9, 10], this approach (or closely related ones
derived from it) has become the method of choice for other investigators around the world
(refs., Baaijens in [2] and Wagner et al. in [21]). In the following we are going to recall
the ideas at the basis of the above methodology, but with generalization to the motion of
a single particle of general shape in a Newtonian viscous incompressible fluid (of density ρf

and viscosity νf ) under the effect of gravity. For the situation depicted in Figure 2.1 below,
the flow is modeled by the Navier-Stokes equations, namely, (with obvious notation)

ρf

[∂u

∂t
+ (u ·∇)u

]
− νf∆u + ∇p = ρf g in (Ω \ B̄)× (0, T ), (2.1)

∇ · u = 0 in (Ω \ B̄)× (0, T ). (2.2)

u(0) = u0(x), (with ∇ · u0 = 0) (2.3)

u = g0 on Γ× (0, T ), with

∫
Γ

g0 · n dΓ = 0, (2.4)

where Γ = ∂Ω, g is gravity and n is the unit normal vector pointing outward to the flow
region. We assume a no-slip condition on γ(= ∂B) The motion of particle B satisfies the
Euler-Newton’s equations, namely

v(x, t) = V(t) + ω(t)×
−−−→
G(t)x, ∀{x, t} ∈ B(t)× (0, T ), (2.5)

dG

dt
= V, (2.6)

Mp
dV

dt
= Mp g + FH + Fr, (2.7)
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Figure 2.1: The flow region with one particle

d(Ip ω)

dt
= TH +

−−→
Gxr × Fr, (2.8)

with hydrodynamical forces and torques given by

FH = −
∫

γ

σn dγ, TH = −(

∫
γ

−→
Gx× σn dγ), (2.9)

completed by the following initial conditions,

G(0) = G0, V(0) = V0, ω(0) = ω0. (2.10)

Above, Mp, Ip, G, V and ω are the mass, inertia, center of mass, translation velocity of the
center of mass and angular velocity of particle B, respectively. In (2.8) we found preferable to
deal with the kinematic angular momentum Ip ω making the formulation more conservative.
In order to avoid particle-particle and particle-wall penetration which can happen in the
numerical simulation, we have introduced an artificial force Fr in (2.7) (for more details, see,
e.g., [7] and [10]) and then a torque in (2.8) acting on the point xr where Fr applies on B.

To solve system (2.1) – (2.10) we can use, for example, Arbitrary Lagrange-Euler (ALE)
methods as in [12, 14, 17], or fictitious domain methods, which allow the flow calculation on
a fixed grid, as in [6, 8, 7, 9, 10]. The fictitious domain methods that we advocate have some
common features with the immersed boundary method of Ch. Peskin (see, e.g., refs. [18, 19])
but also some significant differences in the sense that we take systematically advantage of
distributed Lagrange multipliers to force the rigid body motion inside the particle, which
seems still to be a relatively novel approach in this context, and whose possibilities have not
been fully explored yet. As with the methods in [18, 19], our approach takes advantage of
the fact that the flow can be computed on a grid which does not have to vary in time, a
substantial simplification indeed.

The principle of fictitious domain methods is simple. It consists of

• Filling the particles with a fluid having the same density and viscosity as the surround-
ing one.

• Compensating the above step by introducing, in some sense, an anti-particle of mass
(−1)Mp ρf/ρs and inertia (−1)Ip ρf/ρs, taking into account the fact that any rigid
body motion v(x, t) verifies ∇ · v = 0 and D(v) = 0 (ρs : particle density).

• Finally, imposing the rigid body velocity on B(t), namely

v(x, t) = V(t) + ω(t)×
−−−→
G(t)x, ∀x ∈ B(t), ∀t ∈ (0, T ), (2.11)
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via a Lagrange multiplier λ supported by B(t). Vector λ forces rigidity in B(t) in the
same way that ∇p forces ∇ · v = 0 for incompressible fluids.

We obtain then an equivalent formulation of (2.1)–(2.10) defined on the whole domain, namely
For a.e. t > 0, find {u(t), p(t),V(t),G(t), ω(t), λ(t)} such that

u(t) ∈Wg0(t), p(t) ∈ L2
0(Ω), V(t) ∈ R

3, G(t) ∈ R
3, ω(t) ∈ R

3, λ(t) ∈ Λ(t) (2.12)

and 

ρf

∫
Ω

[
∂u

∂t
+ (u ·∇)u

]
· vdx−

∫
Ω

p∇ · vdx + νf

∫
Ω

∇u : ∇vdx

+(1− ρf

ρs
)[Mp

dV

dt
·Y +

d(Ip ω)

dt
· θ]− Fr ·Y −−−→Gxr × Fr · θ

=< λ,v −Y − θ × −→Gx >Λ(t) +(1− ρf

ρs
)Mp g ·Y + ρf

∫
Ω

g · vdx,

∀v ∈ (H1
0 (Ω))3, ∀Y ∈ R

3, ∀θ ∈ R
3,

(2.13)

∫
Ω

q∇ · u(t)dx = 0, ∀q ∈ L2(Ω), (2.14)

dG

dt
= V, (2.15)

< µ,u(t)−V(t)− ω(t)×
−−−→
G(t)x >Λ(t)= 0, ∀µ ∈ Λ(t), (2.16)

V(0) = V0, ω(0) = ω0, G(0) = G0, (2.17)

u(x, 0) = ũ0(x) =

{
u0(x), ∀x ∈ Ω\B(0),

V0 + ω0 ×
−−→
G0x, ∀x ∈ B(0),

(2.18)

with the following functional spaces

Wg0(t) = {v|v ∈ (H1(Ω))3, v = g0(t) on Γ},

L2
0(Ω) = {q|q ∈ L2(Ω),

∫
Ω

q dx = 0}, Λ(t) = (H1(B(t)))3.

In (2.12) – (2.18), only the center of mass, the translation velocity of the center of mass and
the angular velocity of the particle are considered. Knowing these two velocities and the
center of mass of the particle, one is able to translate and rotate the particle in space by
tracking two extra points x1 and x2 in each particle, which follow the rigid body motion

dxi

dt
= V(t) + ω(t)×

−−−−→
G(t)xi, xi(0) = xi,0, i = 1, 2. (2.19)

In practice we shall track two orthogonal normalized vectors rigidly attached to the body B
and originating from the center of mass G.

3. Time and space discretization. For simplicity, we assume that Ω ⊂ R
3 is a

rectangular parallelepiped. Concerning the space approximation of problem (2.12)–(2.19) by
a finite element method, we have

Wh = {vh|vh ∈ (C0(Ω))3, vh|T ∈ (P1)
3, ∀T ∈ Th}, (3.1)

W0h = {vh|vh ∈Wh, vh = 0 on Γ}, (3.2)

L2
h = {qh|qh ∈ C0(Ω), qh|T ∈ P1, ∀T ∈ T2h}, L2

0h = {qh|qh ∈ L2
h,

∫
Ω

qh dx = 0} (3.3)
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Figure 3.1: An example of grids covering the surface of B(t)

where Th is a tetrahedrization of Ω, T2h is twice coarser than Th, and P1 is the space of
the polynomials in three variables of degree ≤ 1. A finite dimensional space approximating
Λ(t) is as follows: let {ξi}N

i=1 be a set of points from B(t) which cover B(t) (uniformly, for
example); we define then

Λh(t) = {µh|µh =
∑N

i=1
µiδ(x− ξi), µi ∈ R

3, ∀i = 1, ..., N}, (3.4)

where δ(·) is the Dirac measure at x = 0. Then we shall use < ·, · >h defined by

< µh,vh >h=
∑N

i=1
µi · vh(ξi), ∀µh ∈ Λh(t), vh ∈Wh. (3.5)

A typical choice of points for defining (3.4) is a collection of grid points for velocity field
covered by the interior of the particle B(t) and selected points from the surface of B(t). An
example of choice of surface points is shown in Figure 3.1

Using the above finite dimensional spaces leads to the following approximation for problem
(2.12)–(2.19):

For a.e. t > 0, find u(t) ∈ Wh(t), ph(t) ∈ L2
0h(Ω), V(t) ∈ R

3, G(t) ∈ R
3, ω(t) ∈ R

3,
λh(t) ∈ Λh(t) such that

ρf

∫
Ω

[
∂uh

∂t
+ (uh ·∇)uh

]
· vdx−

∫
Ω

ph∇ · vdx + νf

∫
Ω

∇uh : ∇vdx

+(1− ρf

ρs
)[Mp

dV

dt
·Y +

d(Ip ω)

dt
· θ]− Fr ·Y −−−→Gxr × Fr · θ

=< λh,v −Y − θ × −→Gx >h +(1− ρf

ρs
)Mpg ·Y + ρf

∫
Ω

g · vdx,

∀v ∈W0h, ∀Y ∈ R
3, ∀θ ∈ R

3,

(3.6)

∫
Ω

q∇ · uh(t)dx = 0, ∀q ∈ L2
h, (3.7)

uh = g0h on Γ, (3.8)

dG

dt
= V, (3.9)

dxi

dt
= V(t) + ω(t)×

−−−−→
G(t)xi, xi(0) = xi,0, i = 1, 2, (3.10)

< µ,uh(t)−V(t)− ω(t)×
−−−→
G(t)x >h= 0, ∀µ ∈ Λh(t), (3.11)

V(0) = V0, ω(0) = ω0, G(0) = G0, (3.12)

u(x, 0) = ũ0h(x). (3.13)
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In (3.8), g0h is an approximation of g0 belonging to γWh = {zh|zh ∈ (C0(Γ))3, zh =

z̃h|Γ with z̃h ∈Wh} and verifying

∫
Γ

g0h · ndΓ = 0.

3.1. An operator-splitting scheme à la Marchuk-Yanenko. Many operator-
splitting schemes can be used to time-discretize (3.6)–(3.13). One of the advantage of
operator-splitting schemes is that we can decouple difficulties like (i) the incompressibil-
ity condition, (ii) the nonlinear advection term, and (iii) a rigid-body-motion projection, so
that each one of them can be handled separately, and in principle optimally. Let�t be a time
discretization step and tn+s = (n + s)�t. By an operator-splitting scheme à la Marchuk–
Yanenko as in [16], we have the following scheme after dropping some of the subscripts h
(similar ones are discussed in [6, 8, 7, 9, 10]):

u0 = ũ0, G0 = G0, V0 = V0, ω0 = ω0, x0
1 = x1,0, x0

2 = x2,0 given; (3.14)

for n ≥ 0,un(� u(tn)), Gn, Vn, ωn, xn
1 and xn

2 being known, we compute un+1/5, pn+1/5

via the solution of
ρf

∫
Ω

un+1/5 − un

�t
· vdx−

∫
Ω

pn+1/5∇ · vdx = 0, ∀v ∈W0h,∫
Ω

q∇ · un+1/5dx = 0, ∀q ∈ L2
h,

un+1/5 ∈Wh, un+1/5 = gn+1
0h on Γ, pn+1/5 ∈ L2

0h.

(3.15)

Next, compute un+2/5 via the solution of

∫
Ω

∂u

∂t
· vdx +

∫
Ω

(un+1/5 ·∇)u · vdx = 0,

∀v ∈Wn+1,−
0h , a.e. on (tn, tn+1),

u(tn) = un+1/5,

u(t) ∈Wh, u(t) = gn+1
0h on Γn+1

− × (tn, tn+1),

(3.16)

and set un+2/5 = u(tn+1).

Then, compute un+3/5 via the solution ofρf

∫
Ω

un+3/5 − un+2/5

�t
· vdx + ανf

∫
Ω

∇un+3/5 : ∇vdx = ρf

∫
Ω

g · vdx,

∀v ∈W0h; un+3/5 ∈Wh, un+3/5 = gn+1
0h on Γ.

(3.17)

Now predict the motion of the center of mass and the angular velocity of the particle via

dG

dt
= V(t), (3.18)

dxi

dt
= V(t) + ω(t)×

−−−−→
G(t)xi, for i = 1, 2, (3.19)

(1− ρf/ρs)Mp
dV

dt
= (1− ρf/ρs)Mpg + Fr, (3.20)

(1− ρf/ρs)
d(Ip ω)

dt
=
−−→
Gxr × Fr, (3.21)

G(tn) = Gn, V(tn) = Vn, (Ip ω)n = (Ip ω)(tn), (3.22)

x1(t
n) = xn

1 , x2(t
n) = xn

2 ,
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for tn < t < tn+1. Then set Gn+4/5 = G(tn+1), Vn+4/5 = V(tn+1), (Ip ω)n+4/5 =

(Ip ω)(tn+1), x
n+4/5
1 = x1(t

n+1), x
n+4/5
2 = x2(t

n+1), and un+4/5 = un+3/5.

With the center Gn+4/5, x
n+4/5
1 and x

n+4/5
2 obtained at the above step, we enforce the rigid

body motion in the region B(tn+4/5) occupied by the particle



ρf

∫
Ω

un+1 − un+4/5

�t
· v dx + βνf

∫
Ω

∇un+1 : ∇v dx

+(1− ρf

ρs
)Mp

Vn+1 −Vn+4/5

�t
·Y + (1− ρf

ρs
)
(Ip ω)n+1 − (Ip ω)n+4/5

�t
· θ

=< λn+4/5, v −Y − θ ×
−−−−−−→
Gn+4/5x >h, ∀v ∈W0h,Y ∈ R

3, θ ∈ R
3,

un+1 ∈Wh,un+1 = gn+1
0h on Γ, λn+4/5 ∈ Λ

n+4/5
h ,Vn+1 ∈ R

3, ωn+1 ∈ R
3,

(3.23)

< µ, un+1 −Vn+1 − ωn+1 ×
−−−−−−→
Gn+4/5x >h= 0, ∀µ ∈ Λ

n+4/5
h . (3.24)

In (3.14)–(3.24), Γn+1
− = {x|x ∈ Γ, gn+1

0h (x) · n(x) < 0} and Wn+1,−
0h = {v|v ∈ Wh, v =

0 on Γn+1
− }, Λn+s

h = Λh(tn+s), and α+β = 1. In the numerical simulation, we usually choose
α = 1 and β = 0.

3.2. On the solution of subproblems (3.15), (3.16), (3.17), (3.18)-(3.22),
and (3.23)-(3.24). The degenerated quasi-Stokes problem (3.15) is solved by an Uzawa
preconditioned conjugate gradient algorithm as in [11], where the discrete elliptic problems
from the preconditioning are solved by a matrix-free fast solver from FISHPAK due to Adams
et al. in [1]. The advection problem (3.16) for the velocity field is solved by a wave-like
equation method as in [4, 5]. Problem (3.17) is a classical discrete elliptic problem which can
be solved by the same matrix-free fast solver.

System (3.18)-(3.22) is a system of ordinary differential equations thanks to operator
splitting. For its solution one can choose a time step smaller than �t, (i.e., we can divide
�t into smaller steps) to predict the translation velocity of the center of mass, the angular
velocity of the particle, the position of the center of mass and the regions occupied by each
particle so that the repulsion forces can be effective to prevent particle-particle and particle-
wall overlapping. At each subcycling time step, keeping the distance as constant between
the pair of points x1 and x2 in each particle is important since we are dealing with rigid
particles. We have applied the following approach to satisfy the above constraint:

• Translate x1 and x2 according to the new position of the mass center at each subcycling
time step.

• Rotate Gx1 and Gx2, the relative positions of x1 and x2 to the center of mass G, by
the following Crank-Nicolson scheme (a Runge-Kutta scheme of order 2, in fact):

Gxnew
i −Gxold

i

τ
= ω × Gxnew

i + Gxold
i

2
(3.25)

for i = 1, 2 with τ as a subcycling time step. By (3.25), we have |Gxnew
i |2 = |Gxold

i |2
for i = 1, 2 and |Gxnew

2 −Gxnew
1 |2 = |Gxold

2 −Gxold
1 |2 (i.e., scheme (3.25) is distance

and in fact shape preserving).

Remark 3.1 In order to activate the short range repulsion force, we have to find the shortest
distance between two ellipsoids. Unlike the cases for spheres, it is not trivial to locate the point
from each surface of the ellipsoid where the distance is the shortest between two ellipsoids.
There is no explicit formula for such distance. In practice, we first choose a set of points
from the surface of each ellipsoid. Then we find the point among the chosen points from each
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surface at which the distance is the shortest We repeat this (kind of relaxation) process in the
neighborhood of the newly located point on each surface of ellipsoid until convergence, usually
obtained in very few iterations.

For the shortest distance between the wall and ellipsoid, there exists an explicit formula.
To check whether two ellipsoids overlap each other, there exists an algorithm used by people
working on computer graphics and in robotics (e.g., see, [20]).

After solving (3.18)-(3.22), the rigid body motion is enforced in B(tn+4/5), via equation
(3.24). At the same time those hydrodynamical forces acting on the particles are also taken
into account in order to update the translation and angular velocities of the particles. To
solve (3.23)-(3.24), we use a conjugate gradient algorithm as discussed in [7]. Since we take
β = 0 in (3.23) for the simulation, we actually do not need to solve any non-trivial linear
systems for the velocity field; this saves a lot of computing time. To get the angular velocity
ωn+1, computed via

ωn+1 = (In+4/5
p )−1(Ip ω)n+1, (3.26)

we need to have I
n+4/5
p , the inertia of the particle B(tn+4/5). We first compute the inertia

I0 in the coordinate system attached to the particle. Then via the center of mass Gn+4/5

and points x
n+4/5
1 and x

n+4/5
2 , we have the rotation transformation Q (QQT = QT Q = Id,

detQ=1) which transforms vectors expressed in the particle frame to vectors in the flow
domain coordinate system and In+s

p = QI0Q
T . Actually in order to update matrix Q we

can also use quaternion techniques, as shown, in the review paper [3].

4. Numerical experiments.

4.1. One settling ellipsoid. The orientation of symmetric long body (loosely, a
long body is a body where one dimension is much prevailing upon the other two) in liquids
of different nature is a fundamental issue in many problems of practical interest (see [15],
and references therein). In the first test case, we consider the simulation of the motion of
a settling ellipsoid in a narrow channel of infinite length filled with a Newtonian fluid. The
computational domain is Ω = (0, 1) × (0, 0.25) × (0, 4) initially, then it moves down with the
center of the ellipsoid (see, e.g., [13] for adjusting the computational domain according to
the position of the particle). The fluid density is ρf = 1 and the fluid viscosity is νf = 0.01.
The flow field initial condition is u = 0. The three semi-axes of the ellipsoid are 0.2, 0.1
and 0.1. The initial velocity and angular velocity of the ellipsoid are 0. The density of the
ellipsoid is ρs = 1.25. Its vertical axis is the longest semi-axis (see Figure 4.1). The mesh
size for the velocity field (resp., pressure) is hv = 1/80 (resp., hp = 2hv). The time step
is �t = 0.001. The positions of the ellipsoid at different times in the channel are shown in
Figure 4.1. (The computation was performed in a moving frame of reference, so the ellipsoid
appears not moving downward.) The motion of the ellipsoid is very violent at the beginning,
it moves very close to the side wall after release from its initial position. Later on the motion
becomes periodic (see Figures 4.1 and 4.2). As expected, the ellipsoid turns its broadside to
the stream while oscillating as shown in the last three snapshots of Figure 4.1. The averaged
particle speed at the end of the simulation is about 4.256 so the particle Reynolds number
with the long axis as characteristic length is 170.24.

4.2. Two ellipsoids sedimenting side-by-side. It had been observed experi-
mentally by Joseph and Bai that when two ellipsoid-like long bodies sedimente side-by-side in
a narrow channel filled with a Newtonian fluid, they interact each other periodically as shown
in Figures 4.3. The particle Reynolds number is about 120. To reproduce this phenomenon,
we consider the following test case. The computational domain is Ω = (0, 1) × (0, 0.25) ×
(0, 4) initially, then it moves down with the lower center of two ellipsoids. The initial positions
of the centers are (0.22, 0.125, 0.75) and (0.78, 0.125, 0.75), respectively. The frames rigidly
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Figure 4.1: Position of the ellipsoid at t = 0, 0.41, 0.46, 0.56, 0.66, 0.75, 18.1, 18.18,
and 18.28 (from left to right and from top to bottom).
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Figure 4.2: Histories of the x-coordinate of the center (left) and the y-component of
the angular velocity of the ellipsoid (right) .
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Figure 4.3: Snapshots of a period of the motion of two ellipsoid-like long bodies
sedimenting in a narrow channel filled with a Newtonian fluid.

attached to the ellipsoids initially are {(cos π/3, 0, sin π/3), (0, 1, 0), (cos 5π/6, 0, sin 5π/6)}
and {(cos(−π/3), 0, sin(−π/3)), (0, 1, 0), (cos π/6, 0, sin π/6)}, respectively (see Figure 4.4).
All others parameters are as in the previous case. Averaged terminal speed is about 2.497
obtained from last 300 time steps, so the averaged particle Reynolds number is 99.88 based
on the length of the long axis (which is 0.4). In the simulation, we obtained result as seen in
Figure 4.4 similar to the one in Figure 4.3 (the computation was performed in a moving frame
of reference, so the ellipsoids appear not moving downward), which is in good agreement with
experimental results qualitatively. In Figure 4.5, we can see very strong interaction between
two ellipsoids of long axes 0.4. We also have tested the case with two ellipsoids of long axes
0.36 and found that they settle in the channel with very weak interaction between each other
(see Figure 4.5).
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11. Domain Decomposition by Stochastic Methods

Éric PEIRANO and Denis TALAY 1

1. Introduction: Monte Carlo methods for domain decomposition. As
shown by P-L. Lions in [19], stochastic representations of solutions of linear and nonlinear
partial differential equations are useful to analyze the convergence of the Schwarz alternating
method and related decomposition methods. The aim of this note is to show that one can
also deduce simulation algorithms from stochastic representations in view of decomposing do-
mains. To summarize, the Monte Carlo method allows one to compute approximate Dirichlet
conditions on the boundaries of the subdomains of the decomposition without approximating
the solution in the whole domain. One can thus easily localize problems in bounded domains,
or compute the solution outside sub–domains where the solution has strong variations or the
viscosity is small or the coefficients are discontinuous, etc. An advantage of the Monte Carlo
method is that it is extremely easy to program and the simulations can be made in parallel.

We start our discussion by recalling the use of a Monte Carlo method to approximate π.
The method is a variant of Buffon’s needle method. Draw a vertical line in the 2-D space.
Attach the extremity of a needle with one unit length to the line and choose the angle θ
between the needle and an horizontal line at random according to the uniform distribution
on
[
0, π

2

]
.

One has

E cos(θ) =
2

π

∫ π
2

0

cos(z) dz =
2

π
.

The Strong Law of Large Numbers implies that

cos(θ1) + . . . + cos(θN )

N
−−−−−→
N→+∞

2

π
a.e.,

where the θk’s are independent copies of θ, that is, they are independent random variables
and have the same probability distribution as θ (in practice one throws the needle at random
N times, or simulates that game on a computer by using random number generators).

Observe that, in order to construct our Monte Carlo method, we have written the quantity
under consideration, namely 2

π
, as the expectation of a random variable whose law is explicitly

known and easy to simulate. To solve partial differential equations the situation is usually
much more complex. We start by considering a case where the probabilistic representation is
simple, namely the heat equation in the whole space: consider a bounded continuous function
f and 

∂u

∂t
(t, x) =

1

2
∆u(t, x), 0 < t, x ∈ R

d,

u(0, x) = f(x).

Thus
u(t, x) = Gt ∗ f(x),

where Gt is the heat kernel

Gt(y) :=
1

(2π)d/2
exp

(
−|y|

2

2t

)
.

Observe that Gt is the density function of the random vector
√

t G where G is a d dimensional
Gaussian vector with zero mean and unit variance. We therefore have

u(t, x) = E f(x +
√

t G). (1.1)

1INRIA, 2004 Route des Lucioles, B.P. 93, 06902 Sophia-Antipolis (France)
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In view of the Strong Law of Large Numbers it comes

u(t, x) � 1

N

N∑
k=1

f(x +
√

t Gk),

where the Gk’s are independent copies of G. The error corresponding to N trials is

u(t, x)− 1

N

N∑
k=1

f(x +
√

t Gk),

and therefore is random. It may be large but with small probabilities only when N is large,
as shown by the Central Limit Theorem or more precise results such as the Berry–Esseen
theorem:

Theorem 1.1 (Berry–Esseen) Let (Xk)k≥1 be a sequence of independent and identically
distributed random variables with zero mean. Denote by σ the common standard deviation.
Suppose that

E |X1|3 < +∞.

Then

εN := sup
x∈R

∣∣∣∣P(X1 + · · ·+ XN

σ
√

N
≤ x

)
−
∫ x

−∞
e−u2/2 du√

2π

∣∣∣∣
≤ C E |X1|3

σ3
√

N
.

In addition, one has 0.398 ≤ C ≤ 0.8.

For a proof see, e.g., Shiryayev [24]. Using the preceding theorem one can easily estimate
the minimal number N of simulations which allows one to get a prescribed accuracy ε with
a probability larger than a prescribed confidence threshold 1− δ.

In order to approximate the solution of a general parabolic or elliptic equation by a
Monte Carlo method we have to extend the probabilistic representation (1.1) to cases where
the partial differential equation involves a differential operator different from the Laplace
operator. Then the fundamental solution cannot be related to the law of random variables
so simple as Gaussian laws, and we need to consider the class of stochastic processes which
are solutions to stochastic differential equations. We now shortly introduce that difficult and
widely studied subject.

2. Probabilistic representation of parabolic and elliptic equations. Let
b : R

d → R
d and σj : R

d → R
d (1 ≤ j ≤ r) be smooth vector fields. Denote by σ(x) the

matrix whose column vectors are the σj(x)’s. Consider the elliptic operator

Lψ(x) :=

d∑
i=1

bi(x) ∂iψ(x) +
1

2

d∑
i,j=1

ai
j(x) ∂ijψ(x),

where
a(x) := σ(x) σ(x)t,

and the evolution problem
∂u

∂t
(t, x) = Lu(t, x), t > 0, x ∈ R

d,

u(0, x) = f(x), x ∈ R
d.

(2.1)
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Suppose that (2.1) a smooth solution with bounded derivatives on [0, T ] × R
d. We aim to

construct a probabilistic representation of that solution. To this end we introduce stochastic
processes. A stochastic process is a family of random variables indexed by time. The time
index may be (subsets of) R+ or N.

Our basic stochastic process will be the one dimensional Brownian motion (Wt) which
satisfies: for all integer n > 1 and all times 0 ≤ t1 < . . . < tn, the random vector (Wt1 −
Wt0 , , . . . , Wtn − Wtn−1) is Gaussian with zero mean and diagonal covariance matrix; the
diagonal terms of the covariance matrix are

E (Wtj −Wtj−1)
2 = tj − tj−1.

By definition a d dimensional Brownian motion is a process (W 1
t , . . . , W d

t ) whose components
are independent one dimensional Brownian motions. Observe that we can rewrite (1.1) as

u(t, x) = E f(Wt(x)),

where W is a d dimensional Brownian motion starting from x at time 0. When the differen-
tial operator L is not the Laplace operator, one needs to consider more complex processes,
namely the solutions of stochastic differential equations. Unfortunately these objects cannot
be rigorously introduced without the heavy machinery of stochastic calculus (see, e.g., the
textbooks by Friedman [13] and Karatzas and Shreve [17]). To avoid too many complexi-
ties we limit ourselves to introduce discrete time processes which approximate the solutions
of stochastic differential equations and, owing to elementary calculations, we establish their
link with the smooth solutions of equations of the type (2.1). Let us thus onsider the Euler
scheme defined as{

Xh
0 (x) = x,

Xh
(p+1)h(x) = Xh

ph + b(Xh
ph(x)) h +

∑r
j=1 σj(X

h
ph(x))

√
hGj

p+1,
(2.2)

where h := T
M

is a discretization step of the time interval [0, T ] and (Gj
p) is a family of real

valued independent Gaussian random variables with zero mean and unit variance. As the
function u(t, x) is supposed smooth with bounded derivatives and as u(0, x) = f(x) for all x
a Taylor expansion leads to

E f(Xh
T (x))− u(T, x) =

M−1∑
p=0

E

[
u(T − (p + 1)h, Xh

(p+1)h(x))− u(T − ph, Xh
ph(x))

]
= E

[
u(T − (p + 1)h, Xh

ph(x))− u(T − ph, Xh
ph(x))

]
+ h

M−1∑
p=0

E

[
Lu(T − (p + 1)h, Xh

ph(x))
]

+

M−1∑
p=0

O(h2)

= h

M−1∑
p=0

E

[
Lu(T − ph, Xh

ph(x))− ∂u

∂t
(T − ph, Xh

ph(x))

]

+

M−1∑
p=0

O(h2)

=

M−1∑
p=0

O(h2)

= O(h).

(2.3)

Thus
u(T, x) = E f(Xh

T (x)) +O(h).
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Remark 2.1 The Euler scheme is easy to simulate since it requires Gaussian simulations
only. Noticing that

√
h Gj

p has the same Gaussian distribution function as W j
(p+1)h −W j

ph,
one can think the Euler scheme as a time discretization of the stochastic differential equation

Xt(x) = x +

∫ t

0

b(Xs(x)) ds +
d∑

j=1

∫ t

0

σj(Xs(x)) dW j
s , 0 ≤ t ≤ T, (2.4)

where
∫ t

0
σj(Xs(x)) dW j

s denotes the ‘stochastic integral of the process (σj(Xs(x))) with re-

spect to the Brownian motion (W j
s )’ whose construction requires long developments. Equa-

tion (2.4) is shown to have a unique solution (in the appropriate space of stochastic processes)
when the vector fields b and σj are Lipschitz. One can prove that the exact probabilistic rep-
resentation of (2.1) is

u(T, x) = E f(XT (x)). (2.5)

The key point of the proof is the Itô’s formula which one needs to use instead of the above
Taylor expansion: for all real valued function φ of class C1,2([0, T ]× R

d) it holds that

φ(t, Xt(x)) = φ(0, x) +

∫ t

0

Lφ(s, Xs(x)) ds +

d∑
i=1

r∑
j=1

∫ t

0

∂iφ(s, Xs) σi
j(s, Xs) dW j

s .

Using that formula and deep notions of stochastic calculus, for a very large class of parabolic
problems it can be shown that, if a smooth solution exists, then it verifies the equality (2.5).
Stochastic calculus techniques may also be useful to prove the existence of smooth solutions:
for example, when the coefficients bi and σi

j are smooth, then (2.4) defines a smooth stochastic
flow of diffeomorphisms, so that the mapping x �→ Xt(x) is almost surely differentiable;
therefore, if the function f itself is smooth and its derivatives satisfy appropriate growth at
infinity conditions, the mapping x �→ E f(Xt(x)) also is differentiable: see, e.g., Kunita [18].

From the preceding consideration one deduces that

u(T, x) � 1

N

N∑
k=1

E f(Xh,k
T (x)), (2.6)

where
(Xh,k

ph (x), p = 0, . . . , M, k = 0, . . . , N)

is a family of independent trajectories of the Euler scheme. Such trajectories can be simulated
as follows: in view of (2.2), owing to d×M calls to the generator of Gaussian random variables
one obtains (Xh,1

ph (x), p = 0, . . . , M). Then time is reset to 0, and d ×M new calls to the
generator allow one to obtain the second trajectory, and so on. One finally computes the
right hand side of (2.6) by averaging the end points of the N trajectories. Observe that
the simulations can be done in parallel instead of sequentially if one can distribute the
computations on a set of processors. The number of communications between the processors
is extremely weak. In counterpart one has to ensure that the processors run independent
sequences of random numbers, which may require a clever programming.

The global error of the Monte Carlo method (2.6) is

u(T, x)− 1

N

N∑
k=1

E f(Xh,k
T ) = u(T, x)− E f(Xh

T (x))︸ ︷︷ ︸
=:εd(h)

+ E f(Xh
T (x))− 1

N

N∑
k=1

E f(Xh,k
T )︸ ︷︷ ︸

=:εs(h,N)

.
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The discretization error is described by the inequality (2.3) and even more accurate estimates.
Indeed, under various sets of hypotheses including cases where f is supposed measurable only,
one has (Talay and Tubaro [27], Bally and Talay [2])

ed(h) = Cf (T, x) h + Qh(f, T, x) h2

and

|Cf (T, x)|+ suph|Qh(f, T, x)| ≤ K(T )‖f‖∞
1 + ‖x‖Q

T q

for some real number Cf (T, x) which does not depend on the discretization step h. Thus
Romberg extrapolation techniques are available: for example, simulations with the discretiza-
tion steps h and h

2
lead to a second order accuracy in view of

u(T, x)−
(
2 E f(X

h/2
T (x))− E f(Xh

T (x))
)

= 2 ed(h/2)− ed(h) = O(h2).

The statistical error s(h, N) is described by the Berry–Esseen theorem 1.1 or its variants.
Notice that (2.3) ensures that the standard deviation of Xh

T (x) and E |Xh
T (x)|3 can be bounded

from above by constants which do not depend on h, so that the time discretization step plays
no role in the choice of the number of simulations corresponding to a desired accuracy and a
prescribed confidence interval.

For parabolic and elliptic equations with Dirichlet boundary conditions (Neumann bound-
ary conditions respectively) probabilistic interpretations, and therefore Monte Carlo meth-
ods, are also available (for various probabilistic interpretations we again refer to, e.g., the
textbooks by Friedman [13] and Karatzas and Shreve [17]). We here give an example of a
parabolic problem with Dirichlet boundary conditions.

Let D be a domain in R
d, and consider
∂u

∂t
(t, x) = Lu(t, x), t > 0, x ∈ D,

u(0, x) = f(x), x ∈ D,

u(t, x) = g(x), t > 0, x ∈ ∂D,

where f(x) = g(x) on ∂D. Under various sets of hypotheses one has

u(T, x) = E [f(XT (x)) IT<τ ] + E [g(Xτ (x)) IT≥τ ],

where τ is the ‘first exit time of the domain’, that is,

τ := inf{0 ≤ t, Xt(x) ∈ ∂D}. (2.7)

In view of that formula it is natural to numerically approximate u(T, x) by using the Euler
scheme stopped at its ‘first exit time of the domain’ τh, that is,

τh := inf{0 ≤ p ≤ M, Xh
ph ∈ ∂D} × h. (2.8)

If the boundary condition were of Neumann type then the solution u(T, x) would have been
expressed in terms of a process whose trajectories are reflected at the boundary of the domain
and the Monte Carlo method would have involved the ‘reflected Euler scheme’. For the error
analysis of the stopped or reflected Euler scheme we refer to Gobet [14] and [15], Costantini,
Pacchiarotti and Sartoretto [9]. It is worthy to notice that Gobet shows that, to preserve a
rate of convergence of order O(h) one has to define the first exit time of the domain of the
Euler scheme in a more clever way than (2.8), and to add the simulation of random times to
the preceding algorithm; that additional simulation often has a low cost.
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3. Application to Domain Decomposition. In view of the preceding stochastic
representations it seems interesting to study the following domain decomposition technique:
localize the problem by building artificial boundaries, and compute the solution along these
boundaries by Monte Carlo simulations. More precisely, given points xi on the artificial
boundaries, one simulate N independent trajectories issued from each xi and average the
values of the Xh,k

T (xi)’s. If the original problem is posed in a bounded domain with Dirich-
let (Neumann respectively) boundary conditions, then the simulation needs to involve the
stopped (reflected respectively) Euler scheme.

An important issue consists in estimating the error induced by the ‘stochastic approx-
imations along the artificial boundaries of the decomposed domain’. At the time being
this question is widely open. For parabolic problems corresponding to European options,
Crépey [10] has done a pionneering work. Berthelot [4] is studying the case of the varia-
tional inequalities corresponding to American options. To our knowledge no precise result is
available on the convergence rate of the global error corresponding to the combination of the
Monte Carlo method (along the artificial boundaries) and a classical deterministic method
for the numerical resolution of the original problem in each one of the sub–domains with
approximate Dirichlet conditions obtained from simulation. The Omega research group at
Inria Sophia Antipolis has obtained only very preliminary results in that direction.

4. Stochastic particle methods for nonlinear equations. Stochastic numer-
ical methods have been developed for nonlinear equations. The structure of such methods is
much more complex than for linear problems: for variational inequalities (particularly those
which describe American option prices in finance) one has to consider backward stochastic
differential equations (see, e.g., the review papers by El Karoui, Quenez and Pardoux [11],
Pardoux [21]); for Burgers equation, McKean–Vlasov–Fokker–Planck and Boltzman equa-
tions one has to consider interacting stochastic particle systems and their limits in the
‘propagation of chaos’ sense (see, e.g., Sznitman [25], Bossy and Talay [7], Jourdain [16],
Méléard [20], Fournier and Méléard [12]). For estimates on the numerical methods deduced
from such stochastic representations, see, e.g., Chevance [8], Bally and Pagès [1] for backward
stochastic differential equations; Bossy [5], Bossy and Jourdain [6], Talay [26] for interacting
stochastic particle methods (the reference [6] being a pionneering work in the analysis of the
convergence rate of stochastic particle methods for problems with boundary conditions).

We now give the example of an extension of the Sherman and Peskin [23] method for
convection-reaction–diffusion equations

∂V

∂t
(t, x) = LV (t, x) + f ◦ V (t, x),

V (0, x) = V0(x),

 (4.1)

where L is defined as

Lψ(x) := b(x) ψ′(x) +
1

2
σ(x)2 ψ′′(x),

V0 is a distribution function, and f is a smooth function such that V (t, ·) is a distribution

function for all t > 0. Set u(t, x) :=
∂V

∂x
(t, x). It solves

∂u

∂t
(t, x) =

1

2
σ2(x)

∂2u

∂x2
(t, x) + [b(x) + σ(x)σ′(x)]

∂u

∂x
(t, x) + b′(x)u(t, x)

+ f ′
(∫ x

−∞
u(t, y) dy

)
u(t, x),

u(0, x) = V ′
0 (x),


(4.2)

with, for example (Fisher equation), f(u) := u(u − 1). The numerical method described
below is based on the representation of the measure u(T, x) dx in terms of the limit of the
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empirical distribution of the living particles at time T of a branching interacting particles
system.

The algorithm is as follows.

(i) At time 0, N particles with mass 1/N are located at points V −1
0

( i

N

)
, i = 1, . . . , N − 1,

and at V −1
0

(
1− 1

2N

)
.

(ii) Let h be the time discretization step; between times kh and (k +1)h each particle living
at time kh moves independently of the other particles; its position at time (k + 1)h is

Y (k+1)h = Y kh +
{
σ
(
Y kh

)
σ′ (Y kh

)
− b
(
Y kh

)}
h + σ

(
Y kh

) (
W(k+1)h −Wh

)
+

1

2
σ
(
Y kh

)
σ′ (Y kh

) {(
W(k+1)h −Wh

)2 − h
}

.

(iii) At each time step one creates and deletes particles according to the following rule. Let
NN

(k+1)h denote the number of particles living at time (k + 1)h, and

V N ((k + 1)h, x) :=
1

N

NN
(k+1)h∑
j=1

H(x− yj
(k+1)h),

where {yj
(k+1)h} is the set of the simulated particles which are living at time (k + 1)h

and H is the Heaviside function. The particle numbered j dies with probability h
∣∣f ′ ◦

V N ((k + 1)h, yj
(k+1)h)

∣∣. If f ′ ◦ V N ((k + 1)h, yj
(k+1)h) ≥ 0, it gives birth to two particles.

Finally, the function V N is our approximation of V (T, x). The corresponding statistical error

is O 1√
N

and discretization error is O
√

h +O 1√
N

: see Régnier and Talay [22].

As the Monte Carlo methods considered in the preceding section for linear problems, the
stochastic particle methods may be used to approximate the solutions to nonlinear problems
on artificial boundaries. However a lot of work still needs to be done in that area, either to
construct probabilistic interpretations or to develop numerical methods based on the proba-
bilistic interpretations. To illustrate that point, consider the 2D Navier-Stokes equation

∂u

∂t
(t, x) = ν∆u(t, x)− (u(t, x) · ∇)u(t, x)−∇p(t, x), 0 < t, x ∈ ∂D,

div u(t, x) = 0, 0 < t, x ∈ ∂D,

u(t, x) = 0, 0 < t, x ∈ ∂D,

u(0, x) = f(x), x ∈ D.

Set ω := rot u. Benachour, Roynette and Vallois [3] have shown that∫
D̄

ω(t, x) f(x) Leb(dx) = E ω0

∫
D̄

f(x) dYt for all f ∈ C∞(D),

where (Yt) is a measure valued branching process with reflected paths. Unfortunately the
law of the branching times is quite complex (much more complex than in the case of the
Sherman and Peskin algorithm discussed above) and, at the time being, there is no efficient
way of simulating the process (Yt).
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5. A first numerical illustration: an elliptic problem. One seeks the numer-
ical approximation of u(x, y) which satisfies{

L u = f in D, with D = [0, 2]× [0, 1],

u = g on ∂D.
(5.1)

The elliptic operator is defined as

L = Bx(x, y)
∂

∂x
+ By(x, y)

∂

∂x
+

1

2
a(x, y)

∂2

∂x2
+ c(x, y)

∂2

∂x∂y
+

1

2
b(x, y)

∂2

∂y2
. (5.2)

5.1. Problem definition. The diffusion matrix is defined by the following coeffi-
cients: a(x, y), b(x, y) and c(x, y). For b(x, y) one has

b(x, y) = (CB + 1) + (x− 1)2,

and for a(x, y), if x ≤ 1,

a(x, y) =

{
CB − CA

π
arctan[−C(x− 0.8)] +

CB + CA

2

}
b(x, y), (5.3)

else,

a(x, y) =

{
CB − CA

π
arctan[C(x− 1.2)] +

CB + CA

2

}
b(x, y), (5.4)

with CB = (K/(k π))2 and CA = (K/(l π))2. The last coefficient, c(x, y), is defined as

c(x, y) = 0.1 (x− 1)2 + 0.005. (5.5)

The values of the different constants k, l, K and C are listed in Table 5.1.

Table 5.1: Numerical values for the constants in Eqs (5.3) and (5.4).

k l K C
5 20 1 1

The drift vector is defined by its two components Bx(x, y) and By(x, y), that is,{
Bx(x, y) = K c(x, y),

By(x, y) = 0.1.
(5.6)

The function f(x, y) reads

f(x, y) = CE(x) sin(CE(x)πx) exp(−Ky) [c(x, y)K −Bx(x, y)]

+ cos(CE(x)πx) exp(−Ky)[
−KBy(x, y)− 1

2
(CE(x)π)2a(x, y) +

1

2
K2b(x, y)

]
,

with CE(x) = k for x ∈ [0; 0.8] ∪ [1.2; 2] and CE(x) = l for x ∈]0.8; 1.2[. The analytical
solution to system (5.1) is

u(x, y) = 2 + cos(CE(x)πx) exp(−Ky). (5.7)

Figure 5.1 shows the shape of both the function f(x, y) and the analytical solution u(x, y)
for the numerical values indicated in Table 5.1.
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Figure 5.1: Top: shape of the analytical solution u(x, y). Bottom: shape of f(x, y).
The results are given for the numerical values indicated in Table 5.1.
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5.2. Deterministic method. Here, the elliptic problem is solved by classical dis-
cretisation techniques such as finite difference methods. For example, the second order deriva-
tive is approximated by (second order scheme)

∂2u

∂x2
=

1

(∆x)2
[u(x + ∆x, y)− 2u(x, y) + u(x−∆x, y)] + o(∆x)2. (5.8)

All other derivatives are also computed with centered schemes. The computational domain
is discretized with a uniform Cartesian mesh, that is{

xi = xm + (i− 1)(xM − xm)/(Nx − 1),

yj = ym + (j − 1)(yM − ym)/(Ny − 1).
(5.9)

The domain is defined by [xm, xM ]× [ym, yM ] and Nx and Ny represent the total number of
discrete points in the x and y directions, respectively.

Eq. (5.1) can be written in its discretized form as (u(xi, yj) = ui,j)

fi,j = Pimjp ui−1,j+1 + Pijp ui,j+1 + Pipjp ui+1,j+1

+ Pimj ui−1,j + Pij ui,j + Pipj ui+1,j

+ Pimjm ui−1,j−1 + Pijm ui,j−1 + Pipjm ui+1,j−1,

(5.10)

where

Pimjm =
ci,j

4 ∆x ∆y
, Pijm =

bi,j

2 ∆x ∆y
−

By
i,j

2∆y
, Pipjm = −Pimjm,

Pimj =
ai,j

2(∆x)2
− Bx

i,j

2 ∆x
, Pij = − ai,j

(∆x)2
− bi,j

(∆y)2
, Pipj =

ai,j

2(∆x)2
+

Bx
i,j

2∆x
,

Pimjp = −Pimjm, Pijp =
bi,j

2∆x ∆y
+

By
i,j

2∆y
, Pipjp = Pimjm.

The linear non-symmetric (Nx−2)×(Ny−2) system is solved with a preconditioned conjugate
gradient method (NAG library, routine name: F11DEF).

The numerical error (relative error) is computed as follows (where Ou(x, y) is the ap-
proximated value of u(x, y))

e(x, y) = |u(x, y)−Ou(x, y)|, (5.11)

which gives for the maximum error

emax = sup
(x,y)∈ D

e(x, y). (5.12)

The maximum error is given, for different resolutions, in Table 5.2. The results show that (i)
only the resolution along the x axis is important, (ii) the numerical scheme is, in reality, of
first order in space. The CPU time is given for further comparison in execution time with
alternative numerical methods (Monte-Carlo). The computer used to perform the simulations
is a SUN Ultra 5/10 with a 440 MHz sparcv8plus+vis processor.

The shape of the numerical error along the x axis is displayed in Figure 5.2 for two
different resolutions. It is seen, as expected, that the maximum error is obtained in the
regions of steepest gradients.
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Table 5.2: Numerical parameters and results for the deterministic method: spatial
resolution, maximum error and CPU time (in seconds).

Nx 41 401 401 4001
Ny 21 201 21 201
∆x 0.05 0.005 0.005 0.0005
∆y 0.05 0.005 0.05 0.005

emax 0.4164 0.0519 0.0519 0.0052
CPU (s) 0.1 33 0.8 744
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Figure 5.2: Numerical error along the x axis for y = 0.5. Two different resolutions are
displayed: (Nx, Ny) = (41, 21) (left) and (Nx, Ny) = (401, 201) (right).

5.3. Probabilistic method. The probabilistic interpretation of the solution of (5.1)
is

u(x, y) = −E

[∫ τ

0

f(Xt(x, y)) dt

]
+ E [g(Xτ (x, y))] ,

where the underlying stochastic process solves{
X1

t (x, y) = x +
∫ t

0
Bx(Xs(x, y)) ds +

∫ t

0
σ1

1(Xs(x, y)) dW 1
s +

∫ t

0
σ1

2(Xs(x, y)) dW 2
s ,

X2
t (x, y) = y +

∫ t

0
By(Xs(x, y)) dt +

∫ t

0
σ2

1(Xs(x, y)) dW 1
s +

∫ t

0
σ2

2(Xs(x, y)) dW 2
s .

Here (W 1
t , W 2

t ) are two independent Wiener processes, σ is a matrix valued function such
that

σ(x, y)σ(x, y)t =

(
a(x, y) c(x, y)
c(x, y) b(x, y)

)
,

and τ is the first exit time of the domain D as defined in Section 2.

The Euler scheme reads

Xh1

(p+1)h(x, y) = Xh1

ph(x, y) + Bx(Xh
ph(x, y))h + σ1

1(Xh
ph(x, y)) (W 1

(p+1)h −W 1
ph)

+ σ1
2(Xh

ph(x, y)) (W 2
(p+1)h −W 2

ph)

Xh2

(p+1)h(x, y) = Xh2

ph(x, y) + By(Xh(x, y))h + σ2
1(Xh

ph(x, y)) (W 1
(p+1)h −W 1

ph)

+ σ2
2(Xh

ph(x, y)) (W 2
(p+1)h −W 2

ph).
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The corresponding Monte Carlo approximation is defined as

Ou(x, y) =
1

N

N∑
k=1

−h

τh−1∑
p=0

f(Xh,k
ph (x, y)) + g(Xh,k

τh (x, y))

 .
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Figure 5.3: Numerical results for a Monte-Carlo simulation with N = 104 and h =
10−4 s. The resolution is given by (Nx, Ny) = (401, 21) but the results are presented
along the x axis for y = 0.5. Left: numerical error (dashed line for the Monte-
Carlo simulation and continuous line for the deterministic method). Right: numerical
solution (◦ for the Monte-Carlo simulation and continuous line for the exact solution).

Different numerical parameters (time steps and number of trajectories) and numerical pro-
cedures (Romberg extrapolation and treatment of the killed diffusion with Brownian bridges
as proposed by Gobet [14] and [15]) were employed. In the computations presented here,
h = 10−4 and N = 104. The Euler scheme has been used with no specific treatment (the
simulation is stopped at the time step where the point leaves the domain). The numerical
error and the numerical solution are displayed in Figure 5.3. It can be observed that the
numerical error is not too sensitive to the gradients. However, each Monte-Carlo point takes
approximately 120 s of computer time.

Domain decomposition can now be performed. For example, one can consider the fol-
lowing domain: D1 = [0, 0.8] × [0, 1]. The computations can be done with the determinis-
tic method by using the results of the Monte-Carlo simulation as boundary conditions (for
x = 0.8). Figure 5.4 displays the results of such a computation.

The computation is performed for (Nx, Ny) = (81, 21) on D1. The Monte-Carlo points
used as boundary conditions are obtained from the previous results presented in Figure 5.3.

It can be concluded that, even though the domain decomposition is technically feasible,
there is no improvement for the CPU time. Indeed, for a similar precision in the domain of
steep gradients (x ∈ [0.8, 1.2]), the CPU time for one Monte-Carlo point is roughly equal to
the whole computation with the deterministic method and this for roughly 103 points.

6. A second numerical illustration: a parabolic problem. One seeks the
numerical approximation of u(x, y) which satisfies

∂u

∂t
+ L u = 0 in D := [0, T ]× R,

u(T, x) = f(x),
(6.1)
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Figure 5.4: Numerical results for a deterministic/Monte-Carlo simulation. For the
deterministic computation in D1, one has (Nx, Ny) = (81, 21). For the Monte-Carlo
simulation N = 104 and h = 10−4 s. The results are presented along the x axis
for y = 0.5. Left: numerical error (dashed line for the Monte-Carlo simulation and
continuous line for the deterministic method). Right: numerical solution (◦ for the
Monte-Carlo simulation and continuous line for the deterministic method).

where the elliptic operator L is defined as

L = D(t, x)
∂

∂x
+

1

2
B(t, x)

∂2

∂x2
. (6.2)

The functions D(t, x) and B(t, x) are given by

D(t, x) = cos(x) sin(x)
{
λ cos(λt)− [cos(x) exp(a(t))]2

}
, (6.3)

and
B(t, x) =

[
cos2(x) exp[a(t)]

]2
, (6.4)

respectively. The function a(t) is defined as a(t) = sin(λt) where λ is a constant (a real
positive number). The final condition, u(T, x) = f(x) is defined as

f(x) = exp

[
cos

(
1

0.1 + λx2

)]
+ exp

[
sin

(
1

0.1 + µx2

)]
, (6.5)

where µ ∈ R
+.

It can be shown that the analytical solution to system (6.1) is

u(t, x) =

∫ +∞

−∞
f
(
arctan

{
exp[a(T )− a(t)] tan(x) + y exp[a(T )]

√
T − t

})
p(y) dy, (6.6)

where p(y) is the normal centered Gaussian law,

p(y) =
1√
2π

exp(−y2/2). (6.7)

The solution can be computed numerically by resorting to a proper numerical procedure (here
a NAG routine, D01AHF, is used). Figure 6.1 shows the shape of u(t, x) for [0, 3]× [1.0, 1.4]
(f(x) is also shown).
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Figure 6.1: Left: approximated solution of system (6.1)on [0, 3]×[1.0, 1.4] by numerical
integration of Eq. (6.6). Right: shape of the final condition, f(x).

6.1. Deterministic method. System (6.1) can be solved by a simple deterministic
method. A finite difference method is adopted where a first order approximation is used for
the time derivative and a second order approximation for the space derivatives, that is, for
example,

∂u

∂x
=

1

2∆x
[u(x + h, x)− u(x− h, x)] + o(∆x)2,

∂u

∂t
=

1

h
[u(t, x + h)− u(t, x)] + o(h).

The scheme is explicit and it reads

uk+1
i = − h

2∆x

(
Dk

i +
Bk

i

∆x

)
uk

i+1 +

(
1 +

Bk
i h

2∆x2

)
uk

i −
∆t

2∆x

(
Bk

i

∆x
−Dk

i

)
uk

i−1,

where uk
i is the approximation of u(t, x) for x = i ∆x and t = k h (∆x is the space resolution

and h is the time step). Figure 6.2 shows the result of a computation on [0, T ]× [A, B] with
∆x = 2.10−2 and h = 10−3 (it has been checked by Von Neumann analysis that the scheme
is stable for these values of ∆x and h). The values of the different constants µ, λ, A, B
and T are listed in Table 6.1. As in the previous examples, the maximum numerical error is
obtained in the regions of steepest gradients, Figure 6.2.

Table 6.1: Numerical values for the numerical solution of system (6.1) on [0, T ]×[A,B].

µ λ A B T
10 10 1.0 1.4 3

6.2. Probabilistic method. The preceding deterministic method requires to know
exact values, or at least good approximations, of the solution u(t, x) along the artificial bound-
aries x = A and x = B. The Monte Carlo method allows one to get good approximations for
all choice of the pair (A, B).

For all 0 ≤ t ≤ T the probabilistic interpretation of the solution to the system (6.1) is

u(t, x) = E
[
f(Xt,x

T )
]

(6.8)
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Figure 6.2: Numerical results for a deterministic simulation of system (6.1) on [0, 3]×
[1.0, 1.4]. The time step is h = 10−3 and the space resolution is ∆x = 2.10−2. The
results are presented along the t axis for x = 1.2. Left: numerical error. Right:
numerical solution (◦ for the simulation and continuous line for the ‘exact’ solution).

where the underlying stochastic process is the solution to

Xt,x
θ = x +

∫ θ

t

cos(Xt,x
s ) sin(Xt,x

s )
{

a′(s)−
[
cos(Xt,x

s )b(s)
]2}

ds

+

∫ θ

t

cos2(Xt,x
s ) b(s) dW (s), t ≤ θ ≤ T.

(6.9)

Here, a′(t) is the time derivative of a(t) and b(t) = exp[a(t)]. Notice that the solution u(t, x)
is expressed in terms of a process starting at time t, whereas in (2.5) the solution u(T, x) is
expressed in terms of a process observed at time T : that difference is due to the fact that,
in (6.1), the initial condition is fixed at time T instead of 0 and one integrates backward in
time instead of forward in time, which leads to a more convenient probabilistic interpretation
when the coefficients of L are time dependent.

The numerical solution is obtained by a Monte-Carlo simulation as done in Section 5.3.
The trajectories of (Xt) are simulated by applying the Euler scheme to Eq. (6.9). Figure
6.3 shows the result of a Monte-Carlo computation for N = 104 and h = 10−4, which gives
a numerical precision of the same order of magnitude as the computation performed with
the deterministic method, see Figure 6.2. However, for such a simulation, each Monte-Carlo
point takes approximately 30 s of computer time whereas the deterministic method requires
2 s for 6000 nodes (the value of 30 s for a Monte-Carlo point is an expected value for several
points in the domain since the computations are faster for points near the boundary), see
Table 6.2.

Table 6.2: CPU time for the deterministic and the Monte-Carlo method.

CPU time: 1 point CPU time: 6000 nodes
Monte-Carlo method 30 s
Deterministic method 2 s

7. Conclusion. It is possible to use Monte-Carlo methods for domain decomposition
problems when solving PDEs with deterministic techniques. However, the CPU time required
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Figure 6.3: Numerical results for a Monte-Carlo simulation with N = 104 and h =
10−4 s. The results are presented along the t axis for x = 1.2. Left: numerical error.
Right: numerical solution (◦ for the Monte-Carlo simulation and continuous line for
the ’exact’ solution).

by the Monte-Carlo methods does not make, in this sense, any improvement compared to
full deterministic methods. Monte-Carlo methods are, however, interesting in cases where
they are the only alternative (unknown boundary conditions or high dimensional problems,
for example).

A widely still open problem is to find optimal estimates for the global error of algorithms
combining deterministic methods in sub–domains and Monte Carlo methods to approximate
the solutions along the artificial boundaries produced by a domain decomposition.
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12. Partition of Unity Coarse Spaces: Enhanced Versions,
Discontinuous Coefficients and Applications to Elasticity

M. Sarkis 1 2

1. Introduction. In this paper, we consider overlapping Schwarz methods for finite
element discretizations for certain elliptic problems. In order to make Schwarz methods
scalable with respect to the number of subdomains, we add an appropriate coarse problem
to the algorithms. The main purpose of this paper is to introduce new coarse spaces for
overlapping Schwarz methods. The proposed coarse spaces are based on partitions of unity
and on local functions of low energy. The set of local functions must contain the kernel of
the discrete operator when restricted to the overlapping subdomains. For instance, for linear
elasticity, it must include the local rigid body motions, and for Poisson equation it should
include the constant function. We consider several classes of choices of partition of unity. We
consider PU based on the kind of partition of unity used in the theoretical analysis of standard
additive Schwarz methods, as well as PU based on the class of additive Schwarz methods
based on harmonic extensions. The condition number of the algorithms grows only linearly
or quasi-linearly with respect to the relative size of the overlap. And for certain choices of
partition of unity, the methods are robust also with respect to jumps of coefficients.

Work on two-level methods on unstructured meshes is not new. Several different ap-
proaches have been introduced and some can be found in [4, 5, 7, 9, 8, 11, 12, 14, 17, 16, 1,
18, 22, 21] and papers cited therein. Related works to ours [6, 20, 19], based on two-level
agglomeration techniques, can be found in [4, 14, 15]. Their algorithms and analysis use a
class of partition of unity coarse space based on agglomeration smoothing techniques. In
this paper, we consider coarse spaces that combine the partition of unity and low energy
functions associated to the (overlapping) subdomains in order to design a new coarse spaces
for elliptic problems. The partition of unity is used: 1) to localize the coarse basis functions
to the subdomains, and 2) to force the coarse basis functions to have a smooth decaying to
zero near the boundary of the subdomains. The low energy local functions associated to the
subdomains allow us to have good approximation properties for the coarse space. The pro-
posed coarse spaces, have several advantages over traditional coarse spaces: 1) it is applicable
to discretizations on unstructured meshes, 2) it is algebraic (see below), 3) the associated
algorithms do not require that the subdomains be connected or that the boundary of the
subdomains be smooth, 4) the coarse basis functions of the PU coarse space are constructed
explicitly and without the use of exact local solvers, 5) the stencil of the coarse matrix is
sparser than the traditional ones, and 6) the support of the coarse basis functions is localized
on the subdomains, and therefore easy in communication if implemented in a distributed
memory parallel machine.

The preconditioners to be considered here are algebraic in the sense that the precondition-
ers are built in terms of the graph of the sparse matrix and the mesh partition. In this paper
we provide some unified mathematical analysis to the finite element problems considered in
this paper.

2. Elliptic Problems and Discretization. In this paper we consider two prob-
lems: the two-dimensional linear elasticity and the scalar transmission problem.

2.1. Linear Elasticity. We consider an isotropic elastic material in the configuration
region Ω ⊂ 2. Let us denote u∗ = (u∗

1, u
∗
2)

t to be the displacement and f = (f1, f2)
t the body

1Instituto de Matemática Pura e Aplicada, Est. Dona Castorina, 110, Rio de Janeiro, RJ, CEP
22420-320, Brazil, msarkis@impa.edu

2Mathematical Sciences Department, Worcester Polytechnic Institute, 100 Institute Rd, Worces-
ter, MA 01609, USA
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force. Let the region Σ be Ω or a subregion of Ω, and the spaces �H1(Σ), �L2(Σ), and �H1
0 (Σ)

to be the spaces (H1(Σ), H1(Σ))t, (L2(Σ), L2(Σ))t, and (H1
0 (Σ), H1

0 (Σ))t, respectively. The
weak formulation of the static theory of linear elasticity with zero boundary displacement
condition is given as follows:

Find u∗ ∈ �H1
0 (Ω) such that

a(u∗, v) = f(v), ∀v ∈ �H1
0 (Ω), (2.1)

where

a(u∗, v) =

∫
Ω

(µE(u∗) : E(v) + λdiv(u∗) div(v)) dx ,

f(v) =

∫
Ω

f · v dx for f ∈ �L2(Ω),

and

E(v) =
1

2

(
∇v + (∇v)t) .

The positive constants µ and λ are called the Lamé constants. It is well-known that a(·, ·) is
elliptic and bounded, and therefore the system (1.1) is well posed [2, 3].

For simplicity, let Ω be a bounded polygonal region in 2 with a diameter of size O(1).
The extension of the results to 3 can also be carried out using similar ideas. Let T h(Ω) be
a shape regular, quasi-uniform triangulation of grid size O(h) of Ω, and V ⊂ �H1

0 (Ω) be the
finite element space consisting of continuous piecewise linear functions associated with the
triangulation T h(Ω) and zero Dirichlet boundary condition. The extension of the results for
the case of local quasi-uniform triangulation is also straightforward.

We are interested in solving the discrete problem associated to (1.1): Find u ∈ V such
that

a(u, v) = f(v), ∀ v ∈ V. (2.2)

Since V ⊂ �H1
0 (Ω), the discrete version is also well-posed.

2.2. Transmission Problem. We also consider a finite element problem, the scalar
transmission problem with zero Dirichlet boundary condition. Find u∗ ∈ H1

0 (Ω), such that

a(u∗, v) = f(v), ∀ v ∈ H1
0 (Ω), (2.3)

where now

a(u∗, v) =

∫
Ω

ρ(x)∇u · ∇v dx and f(v) =

∫
Ω

fv dx for f ∈ L2(Ω).

We assume the coefficient ρ satisfy 0 < ρmin ≤ ρ(x) ≤ ρmax and is constant and equal to
ρi inside each substructure Ωi. We allow the coefficient ρ to have highly discontinuity across
substructures. Here, we let V ⊂ H1

0 (Ω) be the finite element space consisting of continuous
piecewise linear functions associated with the triangulation Th(Ω) with zero Dirichlet bound-
ary condition. We introduce the discrete problem (2.2) with the a(·, ·) and V given in this
subsection.

Throughout this paper, C is positive generic constant that do not depend of any of
the mesh parameters, the number of subdomains, and the parameters λ and µ. All the
domains and subdomains are assumed to be open; i.e., boundaries are not included in their
definitions. We will use a unified notation for both problems since the techniques used to
design and analyze the algorithms are essentially the same.
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3. Algebraic Subregions. Given the domain Ω and the triangulation T h(Ω), we
assume that a domain partition has been applied and resulted in N substructures ( non-
overlapping subregions) Ωi, i = 1, . . . N, of size O(H), such that

Ω = ∪N
i=1Ωi, Ωi ∩ Ωj = ∅, for j �= i.

We define the overlapping subdomains Ωδ
i as follows: Let Ω1

i be the one-overlap element
extension of Ωi, where Ω1

i ⊃ Ωi is obtained by including all the immediate neighboring
elements τh ∈ T h(Ω) of Ωi such that τh ∩ Ωi �= ∅. Using the idea recursively, we can define
a δ-extension overlapping subdomains Ωδ

i

Ωi ⊂ Ω1
i ⊂ · · ·Ωδ

i .

Here the integer δ ≥ 1 indicates the level of element extension and δh is the approximate
length of the extension. We note that this extension can be coded easily through the knowl-
edge of the adjacent matrix associated to the mesh and the partition.

We want to design coarse spaces based on a class of partition of unity for which has
been used as a very powerful tool in the theoretical analysis of Schwarz type domain de-
composition methods. We note however that the partition of unity functions on this class
do not necessarily vanish on ∂Ω. Hence, they cannot be used straightforwardly as coarse
basis functions since they should satisfy zero Dirichlet boundary conditions for Dirichlet type
boundary problems. Hence, for the coarse basis functions that touch ∂Ω, we modify them so
that they have a controlled decaying to zero near ∂Ω. To obtain such coarse basis functions,
we next introduce a Dirichlet boundary treatment. Let Ω1

B be one layer of elements near the
Dirichlet boundary ∂Ω and then define recursively,

Ω1
B ⊂ Ω2

B · · ·Ωδ
B

with δ levels of extension by adding recursively neighboring elements.

To define and analyze the new methods, we introduce some notations. We subdivide Ωδ
i

as follow: Let γδ
i = ∂Ωδ

i \∂Ω, i = 1, · · · , N ; i.e., the part of the boundary of Ωδ
i that does

not belong to the physical boundary of Ω, and let γδ
B = ∂Ωδ

B\∂Ω. We define the interface
overlapping boundary Γδ as the union of all the γδ

i and γδ
B ; i.e., Γδ = ∪N

i=B,1γ
δ
i . We also

need the following subsets of Ωδ
i

• Γδ
i = Γδ ∩ Ωδ

i (local interface)

• Nδ
i = Ωδ

i \(∪j �=iΩ
δ
j ∪ Ωδ

B ∪ Γδ
i ) (non-overlapping region)

• Oδ
i = Ωδ

i \(Nδ
i ∪ Γδ

i ) (overlapping region)

In order to consider discontinuous coefficients for the scalar transmission problem, we
introduce the following notations. Let the interior local interface Γ0

i = Γδ
i ∩ Ωi be the part

of Γδ
i which is inside of substructure Ωi. We also introduce complementary local interface

Γc
i = Γδ

i \Γ
0
i . We note for later use that nodes on Γ

0
i ∩Γ

c
i also belong to ∂Ωi\∂Ω. We subdivide

the regions Oδ
i into subregions Oδ

ij = Oδ
i ∩ Ωj where the substructures Ωj are neighbors of

Ωi. We note that the coefficient ρ is constant inside each of the subregion Oδ
ij and Nδ

i .

4. Additive Overlapping Schwarz Methods. We next describe the PU coarse
spaces and introduce the corresponding overlapping additive Schwarz method and a hybrid
Schwarz method. We first consider the local problems.
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4.1. The Local Problems. We introduce local spaces as

V δ
i = V ∩ �H1

0 (Ωδ
i ) or (V δ

i = V ∩H1
0 (Ωδ

i )) i = 1, 2, · · · , N,

extended by zero to Ω\Ωδ
i . It is easy to verify that

V = V δ
1 + V δ

2 + · · ·+ V δ
N . (4.1)

The property (4.1) gives robustness for the preconditioners defined in this paper in the
sense that a convergence is always attained independently of the quality of the partitioning.
The coarse space is only introduced to accelerate the convergence of the iterative method.
This is an advantage over some iterative substructuring methods in which are based on the
requirement that all the substructures Ωi must be connected. We point out that the space
decomposition given by (4.1) is not a direct sum if δ > 1. This increases robustness for the
methods when the Ωi have rough (zigzag) boundaries. By extending the substructures to Ωδ

i ,
we allow the possibility of decomposing a function of V as a sum of functions of V δ

i without
the zigzag behavior. So it is possible to obtain low energy decompositions, and hence better
lower bounds for the condition number of the preconditioners.

We define the local projections (local problems) P δ
i : V → V δ

i as follows:

a(P δ
i u, v) = a(u, v), ∀v ∈ V δ

i . (4.2)

We next introduce the PU coarse space V δ
0 for the linear elasticity and for the transmission

problem.

4.2. Partition of Unity. We next construct a partition of unity θδ
i such that θδ

i ∈
V δ

i , 0 ≤ θδ
i (x) ≤ 1, |∇θδ

i (x)| ≤ C/(δh) in the interior of the elements, and
∑N

i=B,1 θδ
i ≡ 1.

Such construction is natural, algebraic and easy to implement. We first construct the function
θ̂δ

B ∈ V δ
i as follows. We let θ̂δ

B(x) = 1 for nodes x on ∂Ω. For the first layer of neighboring
nodes x of ∂Ω we let θ̂δ

B(x) = (δ − 1)/δ. For the second layer of neighboring nodes x of ∂Ω
we let θ̂δ

B(x) = (δ − 2)/δ, and recursively until k = δ − 1, we let θ̂δ
B(x) = (δ − k)/δ for the

(k)st layer of neighboring nodes x of ∂Ω. For the reminaing nodes x of Ω we let θ̂δ
B(x) = 0.

Similarly, for i = 1, · · · , N , we let θ̂δ
i (x) = 1 for nodes x of Ωi\Ωδ

B . For the first layer of
neighboring nodes x of Ωi\Ωδ

B we let θ̂δ
i (x) = (δ − 1)/δ, and recursively until k = δ − 1, we

let θ̂δ
i (x) = (δ− k)/δ for the (k)st layer of neighboring nodes x of Ωi\Ωδ

B . For the remaining
nodes x of Ω we let θ̂δ

i (x) = 0. It is easy to verify that 0 ≤ θ̂δ
i (x) ≤ 1, and for quasi-uniform

triangulation |∇θ̂δ
i (x)| ≤ C/(δh) in the interior of the elements. The partition of unity θδ

i is
defined as

θδ
i = Ih(

θ̂δ
i∑N

j=B,1 θ̂δ
j

).

Here Ih is the regular pointwise linear interpolation operator from the continuous functions
to piecewise linear and continuous functions. It is easy to verify that

∑N
i=B,1 θδ

i (x) = 1,

0 ≤ θδ
i (x) ≤ 1, and |∇θδ

i (x)| ≤ C/(δh), ∀x ∈ Ω.

4.3. PU Coarse Space for Linear Elasticity. We next consider the key ingre-
dient for designing the coarse space for linear elasticity: the local rigid body motions. We
let

�RM(Σ) = {v ∈ �L2(Σ) : v = c + b(x2,−x1)
t, c ∈ 2, b ∈ }

be the space of rigid body motions functions on Σ. An important property of the space
�RM(Σ), and which plays an important role in the design and analysis of the algorithms, is

described as follows. If v ∈ �RM(Σ) then aΣ(v, v) ≡ 0. In addition, in certain extent the
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converse is also true; if aΣ(v, v) ≡ 0 and Σ is connected, then v ∈ �RM(Σ). Here, the bilinear
form aΣ(·, ·) on �H1(Σ)× �H1(Σ) is given by

aΣ(u, v) =

∫
Σ

(2µE(u) : E(v) + λdiv(u) div(v)) dx.

A PU coarse space V δ
0 is defined as

V δ
0 = {

N∑
i=1

�Ih

(
�RM(Ωδ

i )θ
δ
i

)
} = {

N∑
i=1

�Ih

(
[ci + bi(x2,−x1)

t]θδ
i

)
, ∀ci ∈ 2, ∀bi ∈ }. (4.3)

Here, the interpolator �Ih = (Ih, Ih)t is the regular componentwise pointwise linear interpo-
lation operator. We note that we do not include the θδ

B in the sum of (4.3), and therefore
the number of degrees of freedom of V δ

0 is 3N . The function θδ
B is needed only to define the

others functions θδ
i , i = 1, · · · , N .

We define the global projection (global problem) P δ
0 : V → V δ

0 as follows:

a(P δ
0 u, v) = a(u, v), ∀v ∈ V δ

0 . (4.4)

4.4. PU Coarse Space for the Scalar Transmission Equation. The PU
coarse space V δ

0 for the transmission problem is defined as

V δ
0 = {

N∑
i=1

Ih(ciθ
δ
i ), ∀ci ∈ },

and the global projection P δ
0 by (4.4), where of course V and a(·, ·) are the ones related to

the transmission. We note here also as in the elasticity case, the constant functions ci are
the kernel of the operator aΩδ

i
(·, ·).

4.5. Enhanced PU Coarse Spaces. We can also make richer the coarse spaces
V δ

0 . We do this by redefining V δ
0 as

V δ
0 = {

N∑
i=1

�Ih

(
[ci + bi(x2,−x1)

t + fi(x)]θδ
i

)
, ∀ci ∈ 2, ∀bi ∈ , fi ∈ V E

i (Ωδ
i )},

for the finite elasticity problem, and

V δ
0 = {

N∑
i=1

Ih

(
[ci + fi(x)]θδ

i

)
, ∀ci ∈ , ∀fi ∈ V E

i }

for the scalar transmission problem. For each subdomain Ωδ
i , we let the space V E

i (Ωδ
i ) be

defined as the vector space generated by few lowest finite element eigenmodes associated to
operator aΩδ

i
(·, ·) without assuming Dirichlet boundary condition on ∂Ωδ

i . Another possibility

and also cheaper to construct is to choose V E
i (Ωδ

i ) as the vector space of polynomial functions
of small degrees.

4.6. Preconditioners. We consider two preconditioners:

• The two-level overlapping additive Schwarz operator [10] given by

P δ
as =

N∑
i=0

P δ
i ,

• The hybrid Schwarz operator [16, 13] given by

P δ
hyb = P δ

0 + (I − P δ
0 )(

N∑
i=1

P δ
i )(I − P δ

0 ).
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4.7. Condition Number. It is possible to show that the solution of (2.2) is the
solution of the preconditioned system P δ

asu = gas (P δ
hybu = ghyb), for an appropriate right

hand side gas (ghyb); see [13]. These preconditioned systems are typically solved by the
conjugate gradient method, without further preconditioning, using a(·, ·) as the inner product.
The preconditioned systems presented in this paper are applicable to any unstructured mesh
and partitioning. The notions of subdomains, the classification of the regions Oδ

i and Nδ
i and

the interfaces Γδ
i , etc., can all be defined in terms of the graph of the sparse matrix. The two

algorithms (preconditioners) will converge even if the substructures Ωi are not connected.
For the next theoretical result [19, 20], we assume that the substructures Ωi have nice aspect
ratios and are connected.

Theorem 4.1 There exists a constant C > 0 such that

• Linear Elasticity

κ(P δ
hyb) ≤ κ(P δ

as) ≤ C(1 + λ/µ)(1 +
H

δh
). (4.5)

• Transmission Problem

κ(P δ
hyb) ≤ κ(P δ

as) ≤ Cc(ρ)(1 +
H

δh
). (4.6)

The constant C does not depend on h, δ, H, λ, and µ. The constant c(ρ) ≤ C maxij
ρi
ρj

,

where the pairs ij run over all ij combinations such that Ωi ∩ Ωj �= ∅.

We note that the discretization considered in this paper gives satisfactory (second order
accurate) convergent finite element approximation to the elasticity problem when λ/µ is not
large. It can be shown [2, 3] that the a priori error estimate of this finite element method
deteriorates as λ � µ; this phenomenon is called locking effect or volume locking. We note
that the upper bound estimate of the preconditioners presented here also follows similar
patterns. Here also, we cannot remove the λ/µ dependence on the upper bound estimates
for the conditioning number of the preconditioned systems. To see this we use the following
arguments: If div(u) = 0 and λ is close to ∞, the only way to obtain a decomposition
stable with respect to λ is to have all the div(ui) = 0. However, it is easy to see that
div(u0) = 0 implies that u0 vanishes. Hence, there is no global communication and therefore
the condition number must have a H dependence on the upper bound estimation. Hence
fortunately, the preconditioners considered here in this paper are effective exactly when the
discretization is accurate. For incompressible (λ = ∞) or almost incompressible materials,
other discretizations based on hybrid or non-conforming finite elements approximations [2, 3]
are more appropriate and they will not be considered here.

For the transmission problem, the upper bound (4.6) is satisfactory if the jumps on the
coefficient ρ are moderate. Later in the paper we design better coarse spaces for highly
discontinuity in the coefficients.

5. AS Methods with Harmonic Overlap (ASHO). We next introduce the
PU coarse spaces for the ASHO methods.

5.1. Local Problems for the ASHO Methods. We define Ṽ δ
i as the subspace of

V δ
i consisting of functions that are discrete harmonic at all nodes interior to Oδ

i , i.e. u ∈ Ṽ δ
i ,

if for all nodes xk ∈ Oδ
i ,

a(u, φxk) = 0.

Here, φxk ∈ V is the regular componentwise finite element basis function associated with a
node xk.

We define Ṽ δ as a subspace of V defined as

Ṽ δ = Ṽ δ
1 + Ṽ δ

2 + · · ·+ Ṽ δ
N .
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We note that the above sum is not a direct sum and Ṽ δ
i ⊂ V δ

i . We define P̃ δ
i : Ṽ δ → Ṽ δ

i to
be the projection operators such that, for any u ∈ Ṽ δ

a(P̃ δ
i u, v) = a(u, v), ∀v ∈ Ṽ δ

i .

We next introduce a PU coarse space Ṽ δ
0 for the ASHO method.

5.2. A PU Coarse Space for ASHO Methods. For the finite elasticity, we
define the PU coarse space Ṽ δ

0 ⊂ Ṽ δ, by simply modifying the basis functions

ϕδ
i = �Ih

(
[ci + bi(x2,−x1)

t]θδ
i

)
or (ϕδ

i = ciθ
δ
i )

to ϕ̃δ
i . The ϕ̃δ

i are defined to be equal to the ϕδ
i except on Oδ

i . On Oδ
i we make the ϕ̃δ

i

discrete harmonic in the a(·, ·) inner product. The PU coarse space Ṽ δ
0 is defined as the linear

combination of the coarse basis functions ϕ̃δ
i , i = 1, · · · , N . We introduce P̃0 : Ṽ δ → Ṽ δ

0 as
the operator such that, for any u ∈ Ṽ δ,

a(P̃ δ
0 u, v) = a(u, v), ∀v ∈ Ṽ δ

0 . (5.1)

Then, the two-level additive and hybrid ASHO with the PU coarse problem P̃ δ
0 are defined

as

P̃ δ
as =

N∑
i=0

P̃ δ
i , and P̃ δ

hyb = P̃ δ
0 + (I − P̃ δ

0 )(

N∑
i=1

P̃ δ
i )(I − P̃ δ

0 ).

The following bounds can be obtained [19].

Theorem 5.1 On the space Ṽδ, we have

κ(P̃ δ
hyb) ≤ κ(P̃ δ

as) ≤ κ(P δ
as)

5.3. A Robust PU Coarse Space for ASHO Methods. We next construct
the coarse basis functions ϕ̃δ

i that make the ASHO methods robust with respect to the jumps
of the coefficients ρ.

We redefine ϕ̃δ
i ∈ Ṽ δ

i as follows. Nodes xk on (Γ0
i ∪ Nδ

i , we define ϕ̃δ
i (xk) = 1. Nodes

xk on Γc
i , we let ϕ̃δ

i (xk) = 0. A node xk on Γ
0
i ∩ Γ

c
i also belongs to the ∂Ωi\∂Ω. Hence, xk

belongs to Ωi and to some neighboring substructures Ωj and we define

ϕ̃δ
i (xk) =

ρβ
i

ρβ
i +

∑
j ρβ

j

,

where β ≥ 1/2. Nodes xk on Ω\Ωδ
i we let ϕ̃δ

i (xk) = 0. It remains only to define ϕ̃δ
i (xk) at

nodes in Oδ
i . There, we make ϕ̃δ

i to be discrete harmonic on the a(·, ·) inner product.

Theorem 5.2 On the space Ṽ δ we have

κ(P̃ δ
hyb) ≤ κ(P̃ δ

as) ≤ C

(
1 +

H

δh
+ log(

H

δh
) log(δ)

)
.

The constant C does not depend on h, δ, H, and ρ.

Proof. We here give a sketch of the proof. We define ϕ̂δ
i ∈ V δ

i as follows. Nodes xk on
Γ0

i ∪Nδ
i , we define ϕ̂δ

i (xk) = 1. Nodes xk on Γc
i , we let ϕ̂δ

i (xk) = 0. Nodes xk on ∂Ωi\∂Ω we
define

ϕ̂δ
i (xk) =

ρβ
i

ρβ
i +

∑
j ρβ

j

,
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where β ≥ 1/2, where the indices j �= i are the domains Ωj for which xk ∈ (∂Ωj\∂Ω). Nodes
xk on Ω\Ωδ

i we let ϕ̂δ
i (xk) = 0. It remains only to define ϕ̂δ

i (xk) at nodes on the Oδ
ij . There,

we make ϕ̂δ
i to be discrete harmonic.

There is an important distinction between the functions ϕ̂δ
i and ϕ̃δ

i . The function ϕ̂δ
i is

discrete harmonic on the regions Oδ
ij while the function ϕ̃δ

i is discrete harmonic (in the a(·, ·)
inner product) on the region Oδ

i . We note that in each region Oδ
ij , the coefficient ρ is constant

and therefore ϕ̂δ
i is discrete harmonic (in the H1-seminorm) on the regions Oδ

ij . Because ρ
is constant on the regions Oδ

ij we can borrow several previous results developed for RASHO
[6] and for elliptic problems with discontinuous coefficients [9, 17, 12, 18, 8] to obtain

κ(P̂as) ≤ C

(
1 +

H

δh
+ log(

H

δh
) log(δ)

)
,

where

P̂as = P̂ δ
0 +

N∑
i=1

P δ
i ,

and the global projection P̂ δ
0 : V → V̂ δ

0 is defined as

a(P̂ δ
0 u, v) = a(u, v), ∀v ∈ V̂ δ

0 .

Here, the coarse space V̂ δ
0 is the space generated by the coarse basis functions ϕ̂δ

i . Finaly,
we use similar arguments as in [20], where we use that a function on Ṽ δ

i has smaller or equal
a(·, ·) norm than a function on V δ

i with the same values on Γδ
i , to obtain

κ(P̃as) ≤ κ(P̂as).

6. Remarks about ASHO Methods. We next show that the explicit elimination
of the variables associated with the overlapping nodes is not needed in order to apply P̃ δ to
any given vector v ∈ Ṽ δ.

Lemma 6.1 For any u ∈ Ṽ δ, we have

P̃ δ
i u = P δ

i u, i = 1, · · · , N.

Proof. If u ∈ Ṽ δ then

a(P δ
i u, φxk) = a(u, φxk) = 0, ∀xk ∈ Oδ

i .

Hence, P δ
i u ∈ Ṽ δ

i . Here, φxk ∈ V δ
i are the regular basis functions associated to the nodes xk.

To complete the proof of the lemma, we just need to verify that

a(P δ
i u, v) = a(u, v), ∀v ∈ Ṽ δ

i . (6.1)

To verify (6.1), we use the definition of P δ
i (4.2) and that Ṽ δ

i is a subset of V δ.

We note that the solution u of (2.2) is not in the subspace Ṽ δ, therefore, the operators

P̃ δ
as and P̃ δ

hyb cannot be used to solve the linear system (2.2) directly. We will need to modify
the right-hand side of this system. A reformulated problem will be presented in Lemma 6.2
below. Using the matrix notations, the next lemma shows how to modify the system (2.2)

so that its solution belongs to Ṽ δ. Let Oδ = ∪iO
δ
i . Let W δ

O be the set of nodes associated
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to the degree of freedom of V δ in Oδ. We define the restriction operator, or a matrix, ROδ :
W → W as follows

(ROδv) (xk) =


vk if xk ∈ WOδ

0 otherwise.

The matrix representation of Rδ
O is given by a diagonal matrix with 1 for nodal points in the

interior of Oδ and zero for the remaining nodal points. We denote by A the matrix associated
to the problem (2.2). Using the restriction operator Rδ

O, we define the subdomain stiffness
matrix as

AOδ = ROδ A RT
Oδ ,

which can also be obtained by the discretization of the original finite element problem on Oδ

with zero Dirichlet data on ∂Oδ and extended by zero outside of Oδ. We remark that O is
a disconnected region where ∂O = Γδ

i ∪ ∂Ω. Therefore, AOδw = f can be solved locally and
inexpensively.

It is easy to see that the following lemma holds; see [6].

Lemma 6.2 Let u and f be the exact solution and the right-hand side of (2.2), and

w = RT
OδA+

OδROδf. (6.2)

Then ũ = u− w ∈ Ṽ δ and satisfies the following modified linear system of equations

Aũ∗ = f −Aw = f̃ .
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13. Algorithms and arteries: Multi-domain spectral/hp
methods for vascular flow modelling

S.J. Sherwin1 and J. Peiró2

1. Introduction. The growing interest in the mathematical and numerical modelling
of biomedical systems and, in particular, the human cardiovascular system is supported by the
numerous works which have appeared on the subject in recent years, for example [2, 9, 16, 21]
and the references therein. Traditionally there has been a strong focus on low dimensional
models [13]. However the association of vascular disease, such as atherosclerosis, with arterial
branching has promoted an interest in the application of computational fluid dynamics (CFD)
to vascular flow modelling. Nevertheless the nature of the flow presents a variety of challenges.
Firstly, the flow is pulsatile and in a Reynolds number regime where the viscous and inertial
effects are both significant. Secondly, the geometric characteristics of the vascular system are
very intricate. Finally, blood is a non-Newtonian fluid and arterial walls are distensible.

A particular focus of the CFD modelling has been to determine the wall shear stress
distribution of the unsteady flow at arterial junctions and bypass grafts. The sensitivity of
the wall shear stress to surface curvature therefore make the geometric representation an
important factor. The flows in and around regions of stagnation and separation are also
of physiological interest. In an incompressible flow we know that the normal derivative of
the wall normal flow is zero near the wall and therefore requires at least a second order
approximation to be resolved. Both these factors and the requirement to reproduce the
unsteady flow and its derivatives in complex geometries make high-order algorithms, such as
the unstructured spectral/hp element method, suitable from the point of view of attaining a
specified error at a lower computational cost. However the problem still poses many numerical
challenges which have motivated a range of developments in spectral/hp element methods
that we shall discuss in this review article.

Furthermore we cannot completely decouple the local branching flow at an arterial junc-
tion from the full vascular system. The flow waveform observed at a given location in the
vascular tree is the result of changes in sectional area of the compliant vessels to accom-
modate the incompressible flow of blood as it is pumped from the heart. Starting at the
heart, the arterial waves are propagated and reflected at each arterial branch [25] leading to
a complex waveform which changes at different locations. Although the wavelengths of these
waves are much larger than the length of local arterial branches, the flow waveform can be
altered by the presence of disease or surgical intervention. Therefore there is an inherent
need to include a multiscale modelling to the localised CFD as discussed in [16]. Within this
context, the application of simplified models has been shown to provide useful information
for practitioners at a reasonable computational cost [7].

In this paper we will briefly review three topics related to the application of spectral/hp
discretisation to vascular flow modelling. In section 2 we review the work in [19] and discuss
the one-dimensional full vascular tree modelling using one-dimensional equations. In section
3 we discuss the problem of generating high-order meshes to consistently model the arterial
geometries based on the work in [22, 14]. Finally in section 4 we overview a recent develop-
ment in elliptic preconditioning for unstructured model spectral/hp methods based on a low
energy numerical basis which relates to the work of [1, 18].

2. Reduced 1D modelling of the human circulation. In this section we focus
on the application of a one-dimensional model of blood flow in compliant vessels to study
wave propagation in the arterial tree as previously detail in [19].

1Department of Aeronautics, Imperial College, London, U.K., s.sherwin@ic.ac.uk
2Department of Aeronautics, Imperial College, London, U.K., j.peiro@ic.ac.uk



160 SHERWIN, PEIRO

A(x)

x

Figure 2.1: Simple compliant tube.

2.1. Governing equations. We consider a simple compliant tube, illustrated in
figure 2.1, as a model of the artery. Following Brook et al. [3] we write the system of
equations representing continuity of mass and momentum, for a ≤ x ≤ b and t > 0, as

∂U

∂t
+

∂F

∂x
(U ) =

∂

∂t

[
A
u

]
+

∂

∂x

 Au
u2

2
+

p

ρ

 =

[
0

−KRu

]
(2.1)

where the x is the axial direction, A = A(x, t) =
∫

S
dσ is the area of a cross section S,

ρ is the density of the blood which is taken to be constant, p is the internal pressure and
u(x, t) denotes the velocity of the fluid averaged across the section. The term KR is a strictly
positive quantity which represents the viscous resistance of the flow per unit length of tube.
The unknowns in this system are p, A and u. Their number exceeds the number of equations
and a common way to close the system is to explicitly provide an algebraic relationship
between the pressure of the vessel p and the vessel area A. For example, by assuming static
equilibrium in the radial direction of a cylindrical tube, one can derive a pressure relationship
of the form

p = pext + β(
√

A−
√

A0), (2.2)

where

β =

√
πh0E

(1− ν2)A0
.

Here h0 and A0 = A0(x) denote the vessel thickness and sectional area, respectively, at the
equilibrium state (p, u) = (pext, 0), E = E(x) is the Young modulus, pext is the external
pressure, assumed constant and ν is the Poisson ratio. This ratio is typically taken to be
ν = 1/2 since biological tissue is practically incompressible.

2.2. Discontinuous Galerkin method. The wave propagation speeds in the large
arteries are typically an order of magnitude higher than the average flow speeds. The char-
acteristic speed of the system is also inherently subcritical and does not produce shock under
physiological conditions. Therefore the numerical challenge is to propagate waves for many
periods without suffering from excessive dispersion and diffusion errors. If the solution re-
mains smooth then high-order methods are particularly attractive due to the fast convergence
of the phase and diffusion properties with order of the scheme [17].

Following the work of Cockburn and Shu [4] we initially consider the one-dimensional
hyperbolic system in conservative form (2.1) and assume that RK = 0. To solve this system
in a region Ω = [a, b] discretised into a mesh of Nel elemental non-overlapping regions Ωe =
[xl

e, x
u
e ], such that xu

e = xl
e+1 for e = 1, . . . , Nel. We then proceed by constructing the weak

form of (2.1), i.e. (
∂U

∂t
, ψ

)
Ω

+

(
∂F

∂x
, ψ

)
Ω

= 0 i = 1, 2 (2.3)

where (u,v)Ω =
∫
Ω

u v dx is the standard L2(Ω) inner product. Decomposing the integral
into elemental regions we obtain

Nel∑
e=1

[(
∂U

∂t
, ψ

)
Ωe

+

(
∂F

∂x
, ψ

)
Ωe

]
= 0. (2.4)
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Integrating the second term in (2.4) by parts leads to

Nel∑
e=1

(
∂U

∂t
, ψ

)
Ωe

−
(

F ,
dψ

dx

)
Ωe

+ [ψ · F ]
xu

e

xl
e

= 0 (2.5)

To form the discrete approximation of our problem we choose U to be in the finite space
of L2(Ω) functions which are polynomials of degree P on each element. Furthermore we
indicate an element of such space using the superscript δ. To attain a global solution in
the domain Ω we need to allow information to propagate between the elemental regions.
Information is propagated between elements by upwinding the boundary flux in the third
term of equation (2.5). Denoting the upwinded flux as F u, the discrete weak formulation
can now be written as

Nel∑
e=1

(
∂U δ

∂t
, ψδ

)
Ωe

−
(

F (U δ),
dψδ

dx

)
Ωe

+
[
ψδ · F u

]xu
e

xl
e

= 0, (2.6)

Following the traditional Galerkin approach, we choose the test function within each element
to be in the same discrete space as the numerical solution U δ. At this point if we defined
our polynomial basis and choose an appropriate quadrature rule we would now have a semi-
discrete scheme. However, from an implementation point of view, the calculation of the
second term can be inconvenient and consequently we choose to integrate this term by parts
once more to obtain

Nel∑
e=1

(
∂U δ

∂t
, ψδ

)
Ωe

+

(
∂F (U δ)

∂x
, ψδ

)
Ωe

+
[
ψδ · [F u − F (U δ)]

]xu
e

xl
e

= 0. (2.7)

We note that the information between elements is transmitted by the third boundary term

as the difference between the upwinded and the local fluxes,
[
ψδ · [F u − F (U δ)]

]xu
e

xl
e
.

To complete the discretisation we also require a time integration scheme and in the current
implementation we have adopted a second order Adams-Bashforth scheme. The upwind flux
is calculated using a straightforward upwinding of the characteristic variables as discussed in
[19]. This type of upwinding process is used to impose the characteristic boundary conditions
through the flux at the ends of the global domain Ω.

The 1D model of the compliant tube can be extended to handle the arterial tree by
imposing suitable interface conditions at the bifurcations or branching points of the tree.
At a bifurcation we have six degrees of freedom corresponding to the area and velocity
conditions within each vessel. Therefore we require six equations to determine a unique
solution. Applying the subsonic flow assumption we can determine the three characteristics
entering the junction providing three equations. Finally, continuity of mass flux and total
pressure at the bifurcation provide the three conditions required to close the system, see [19]
for details.

2.3. Simulation of wave propagation in the arterial network. We have
adopted the modifications proposed in [25] to the published models [26, 24] to compute the
pulsatile one-dimensional blood flow through the arterial system using the discontinuous
Galerkin method. The numerical values of the parameters of the arterial tree formed by the
55 main arteries is given in [19]. Figure 2.2 shows the connectivity of the arteries used in our
model of the arterial network. The flow in the 55 arteries is assumed initially to be at rest.
A periodic half sine wave is imposed as an input wave form at the ascending aorta (artery 1).
Figure 2.2 also shows the inflow boundary conditions imposed at the ascending aorta and the
time history graphs over a single cycle for three different arteries in the network: ascending
aorta (artery 1), femoral artery (artery 46) and anterior tibial (artery 49).
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Figure 2.2: Connectivity of the 55 main arteries in the human arterial system.

The inclusion of resistance in the terminal arteries increases the number of waves in the
system due to forward travelling waves being reflected at the terminal vessels and introduces
backward travelling waves which are re-reflected at the bifurcations, hence a complex pattern
of waves occurs in the network. Terminal resistance also creates regions of flow reversal due
to the reflected velocity wave and increases in area as a result of the re-enforcing effect of the
reflected pressure wave. It has also produced a waveform which includes a diacrotic notch
in the ascending aorta (artery 1). These results are qualitatively similar to what we would
expect to see from in-vivo measurements in the human body.

3. Geometric modelling of arterial branching. The ability to construct suit-
able computational meshes is currently a significant limiting factor in the development of
high-order algorithms in very complex geometries. In this section we will address the is-
sues encountered in applying the high-order finite element type approach to vascular flow
modelling as previously discussed in [22, 14].

3.1. Mesh generation of high-order elements. The extension of standard un-
structured mesh generation technology to high-order algorithms is a not trivial exercise.
Complications arise due to the conflicting requirements to generate coarse meshes whilst
maintaining good elemental properties in regions of high curvature. This is shown in figure
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3.1 where we illustrate the type of invalid elements which can arise.

VALID ELEMENT INVALID ELEMENT

(a) Linear elements (b) High-order elements

Figure 3.1: The subdivision of a valid mesh of linear elements (a) to generate a high-
order tetrahedral mesh (b) might lead to elemental regions with singular Jacobian
mappings.

In our approach, the generation of an unstructured mesh of high-order spectral/hp ele-
ments is accomplished through the subdivision of a coarse mesh of linear elements. Given
a surface representation in terms of cubic splines, the surface is initially discretised into a
coarse distribution of linear surface elements. The local topology of these linear elements is
influenced by the desire to include a boundary layer region or by taking into account surface
curvature as described in section 3.3. The mesh generation then proceeds in a manner consis-
tent with standard linear mesh generation process. Our current approach is based upon the
method of advancing layers described in [15] but alternative mesh generation techniques can
also be used. In this method the vertices of the original linear triangulation in the near-wall
regions are assigned a direction and new interior vertices are created in successive layers up
to a prescribed boundary layer thickness. These points are then linked to form a mesh of
tetrahedral or prismatic elements, known as the boundary layer mesh. The rest of the domain
is finally filled with a mesh of linear tetrahedra which, in our case, is generated by means of
the advancing front technique.

A high-order surface discretisation is generated by following a “bottom-up” procedure
where initially the triangular edges are discretised into P +1 points for a P th order polynomial
mesh. Subsequently the (P −3)(P −2)/2 points internal to the triangular faces are generated
to complete the polynomial representation. The high-order point generation is typically
performed in the parametric space of the surface splines which may have a non-isometric
mapping to the physical space. In order to optimise the high-order element point distribution,
a non-linear minimisation procedure is adopted, as discussed in [22], which generates the edge
and face points as geodesics of the surface with a view to minimising the variation in the
surface Jacobian.

3.2. Optimizing surface representation. To address the problem of obtaining
an optimal distribution of points, consider a quadrature with N integration points and as-
sociated normalised weights zi; i = 1, . . . , N (−1 ≤ zi ≤ 1) in a 1D interval a ≤ x ≤ b. It is
known that the optimal positions xi; i = 1, . . . , N of the points are given by

xi =
a

2
(1− zi) +

b

2
(1 + zi) i = 1, . . . , N. (3.1)

This leads to an isometric mapping and therefore a constant Jacobian. The extension to
elements with straight sides and faces is straightforward. However, a different strategy for
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curved edges and faces is required to account for the distortion introduced by surface curva-
ture.

A parametric surface is a mapping between a 2D parametric space and the 3D space.
Mesh generation is considerably simplified if performed in the parametric space. However,
approximating the element edges using the point distribution (3.1) along straight lines in the
parametric plane might lead to highly deformed or invalid elemental regions if the surface
mapping induces severe distortion.

An “optimal” point distribution can be obtained by recasting the problem as that of
minimising the potential energy of a set of springs linking adjacent points. It is easily shown
that the optimal distribution (3.1) is a minimum of the potential energy of such system of
springs given by

J (x2, ..., xN−1) =

N−1∑
i=1

(xi+1 − xi)
2

zi+1 − zi
=

N−1∑
i=1

δ2
i

zi+1 − zi
. (3.2)

This approach, unlike (3.1), is directly applicable to curved edge and faces on surfaces. A
more detailed description of the procedure could be consulted in [22].

The high-order surface definition implies that the elements adjacent to a deformed wall
will also have curved internal faces. These are constructed as a blend, consistent with the
spectral/hp element expansion, between the internal straight edges and the deformed surface
edge (see [11] for more details). In general, high-order elements allow for all internal face and
edges to be deformed which, as discussed in the work of Dey et al. [5], may be necessary in
very curved domains.

3.3. Curvature based mesh refinement for high-order elements. Mesh
refinement as a function of the curvature has been proposed by several authors [8, 12] as a
way to obtain an accurate piecewise linear approximation of a curved surface. In [22] we
have shown that the use of curvature based refinement enhances the quality of the high-order
meshes generated from linear tetrahedral and prismatic meshes. However, this criterion on
its own is not sufficient to guarantee validity of all high-order elements as it does not account
for the possible intersection of the boundary sides and faces with those on the interior. In
[14] we have proposed an alternative method more suitable for the discretisation of boundary
layers which we detail below.

A curve is locally approximated by a circle of radius R, the radius of curvature. We
assume that the mesh spacing can be represented by a chord of length c in the circle and a
spacing δ in the normal direction. In the modelling of viscous flows, the value of δ is usually
prescribed to achieve a certain boundary layer resolution. The value of c is therefore chosen
to guarantee that the osculating circle representing the curve does not intersect the interior
sides of the elements, i.e. θ ≥ 90o for the triangular element. The value of c, which should
be considered as a maximum mesh spacing, can now be obtained as a function of R and δ.
Its value ct for triangular elements is

ct ≤ R

√
2δ

R + δ
. (3.3)

The corresponding value cq for quadrilateral elements is

cq ≤
2Rδ

R + δ

√
1 +

2R

δ
, (3.4)

where the boundary displacement is assumed to be the same on either side of the rectangle.
It is interesting to notice that, for a given δ, the quadratic element allows for a mesh spacing
cq which is about twice the value of spacing ct for the triangular element.
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The extension of this method to surfaces is straightforward. The refinement criterion
given by formulas (3.3) and (3.4) is used for the two principal directions and the corresponding
mesh spacings, c1 and c2, are calculated from the values of the principal curvatures k1,2 =
1/R1,2.

An example of a hybrid mesh generated for the geometry previously considered in figure
3.1 and using the criterion (3.4), is shown in figure 3.2(a). This high-order mesh does not
contain singular elements. However, the refinement applied here does not account for the
sign of the surface curvature and the use of criterion (3.4) to ensure element validity is too
restrictive in those regions where the domain is locally convex. For a convex region, the less
restrictive criterion δ < R suffices to guarantee element validity. This is highlighted in figure
3.2(b) where the refinement criterion (3.4) has been selectively applied to concave regions
only. The result is a valid mesh with fewer elements.

(a) Curvature refinement (b) Selective refinement

Figure 3.2: Curvature based mesh refinement for prismatic elements: (a) Refinement
according to equation (3.4), (b) Refinement is applied to concave regions only.

As previously discussed our area of interest is the surgical intervention required when an
artery becomes blocked, typically due to vascular disease, and the blockage is circumvented
by an anastomosis. This procedure typically requires the construction of an alternative path
normally using an autologous vein. A high percentage of long term failures of arterial bypass
grafts are observed at the downstream, or distal, end of the bypass loop. Understanding the
nature of this failure has made the geometric features of the bypass junction a particular
focus of three-dimensional computational modelling. An example of a high-order mesh for
an anatomically realistic geometry is shown in figure 3.3. This mesh has 1624 prismatic
elements and 3545 tetrahedral elements. Also shown is the distribution of wall shear stresses
calculated using a fourth-order polynomial approximation.

4. Low energy preconditioning for spectral/hp discretisations. To solve
the fluid flow problem at arterial branches, as shown in figure 3.3 we have applied a three-
dimensional unstructured spectral/hp element solver [20] with a high order splitting scheme
of the Navier-Stokes equations [10]. The splitting scheme requires the solution of a Pressure
Poisson equation and three Helmholtz problems. The iterative inversion of the discrete elliptic
problems is currently the limiting factor in computational speed.

Building on the work of Bica [1], we have developed an efficient preconditioning strategy
for substructured solvers based on a transformation of the closed form expansion basis to a
“low energy” basis [18]. Following this approach, the strong coupling in the matrix system
between two different degrees of freedom of the original basis is significantly reduced by
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High−order mesh

CFD surface shear stresses

GRAFT

OCCLUDED

FLOW

HOST VESSEL

Figure 3.3: High-order mesh and distribution of surface shear stresses obtained using
a fourth-order polynomial approximation in the spectral/hp CFD solver. The values
of the shear stress have been normalized so that the inflow wall shear stress (Hagen-
Poiseuille flow) is 1.

introducing a degree of orthogonality between degrees of freedom. The transformed matrix
system is then amenable to block diagonal preconditioning.

The efficiency of the preconditioner is maintained by developing a new low energy basis
on a symmetric reference element and ignoring, in the preconditioning step, the role of the
Jacobian of the mapping from the reference to a global element. By applying an additive
Schwarz block preconditioner to the low energy basis combined with a coarse space linear
vertex solver we have observed up to six fold reductions in execution time for our complex
geometry Navier-Stokes solver.

4.1. Overview. In this section we outline the key concepts behind the preconditioner.
Full details of the formulation can be found in [18]. A representative elliptic boundary value
problem is

∇2u(x, y, z) + λu(x, y, z) = f(x, y, z) (4.1)

which is discretised into spectral/hp elements by decomposing the solution domain into non-
overlapping subdomains within which a polynomial expansion is applied [11]. The Galerkin
formulation of equation (4.1) leads us to a matrix problem of the form

Hû = f

where H is the weak Helmholtz operator, f is the inner product of the forcing term and û
represent the expansion coefficients of the original closed form basis. In a spectral/hp element
approach the expansion basis is normally decomposed into interior and boundary modes
where the interior modes have zero support on the element boundaries and the boundary
modes make the expansion complete. Such a decomposition lends itself to substructuring
[23] where we construct the boundary degrees of freedom Schur complement S of H . This is
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essentially an orthogonalisation of the boundary degrees of freedom from the interior degrees
of freedom and may also be considered as a basis transformation. This is attractive because it
leaves a block diagonal matrix corresponding to the interior modes which is easily invertible.
At this stage we still need to invert the positive definite Schur Complement S and this can
be achieved using a preconditioned conjugate gradient technique.

(a) (b)

Figure 4.1: Projected mode shape of vertex 4 (a) original and (b) low energy basis.
The polynomial order was P = 5.

The choice of the preconditioner therefore defines the efficiency of the numerical algo-
rithm. For two-dimensional hierarchical spectral/hp type discretisations the block diagonal
preconditioner proposed by Dryja et al [6] leads to the attractive property of polylogarithmic
conditioning. However for a three-dimensional hierarchical expansion this approach is not so
effective [1, 18]. A significant factor is the coupling between the face expansions modes (i.e.
the modes which have zero support on all edges and vertices) with the “wire-basket” space
containing expansion modes which have support along the edges and at the vertices. The low
energy preconditioning strategy transforms the original closed form bases to a numerically
defined basis which decouples the degrees of freedom associated with each face from the ver-
tex and edge degrees of freedom. In doing so the new basis has low energy in the sense that
the inner product in the bilinear energy norm of two boundary modes is small or at least
significantly reduced.

The formal details of transforming the basis are dealt with in [18]. However to illustrate
the concepts we consider the shape of a vertex mode in the original and low energy basis at
a polynomial order of P = 5 as shown in figure 4.1. The closed form original vertex mode
is identical to the standard linear finite element mode and it can be appreciated that the
energy associated with the inner product of this mode with any other mode in the energy
norm will be reasonably high due to its high magnitude throughout the subdomain. Not too
surprisingly, the shape of the low energy vertex modes decays rapid away from the vertex
where it is required to have the same magnitude as the original basis. The rapid decay is
consistent with the concept of low energy in the energy norms.

From an implementation point of view the numerical orthogonalisation of each of the face
boundary modes from the wire-basket modes would be as difficult as inverting the full matrix.
Nevertheless the important feature of the low energy basis can be captured by defining the
new basis on a rotationally symmetric region. This inherently ignores the mapping from the
symmetric region to the local element within the computational domain but maintains the
computational efficiency of the standard implementation.
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(a)

S1 =

(b)

S2 =

Figure 4.2: Scatter plot of Schur complement matrices of a P = 5 polynomial expan-
sion: (a) Original basis (b) Low energy basis (scaled by a factor of 4).

We conclude the summary by considering a scatter plot of the Schur complement systems
arising from the original and low energy basis disretisation of a Poisson equation as shown
in figure 4.2. In this figure the boundary modes were ordered so that the vertex modes were
followed by the edges modes which, in turn, were followed by the face boundary modes. From
this plot we see that original basis has a high magnitude/energy in the vertex modes even in
the off-diagonal component. There is also a significant energy between the edges and vertices.
Furthermore, we see that the coupling between the face and wire-basket modes is larger than
the coupling between the face modes with themselves. The low energy basis on the other
hand has a more diagonally dominated structure which makes it suitable for block diagonal
preconditioning.

4.2. Result. Tests of regular elements [18], where the effect of ignoring the mapping
of the elements is not significant, have demonstrated that a polylogarithmic scaling of the
condition number is recovered when using the low energy basis preconditioner.

In figure 4.3(a) we shown a geometrically complex computational domain of practical
interest. This problems originated from the reconstruction of the downstream junction of
a porcine arterial bypass [14]. The domain consists of an unstructured triangular surface
discretisation from which prismatic elements are constructed by extruding the triangular
surface elements in the surface normal direction. The interior region is then discretised using
tetrahedral subdomains. The discretisation shown in figure 4.3 consists of 749 prismatic and
1720 tetrahedral elements.

In this domain, we have solved a Poisson equation with Dirichlet boundary conditions
corresponding to the solution u(x, y, z) = sin x sin y sin z. The condition number of the diag-
onal and low energy preconditioned systems are shown in figure 4.3(b). This improvement in
the condition number also reflected in the speed up of the back solve of the low energy pre-
conditioner over the diagonal preconditioner. We have observed speed-ups of approximately
6 at a polynomial order of P = 8 and the break-even polynomial order was approximately
P = 3.
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Figure 4.3: (a) Hybrid domain of a downstream arterial bypass graft. (b) Condition
number as a function of polynomial order of the diagonal and low energy basis for a
Poisson problem.
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14. Wave Propagation Analysis of Multigrid Methods for
Convection Dominated Problems

W.L. Wan1, T.F. Chan2,

1. Introduction. The basic multigrid principle is that the smoother damps the os-
cillatory high frequency errors whereas the coarse grid correction reduces the smooth low
frequency errors. However, this principle may not hold for convection dominated problems
since the success of the standard techniques often rely on the intrinsic properties of elliptic
PDEs, for instance, symmetry and positive definiteness, which are not generally true for
convection dominated problems.

Several smoothing techniques have been proposed for convection dominated problems.
One approach is to apply Gauss-Seidel with the so-called downwind ordering [3, 1, 6, 11,
16]. The idea is that the linear system given by the upwind discretization can be well-
approximated by the lower triangular part if the unknowns are ordered according to the flow
direction. Another approach is to use time-stepping methods as smoothers [7, 8, 10, 13]. The
idea is that this class of smoothers do not just reduce the high frequency errors, but more
importantly, also propagate the errors along the flow directions. Thus, the multigrid process
can be interpreted as speeding up the error propagation by taking larger time step sizes on
the coarse grids.

To analyze the efficiency of multigrid methods, one must then take into account the wave
propagation property. In the classical Fourier-based analysis of multigrid methods [17], only
the magnitude of the Fourier error components are considered, thus ignoring completely the
phase angles which account for the wave propagation [15]. Gustafsson and Lötstedt [4, 12]
first analyze the phase speed of this multigrid approach, and prove that a speedup of 2K − 1
is obtained using K grids for smooth errors. In this paper, we present a more refined phase
velocity analysis which is able to explain the dispersive behavior of multigrid process that
turns out to have significant influence on the convergence rate.

Phase velocity analysis is not just useful for analyzing the wave propagation multigrid
approach but also applicable to explain the efficiency of other coarse grid correction methods
as well. One common coarse grid correction approach is to use the discretization matrices
as the coarse grid operators together with an exact coarse grid solve. It has been shown by
Brandt and Yavneh [3] that the resulting coarse grid correction is not accurate for the Fourier
components in the characteristic direction. Our phase velocity analysis not only recovers
the same result, but also proves that coarse grid correction is only first order accurate for
components in the cross-characteristic direction due to the phase shift error caused by the
discretization coarse grid operators. Another approach is to use Galerkin coarsening [14, 19].
It turns out that its phase error is minimal, resulting in more accurate coarse grid correction.

In Section 3, explicit analytic formulae for the asymptotic expansion of the phase velocity
of the different coarse grid correction approaches are established in one dimension. In Section
4, similar results in two dimensions are presented with the emphasis on Fourier components
in the characteristic and cross characteristic directions. Numerical results are given in Sec-
tion 5 to compare how these coarse grid correction approaches affect the actual multigrid
convergence. Finally, concluding remarks are given in Section 6.

2. Model problem. The model problem we are interested in is the steady state
solution of the convection-diffusion equation:

ut − ε∆u + w · ∇u = f x ∈ Ω,

1University of Waterloo, jwlwan@math.uwaterloo.ca
2University of California, Los Angeles, chan@math.ucla.edu
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subject to appropriate boundary conditions, and Ω is a d-dimensional unit cube. Here, we
assume ε � 1 and hence the equation is convection dominated. Discretizing the equation by
finite difference methods on a standard uniform fine grid Ωh with mesh size h results in a
linear system

Lhuh = fh.

We consider solving the discrete problem using K grids, {Ωl}K−1
l=0 .

For pure hyperbolic equations, it is well-known that dissipation and dispersion are two
fundamental quantities for analyzing numerical methods. Consider the 1D wave equation

ut + aux = 0. (2.1)

Given a finite difference scheme, suppose the Fourier transform of the numerical solution at
time step n + 1 can be written as

ûn+1(µ) = g(µ)ûn(µ),

where g(µ) is the amplification factor. The scheme is dissipative if |g(µ)| < 1, and it is
dispersive if the phase speed [15], κ(µ), defined as,

κ(µ) ≡ −arg(g(µ))

µπ∆t
,

is different for different Fourier modes µ.

Thus, the classical multigrid analysis using Fourier analysis is deemed to be inadequate
since it only considers the dissipation property. To give a more precise account of the wave
propagation property of multigrid V-cycles, Gustafsson and Lötstedt [4, 12] analyzed the
phase velocity of a two-grid iteration matrix M . Let M̂ be its Fourier transform. It is
well-known [5, 17] that M̂ is block diagonal with 2×2 subblocks M̂µ where µ = 0, . . . , N −1.

Theorem 2.1 Let λ1 be the first eigenvalue of M̂µ. For frequency µ ≈ 0,

λ1(µ) = 1− (∆th + ∆tH)iµπ + O(µ2).

Consequently, the phase velocity of a two-grid method is

κ(µ) = −arg(λ1(µ))

µπ∆th
= 1 +

∆tH

∆th
= 3.

The result can be generalized to K-level multigrid, in which case, κ(µ) = 2K − 1.

We remark that their analysis focuses primarily on the leading order terms of the asymp-
totic expansion of λ1. If the initial wave consists of nonnegligible higher frequency modes,
the effective speed of wave propagation is much slower than the analysis predicts. Figure 2.1
shows the propagation of a square wave by a three-level multigrid V-cycle on a grid with 128
grid points. It should have converged in 128/(23 − 1) ≈ 36 iterations; but instead, it takes
more than 100 iterations due to numerical oscillations generated.

In the next section, we give a more detail analysis to explain the oscillation phenomenon.
Furthermore, we consider two other coarse grid correction approaches and study their phase
error behaviors for convection dominated problems in one and two dimensions. For all these
approaches, we show that the convergence behavior of multigrid can be precisely described
by the phase velocity analysis of the coarse grid correction matrix.
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Figure 2.1: The numerical solutions given by a 3-level multigrid V-cycle at (a) iteration
= 0, (b) iteration = 20, (c) iteration = 40, (d) iteration = 60.

3. One dimension. We start with 1D in which explicit formulae for the asymptotic
expansion of the phase velocity can be established. The model problem becomes (assume ε
is negligibly small):

ux = f(x) − 1 < x < 1,

with periodic boundary condition: u(−1) = u(1). Without loss of generosity, we assume
that fh ≡ 0. Thus, we are interested in how the iteration error converges to zero. We shall
consider three types of coarse grid correction approaches commonly used in the literature.

3.1. Inexact coarse grid correction. The coarse grid problem is solved inexactly
by a few smoothing steps and the coarse grid operator is obtained by direct discretization.
This is also the same approach considered by Gustafsson and Lötstedt [4], and others [7, 13].
Here, we extend the phase velocity analysis of Gustafsson and Lötstedt to include also the
first correction term in the asymptotic expansions.

In a two-grid method consists of one pre-smoothing (one step of m-stage Runge-Kutta on
the fine grid) followed by the coarse grid correction (one step of m-stage of Runge-Kutta on
the coarse grid), the iteration matrix M of the two-grid method can be written as M = CS,
where the coarse grid correction matrix C and smoothing matrix S are

C = I +

m∑
j=1

∆tj
H p (LH)j−1

m∏
k=m−j+1

(−αk)rLh

S = I +
m∑

j=1

∆tj
h (Lh)j

m∏
k=m−j+1

(−αk),

where p is the linear interpolation and r = 1
2
pT its transpose.

Let M̂ = ĈŜ be the Fourier transform of M . In two-grid analysis, it is customary to
reorder the rows and columns of M̂ (Ĉ, Ŝ) such that the low and high frequency modes are
paired up; see [5, 17] for details. As a result, M̂ (Ĉ, Ŝ) is block diagonal with 2×2 subblocks,
M̂µ, indexed by the wave numbers: µ = −N/2, . . . , N/2− 1 corresponding to smooth or less
oscillatory waves.

For easy exposition, we assume m = 1, and the coarse grid time step size, ∆tH = λH.
Then the coarse grid correction matrix can be simplified as:

C = I − λHprLh,

Hence, the 2× 2 subblocks of the Fourier transform of C are given by

Ĉµ = I − λHp̂µr̂µL̂h
µ (3.1)

= I − λH

[
c2

µ

−s2
µ

] [
c2

µ −s2
µ

] 1

h

[
1− e−µπhi 0

0 1 + e−µπhi

]
.
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Since the high frequency errors have been reduced by the smoothing process, we are more
interested in the ”low-low” interaction, i.e. how the smooth waves are changed by the coarse
grid correction. Hence, we focus just on the (1,1) entry of Ĉµ. By (3.1),

Ĉµ(1, 1) = 1− 2λc4
µ(1− e−µπhi) ≡ |Ĉµ(1, 1)|e−iκ(µ)µπhλ.

Here is our result on the dispersion of Ĉµ(1, 1) which is not considered explicitly by Gustafsson
and Lötstedt [4, 12].

Theorem 3.1 The dissipation and phase velocity of Ĉµ are given, respectively, by

|Ĉµ(1, 1)| ≤ 1 if and only if 0 < λ ≤ 1

2
,

κ(µ) = 2 +
8λ− 15

12
(µπh)2 + O(µπh)4.

Proof. Express Ĉµ(1, 1) in terms of sµ ≡ sin(µπh) and cµ ≡ cos(µπh), and use the Taylor
expansions of sµ, cµ and arctan.

Remarks: (1) The coarse grid correction is dissipative. Moreover, the CFL condition
on λ is more restrictive than the standard upwinding. (2) While the leading order term
indicates propagation speed of 2 on the coarse grid, the negative second term shows that it
is dispersive, which accounts for the oscillations observed in Figure 2.1.

Based on our more refined phase velocity analysis, convergence will be slowed down
by oscillations unless the the smoother is extremely effective in damping most of the high
frequency modes, for instance, by the use of artificial viscosity [13], or modified Runge-
Kutta methods [7]. Otherwise, a fundamental change in the algorithm is needed to obtain a
nonoscillatory multigrid method [9].

3.2. Exact coarse grid correction. In the second coarse grid correction approach,
we consider exact coarse grid solve instead. Thus the coarse grid correction matrix becomes:

C = I − p(LH)−1rLh.

As in the previous approach, we are interested in the low-low interaction, i.e. the (1,1) entry
of Ĉµ.

Theorem 3.2 The coarse grid correction of smooth waves given by the exact coarse grid
solve together with linear interpolation is only first order accurate, i.e.

|Ĉµ(1, 1)| = µπh

2
+ O(µπh)2.

Proof. By direct calculation,

Ĉµ(1, 1) = 1− c3
µeµπhi/2,

and the result follows by Taylor expansion.

In the expression of Ĉµ(1, 1), the second term shows that after the coarse grid solve, the
error is damped by c3

µ, and more importantly, it has a phase error of µπh/2, implying that
the coarse grid error is shifted precisely by 1/2 grid point (to the left). This shift arises from
the discretization of the first order PDE on two different mesh sizes and consequently, leads
to only first order accuracy in the coarse grid correction.
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3.3. Galerkin coarse grid correction. Thirdly, we consider the use of Galerkin
approach to form the coarse grid correction operator

GH = rLhp,

together with exact coarse grid solve. Then, the Fourier transform of C is given by

Ĉµ = I − p̂(ĜH
µ )−1r̂L̂h.

Theorem 3.3 The coarse grid correction of smooth waves given by the exact coarse grid
solve together with Galerkin coarse grid operator is third order accurate, i.e.

|Ĉµ(1, 1)| = 1

8
(µπh)3 + O(µπh)5.

Proof. Using the above formula, we obtain Ĉµ(1, 1) = (s3
µ − ic3

µ)s3
µ/(c6

µ + s6
µ). By Taylor

expansion, we have

|Ĉµ(1, 1)| = s3
µ√

c6
µ + s6

µ

=
1

8
(µπh)3 + O(µπh)5.

By a similar argument as before, it is easy to see from the expression of Ĉµ(1, 1) that
the phase error = O(µπh)3, which is negligibly small, and hence the coarse grid correction
is much more accurate.

4. Two dimensions. The phase velocity analysis of Section 3.1 can be extended to
2D. Consider the convection dominated problem on a unit square:

−ε∆u + a(x, y)ux + b(x, y)uy = f x ∈ Ω = (−1, 1)× (−1, 1),

with periodic boundary condition. In particular, we focus on two model problems:

(1) Entering flow (constant coefficient):

a(x, y) ≡ a, b(x, y) ≡ b.

(2) Recirculating flow (variable coefficient):

a(x, y) = 4x(x− 1)(1− 2y), b(x, y) = −4y(y − 1)(1− 2x).

We discretize the equation using the first order upwind scheme for the convection terms
and center differencing for the Laplacian [3]. Our primary focus is on the limit ε → 0. We
remark that some of the proves of the results in this section are similar to the 1D case and
hence they are omitted.

4.1. Inexact coarse grid correction. The Fourier transform of the coarse grid
correction matrix C is given by

Ĉµ,ν = I − λHp̂µ,ν r̂µ,νL̂h
µ,ν .

where p is bilinear interpolation and r is full-weighting restriction. The (1,1) entry of Ĉµ,ν

is then given by

Ĉµ,ν(1, 1) = 1− 2λhc4
µc4

ν [
a

h
(1− e−µπhi) +

b

h
(1− e−νπhi)].

To get more insight into the formula of Ĉµ,ν(1, 1), we consider the special case where a = b = 1
and frequencies in the characteristic direction, i.e. ν = µ.
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Theorem 4.1 Assume a = b = 1. In the characteristic direction, i.e. ν = µ, the coarse grid
correction is dissipative for 0 < λ ≤ 1/4, and dispersive, i.e.

|Ĉµ(1, 1)| ≤ 1 if and only if 0 < λ ≤ 1

4
,

κ(µ) = 2 + (2λ− 9

4
)(µπh)2 + O(µπh)4.

Remark: the 2D approach is also dispersive, consistent with the 1D result.
As an example, we solve the model entering flow problem by multigrid, and snap shots

of the errors in the first 15 V-cycles are shown in Figure 4.1. The mesh size is h = 1/32,
and λ = 0.25. We observe that oscillations are generated at the tail as the square wave
propagates from (-1,-1) to (1,1), which is justified by our phase velocity analysis. For the
recirculating flow problem, Fourier analysis is not feasible, and yet we still observe a similar
wave propagation phenomenon as in the entering flow problem.
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Figure 4.1: Numerical solutions given by a 3-level multigrid for (top row) the entering
flow problem, and (bottom row) recirculating flow problem at iteration = 0, 5, 10, 15.

4.2. Exact coarse grid correction. With exact coarse grid correction and direct
discretization for the coarse grid operator, the Fourier transform of the coarse grid correction
matrix is

Ĉµ,ν = I − p̂µ,ν(L̂H
µ,ν)−1r̂µ,νL̂h

µ,ν .

Therefore,

Ĉµ,ν(1, 1) = 1− c4
µc4

ν

a
h
(1− e−µπhi) + b

h
(1− e−νπhi)

a
2h

(1− e−µπ2hi) + b
2h

(1− e−νπ2hi)
.

To facilitate understanding, we consider two special and yet important cases: frequency
components in the characteristic direction, i.e. (µ, ν) such that

bµ− aν = 0,

and, cross-characteristic direction [2, 3, 18], i.e. (µ, ν) such that

aµ + bν = 0.
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Theorem 4.2 For the components in the characteristic direction and assuming a = b,

|Ĉµ,ν(1, 1)| = µπh

2
+ O(µπh)2.

For the components in the cross-characteristic direction and general a, b,

lim
µ→0

Ĉµ,ν(1, 1) =
1

2
.

In particular, for a = b, then Ĉµ,ν(1, 1) = 1− c6
µ/2.

Proof. In the characteristic direction, and a = b, then

Ĉµ,ν(1, 1) = 1− c7
µe

µπhi
2 ,

and hence

|Ĉµ,ν(1, 1)| = µπh

2
+ O(µπh)2.

In the cross-characteristic direction, results follows from l’Hospital’s rule.

We note that our analysis for the cross-characteristic direction is consistent with the result
of Brandt and Yavneh [3] in which they consider the special case b = 0, and they point out
that the coarse grid error is not a good approximation to the fine grid error for components
in the cross-characteristic directions.

However, in both [3, 18], phase errors are not discussed. In the characteristic direction,

the magnitude of the coarse grid error is in fact accurate: |c7
µe

µπhi
2 | = c7

µ, but it has a phase
error of µπh/2, just like the 1D case. Qualitatively speaking, the coarse grid error is shifted
by h/2 in the characteristic direction, leading to the first order accuracy of Ĉµ,ν(1, 1).
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Figure 4.2: Contour plots of the fine grid error (dashed line) and the interpolated
coarse grid error (solid line) for (a) the entering flow (exact coarse grid solve), (b) the
recirculating flow (exact coarse grid solve), (c) the entering flow (Galerkin), (d) the
recirculating flow (Galerkin).

Figure 4.2(a) and (b) show the contour plots of the fine grid error (dashed line) and
the interpolated coarse grid error (solid line) for the entering flow and recirculating flow,
respectively. Both results agree with the phase analysis that the interpolated coarse grid
errors are shifted behind the directions of the flow.
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4.3. Galerkin coarse grid correction. The Fourier transform is given by

Ĉµ,ν = I − p̂µ,ν(r̂µ,νL̂h
µ,ν p̂µ,nu)−1r̂µ,νL̂h

µ,ν .

We again consider the characteristic and cross-characteristic components.

Theorem 4.3 For the components in the characteristic direction and assuming a = b,

|Ĉµ,ν(1, 1)| = (µπh)3

8
+ O(µπh)5.

For the components in the cross-characteristic direction and general a, b,

lim
µ→0

Ĉµ,ν(1, 1) = 0.

In particular, if a = b, then

|Ĉµ,ν(1, 1)| = (µπh)2

4
+ O(µπh)4.

In the Galerkin approach, the phase error in both directions is negligibly small as opposed
to the exact coarse grid correction approach; see Figure 4.2(c) and (d). As a result, the coarse
grid correction is second and third order accurate in the characteristic and cross-characteristic
components, respectively.

5. Numerical results. In practice, the inexact coarse grid approach is appealing
since it is simple and the same smoothing method can be used on all the coarse grids.
However, such coarse grid correction is dispersive and oscillations generated delay multigrid
convergence. In the exact coarse grid correction approach, the same smoothing method can
also be used on all the coarse grids. Moreover, with exact coarse grid solve, the dispersive
effect is much improved. However, the coarse grid correction is only first order accurate due
to phase error, resulting in slower convergence. For the Galerkin approach, the coarse grid
correction is more accurate, and hence the resulting multigrid convergence should be like the
elliptic case.

We note that although our analysis suggests that the Galerkin approach has the least
phase error, in practice, however, there are several drawbacks. It has been observed that
the Galerkin coarse grid operator on the coarse grids become more and more like the central
finite difference discretization. Operator-dependent interpolations may be needed to remedy
the problems [19]. Another issue is extra storage for the coarse grid operators.

In the following, we compare the effects on the convergence of multigrid V-cycle by the
inexact, nonGalerkin and Galerkin coarse grid correction approaches. The first example is
the steady state solution of the one-dimensional linear wave equation:

ut + ux = 0.

First order Runge-Kutta method is used as the smoother for all the approaches with CFL
number λ = 0.5. Linear interpolation and full weighting restriction are used between grids.
The multigrid V-cycle iterations stop when the relative residual norm is less than 10−6.

The number of multigrid V-cycles are shown in Table 5.1. To verify the results of the
previous sections, we use two multigrid levels and consider a smooth initial guess and a square
wave initial guess (in parenthesis). The results show that the number of multigrid V-cycles
taken by the inexact coarse grid correction increases as mesh size decreases; thus we do not
observe the classical mesh-independent convergence. Moreover, the convergence is slow due
to the dispersion. Both exact and Galerkin coarse grid correction approaches, which use
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h Inexact Exact Galerkin
1/32 35 (31) 14 (13) 11 (8)
1/64 52 (44) 14 ( 9) 12 (5)
1/128 83 (73) 14 ( 6) 12 (3)
1/256 144 (141) 14 ( 5) 12 (3)

Table 5.1: Number of two-grid V-cycles for the 1D linear wave equation using inexact,
exact, and Galerkin coarse grid corrections.

Inexact Exact
h 2 3 4 5 6 2 3 4 5 6

1/32 31 35 39 13 25 34
1/64 44 43 45 51 9 22 37 46
1/128 73 52 58 61 61 6 13 31 49 55
1/256 141 83 64 72 72 5 9 19 40 59

Table 5.2: Number of multigrid V-cycles for the 1D linear wave equation using inexact
and exact coarse grid corrections.

exact coarse grid solve, show much better convergence. Because of the shifting of the coarse
grid error, the exact approach is not as efficient as the Galerkin approach.

In Table 5.2, it shows the multilevel results of the inexact and nonGalerkin coarse grid
correction approach. The Galerkin approach requires different smoothing parameters on the
coarse grids and hence it is not tested in this case. For the inexact coarse grid correction
approach, the convergence should, in principle, have been improved by using more coarse
grids based on the result of Gustafsson and Lötstedt (cf. Theorem 2.1). It is true when the
mesh size is very small (h = 1/256) and hence the small wave number components are more
dominant in the initial guess. But when the coarse grid gets smaller, the convergence starts
to deteriorate. For the exact coarse grid correction approach, the multigrid convergence also
starts to deteriorate on the coarser grids due to the phase shift of the coarse grid errors which
is more serious with larger mesh size.

h Inexact Exact Galerkin
1/32 28 (29) 13 (14) 7 (7)
1/64 41 (45) 13 (14) 5 (8)
1/128 70 (77) 11 (14) 5 (9)

Table 5.3: Number of two-grid V-cycles for the 2D entering flow problem using inexact,
exact, and Galerkin coarse grid corrections.

We next consider the model entering flow and recirculating flow problems in two di-
mensions (cf. Section 4). Similar multigrid setting as in the one-dimensional case: Euler’s
smoothing, linear interpolation and full weighting restriction. Since the CFL number λ = 0.25
in two dimension, we use 2 presmoothing and postsmoothing steps instead.

The two-grid results are shown in Table 5.3 with a smooth initial guess and a square wave
initial guess (in parenthesis). As in the 1D case, the multigrid convergence of the inexact
coarse grid solve depends on the mesh size whereas the other two do not. Also, the Galerkin
approach is more efficient than the exact coarse grid correction approach.
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6. Conclusions. We have demonstrated that phase velocity analysis is a useful tool
to analyze multigrid methods for convection dominated problems, and brings more insight
into the efficiency of different coarse grid correction approaches.

For inexact coarse grid correction, the propagation of smooth waves is accelerated by using
coarse grids. However, dispersion occurs in the coarse grid correction process which slows
down substantially the multigrid convergence. The exact coarse grid correction approach
does not rely on wave propagation and hence dispersion is not an issue. However, due to
the use of the discretization matrix as the coarse grid operator, there is a phase error in the
coarse grid solve which deteriorates the multigrid convergence. The Galerkin approach has
the advantage of maintaining small phase shift error in the coarse grid correction. However,
one needs to form the coarse grid operators on every grids, and hence to determine new sets
of parameters, e.g. time-step size, for the smoother to obtain good smoothing efficiency.

We have addressed the issue of phase velocity analysis of multigrid methods for convection
dominated problems. However, the design of new multigrid methods which possess good
phase velocity property requires further investigation.
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L. H. Juárez1, R. Glowinski2

1. Introduction. Lagrange Multiplier/Fictitious Domain Methods have proved to be
effective in the direct numerical simulation of the motion of rigid bodies in incompressible
viscous fluids [7]. In this work we discuss the application of this methodology, combined
with finite element approximations and operator splitting, to the numerical simulation of the
motion of pendula in a Newtonian incompressible viscous fluid. The pendula are circular
cylinders constrained to move in a circular trajectory. The motion of the cylinders are driven
only by the hydrodynamical forces and gravity.

In the present calculations we allowed solid surfaces to touch and penetrate, contrary
to what was done in previous work where these methods were applied [7]. In fact, a good
feature of this methodology is that the numerical solution does not break down when the
rigid bodies overlap. On the other hand, numerical methods in which the computational
domain is remeshed may break down when collision occurs, because this would break the
lattice modeling of the fluid [8]. Hence a repulsive force between the particles need to be
incorporated when they are close to each other to prevent contact between surfaces. In the
numerical simulations in this work we did not introduce these artificial repulsive forces, in
part because we wanted to investigate the solutions when the rigid bodies are near collision or
when they actually collide and overlap. The mechanics of how solid particles in viscous liquids
stick or rebound has not been fully understood and is still subject of current research. It has
been demonstrated theoretically that when a perfect rigid sphere approaches a rigid wall its
kinetic energy is dissipated by non-conservative viscous forces. The rate of close approach
is asymptotically slow and the sphere do not deform or rebound [2]. By simultaneously
accounting for elastic deformation of the body and viscous fluid forces, Davis et al. [3] showed
that part of the incoming particle kinetic energy is dissipated by fluid forces and internal solid
friction, and the rest is transformed into elastic-strain energy of deformation. Depending on
the fraction of the kinetic energy that becomes stored as elastic-strain energy, the deformation
of the spheres may be significant and rebound may occur. The relevant parameter for the
bouncing transition, which is often obtained experimentally [9], is the Stokes number, which
characterize the particle inertia relative to viscous forces. Numerical results of colliding
bodies in viscous fluids may help to understand the mechanics of individual collisions in
solid-liquid flows, which is an important issue in particulate multi-phase flow modeling and
in the actual numerical computations of these flows. The numerical experiments in this work
include the motion of a single pendulum, and the motion of two pendula. The two pendula
case include different numerical experiments where the disks may have different densities and
initial positions. An interesting study of pendula in viscous fluids with some applications can
be found in [12] and references therein.

In Section 2 we describe the model for a single pendulum. A Lagrange Multiplier/Fictitious
Domain equivalent formulation is presented in Section 3. The discretization of the resulting
problem is discused in Sections 4 and 5. Numerical results and conclusions are given in
Section 6.

2. Fluid-Rigid Body Interaction Model. We describe the model for the case
of one pendulum in a viscous fluid. Its generalization to several pendula is straightforward.
Let Ω ⊂ IR2 be a space region with boundary Γ, filled with an incompressible viscous fluid,

1University of Houston and UAM-I, hector@math.uh.edu, and hect@xanum.uam.mx
2University of Houston, roland@math.uh.edu
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Figure 2.1: Pendulum in a viscous fluid

of density ρf , and that contains a rigid body B, with center of mass G. The rigid body is
constrained to move in a circular trajectory around the axis of rotation defined by a point
O, as shown in Figure 2.1. The position of the rigid body is known at any time t through
the angle Φ = Φ(t). We denote by n the unit normal vector pointing outward to the flow
region Ωf (t) = Ω \ B(t). Assuming that the only external force acting on the mixture is
gravity (denoted by g), in the vertical negative direction, the fluid flow is modeled by the
Navier-Stokes equations

ρf

[
∂u

∂t
+ (u ·∇)u

]
= ρfg + ∇ · σ in Ωf (t), (2.1)

∇ · u = 0 in Ωf (t), (2.2)

where u denotes the velocity of the fluid, p is the fluid pressure, and σ = τ −pI is the stress-
tensor, with τ = µf (∇u + ∇ut) for a Newtonian fluid with viscosity µf . These equations
are completed by some initial conditions and by the following no-slip boundary conditions:

u = 0 on Γ, and u(x, t) = V(t) + ω(t) ×
−−−→
G(t)x, ∀x ∈ ∂B(t). Here V(t) and ω(t) are the

translational and angular velocities of the rigid body, respectively. The motion of the rigid
body B is modeled by the Newton-Euler equations:

M
dV

dt
= Mg + F, (2.3)

I
dω

dt
= T, (2.4)

where M and I are the mass and inertia tensor of the rigid body, respectively. F is the
resultant of the hydrodynamical forces acting on B, and T is the torque at G of the above
hydrodynamical forces acting on B. The previous equations are completed by the kinematic
equations dG/dt = V, dΦ/dt = ω, and by imposing initial conditions on G, Φ, V, and ω.
Here we use the notation ω = (0, 0, ω), and Φ = (0, 0, φ). Finally, the above equations are

simplified by using the constraint relation V = ω ×−−→GO = l ω (cosφ, sinφ).

3. Fictitious Domain Formulation with Distributed Lagrange Multipli-
ers. To obtain this formulation we fill the rigid bodies with the surrounding fluid, and
compensate the above step by introducing an “antiparticle” of mass −Mρf/ρB and inertia
−Iρf/ρB . Finally we impose the rigid body motion on B(t) via a Lagrange multiplier λ
supported by B(t). We obtain, then, a flow problem over the entire region Ω, for which the
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global variational formulation is: For t > 0, find u(t) ∈ (H1
0 (Ω))2, p(t) ∈ L2(Ω), ω(t) ∈ R,

φ(t) ∈ R, λ(t) ∈ Λ(t) = (H1(B(t)))2 such that
ρf

∫
Ω

[
∂u

∂t
+ (u ·∇)u

]
· vdx−

∫
Ω

p∇ · vdx + µf

∫
Ω

∇u : ∇vdx+

(1− ρf

ρB
)(Ml2 + I)

dω

dt
θ − 〈λ,v − θ × −→Ox〉Λ(t) =

ρf

∫
Ω

g · v dx− (1− ρf

ρB
)Mg l sinφ θ, ∀v ∈ (H1

0 (Ω))2, ∀θ ∈ R,

(3.1)

∫
Ω

q∇ · u(t)dx = 0, ∀q ∈ L2(Ω), (3.2)

〈µ,u(t)− ω(t)× −→Ox〉Λ(t) = 0, ∀µ ∈ Λ(t), (3.3)

dφ

dt
= ω, (3.4)

ω(0) = ω0, φ(0) = φ0, (3.5)

u(x, 0) = u0(x) in Ω, with u0(x) = ω0 ×−→Ox inB(0), (3.6)

A natural choice for < ·, · > is defined by

< µ,v >=

∫
B(t)

(µ · v + δ2∇µ : ∇v)dx, ∀µ, v ∈ Λ(t), (3.7)

with δ a characteristic length (the diameter of B, for example).

4. The Finite Element Discretization. We assume that Ω is a polygonal domain
in R2. Let h(= hΩ) be a space discretization step, Th a finite element triangulation of Ω, and
Ps the space of polynomials in two variables of degree ≤ s. The functional spaces (H1(Ω))2

for velocity, and L2(Ω) for pressure, are approximated by the following finite dimensional
spaces

Vh = {vh ∈ (C0(Ω))2 : vh|T ∈ P2 × P2, ∀T ∈ Th}, (4.1)

L2
h = {qh ∈ C0(Ω) : qh|T ∈ P1, ∀T ∈ Th}, (4.2)

respectively. The space (H1
0 (Ω))2 is then approximated by V0h = {vh ∈ Vh : vh = 0 on Γ}.

This is the Taylor-Hood finite element approximation [13]. For the discretization of the
Lagrange multipliers λ(t), we can approximate the functional spaces Λ(t) = (H1(B(t)))2 by
a finite element on a grid defined on the rigid body B(t). However we prefer the following
alternative that is easier to implement: let {xi}N

i=1 be a set of points from B(t) which cover
B(t). We define

Λh(t) = {µh : µh =
∑N

i=1
µiδ(x− xi), µi ∈ IR2, ∀i = 1, ..., N}, (4.3)

where δ(·) is the Dirac measure at x = 0. Then, instead of the scalar product of (H1(Bh(t)))2

we use < ·, · >h defined by

< µh,vh >h=
∑N

i=1
µi · vh(xi), ∀µh ∈ Λh(t), vh ∈ Vh. (4.4)

This approach makes little sense for the continuous problem, but is meaningful for the discrete
problem; it amounts to forcing the rigid body motion of B(t) via a collocation method. A
similar technique has been used to enforce Dirichlet boundary conditions by Bertrand et al.
[1].



188 JUAREZ, GLOWINSKI

5. Time Discretization by Operator Splitting. After space discretization of
(3.1)–(3.6) by the finite element method, we obtain an initial value problem of the form

dϕ

dt
+
∑4

i=1
Ai(ϕ, t) = f, ϕ(0) = ϕ0, (5.1)

where the operators Ai can be multivalued, and are associated to each of the following nu-
merical difficulties: (i) the incompressibility condition and the related unknown pressure, (ii)
an advection term, (iii) a diffusion term, (iv) the rigid body motion of the Bh(t) and the
related multipliers λh(t). The following fractional step method à la Marchuk-Yanenko [10]
is used to solve this problem: Given ϕ0 = ϕ0, for n ≥ 0, compute ϕn+1 from ϕn via

ϕn+i/4 − ϕn+(i−1)/4

∆t
+ Ai(ϕ

n+i/4, (n + 1)∆t) = fn+1
i , i = 1, ..., 4, (5.2)

with
∑4

i=1
fn+1

i = fn+1, and ∆t a time discretization step. An application of this scheme

to the finite element formulation of (3.1)–(3.6) results in the following equations: Given
u0 = u0h, φ0, ω0, B0, for n ≥ 0, knowing un, φn, ωn, Bn, compute un+1/4 ∈ V0h, and
pn+1/4 ∈ L2

0h via the solution of
ρf

∫
Ω

un+1/4 − un

∆t
· vdx−

∫
Ω

pn+1/4∇ · vdx = 0, ∀v ∈ V0h,∫
Ω

q∇ · un+1/4dx = 0, ∀q ∈ L2
h.

(5.3)

Compute un+2/4 = u(tn+1) ∈ V0h, where u(t) is the discrete solution of the following pure
advection problem on (tn, tn+1)

∫
Ω

∂u

∂t
· vdx +

∫
Ω

(un+1/4 ·∇)u · vdx = 0, ∀v ∈ V0h,

u(tn) = un+1/4.
(5.4)

Next, find un+3/4 ∈ V0h by solving the diffusion problem

ρf

∫
Ω

un+3/4 − un+2/4

∆t
· vdx + µf

∫
Ω

∇un+3/4 : ∇vdx = ρf

∫
Ω

g · vdx, ∀v ∈ V0h. (5.5)

Now, predict the position and velocity of the rigid body by solving

dω

dt
= −M g l sinφ

(M l2 + I)
, and

dφ

dt
= ω, (5.6)

on tn < t < tn+1, with φ(tn) = φn, and ω(tn) = ωn. Then set φn+3/4 = φ(tn+1), and
ωn+3/4 = ω(tn+1). Finally, we enforce the rigid body motion in the region B(tn+3/4) by
solving for un+1, λn+1, and ωn+1 the following equation

ρf

∫
Ω

un+1 − un+ 3
4

∆t
· vdx + (1− ρf

ρB
)(M l2 + I)

ωn+1 − ωn+ 3
4

∆t
θ =

< λn+1,v − θ × −→Ox
n+ 3

4 > ∀v ∈ V0h, ∀θ ∈ IR,

< µj , un+1 − ωn+1 ×−→Ox
n+ 3

4 >= 0, ∀µj ∈ Λ
n+ 3

4
h .

(5.7)

Problems (5.3) and (5.7) are finite dimensional linear saddle-point problems which are solved
by an Uzawa/conjugate gradient algorithm [6]. The pure advection problem (5.4) is solved
by the wave-like equation method discussed in Dean et al. [4] and [5]. Problem (5.5) is a
discrete elliptic system whose iterative or direct solution is a quite classical problem. In this
work all the linear systems are solved by a sparse matrix algorithm based on Markowitz’
method [11]
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6. Numerical Experiments and Conclusions. We consider a two-dimensional
rectangular domain Ω = (−3, 3) × (−1, 1) filled with a viscous fluid of density ρf = 1. The
axis of rotation of the pendula is fixed at O = (0, 1), and the diameter of the circular rigid
bodies is 0.25 in all cases bellow.

As a test case we consider one pendulum with a circular rigid body of density ρB = 3
released from rest at φ0 = 1.4 radians in a liquid of viscosity µf = 0.005. We solved this
problem using two meshes: an unstructured mesh (Fig. 6.1) which takes advantage that we
know in advance the possible trajectory of the rigid body, and a uniform mesh with space
discretization step h = 1/64. Figure 6.2 shows the comparison of the time history of the angle
and of the angular velocity obtained with the two meshes. The agreement is satisfactory.
As expected, the pendulum exhibits damped oscillations around the vertical position, and it
goes to a steady position as time increases. The maximum Reynolds number obtained (based
on the maximum falling velocity and diameter of the circular rigid body) was 835. Since the
unstructured mesh has much less velocity degrees of freedom than the regular mesh (13823
versus 49665), we used the unstructured mesh in the subsequent calculations.

As a second example we consider two pendula. One pendulum with a circular rigid body
of density ρ1 = 1.1 is initially hold in the vertical position φ0

1 = 0, and the other pendulum
with density ρ2 = 5 is released from rest at φ0

2 = 1.4 radians in a liquid of viscosity µf = 0.005
. Figure 6.3 shows that, after a short time, the heavier cylinder collides with the lighter fixed
body. After collision the two bodies move together as a single body all the time. This is more
evident in in Figure 6.4 where the time history of the angle, angular velocity, and separation
distance is shown. The maximum Reynolds number in this case was 1,085. We expected the
two bodies to separate after they reach the maximum negative angle since the heavier rigid
body is below to the lighter one at that position, and the action of gravity is stronger on
the heavier body. However they never separate after collision. The only forces in our model
problem that can prevent separation after collision are the viscous forces which in this case
seem to dominate. To corroborate this strong dependence from viscous effects, we reduced
µf from 0.005 to 0.001 and repeated the numerical calculation. Figure 6.5 shows that this
time, after the two bodies collide, they stick together until they reach the maximum negative
angle (where the angular velocity is close to zero), and then separate when they start to move
in the counterclockwise direction by the action of gravity. This is clearly shown in Figure
6.6 where we plot the time history of angle, angular velocity, and separation distance. The
maximum Reynolds number this time was 5,800. It is evident that a more detailed study of
this and related phenomena is needed in order to better understand the mechanics of particle
collision in viscous liquids and to generate models that simulate more accurately solid-liquid
particulate flows which are very important in applications.
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Figure 6.1: The unstructured mesh
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Figure 6.3: Velocity vector field and pressure at different times for the two pendula
with µf = 0.005, ρ1 = 1.1, and ρ2 = 5.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.2

0.4

0.6

0.8

1

di
st

t

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

−20

−15

−10

−5

0

5

10

ω

t
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

−0.5

0

0.5

1

φ

t

Figure 6.4: Time history of the angle (top left), angular velocity (top right), and
separation distance (bottom) of the two pendula with µf = 0.005, ρ1 = 1.1, and
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Figure 6.5: Velocity vector field and pressure at different times for the two pendula
with µf = 0.001, ρ1 = 1.1, and ρ2 = 5.
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16. Modifications to Graph Partitioning Tools for use with
FETI methods

M.K. Bhardwaj1, D.M. Day2

1. Introduction and Summary. Engineering solutions are presented for certain
massively parallel implementation issues associated with FETI domain decomposition meth-
ods [2]. A wrapper around a graph partitioner is defined so that a computational domain
is decomposed into subdomains that may be used with FETI methods. The techniques de-
scribed here may find use with other domain decomposition methods for structural dyamics
in which the subdomain matrices are factored. Our solution methodology is imperfect, but
it is the most robust way known to the authors to use an off the shelf graph partitioner with
FETI methods.

A unique aspect of finite element methods in structual dynamics is the variety of elements
combined in a model. FETI methods employ partitions of the dual or element connectivity
graph. This article contributes a set of weights depending on the element type that improve
load balance with FETI methods.

A serious problem with FETI methods is that incompletely connected subdomains result
in subdomain mechanisms that are difficult to characterize geometrically. A general definition
of element connectivity is given, and used in a post process of the partition that further
decomposes each subdomain into its connected components.

The discussion is organized as follows. The remainder of this section reviews certain
relevant aspects of structural dynamics and describes the model problems. Section two
concerns element weights. The resulting load imbalance is presented for the more problematic
of the two models. The third section addresses subdomain mechanisms and connectivity.
Numerical results and conclusions are presented in section four. Numerical examples are also
integrated into the exposition.

The United States Department of Energy (DOE) has supported work at Sandia National
Laboratory on full systems analysis. The goal is to simulate designs of applications of interest
to DOE using massively parallel platforms. The development of hardware, software and
algorithms for these tasks is challenging.

A design cycle of component models culminates in an evaluation based on an analysis of a
few hundred of the smallest eigenvalues and eigenvectors. The first step in our design cycle is
to generate a conforming mesh for the full system using a commercial mesh generation package
such as Patran or Sandia’s Cubit framework. Second the mesh is partitioned using Chaco.
Parallel graph partitioning packages such as including METIS [4] and Zoltan are available.
Graph partitioners have also been developed specifically for use with FETI methods (e.g.
TopDomDec). Our comments apply to all of these tools. A finite element code is used to
build matrices, such as Salinas. The inverted generalized symmetric semi-definite eigenvalue
problem is solved using PARPACK. FETI methods are used to solve the resulting sequence
of linear systems [1].

Graph partitioning software packages routinely determine partitions in which processor
loads vary by less than one tenth of one percent. Domain decomposition algorithms have
more specific requirements on a partition than are addressed by graph partitioners. For
FETI methods the weight of a subdomain depends primarily on the number of nonzeros in
the Cholesky factor of the stiffness matrix, a nonlinear objective function. For FETI-DP
methods, another critical variable is the size of the resulting coarse grid linear system. The
techniques described here significantly reduce the size of the FETI-DP coarse grid linear

1Sandia National Labs, mkbhard@sandia.gov
2Sandia National Labs dmday@sandia.gov
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system. The interface size and roughness are secondary contributions.

Another set of problems stem from the linear elasticity equation. In the dual formulation,
FETI-1 ([3]), the subdomain stiffness matrices are singular. A six dimensional null space may
be determined from the geometry (coordinates) for each face connected component (defined
in section 3) of the subdomain. In a subdomain that is not face connected, it is possible for the
Cholesky factorization routine to incorrectly reveal the null space. The problem persists in
dual-primal methods, and is addressed through sophisticated corner node selection methods.
As the number of processors increases, the probability that an off the shelf graph partitioning
tool will introduce mechanisms also increases.

Figure 1.1: Engine model

Model problem one is an engine manifold (see Figure 1.1) and model problem two is the
electronics package from a structure of interest at Sandia (see Figure 1.2. For both problems
PARPACK needs to solve 31 linear systems in order to approximate the ten smallest modes.
The engine model has 203894 nodes (three unknowns per node) and 193960 elements. Most
of the elements are eight node hexagons, and the other elements are six node wedge elements
and six node triangles. The computations on the engine model were performed on the ASCI
Red platform (see http://www.sandia.gov/ASCI/Red/). The component model has 248226
nodes (three unknowns per node) and 167928 elements. The elements are six node triangles
and ten node tetrahedrons. Computations with the component model were performed on
the CPLANT platform (see http://www.cs.sandia.gov/cplant/), the worlds fastest Linux
cluster. The CPLANT platform is composed of 1536 Compag DS10L 1U servers connected
via Myrinet networking hardware.

2. Elements and Weights. Finite element models of aerospace structures routinely
contain many different element types. The ratio of unknowns to elements is asymptotically
constant on homogeneous submeshes with simple topologies. Unfortunately the load balance
problem for FETI methods is not linear, depending on the number of nonzeros in the Cholesky
factor of each subdomain matrix.

The nonlinear load balance problem is addressed by the selection of element weights.
Initially a nearby linear problem is solved. The asymptotic ratio of unknowns to elements
for a regular mesh is used as an initial guess for the element weight. The weights were then
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Figure 1.2: Component model

calibrated on a few model problems.

Structural dynamics models make use of a one, two and three dimensional elements. One
dimensional elements, including truss and bar elements, are all converted to beam elements
in our finite element code. The shell elements are quadrilateral and triangular. Beam and
shell elements have six unknowns per node. The additional drilling degrees of freedom at each
node are essential for maintaining subdomain connectivity. The solid elements are hexagonal,
prismatic or tetrahedral, and all have three unknowns per node. An element may have nodes
only at the vertices (linear shape functions) or nodes at both the vertices and the midpoints
of the edges (quadratic shape functions).

Element weights balancing the number of subdomain unknowns for models with regular
meshes are known. The element weight is the ratio of the number of unknowns to the number
of elements. In two dimensions the number of knowns is asymptotically equal to the sum
of the unknowns per node and three times the number of nodes per edge (see §1.9 of [5]).
There are similar formulas for solid elements. These element weights vary by an order of
magnitude.

Balancing the unknowns per subdomain does not solve the load balance problem for
FETI methods. Subdomains consisting of irregular solid elements may have Cholesky factors
with relatively large numbers of nonzeros. An example of such a subdomain is presented in
Figure 2.1. Furthermore a subdomain that consists entirely of shell elements usually comes
from a two dimensional subcomponent (e.g. an aero-shell); such a subdomain has a relatively
sparse Cholesky factorization and a one dimensional boundaries.

The weights of the solid elements have been experimentally increased to decrease the load
imbalance. One set of sub-optimal weights are used for all models. Reports of load imbalance
problems ceased once the graph partitioner was modified to use the weights listed in 2.1.

The load balance for the component model partitioned into 540 subdomains using the
weights is depicted in Figure 2.2. The data for partitions into 137 and 277 is similar. In each
case the ratio of the maximum to the average for both unknowns and nonzeros is 3/2;

The subdomain stiffness matrices with the most nonzeros still correspond to irregularly
meshed solid elements. The large spread in the number of nonzeros in the Cholesky factoriza-
tion represented how inexactly the nonlinear load balance problem is solved. The processors
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Figure 2.1: The subdomain with largest Cholesky factor in the 137 subdomain parti-
tion of the component is shown

with large numbers of unknowns are subdomains of the aero-shell. The source of the ex-
tremely small subdomains will be explained in the next section.

3. Mechanisms and Connectivity. A feature of FETI-1 methods is that singular
matrices must be accurately factored. This is possible if the subdomain is face connected
and the nodes are ordered so that either the last three nodes are 3 unknowns per node nodes
and the nodes are not collinear, or the node is a 6 unknown per node node. One of the
three main properties of FETI-DP methods is that only nonsingular matrices are factored.
The other two nice properties of FETI-DP are that the coarse problem is sparse and that
fewer iterations are required for convergence. For an arbitrary partition the null space of the
subdomain stiffness matrix could be anything.

FETI-DP is more reliable than FETI-1, but is still sensitive to the partition. If a sub-
domain is not face connected, the corner nodes may not eliminate the entire null space. A
feature of FETI-DP is that the coarse grid problem is approximately three times larger. Ev-
idence will be presented in the next section that the load balance techniques developed here
usually result in smaller coarse grid problems.

Figure 3.1 depicts the subgraph assigned to one processor. If we define two elements that
share a node to be connected (nodal connectivity), then the subgraph has four connected
components. Note that there is a triangular element that shares a node but not an edge with
it’s neighbors.

Here a more restrictive definition of connectivity is used, face connectivity. Two solid
elements (or a solid and a shell) are face connected if they share a face. A shell element and a
solid element that share three or more nodes are face connected. Two shell elements are face
connected if they share an edge. A beam element is face connected if it shares a node with
another beam element or a shell element. The subgraph in Figure 3.1 has five face connected
components. In the remainder of this work connectivity always refers to face connectivity.

Connectivity is ensured by assigning each extra connected component of each subdomain
to an additional processor. For the models considered, this results in a modest increase in
the number of processors (see Figure 3.2).
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Element Number of Nodes Weight
Wedge 6 2
Wedge 15 12
Tet 4 1
Tet 10 3
Hex 8 3
Hex 20 12
Tri 3 3
Tri 6 12

Quad 4 6
Quad 8 12
Beam 2 1

Table 2.1: graph weights for elements with linear (e.g. Tet4) or quadratic (c.f. Tet10)
shape functions.

The number of face connected components of a partition may be acceptably large. Ex-
amples of such meshes have come to the attention of the authors in which beam elements
have been painstakingly used to sow together nonconformal solid meshes.

4. Results and Conclusions. Results are presented for the engine and component
models.

The engine model problem is solved efficiently on 27 or 28 processors. Though the engine
model consists mostly of hexagonal elements, the modified graph partitioner is noticably more
efficient. On approximately 28 processors the improved partitions reduce the time required
to solve 31 linear systems from 261 seconds to 172 seconds.

The 29 processor runs illustrate different failure modes with two different corner selection
strategies. For one corner selection strategy, with the improved partition the factorization of
the coarse grid nonetheless erroneously detects zero pivots, and slow convergence results. It
is noteworthy that our framework is not yet robust. For the other corner selection strategy,
the improved partition is much more efficient due to the reduction in the size of the coarse
grid problem.

The component model contains many triangular elements, and better illustrates the im-
provements in the partitions. Only results for the component model with the improved
partition are presented. For the standard partition, initially FETI-DP broke down due to
singular subdomain matrices across the processor range. Singular subdomain matrices were
avoided by solving the shifted problem ( K + M105 ). Unfortunately memory is insufficient
to factor the shifted stiffness matrices on 128, 256 or 512 processors using a serial or a parallel
linear solver for the coarse grid.

For the improved partitions and using the serial coarse grid solver FETI-DP is successful
on 137 or 277 subdomain partitions, but on the 540 subdomain partition, memory was
exhausted. For the 540 subdomain partition, FETI-DP succeeded using the DSCPACK
parallel coarse grid linear solver.

In summary a technique for improving the partitions determined by an off-the-shelf graph
partitioner have been presented. A carefully calibrated set of element weights is used to main-
tain load balance. Furthermore extra subdomains are added to ensure the face connectivity
of the subdomains. The technique also results in smaller coarse grid problems for FETI-DP.
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ratio to the maximum to the average is 3/2. Similar results are observed for partitions
into 137 and 277 subdomains.
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Figure 3.1: A disconnected subdomain computed by a graph partitioner for a 128
subdomain partition of the component model is depicted. The subdomain has four
node-connected components, and five face-connected components.
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Figure 3.2: The figure displays the number of subdomains determined if 128, 256 and
512 subdomain partitions are requested for both the engine and the component model.
The solid * line depicts no extra subdomains. The dash dot + line corresponds to
the component model, and the dotted o line corresponds to the engine model. In the
latter two cases each extra connected component of each subdomain is assigned to an
additional subdomain.
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Figure 4.1: The figure displays the results for the engine model. The upper figure
shows the initialization time (+), solve time (gap between (x) and (+)) and total
time to compute the ten lowest modes on different numbers of processors. The lower
figure shows the corresponding number of coarse grid unknowns for FETI-DP with
the standard partition (o) and with the weighted partition maintaining connectivity
(+). The 29 processor runs were run twice with different corner selection strategies.
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17. Regularized formulations of FETI

Pavel Bochev1, R.B. Lehoucq2

1. Introduction. Our report introduces two regularized formulations of the FETI-1
[2, 3] algorithm. These formulations provide an alternative way for handling the rigid body
modes (RBM) associated with floating subdomains. Both formulations start with the FETI-1
Lagrangian but differ in the treatment of the RBMs. They provide coercive bilinear forms on
the floating subdomains resulting in symmetric, positive definite finite element linear systems
and so pseudoinverse computations can be avoided.

Our report is organized as follows. Section 2 formulates a consistently stabilized variant of
FETI-1. This is accomplished by augmenting the FETI-1 Lagrangian with a redundant term
that uses a suitable set of solution moments. Section 3 also employs the FETI-1 Lagrangian
and the same set of moments but uses them to induce a splitting of the Sobolev space for the
floating subdomain. A brief summary of the relevant moments and their properties is given
in Section 4.

We quickly review our use of standard notation. Let Ω be a bounded domain in R
d where

d = 2, 3 with Lipschitz boundary ∂Ω and so let H1(Ω) denote a Sobolev space of order 1;
H1(Ω, ∂ΩD) denote a subspace of H1(Ω) consisting of functions that vanish on ∂ΩD ⊂ ∂Ω.
We further suppose that Ω is partitioned into two nonoverlapping subdomains Ω1 and Ω2

with interface Γ; let H1/2(Γ) denote the trace space of H1(Ωi) on Γ; and let the dual spaces
of H1(Ω, ∂ΩD) and H1/2(Γ) be denoted by H−1(Ω, ∂ΩD) and H−1/2(Γ), respectively. Let
the norms and inner products on H1(Ω) be given by ‖ · ‖1 and (·, ·)1, respectively; and let
〈·, ·〉 denote the duality pairing between a space and its dual.

Finally, we define the moments c(·) : H1(Ω, ∂ΩD) �→ R
p for some positive integer p.

2. FETI-CS: A consistently stabilized FETI-1 algorithm. We consider the
problem

inf
v∈H1(Ω,∂ΩD)

1

2
a(v, v)− 〈f, v〉Ω (2.1)

where a(v, v) is a coercive symmetric bilinear form and f ∈ H−1(Ω, ∂ΩD). For example,
the bilinear form could represent a scalar Poisson or linear elasticity equation in the plane
or space. Equivalently, the minimization problem (2.1) may be posed over the subdomains
Ω1 and Ω2 and recast as: Find a saddle-point (u1, u2, λ, τ, µ) ∈ H1(Ω1, ∂Ω1) × H1(Ω2) ×
H1/2(Γ)× R

p × R
p for the Lagrangian

L(û1, û2, λ̂, τ̂ , µ̂) =

2∑
i=1

(1
2
a(ûi, ûi)Ωi − 〈f, ûi〉Ωi

)
+ 〈λ̂, û1 − û2〉Γ + τ̂T (c(û2)− µ̂). (2.2)

The last term introduces a Lagrange multiplier τ̂ for the difference of the moments of the
Lagrange multiplier µ̂ representing the (unknown) moment of the minimizer of (2.1) on
subdomain Ω2. Without this term (2.2) is simply the FETI-1 Lagrangian.

The optimality system for (2.2) is: Find (u1, u2, λ, τ, µ) ∈ H1(Ω1, ∂Ω1) × H1(Ω2) ×

1Sandia National Labs, pbboche@sandia.gov. Sandia is a multiprogram laboratory operated by
Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under
Contract DE-AC04-94AL85000.

2Sandia National Labs, rblehou@sandia.gov. Sandia is a multiprogram laboratory operated by
Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy
under Contract DE-AC04-94AL85000.
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H1/2(Γ)× R
p × R

p

a(û1, u1)Ω1 + 〈û1, λ〉Γ = 〈f, û1〉Ω1 ∀û1 ∈ H1(Ω1, ∂Ω1)
a(û2, u2)Ω2 − 〈û2, λ〉Γ + c(û2)

T τ = 〈f, û2〉Ω2 ∀û2 ∈ H1(Ω2)

〈λ̂, u1 − u2〉Γ = 0 ∀λ̂ ∈ H1/2(Γ)
τ̂T (c(u2)− µ) = 0 ∀τ̂ ∈ R

p

µ̂T τ = 0 ∀µ̂ ∈ R
p.

(2.3)

The last two equations imply that τ = 0 and c(u2) − µ = 0. Therefore the last term of the
Lagrangian (2.3) is a redundant constraint and we recover the FETI-1 optimality system

a(û1, u1)Ω1 + 〈û1, λ〉Γ = 〈f, û1〉Ω1 ∀û1 ∈ H1(Ω1, ∂Ω1)
a(û2, u2)Ω2 − 〈û2, λ〉Γ = 〈f, û2〉Ω2 ∀û2 ∈ H1(Ω2)

〈λ̂, u1 − u2〉Γ = 0 ∀λ̂ ∈ H1/2(Γ).

(2.4)

However, instead of using (2.3) directly, we stabilize the second and third constraints of
(2.3) as

τ̂T (c(u2)− µ) = τ̂T Υ−1τ ∀τ̂ ∈ R
p

µ̂T τ = µ̂T Υ(c(u2)− µ) ∀µ̂ ∈ R
p (2.5)

where Υ is a diagonal matrix of order p with positive diagonal elements. We can now eliminate
τ from (2.3). Equation (2.5) implies

c(û2)
T τ = c(û2)

T Υ(c(u2)− µ). (2.6)

With these relations, we obtain the optimality system: Find (u1, u2, λ, µ) ∈ H1(Ω1, ∂Ω1) ×
H1(Ω2)×H1/2(Γ)× R

p

a(û1, u1)Ω1 + 〈û1, λ〉Γ = 〈f, û1〉Ω1 ∀û1 ∈ H1(Ω1, ∂Ω1)
ã(û2, u2)Ω2 − 〈û2, λ〉Γ − c(û2)

T Υµ = 〈f, û2〉Ω2 ∀û2 ∈ H1(Ω2)

〈λ̂, u1 − u2〉Γ = 0 ∀λ̂ ∈ H1/2(Γ)
−µ̂T Υc(u2) + µ̂T Υµ = 0 ∀µ̂ ∈ R

p

(2.7)

where ã(·, ·)Ω2 ≡ a(·, ·)Ω2 + c(·)T Υc(·). We remark that this optimality system can also be
derived by penalizing a FETI-1 Lagrangian by

1

2
‖c(û2)− µ̂‖2

or, equivalently, by replacing the last term of (2.2) with the above least-squares term. In
either case, we have the following two results.

Lemma 2.1 The symmetric bilinear form ã(·, ·)Ω2 is coercive on H1(Ω2)×H1(Ω2).

Proof. See Bochev and Lehoucq [1] for the proof.

Theorem 2.1 (u1, u2, λ) solves (2.4) if and only if (u1, u2, λ, µ = c(u2)) solves (2.7).

Proof. The theorem is easily established by using the stabilized constraints (2.5) and recalling
that τ = 0.

The theorem demonstrates that (2.5) represents a consistent stabilization. The impact
of this innocuous sleight of hand is that the resulting coarse grid problem is equivalently
stabilized. We now demonstrate this.
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A conforming FEM for (2.7) results in the discrete optimality system
K1 0 BT

1 0

0 K̃2 −BT
2 −CT

2 Υ
B1 −B2 0 0
0 −ΥC2 0 Υ



u1

u2

λ
µ

 =


f1
f2
0
0

 (2.8)

where K̃2 ≡ K2 + CT
2 ΥC2.

Elimination of the primal variables in (2.8) results in the coarse grid problem[
B1K

−1
1 BT

1 + B2K̃
−1
2 BT

2 B2K̃
−1
2 CT

2 Υ

ΥC2K̃
−1
2 BT

2 ΥC2K̃
−1
2 CT

2 Υ−Υ

] [
λ
µ

]
=

[
d1

d1

]
(2.9)

where [
d1

d2

]
=

[
B1K

−1
1 f1 −B2K̃

−1
2 f2

−ΥC2K̃
−1
2 f2

]
.

As compared with FETI-1, the columns of K̃−1
2 CT

2 Υ are approximating a basis for the
rigid body modes associated with Ω2, and K̃−1

2 is an approximation to the pseudoinverse of
K2. Inserting the solution of the coarse grid problem (2.9) into (2.8) results in

K1u1 = f1 −BT
1 λ (2.10)

K̃2u2 = f2 + BT
2 λ + CT

2 Υµ. (2.11)

These two linear systems have symmetric positive definite coefficient matrices and can be
solved in parallel.

We remark that (2.11) corresponds to the minimization problem

inf
v∈H1(Ω2)

1

2
ã(v, v)− 〈f̃ , v〉Ω2

where f̃ is the continuous load associated with the discrete load of (2.11).

3. FETI-SS: Regularization by space splitting. In this section we introduce a
modification of FETI-1 that allows for a wider choice of well-posed primal problems for these
domains. In particular, our approach results in nonsingular linear systems with properties
that can be easily controlled.

Our starting point is the splitting of H1(Ω2) into the direct sum

H1(Ω2) = H1
c (Ω2)⊕N2

where N2 is the RBM space for Ω2 and

H1
c (Ω2) = {u ∈ H1(Ω2) | c2(u) = 0},

is the complement space with respect to the moments c2. The report [1] demonstrates that
such a splitting exists for any non-degenerate set of moments. As a result, any u2 ∈ H1(Ω2)
can be uniquely written as u2c + R2α where R2 is a basis for N2 and α ∈ R

p. To solve (2.1)
we consider the problem of finding the saddle-point (u1, u2c, α, λ) ∈ H1(Ω1, ∂Ω1)×H1

c (Ω2)×
R

p ×H1/2(Γ) of the Lagrangian

L(û1, û2c, α̂, λ̂) =
2∑

i=1

(1
2
a(ûi, ûi)Ωi − 〈f, ûi〉Ωi

)
+ 〈λ̂, û1 − (û2c + R2α̂)〉Γ. (3.1)
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This Lagrangian only differs from the FETI-1 Lagrangian by explicitly specifying a particular
solution on the floating subdomain. The optimality system for (3.1) is to seek (u1, u2c, α, λ) ∈
H1(Ω1, ∂Ω1)×H1

c (Ω2)× R
p ×H1/2(Γ) such that

a(û1, u1)Ω1 + 〈û1, λ〉Γ = 〈f, û1〉Ω1 ∀û1 ∈ H1(Ω1, ∂Ω1)
a(û2c, u2c)Ω2 − 〈û2c, λ〉Γ = 〈f, û2c〉Ω2 ∀û2c ∈ H1

c (Ω2)
−〈R2α̂, λ〉Γ = 〈f,R2α̂〉Ω2 ∀α̂ ∈ R

p

〈λ̂, u1 − (u2c + R2α)〉Γ = 0 ∀λ̂ ∈ H1/2(Γ).

(3.2)

Note that in (3.2) the floating subdomain problem is restricted to finding a particular solution
out of the complement space H1

c (Ω2) rather than the space H1(Ω2). This seemingly minor
change makes the floating subdomain problem uniquely solvable. Therefore, its conforming
discretization, that is restriction to a finite element subspace of H1

c (Ω2), would engender
a non-singular linear system. However, building a finite element subspace of H1

c (Ω2) may
not be a simple matter and discretization by standard finite element subspaces of H1(Ω2) is
preferred.

To enable the use of standard finite elements the floating subdomain equation is further
replaced by a regularized problem in which the bilinear form a(·, ·)Ω2 is augmented by the term
c2(û2)

T Υc2(u2). The regularized optimality system is to seek (u1, u2, α, λ) ∈ H1(Ω1, ∂Ω1)×
H1(Ω2)× R

p ×H1/2(Γ) such that

a(û1, u1)Ω1 + 〈û1, λ〉Γ = 〈f, û1〉Ω1 ∀û1 ∈ H1(Ω1, ∂Ω1)
a(û2, u2)Ω2 + c2(û2)

T Υc2(u2)− 〈û2, λ〉Γ = 〈f, û2〉Ω2 ∀û2 ∈ H1(Ω2)
−〈R2α̂, λ〉Γ = 〈f,R2α̂〉Ω2 ∀α̂ ∈ R

p

〈λ̂, u1 − (u2 + Rα)〉Γ = 0 ∀λ̂ ∈ H1/2(Γ).

(3.3)

Theorem 3.1 Problems (3.2) and (3.3) are equivalent.

Proof. The only point that needs to be verified is that a solution (u1, u2, α, λ) of (3.3) has
its second component in the complement space H1

c (Ω2). Choosing û2 = R2α̂ in the second
equation in (3.3) combined with the third equation gives

c2(R2α̂)T Υc2(u2) = 〈R2α̂, λ〉Γ + 〈f,R2α̂〉Ω2 ≡ 0

for any α̂ ∈ R
p. Therefore, c2(u2) = 0 and u2 ∈ H1

c (Ω2).

A conforming FEM for (3.3) results in the linear system
K1 0 BT

1 0

0 K̃2 −BT
2 0

0 0 −(B2R2)
T 0

B1 −B2 0 −B2R2



u1

u2

λ
α

 =


f1
f2

RT
2 f2
0

 (3.4)

where K̃2 is the same matrix as in (2.8) and we redundantly use R2 to denote the coefficients
associated with the finite element approximants for the RBMs.

We note the close similarity between (3.4) and a FETI-1 discrete problem. In both cases
a particular solution for the floating subdomain is generated and a component in N2 is added
to satisfy the interface continuity condition. However, in contrast to a FETI-1, in (3.4) the
floating subdomain matrix is non-singular and we have complete control over the choice of
the particular solution by virtue of the moments c2. These moments can be further selected
so as to optimize the nonsingular matrix K̃2 with respect to a particular solver.
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Elimination of the primal variables in (3.4) results in the coarse grid problem[
B1K

−1
1 BT

1 + B2K̃
−1
2 BT

2 −B2R
−(B2R)T 0

] [
λ
α

]
=

[
d1

d1

]
(3.5)

where [
d1

d2

]
=

[
B1K

−1
1 f1 −B2K̃

−1
2 f2

RT f2

]
.

Inserting the solution of the coarse grid problem (3.5) into (3.4) results in

K1u1 = f1 −BT
1 λ (3.6)

K̃2u2 = f2 + BT
2 λ. (3.7)

This primal system and the FETI-1 primal system only differ in the coefficient matrix for
u2. Here K̃2 is symmetric positive definite whereas FETI-1 uses the singular K2. Therefore
a computation of a pseudoinverse is avoided.

4. The moments c(·). Suppose that we have a floating subdomain Ω, a RBM sub-
space N and resulting basis R (discrete or continuous). The moments c(·) play a central
role in our regularization strategy. Both of the FETI formulations introduced in this report
rely upon these moments to regularize the floating subdomain problems. The purpose of the
moments is to provide an “energy” measure for the RBMs that otherwise have zero strain
energy a(·, ·).

Therefore, the guiding principle in their choice is to ensure that they form a non-
degenerate set. By non-degenerate here we mean that the matrix c(R) of order p is non-
singular. For linear elasticity [1] one such set of moments is given by the functional

c(v) ≡


∫

Ω

Θ1v∫
Ω

Θ2∇× v

 (4.1)

where the diagonal elements of

Θ1 = diag(θ1,1, θ1,2, θ1,3) and Θ2 = diag(θ2,1, θ2,2, θ2,3) (4.2)

are elements of H−1(Ω) satisfying the hypothesis∫
Ω

θ1,i �= 0 and

∫
Ω

θ2,i �= 0

for i = 1, 2, 3. These dual functions serve the useful purpose of allowing us to enforce the
mean and mean of the curl of the displacement along a portion of Ω.

When the moments (4.1) are restricted to finite element subspaces they generate full rank
matrices with p columns, where p is the dimension of N . The regularizing term added to
the singular stiffness matrix on a floating subdomain is simply a rank-p correction to this
matrix. When the dual functions in (4.2) have small supports the rank-p correction is a
sparse matrix and the regularized problem is amenable to a direct solver methods. Larger
supports generally improve the condition number of the regularized matrix but they also
lead to formally dense systems. Therefore, regularization via moments is useful for iterative
solution methods where it is only necessary to compute the product of the rank-p correction
matrix with a direction vector.
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5. Conclusions. Our report introduced two regularized formulations of the FETI- 1
[2, 3] algorithm. These formulations provide an alternative way for handling the rigid body
modes (RBM) associated with floating subdomains. Both formulations start with the FETI-1
Lagrangian but differ in the treatment of the RBMs. They provide coercive bilinear forms on
the floating subdomains resulting in symmetric, positive definite finite element linear systems
and so pseudoinverse computations can be avoided.
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18. Balancing Neumann-Neumann for (In)Compressible
Linear Elasticity and (Generalized) Stokes — Parallel
Implementation

P. Goldfeld1

1. Introduction. In this paper, an extension of the Balancing Neumann-Neumann
method for a class of symmetric, indefinite problems is presented, with an emphasis on
implementational and algorithmic aspects; theoretical results on a bound for the condition
number of the relevant operator are also stated, without proof, and results of large-scale
numerical experiments are reported. For a development of the theory see [7], [4].

The Balancing Neumann-Neumann domain decomposition technique (see, e.g., Mandel
[5] or Mandel and Brezina [6]) has recently been extended to a class of saddle-point problems,
including the Stokes Equation (see Pavarino and Widlund [7]) and the mixed formulation of
linear elasticity (see Goldfeld, Pavarino and Widlund [3], [4]).

In this algorithm, after decomposing the original domain into nonoverlapping subdo-
mains, the interior velocity/displacement and all but the subdomain-wise constant pressure
unknowns are eliminated. A preconditioner for the resulting saddle-point Schur complement
problem is constructed based on the solution of a coarse problem, with one pressure and a
few velocity/displacement unknowns per subdomain, and on the solution of local problems
with mixed or natural boundary conditions. Local Dirichlet problems must also be solved
in order to compute the action of the Schur complement operator. The quality of this pre-
conditioner can be shown to be independent of the number of subdomains and to depend
only polylogarithmically on the size of the local problems, when the coefficients are constant.
Numerical experiments indicate that this is still the case when there are arbitrary jumps on
the coefficients.

This paper is organized as follows. In Section 2, we briefly describe the class of problems
considered and their mixed finite element discretizations. The substructuring process is ex-
plained in Section 3, where we also include some remarks on the practical implementation of
the Schur complement operator. In Section 4, the Balancing Neumann-Neumann precondi-
tioner is introduced. In Section 5, the theoretical results on the quality of the preconditioner
are stated and, finally, numerical experiments are reported in Section 6.

2. Problems and Discretizations. We consider the problems of linear elastic-
ity with a mixed formulation (compressible, incompressible or almost incompressible cases),
Stokes’ equations and generalized Stokes’ equations (with compressibility). All of them have
a variational formulation of the following form: For Ω ⊂ R

d, a polyhedral domain, given

f ∈
(
H−1(Ω)

)d
, g ∈

(
H1/2(∂Ω)

)d

and h ∈ L2(Ω), find (u, p) ∈
(
g̃ +

(
H1

0 (Ω)
)d) × L2(Ω)

satisfying

 a(u,v) + b(v, p) = 〈f ,v〉 ∀v ∈
(
H1

0 (Ω)
)d

b(u, q) − c(p, q) = 〈h, q〉 ∀q ∈ L2(Ω)
u|∂Ω = g

. (2.1)

Here g̃ is any function in
(
H1(Ω)

)d
such that g̃|∂Ω = g. The choice of the bilinear forms a,

b and c depends upon the problem we are solving:

1New York University, paulo.goldfeld@pobox.com
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a(u,v) b(v, q) c(p, q)

compressible elasticity 2µ

∫
Ω

ε(u) : ε(v) −
∫

Ω

q∇ · v 1

λ

∫
Ω

pq

incompressible elasticity 2µ

∫
Ω

ε(u) : ε(v) −
∫

Ω

q∇ · v 0

Stokes ν

∫
Ω

∇u : ∇v −
∫

Ω

q∇ · v 0

generalized Stokes ν

∫
Ω

∇u : ∇v −
∫

Ω

q∇ · v 1

λ

∫
Ω

pq

Here ε(u) : ε(v) =
1

4

d∑
i,j=1

(
∂ui

∂xj
+

∂uj

∂xi

)(
∂vi

∂xj
+

∂vj

∂xi

)
and ∇u : ∇v =

d∑
i,j=1

∂ui

∂xj

∂vi

∂xj
.

To fix ideas, we will focus, in the remainder of this paper, on the elasticity problem.
Therefore, u will be the displacement vector and the relevant coefficients will be the Lamé
parameters µ and λ.

A conforming mixed finite-element discretization of (2.1) yields a linear system of the
form

Ku = K

[
u
p

]
=

[
A BT

B −C

] [
u
p

]
= f =

[
f
h

]
.

We select an inf-sup stable pair of finite element spaces for pressure and displacement. As
will become evident in the next subsection, our method requires the pressure space to be
discontinuous, at least across the interface.

Note that although this paper is written in the language of finite elements only, the
method here presented is equally suitable for spectral element discretizations (see [7], [3],
[4]).

3. Substructuring. The domain Ω is decomposed into N nonoverlapping subdo-
mains, {Ωi}i=1,2,...,N , the boundaries of which do not cut through any element. Denote by
Γh the set of nodes on the interface between subdomains, i.e., the nodes belonging to more
than one subdomain. As usual, K and f can be generated by subassembly:

K =
N∑

i=1

R(i)T
K(i)R(i) =

N∑
i=1

R(i)T

[
A(i) B(i)T

B(i) −C(i)

]
R(i), (3.1)

f =
N∑

i=1

R(i)T
[

f (i)

h(i)

]
,

where the restriction matrix R(i) is a matrix of zeros and ones which translates global indices
of the nodes into local numbering.

Assume that the basis for the pressure space can be split as follows:

• there are N coarse pressures, {ψ0,i}i=1,2,...,N , defined by ψ0,i = χΩi , where χΩi is the
characteristic function of the set Ωi. We also refer to these functions as the constant
or interface pressures;

• the remaining, interior pressures, {ψI,ji}ji∈Ji
, have zero average,

∫
Ω

ψI,ji = 0, and are
local, in the sense that supp (ψI,ji) ⊂ Ωi.
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After reordering unknowns and equations, the vectors u and f , and the stiffness matrix
K are expressed as

u =

[
uI

uΓ

]
=


uI

pI

uΓ

p0

 , f =

[
f I

fΓ

]
=


fI
hI

fΓ
h0

 ,

K =

[
KII KIΓ

KΓI KΓΓ

]
=


AII BT

II AIΓ 0
BII −CII BIΓ 0

AΓI BT
IΓ AΓΓ BT

0Γ

0 0 B0Γ −C00

 . (3.2)

The (1,1)-block KII is invertible, even when K is not (i.e., when the problem is incompressible
and therefore C is zero and the solution is only defined up to a constant pressure.) We can
eliminate the interior variables and define a Schur complement problem,

SuΓ = f̃Γ, (3.3)

where

S = KΓΓ −KΓIK−1
II KIΓ =

[
SΓ BT

0Γ

B0Γ −C00

]
and (3.4)

f̃Γ = fΓ −KΓIK−1
II f I ,

with

SΓ = AΓΓ −
[

AΓI BT
IΓ

] [ AII BT
II

BII −CII

]−1 [
AIΓ

BIΓ

]
. (3.5)

We note that KII is block-diagonal, which allows us to generate S by subassembly, by means
of restriction matrices R

(i)
Γ :

S =
N∑

i=1

R
(i)
Γ

T
S(i)R

(i)
Γ =

N∑
i=1

R
(i)
Γ

T
(
K

(i)
ΓΓ −K

(i)
ΓI K

(i)
II

−1
K

(i)
IΓ

)
R

(i)
Γ . (3.6)

We present a preconditioner for the operator S. Once the system SuΓ = f̃Γ is solved, the
computations required to obtain uI are completely local.

3.1. Implementing S. Before we describe the Neumann-Neumann preconditioner,
we discuss how to compute the action of the operator S on a given vector.

We have assumed that the basis functions for the pressure degrees of freedom can be
divided into two groups: zero-average functions and constant functions. We now show how
S can be implemented using a standard basis for the pressure, as long as the pressure space
admits a basis of that special form.

In our actual implementation we generate, instead of the stiffness matrix in (3.2), a
stiffness matrix K̃ using a standard nodal basis and introduce a Lagrange multiplier to
enforce the zero average of the pressure. Furthermore, we never assemble the entire matrix
K̃, but rather work with the local stiffness matrices K̃(i):

K̃ =

N∑
i=1

R̃(i)T
K̃(i)R̃(i), where K̃(i) =

 A(i) B̃(i)T
0

B̃(i) −C̃(i) w(i)

0 w(i)T
0

 . (3.7)
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Note that, since a different basis has been used, K̃(i), B̃(i), and C̃(i) are different from K(i),
B(i), and C(i) in equation (3.1). The entries of the vector w(i) are the integrals of the pressure
basis functions over Ω.

In each of the local matrices K̃(i), we eliminate the interior velocities, all the pressures
and the Lagrange multiplier. This corresponds to taking the Schur complement with respect
to the (2,2)-block in the following matrix, which is a reordering of (3.7):

A
(i)
II B̃

(i)
I

T
0 A

(i)
IΓ

B̃
(i)
I −C̃(i) w(i) B̃

(i)
Γ

0 w(i)T
0 0

A
(i)
ΓI B̃

(i)
Γ

T
0 A

(i)
ΓΓ

 .

We can show that the result of this static condensation is precisely S
(i)
Γ , the (1, 1)-block

of S(i) (see (3.4), (3.5), (3.6)). The remainder of the matrix S(i), namely the vector B
(i)
0Γ

T

and the scalar C
(i)
00 , can be computed by means of the formula:[

A
(i)
ΓΓ B

(i)
0Γ

T

B
(i)
0Γ C

(i)
00

]
=

[
I

e(i)T

] [
A

(i)
ΓΓ B̃

(i)
Γ

T

B̃
(i)
Γ −C̃(i)

] [
I e(i)

]
.

Here the matrix at the right side of the equation is a submatrix of (3.7) and the entries of the
vector e(i) are the coefficients that express the constant pressure on subdomain Ωi in terms
of the regular basis functions:

ñp∑
k=1

(
e(i)
)

k
ψ̃k = χΩi ,

where
{

ψ̃k

}
k=1,...,ñp

is the basis for the pressure space.

4. Preconditioner. The Balancing Neumann-Neumann preconditioner is of the form:

Q = Q0 + (I −Q0S) Qloc (I − SQ0) ,

where Q0 is the coarse-level part of the preconditioner and Qloc the local-level part.

4.1. Local Level. The local part of the preconditioner basically involves the solution
of local problems with natural or mixed boundary conditions (for floating and non-floating
subdomains, respectively). Qloc is defined by

Qloc =
N∑

i=1

R
(i)
Γ

T

[
D(i)−1

0
0 0

]
S(i)†

[
D(i)−1

0
0 0

]
R

(i)
Γ .

The dagger (†) above indicates a pseudo-inverse, since S(i) is singular on a floating subdomain
(the nullspace being constant velocities for Stokes’ equation and rigid-body displacements for

elasticity). The matrices D(i)−1
are diagonal and determine a partition of unity on Γ. A

proper choice of this partition is necessary for the method to be insensitive to jumps in the
coefficients: (

D(i)−1
)

jj
=

µγ
i∑

xj∈∂Ωk

µγ
k

, γ ≥ 1

2
.
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In computing the action of Qloc, it is useful to remember that

[
I 0

]
S(i)†

[
I
0

]
=
[

0 0 I
]  A

(i)
II B̃

(i)
I

T
A

(i)
IΓ

B̃
(i)
I −C̃(i) B̃

(i)
Γ

T

A
(i)
ΓI B̃

(i)
Γ A

(i)
ΓΓ


†  0

0
I

 .

Note that the matrix in the right side of the equation is a submatrix of (3.7). The coarse
step preceding the local step ensures that the right-hand sides are consistent and in this
case a good approximation for the pseudo-inverse can be obtained by perturbing the original
system, replacing the original A(i) by A(i) + εI or A(i) + εM (i), where M (i) is the local mass
matrix for the displacement variables and ε is a small positive constant.

4.2. Coarse Level. The application of the coarse term Q0 amounts to the solution
of a coarse, global problem:

Q0 = RT
0 (R0SRT

0 )†R0,

where

R0 =

[
LT 0
0 I

]
.

The columns of the matrix RT
0 span the coarse space: the identity block corresponds to

the coarse pressures, one per subdomain; the displacement coarse space is determined by the
columns of the matrix L. In order to ensure solvability of the local problems with natural
boundary conditions, L must contain the traces of the elements of a basis of the nullspace of

A(i) scaled by D(i)−1
for all i corresponding to the floating subdomains (cf. subsection 4.1).

These scaled rigid-body displacements can also be added for non-floating subdomains, as
long as care is taken to avoid linearly dependence; this can be accomplished by dropping the
contribution of one non-floating subdomain.

In order to obtain an inf-sup stable coarse space, we need to enrich L further. Two
alternatives are: adding the traces of either the coarse bi/tri-linear functions (the space QH

1 )
or the quadratic coarse edge/face bubble functions for the normal directions.

Remark We can show that QS is positive-definite on range (I −Q0S). If an initial
guess is chosen such that the initial error is in range (I −Q0S), then the error on every step
of a Krylov method will also be restricted to range (I −Q0S), since Q0S is a projection.
The importance of this observation is that it allow us to use the preconditioned conjugate
gradient method as our iterative solver, even though our original operator is indefinite.

5. Theoretical Bound. A theoretical bound for the condition number of the pre-
conditioned operator QS restricted to the appropriate subspace to which the iterates are
confined is proved in [7], [4], for the constant coefficient case:

κ ≤ C

(
1 + log

(
H

h

))2

.

We note that κ does not depend on the number of subdomains and depends only poly-
logarithmically on the size of the subdomain problems. The constant C depends, in the
incompressible or quasi-incompressible cases, on the inf-sup constants of the original and
coarse spaces. This is the reason why we enrich the displacement coarse space to achieve
inf-sup stability.



214 GOLDFELD

Figure 6.1: material properties of a heterogeneous problem.
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6. Numerical Experiments. Our algorithm has been implemented in C, using the
PETSc library (see [1], [2]). Parallel numerical experiments were run on the Linux cluster
Chiba City at Argonne National Laboratory (with 256 Dual Pentium III processors with
512MB of local RAM). We report on results for compressible/almost-incompressible elasticity
only, although similar results have been obtained for incompressible elasticity, Stokes and
generalized Stokes equations.

We consider an elasticity problem defined on a square heterogeneous domain, which is
composed of an arrangement of three different materials in the pattern depicted in figure
6.1. Note that the material r is almost incompressible, with a Poisson ratio close to 0.5.
The problem is discretized with Q2 − Q0 finite elements and the domain Ω divided into√

N ×
√

N square subdomains, each of them composed of a single material. The saddle
point Schur complement (3.3) is solved iteratively by PCG with our balancing Neumann-
Neumann preconditioner and the coarse space V0 = {scaled rigid body motions}+ QH

1 . The
initial guess is a random vector modified so that the initial error is in the range of (I−Q0S),
the right hand side is a random, uniformly distributed vector, and the stopping criterion is
‖rk‖2/‖r0‖2 ≤ 10−6, where rk is the residual at the k−th iterate.

In the lower half of Table 6.1, we show the results for increasing mesh sizes, always with
64 subdomains. The condition number and the iteration count grow weakly as we increase
the size of the local problems, as can also be observed in the left part of Figure 6.2.

The last two columns of this table display CPU-times for these runs. The last column
gives the total time for the code to run, while the column labeled “fact.” gives the time spent
on LU factorizations; there are three of them: two local, namely Dirichlet and Neumann
subdomain-level problems, and one global coarse problem. We note that the cost of the
factorizations grows rapidly and dominates the cost of the computation. The upper part of
Table 6.1 shows results for an increasing number of subdomains of fixed size (about 58,000
degrees of freedom). The corresponding graph, on the right in Figure 6.2, shows an almost
horizontal tail, indicating independence of the condition number and the iteration count on
the number of subdomains. This is numerical evidence that our result in section 5 remains
valid in the case of discontinuous coefficients. The fact that the factorization time remains
constant for the entire range of problem sizes tested (from 16 to 169 subdomains) indicates
that the cost associated with the factorization of the coarse problem is still tiny compared
with that of the local problems. One can expect this scenario to change if the number of
subdomains increases significantly.
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Table 6.1: results for elasticity problem in heterogeneous medium with Q2−Q0 finite
elements and V0 = (scaled rigid-body motions)+

(
QH

1

)2. The iterative method is PCG
and the termination criterion is ‖rfinal‖ ≤ 10−6 ‖r0‖. The initial guess and right-hand
side are randomly generated. The ordering of the displacement variables is determined
by quasi-minimal degree.

fixed H/h, local problem with 80 × 80 elements (58,242 dof)
grid size # subd. dof iter. cond. time (sec.)
(# elem.) (×106) fact. other
320× 320 4× 4 0.92 12 5.14 258.0 63.4
480× 480 6× 6 2.08 13 5.12 253.7 63.7
640× 640 8× 8 3.69 14 5.13 260.8 84.5
800× 800 10× 10 5.77 14 5.06 262.8 93.9

1040× 1040 13× 13 9.74 14 4.87 261.2 102.7
fixed number of subdomains N = 8× 8

grid size loc. dof dof iter. cond. time (sec.)
(# elem.) (×103) (×106) fact. other
160× 160 3.8 0.23 12 4.00 1.4 16.7
320× 320 14.7 0.92 13 4.57 18.2 22.7
480× 480 32.9 2.08 14 4.91 84.2 42.1
640× 640 58.2 3.69 14 5.13 260.8 84.5

Figure 6.2: results for elasticity problem in heterogeneous medium with Q2−Q0 finite
elements: PCG iteration count and condition number of QS vs. local size H/h (left)
and number of subdomains N (right), from Table 6.1.
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19. A FETI-DP Corner Selection Algorithm for
three-dimensional problems

M. Lesoinne1

1. Introduction. The FETI-DP algorithm is a numerically scalable iterative domain
decomposition method for static and dynamic problems. It was first derived as an alternative
to the two-level FETI method for fourth order problems [1] and later extended to three
dimensional second order problems [5, 2]. Later, several authors have showed that FETI-DP
is scalable for scalar and mechanical problems [6] even in the presence of heterogeneities [4].

As it is derived from the two-level FETI method for fourth order problems, the choice
of corner in such problems has to follow the same rules [3], however, for second order, three
dimensional problems, the FETI-DP implementations remain flexible on the choice of corners.
However a few constraints have to be placed on their choices, so that the resulting subdomain
matrices and the resulting coarse problem is non-singular.

This article describes a robust algorithm for the selection of corners for three-dimensional
problems that guarantees that none of the matrices involved in the FETI operator will be
singular.

2. The Dual-Primal FETI Method. Let Ω be partitioned into a set of Ns, non-
overlapping subdomains (or substructures) Ωs. Select a set of points called corner points on
which the degrees of freedom will remain primal variable. The mechanical interpretation of
this particular method of mesh splitting can be viewed as making incisions into the mesh
but leaving the corner points attached. This is analogous to the “tearing” stage of FETI.
The “interconnecting” stage occurs only on the subdomain interfaces which now excludes the
corner points (see Figure 2.1). By splitting, us into two sub-vectors such that:

u =

[
ur

uc

]
=


u1

r

...
uNs

r

uc

 (2.1)

where us
r is the remaining subdomain solution vector and uc is a global/primal solution vector

over all defined corner degrees of freedom. The solution at the corner points is continuous
by definition when the solution vector is constructed in this manner. Using this notation, we
can split the subdomain stiffness matrix into:

Ks =

[
Ks

rr Ks
rc

KsT

rc Ks
cc

]
(2.2)

1Assistant Professor, Department of Aerospace Engineering and Sciences and Center for
Aerospace Structures University of Colorado at Boulder Boulder, CO 80309-0429, U.S.A. Email:
Michel@Colorado.EDU
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Figure 2.1: Dual-Primal Mesh Partitions

Then the FETI-DP equilibrium equations can be written using the following matrix parti-
tioning where the subscripts c and r denote the corner and the remainder degrees of freedom.



K1
rr . . . 0 K1

rcB
1
c

...
. . .

...
...

0 . . . KNs
rr KNs

rc BNs
c

B1T

c K1T

rc . . . BNs
T

c KNs
T

rc

Ns∑
s=1

BsT

c Ks
ccB

s
c




u1
r

...
uNs

r

uc

 =



f1
r −B1T

r λ
...

fNs
r −BNs

T

r λ
Ns∑
s=1

BsT

c fs
c


(2.3)

While the compatibility equations of interface displacements take the form:

Ns∑
s=1

Bs
rus

r = 0 (2.4)

In the preceeding, the corner stiffness matrix, Kcc =

Ns∑
s=1

BsT

c Ks
ccB

s
c is a global stiffness

quantity, Bs
c maps the local corner equation numbering to global corner equation numbering,

fs
r is the external force applied on the r degrees of freedom, BsT

r is a boolean matrix that
extracts the interface of a subdomain, and λ are the Lagrange multipliers.

Let Krr denote the block diagonal subdomain stiffness matrix restricted to the remaining,
r, points, Krc the block column vector of r-c coupling stiffness matrices, fr the block column
vector of subdomain force vectors, Kcc the global corner stiffness matrix and using the ”rc”
notation, we can rewrite the equilibrium compatibility equations in the more compact form: Krr Krc BT

r

KT
rc Kcc 0

Br 0 0

 ur

uc

λ

 =

 fr

fc

0

 (2.5)

In this formulation, the FETI-DP operator is a schur-complement obtained by eliminating the
ur and uc degrees of freedom. The elimination of the ur degrees of freedom is a subdomain per
subdomain operation, while the elimination of the uc degrees of freedom is a global operation
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that provides the FETI-DP operator with a coarse problem, coupling all the subdomains
together.

Though this approach is scalable for two-dimensional problems and for plates and shells,
it was shown that for second order three-dimensional problems, an augmented coarse problem
is necessary.

The augmented FETI-DP system is obtained by adding new coarse degrees of freedom
in the form of new Lagrange multipliers µ that are used to guarantee that at each iteration,
the residual is orthogonal to a subspace Q:

QT Bur = 0 (2.6)

Thus leading to the system of equations:
Krr Krc BtQ Bt

Kcr Kcc 0 0
QtB 0 0 0

B 0 0 0




ur

uc

µ

λ

 =


fr

fc

0

0

 (2.7)

In this set of equations, the first line is the set of subdomain by subdomain equations while
the second and third lines represent the coarse problem which is global. By doing the Schur
complement of the ur equations, we obtain the coarse matrix:

K̃cc =

(
Kcc −KcrK

−1
rr Krc −KcrK

−1
rr BtQ

−QtBK−1
rr Krc −QtBK−1

rr BtQ

)
(2.8)

3. Preliminary Observations. There are two essential conditions that the corner
selection should satisfy:

1. Each subdomain stiffness matrix should be non singular.

2. The resulting coarse problem matrix should be non singular.

Additionally, as they do not contribute significantly to the convergence rate, keeping the
number of corner nodes low reduces the overall cost of the computation and improves its
scalability.

3.1. Non-Singular K
(s)
rr . The non singularity of each subdomain K

(s)
rr can be guar-

anteed simply by making sure that every subdomain has either 3 non-colinear corner nodes
in 3 dimensions or 2 non-coincidental corner nodes in 2 dimensions.

3.2. Non-Singular K̃cc and Pivoting. As presented here, the FETI-DP method
only requires that K̃cc be non singular for the corner degrees of freedom. However this
matrix is not positive and without pivoting, zero diagonal terms could appear during the
factorization on one of the corner degree of freedom. It is to be noticed that a singularity
on one of the augmentation degree of freedom can be dealt with simply by eliminating the
augmentation degree of freedom. Such an occurrence only affects the convergence rate but
does not otherwise adversely affect the method. However it is imperative that no singularity
appears on the corner degrees of freedom.

We note that is is always possible to deal with the occurrence of a zero pivot in the
factorization of K∗

cc, the corner node portion of K̃cc by using pivoting if we assume the
global coarse matrix to be non-singular. However pivoting solver are generally complex and
usually have a slightly lower performance when compared with non-pivoting solver. Moreover,
guaranteeing that the augmentation correctly addresses the singularity in K∗

cc is by no means
a trivial task.
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Figure 4.1: Coarse Problem Mechanism

Fortunately, it can be guaranteed that no zero pivot will appear on the corner degree of
freedoms if K∗

cc is non singular. Because of this simple remark, we propose to build our corner
selection algorithm to guarantee that K∗

cc is non singular. This choice will make pivoting
unnecessary and consequently simplify the implementation and improve the performance of
the code.

3.3. Subdomains as Super-Elements. In order to facilitate the discussion of the
non-singularity of K∗

cc, we first notice that

K∗
cc =

Nsub∑
s=1

K(s)
cc −K(s)

cr K−1
rr(s)K

(s)
rc (3.1)

is an assembly of subdomain as Super-Elements where only the corner nodes are kept for
attaching subdomains together. We will assume in what follows that every subdomain created
by the decomposer is free of any internal mechanism. This is to say that in three dimensions,
each subdomain, before the application of any boundary condition has exactly 6 rigid body
modes, while in two dimensions, each subdomain has exactly 3 rigid body modes.

4. An Ad-Hoc Algorithm. In our early implementation of the FETI-DP algo-
rithm, we extended the two-dimensional view of corners to three-dimensions by using the
following algorithm:

1. Pick nodes with more than 4 neighbors as corner nodes

2. Post-guarantee the non singularity of Krr

Unfortunately this algorithm generally leads to a large number of corners and more impor-
tantly, it does not offer any guarantee as to the non-singularity of the K̃cc matrix. Figure 4.1
shows a two dimensional example. In this problem there are no points where three or more
subdomains meet. Therefore, the corners have been chosen to guarantee the non singularity
of all the subdomains – i.e. in this case, at least two corner nodes per subdomain. It can be
seen that the resulting system has a spurious mechanism.

5. A Robust Algorithm. To keep the following discussion clear, let us introduce
two important definitions:

Mechanism-Free entity: a set of elements such that when combined together, there is no
mechanism between any part of the set
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Subdomain to Subdomain Face: the set of nodes shared by two given subdomains

Under our assumption about the decomposer, every subdomain is a Mechanism-Free
entity.

It is easy to check that, using only corner nodes to attach subdomains together, two
Mechanism-Free entities can be combined into a single composite Mechanism-Free entity if
they share at least 3 non colinear corner nodes in three dimensions or 2 non colocated nodes
in two dimensions.

We also note that when a subdomain is merged with any Mechanism-Free entity, it will
guarantee that its local K

(s)
rr matrix is non singular.

Thus, by recursively combining pairs of Mechanism-Free entities until the whole set of
subdomains has been merged into a single entity, we can attain our goals, thus leading to:

Corner Selection Algorithm

1. Mark Corner Candidates on Each Subdomain Face

2. Declare Each Subdomain a Mechanism-Free Entity

3. Iterate Until all Subdomain are Assembled into a Single Entity:

(a) For each Entity, Choose 2 Preferred Neighboring Entities by:

i. Favoring Already Picked Corners.

ii. Maximizing the Area Formed by the Corner Nodes Joining the 2 En-
tities.

(b) Check if Previous Choices of Corner Create a Tie between Entities

(c) Merge Entities, Favoring Pre-Existing ties, then Paring

In the first step of the algorithm, we pick candidate corner nodes from which all corner
nodes will be chosen. In most three-dimensional problems, the faces between neighboring
subdomain are two-dimensional and therefore if we have at least three non-colinear corner
nodes on such faces, we can guarantee that we can tie each subdomain to a neighbor as a
Mechanism-Free Entity, guaranteeing by the same operation that the subdomain K

(s)
rr will

be non-singular.
We will note that there are some special cases to deal with. It is possible to have a

structure in which subdomains are attached by faces that are all two dimensions lower than
the dimension of the problem –i.e. single nodes in 2 dimensions. This means that even
when use all the potential corner nodes, it is not possible to tie two subdomains into a
single Mechanism-Free entity just by one face. In such a case, the algorithm may end up
with a final set of Mechanism-Free entities that it cannot guarantee can be tied into a single
one. In such a case, we will take all the remaining corner candidates shared by at least two
entities as corners. Assuming the global problem was mechanism-free, the resulting choice
will guarantee the non singularity of K∗

cc. If the resulting K∗
cc remains singular however, we

will conclude that the global problem was singular and an error can be generated for the
user.

6. Numerical Results. We present two numerical examples of large three-dimensional
structures. The first model is of a car engine component and has 985,340 degrees of freedom.
It is made of four noded tetrahedra (see Figure 6). The second model, illustrated in Figures 6
has 2,437,104 degrees of freedom. Both models were run first with the Ad-Hoc algorithm and
secondly with new algorithm. The results show the number of corners generated, the total
number of degrees of freedom of the coarse problem, the memory used by the K̃cc matrix,
the number of iterations and the total elapsed time for the solution.
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Figure 6.1: Engine Gas Collector Geometry

Algorithm Number of Coarse Memory Iteration Solution
Corners Pb Size Usage Count Time

Old 2,285 15,692 60MB 38 501s
New 1,571 13,679 44MB 41 490s

Table 6.1: Results for the Engine Gas Collector

Figure 6.2: Wheel Carrier Geometry
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Algorithm Number of Coarse Memory Iteration Solution
Corners Pb Size Usage Count Time

Old 3,163 28,572 154MB 104 1272s
New 2,210 25,095 118MB 104 1218s

Table 6.2: Results for the Wheel Carrier Problem

The engine component was run using 8 CPUs on an SGI Origin 2000 machine. The
results show that the number of corner nodes was reduced by roughly 30% while the total
number of degree of freedom in the coarse problem is reduced by 12.5% This reduction leads
to a saving of memory of 27% We observe a slight but increase in the number of iterations
to reach the solution, however the smaller coarse problem leads to a lower cost per iteration
and a shorter factorization of the coarse matrix. As a result, the overall timing is about 2%
faster.

The wheel carrier shows similar effects. The reduction in number of corner is again
roughly one third while the reduction in number of coarse degrees of freedom is lower. In this
case, the number of iterations remains unaffected by the number of corners and the overall
execution time is faster with the smaller coarse problem.

7. Conclusions. We have presented an algorithm for the selection of corner nodes
for three-dimensional problems for the FETI-DP algorithm. This algorithm offers the benefit
over the previous Ad-Hoc algorithm of guaranteeing that no zero pivot will appear during
the factorization of the coarse problem.

With two large examples of three-dimensional problems, it was shown that the improved
algorithm leads to a reduction of number of corners by roughly one third and is accompanied
by a very small decrease of convergence rate. However, the coarse problem matrix is smaller
and the resulting reduction in factorization cost as well as a reduction in the cost for the
solution of the coarse problem at each iteration results in a slight reduction of the overall
solution time.
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20. A Dual-Primal FETI Method for solving
Stokes/Navier-Stokes Equations

Jing Li1

1. Introduction. The Dual-Primal Finite Element Tearing and Interconnecting (FETI-
DP) methods were first proposed by Farhat et al [3] for elliptic partial differential equations.
In this method, the spatial domain is decomposed into non-overlapping subdomains, and the
interior subdomain variables are eliminated to form a Schur complement problem for the
interface variables. Lagrange multipliers are then introduced to enforce continuity across the
interface, except at the subdomain vertices where continuity is enforced directly, i.e., the
neighboring subdomains share the degrees of freedom at the subdomain vertices. A symmet-
ric positive semi-definite linear system for the Lagrange multipliers is solved by using the
preconditioned conjugate gradient (PCG) method. FETI-DP methods have been shown to
be numerically scalable for second order elliptic problems. Thus, Mandel and Tezaur [6] have
proved that the condition number grows at most as C(1 + log(H/h))2 in two dimensions,
where H is the subdomain diameter and h is the element size. Klawonn et al [4] proposed
new preconditioners of this type and proved that the condition numbers are bounded from
above by C(1 + log(H/h))2 in three dimensions; these bounds are also independent of pos-
sible jumps of the coefficients of the elliptic problem. In [5], we developed a dual-primal
FETI method for the two-dimensional incompressible Stokes problem and proved that the
condition number is bounded from above by C(1+ log(H/h))2. In this paper, we will extend
this algorithm to solving three-dimensional incompressible Stokes problem, give the same
condition number bound and an inf-sup stability result for the coarse level saddle point prob-
lem, which appeared as an assumption in [5]. We will also extend this dual-primal FETI
algorithm to solving nonlinear Navier-Stokes equations by using a Picard iteration, where in
each iteration step, we will solve a non-symmetric linearized incompressible Navier-Stokes
equation. Illustrative numerical results are presented by solving lid driven cavity problems.

2. FETI-DP algorithm for Stokes problem. We will consider the following
Stokes problem on a three-dimensional, bounded, polyhedral domain Ω,

−∆u +∇p = f , in Ω
−∇ · u = 0, in Ω

u = g, on ∂Ω ,
(1)

where the boundary velocity g satisfies the compatibility condition
∫

∂Ω
g ·n = 0. The domain

Ω is decomposed into N non-overlapping polyhedral subdomains Ωi of characteristic size H.
The interface is defined as Γ = (∪∂Ωi)\∂Ω and Γij = ∂Ωi ∩ ∂Ωj is the interface between
two neighboring subdomains Ωi and Ωj . We will consider subdomain incompressible Stokes
problems, 

−∆ui +∇pi = f i, in Ωi

−∇ · ui = 0, in Ωi

ui = gi, on ∂Ω ∩ ∂Ωi

∂ui

∂ni − pini = λi, on Γij ,
−∆uj +∇pj = f j , in Ωj

−∇ · uj = 0, in Ωj

uj = gj , on ∂Ω ∩ ∂Ωj

∂uj

∂nj − pjnj = λj , on Γij ,

1Courant Institute of Mathematical Sciences, lijing@cims.nyu.edu. This work was supported in
part by the U.S. Department of Energy under contract DE-FG02-92ER25127.
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where λi + λj = 0. We first form subdomain discrete problems by using an inf-sup stable
mixed finite element method on each subdomain. We denote the discrete finite element space
for the pressures inside the subdomain Ωi by Πi

I , and the subdomain constant pressure space
by Π0. We denote the discrete finite element space for the velocity components on Ωi by
Wh(Ωi), which is decomposed as Wh(Ωi) = Wi

I ⊕Wi
Γ, with Wi

I the interior velocity part
and Wi

Γ the subdomain boundary velocity part. Let ΠI =
∏N

i=1 Πi
I , WI =

∏N
i=1 Wi

I , and

WΓ =
∏N

i=1 Wi
Γ be the corresponding product spaces. W̃Γ is a subspace of WΓ and is given

by

W̃Γ = WΠ ⊕W∆,

where the primal subspace WΠ consists of two parts. The first is the subdomain corner veloc-
ity part, which is spanned by the nodal finite element basis function θVil of the subdomain
corners. The other part corresponds to the integrals of the velocity over each subdomain
interface, and it is spanned by the pseudoinverse µ†

Fij of the counting functions µFij corre-

sponding to each face F ij of the subdomain Ωi: µFij is 0 at the interface nodes outside F̄ ij

while its value at any node on F ij equals the number of subdomains shared by that node.
Its pseudoinverse µ†

Fij is the function 1/µFij (x) for all interface nodes where µFij (x) �= 0,

and it vanishes at all other points. We also note that, we make both µFij and µ†
Fij vanish at

the subdomain corners. W∆ is the dual part, which is the direct sum of the local subspaces
Wi

∆. In the 3D case,

Wi
∆ := {w ∈Wi

Γ : w(Vil) = 0; w̄Fij = 0, ∀Vil,F ij ⊂ ∂Ωi},

with w̄Fij defined by

w̄Fij =

∫
Fij wdx∫
Fij dx

.

With these notations, we can decompose the discrete velocity and pressure space of the
original problem (1) as follows

W = WI ⊕WΠ ⊕W∆,

and

Π = ΠI

⊕
Π0.

If we further introduce a Lagrange multiplier space Λ to enforce the continuity of the velocities
across the subdomain interfaces, then we have the following discrete problem: find a vector
(uI , pI ,uΠ, p0,u∆, λ) ∈ (WI , ΠI ,WΠ, Π0,W∆, Λ) such that

AII BT
II AT

ΠI 0 AT
∆I 0

BII 0 BΠI 0 B∆I 0
AΠI BT

ΠI AΠΠ BT
Π0 AT

∆Π 0
0 0 BΠ0 0 0 0

A∆I BT
∆I A∆Π 0 A∆∆ BT

∆

0 0 0 0 B∆ 0




uI

pI

uΠ

p0

u∆

λ

 =


fI
0
fΠ
0
f∆
0

 . (2)

It is important to note that the B∆ matrix here is a scaled matrix with elements given

by {0,±
√

µ†
Fij} placing different weights on the face and edge nodes, unlike in the two-

dimensional case where B∆ is constructed from {0,±1}. It follows immediately from the
definition of B∆ that, on each subdomain interface F ij ,

(BT
∆B∆w)i|Fij = ±(µ†

Fij (w
i −wj))|Fij , ∀w ∈WΓ. (3)
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Also note that we are not requiring the pressure to be continuous across the subdomain
interfaces in our algorithm. In fact, we consider only mixed methods with discontinuous
pressure spaces. By defining a Schur complement operator S̃ as

AII BT
II AT

ΠI 0 AT
∆I

BII 0 BΠI 0 B∆I

AΠI BT
ΠI AΠΠ BT

Π0 AT
∆Π

0 0 BΠ0 0 0
A∆I BT

∆I A∆Π 0 A∆∆




uI

pI

uΠ

p0

u∆

 =


0
0
0
0

S̃u∆

 , (4)

solving the linear system (2) is reduced to solving the following linear system(
S̃ BT

∆

B∆ 0

)(
u∆

λ

)
=

(
f∗∆
0

)
. (5)

By using a further Schur complement procedure, the problem is finally reduced to solving
the following linear system with the Lagrange multipliers λ as the remaining variable:

B∆S̃−1BT
∆λ = B∆S̃−1f∗∆, (6)

Our preconditioner is the standard Dirichlet preconditioner, B∆S∆BT
∆, with S∆ defined as AII BT

II AT
∆I

BII 0 B∆I

A∆I BT
∆I A∆∆

 uI

pI

u∆

 =

 0
0
S∆u∆

 . (7)

We have now formed the preconditioned linear system

B∆S∆BT
∆B∆S̃−1BT

∆λ = B∆S∆BT
∆B∆S̃−1f∗

∆ , (8)

which is our FETI-DP algorithm to solve the incompressible Stokes problem (1). In [5], we
show that both S∆ and S̃−1 are symmetric, positive definite on the space W∆. Therefore a
preconditioned conjugate gradient method, as well as GMRES, can be used to solve equation
(8). We note that we need to apply both S∆ and S̃−1 to a vector in each iteration step.
Multiplying S∆ by a vector requires solving subdomain incompressible Stokes problems with
Dirichlet boundary conditions, and multiplying S̃−1 by a vector requires solving a coarse
level saddle point problem, as well as subdomain problems. In [5], we made an assumption
about the inf-sup stability condition of the coarse level saddle point problem. In the next
section we will give an inf-sup stability estimate as well as a condition number bound of the
preconditioned linear system (8).

3. Inf-sup stability of the coarse saddle point problem and a condition
number estimate. We know, from the definition (4), that to find a vector u∆ = S̃−1 ·
w∆ ∈W∆, for a given w∆ ∈W∆, requires solving the following linear system

AII AT
∆I BT

II AT
ΠI 0

A∆I A∆∆ BT
∆I AT

Π∆ 0
BII B∆I 0 BΠI 0
AΠI AΠ∆ BT

ΠI AΠΠ BT
Π0

0 0 0 BΠ0 0




uI

u∆

pI

uΠ

p0

 =


0
w∆

0
0
0

 . (9)

In our FETI-DP algorithm, we solve this linear system by a Schur complement procedure.
We first solve a coarse level problem(

SΠ BT
Π0

BΠ0 0

)(
uΠ

p0

)
=

(
f∗Π
0

)
, (10)
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and then the independent subdomain problems AII AT
∆I BT

II

A∆I A∆∆ BT
∆I

BII B∆I 0

 uI

u∆

pI

 =

 0
w∆

0

 −
 AT

ΠI

AT
Π∆

BΠI

uΠ. (11)

In (10), SΠ is defined by:

AΠΠ −
(

AΠI AΠ∆ BT
ΠI

) AII AT
∆I BT

II

A∆I A∆∆ BT
∆I

BII B∆I 0

−1 AT
ΠI

AT
Π∆

BΠI

 , (12)

which corresponds to a discrete Stokes harmonic extension operator SHΠ : WΠ →
∏N

i=1 Wh(Ωi)

defined as: for any given primal velocity uΠ ∈ WΠ, find SHΠuΠ ∈
∏N

i=1 Wh(Ωi) and

pI ∈
∏N

i=1 Πi
I such that on each subdomain Ωi, i = 1, ..., N,

a(SHΠuΠ,vi) + b(vi, pi
I) = 0, ∀vi ∈Wh(Ωi)

b(SHΠuΠ, qi
I) = 0, ∀qi

I ∈ Πi

SHΠuΠ = uΠ, in the primal space WΠ.
(13)

If we define an inner product sΠ(., .), corresponding to the Schur operator SΠ, on the space
WΠ as

sΠ(uΠ,uΠ) = uT
ΠSΠuΠ = a(SHΠuΠ,SHΠuΠ) , ∀uΠ ∈WΠ, (14)

then the matrix form of the coarse problem (10) can be written in the following variation
form: find uΠ ∈WΠ and p0 ∈ Π0 such that,{

sΠ(uΠ,vΠ) + b(vΠ, p0) = < fΠ,vΠ >, ∀vΠ ∈WΠ

b(uΠ, q0) = 0, ∀q0 ∈ Π0.
(15)

We can prove the following inf-sup stability estimate for this coarse saddle point problem.

Theorem 3.1

sup
wΠ∈WΠ

b(wΠ, q0)
2

sΠ(wΠ,wΠ)
≥ β2

C ||q0||2L2 , ∀q0 ∈ Π0, (16)

where βC = C(1 + log(H/h))−1/2. C is a constant independent of h and H, but depends on
the inf-sup stability constant of subdomain Stokes problem solver.

We have given a condition number bound for the preconditioned linear system (8) for two-
dimensional case in [5]. Here we use some techniques from Klawonn et al [4] to obtain the
following condition number bound for the three-dimensional case:

Theorem 3.2 The condition number of the preconditioned linear system (8) is bounded from
above by C(1 + log(H/h))2, where C is independent of h and H, but depends on the inf-sup
stability constant of subdomain Stokes problem solver.

4. Extension to nonlinear Navier-Stokes equations. The nonlinear problem
is: 

−µ∆u + (u · ∇)u +∇p = f , in Ω
−∇ · u = 0, in Ω

u = g, on ∂Ω ,
(17)

where µ is the viscosity and
∫

∂Ω
g · n = 0.

We solve this nonlinear problem by using a Picard iteration, where in each iteration step we
solve a linearized Navier-Stokes problem:

−µ∆un+1 + (un · ∇)un+1 +∇pn+1 = f ,
−∇ · un+1 = 0,

un+1|∂Ω = g.
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Figure 5.1: GMRES iterations counts for the Stokes solver vs. number of subdomains
(left) and vs. H/h (right)

To solve this non-symmetric equation, the non-symmetric bilinear form
∫
Ωi(u

n ·∇)un+1v, on

each subdomain Ωi, is written as the sum of a skew-symmetric term and an interface term:(
1

2

∫
Ωi

(un · ∇)un+1v − 1

2

∫
Ωi

(un · ∇)vun+1

)
+

1

2

∫
∂Ωi

(un · n)un+1v. (18)

By doing this, we are identifying the correct bilinear form describing the action of the above
non-symmetric operator on any given subdomain Ωi, and the subdomain incompressible
Navier-Stokes problem appears as:

−∆un+1 + (un · ∇)un+1 +∇pn+1 = f , in Ωi

−∇ · un+1 = 0, in Ωi

un+1 = g, on ∂Ω ∩ ∂Ωi

∂un+1

∂n
− pn+1n− un·n

2
un = λ, on Γij .

(19)

The idea to write the non-symmetric bilinear form
∫
Ωi(u

n · ∇)un+1v as in (18) was used
by Achdou et al [1] to solve advection-diffusion problems. After discretizing the subdomain
problems (19), we can use the same procedure as in section 2 to design the FETI-DP al-
gorithm. We should also note that the conjugate gradient method cannot be used here to
solve the preconditioned linear system, because this problem is no longer symmetric, positive
definite.

5. Numerical Experiments. We have tested our algorithm by solving a lid driven
cavity problem on the domain Ω = [0, 1]×[0, 1], with f = 0, gx = 1, gy = 0 for x ∈ [0, 1], y = 1,
and g = 0 elsewhere on the boundary (cf. Elman et al [2]). We have used GMRES to solve
the preconditioned linear system (8), as well as the nonpreconditioned linear system (6).
The initial guess is λ = 0 and the stopping criterion is ||rk||2/||r0||2 ≤ 10−6, where rk is the
residual of the Lagrange multiplier equation at the kth iteration. Figure 5.1 gives the number
of GMRES iterations for different number of subdomains with a fixed subdomain problem size
H/h = 8, and for different subdomain problem size H/h with 4×4 subdomains. We see, from
the left figure, that the convergence of the augmented FETI-DP method, with or without a
preconditioner, is independent of the number of subdomains, while the preconditioned version
needs fewer iterations. The right figure shows that the GMRES iteration count increases,
in both the preconditioned and the nonpreconditioned cases, with the increase of the size
of subdomain problem, but that it is growing much slower with the Dirichlet preconditioner
than without. Figure 5.2 shows that the coarse saddle point problem is inf-sup stable; cf.
Theorem 3.1. We can see, from the left figure, that βC is bounded away from zero while
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Figure 5.2: Inf-sup stability condition of the coarse level saddle point problem
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Figure 5.3: Convergence of Picard iteration for different Reynolds number

we increase the number of subdomains; from the right figure, (1/βC)2 appears to be a linear
function of log(H/h). In Figure 5.3 and Figure 5.4, we show the convergence behavior of
the Picard iteration used to solve the nonlinear Navier-Stokes equation (17) for the 2D lid
driven cavity problem. In our experiments, we start from a zero initial guess, and the Picard
iteration is stopped when the nonlinear residual is reduced by 10−6. For the GMRES solver,
we reduce the linear residual by 10−3 in each iteration step. ¿From Figure 5.3, we see that
the convergence of the Picard iteration depends on the Reynolds number: the larger is the
Reynolds number, the slower is the convergence. Figure 5.4 shows that the convergence is
independent of the mesh size. The left figure shows that the convergence is independent of the
number of subdomains for fixed H/h = 10; the right figure shows that that the convergence
is independent of H/h for the 64 subdomain case, except for a Reynolds number of 500. This
can be explained by the fact that for high Reynolds number, the mesh has to be fine enough
to achieve good convergence. Acknowledgments. The author is grateful to Olof Widlund
for proposing this problem and giving many helpful suggestions.
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21. Experiences with FETI-DP in a Production Level Finite
Element Application

K.H. Pierson1, G.M. Reese2, P. Raghavan3

Introduction The need for predictive, qualified models of very complex structures
drives the requirements for large scale structural analysis. Reduced testing in the nuclear
weapons program is a driving factor at the DOE labs. In addition, more detailed models
reduce the need for engineering approximation, improve accuracy and often simplify model
construction. Uncertainty in model parameters (for example, variations in joint preloads)
can require multiple analyses for evaluation of a structure. Salinas was designed to meet the
needs of a very large scale, general purpose, structural dynamics analysis ([1] and [14]).

Salinas was implemented with the goal of providing predictive modeling of complex struc-
tural systems. This necessitates a full suite of structural elements and solution methods which
must perform reliably on serial and distributed memory machines. Robust solution methods
and platform portability are critical. Sensitivity analysis and optimization capabilities are
also required for application to the design and uncertainty quantification communities.

Salinas is implemented on a variety of Unix(tm) and Unix-like platforms. The core
libraries are written in C++ using MPI communications. This facilitates extensibility to
a full range of solvers, solution methods and element libraries. Scalability to thousands of
processors is achieved through application of Finite Element Tearing and Interconnecting
(FETI) methods ([2], [7], [6]). Recently, FETI-DP, the Dual-Primal Finite Element Tearing
and Interconnecting method has been implemented as the replacement to the one-level FETI
method previously used (see discussion below). High performance over a range of platforms
is obtained through effective use of optimized BLAS routines. The BLAS routines are the
building blocks for the sparse serial and parallel direct solvers used within Salinas/FETI-DP
([11], [13]).

Salinas has been used for production solutions of linear and nonlinear statics and implicit
transient dynamics, and for eigen analysis and modal superposition solutions (such as fre-
quency response, modal transient and random vibration). Extremely complex models have
been analyzed utilizing combinations of beams, shells and solids. The models contain hun-
dreds of different materials which may differ in modulus by ratios greater than 106. Models
larger than 100M degrees of freedom (dof) have been solved with demonstrated scalability
above 3000 processors. Salinas is limited to small deformation analysis, but some nonlinear
elements have been added, and more are under development.

FETI-DP Overview We present an overview of the FETI-DP method to keep this
paper self-contained. Let the global domain Ω be partitioned into a set of Ns, non-overlapping
subdomains Ωs. Select a set of corner points for each subdomain such that all zero energy
modes are suppressed if Dirichlet boundary boundary conditions are applied to the set of
corner points. The selected corner points remain primal unknowns which are used to define a
sparse coarse grid matrix for FETI-DP. See [9] and more recent work by Lesoinne appearing
in these proceedings about optimal corner point selection. Define us as the unknown solution
vector associated with subdomain s. Split the global solution vector, u, into two sub-vectors

1Sandia National Laboratories, khpiers@sandia.gov
2Sandia National Laboratories, gmreese@sandia.gov
3The Pennsylvania State University, praghavan@psu.edu
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such that:

u =

[
ur

uc

]
=


u1

r

...
uNs

r

uc

 (0.1)

where uc is a primal unknown vector over all selected corner dof and us
r is the unknown

vector for all remaining subdomain dof on subdomain s. The subdomain operator can be
partitioned into the following 2x2 block matrix.

Ks =

[
Ks

rr Ks
rc

KsT

rc Ks
cc

]
(0.2)

Global equilibrium can be written by introducing unknown Lagrange multipliers exactly like
the classical one-level FETI method.
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c KNs
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Ns∑
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BsT

c Ks
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s
c 0
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r 0 0
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r

...
uNs

r

uc

λ

 =



f1
r

...
fNs

r
Ns∑
s=1

BsT

c fs
c

0


(0.3)

where Bs
c maps the local corner equation numbering to global corner equation numbering,

fs
c is the external force applied on the corner dof, fs

r is the external force applied on the

remaining dof, BsT

r is a boolean matrix that extracts the interface of a subdomain, and λ are
the Lagrange multipliers. Let Krr denote the block diagonal matrix of subdomain operators
restricted to the remaining, r, points, Krc the block column vector of subdomain coupling
operator matrices and fr the block column vector of subdomain force vectors. Using the same
corner/remaining degrees of freedom matrix partitioning, we can rewrite the equilibrium
equations compactly.  Krr Krc BT

r

KT
rc Kcc 0

Br 0 0

 ur

uc

λ

 =

 fr

fc

0

 (0.4)

The first equation can be solved for ur since Krr is a symmetric positive definite matrix if the
selected corner points remove all of the local singularities. Then substitute the result into the
compatablity equation (last equation in 0.4). The FETI-DP interface problem can be derived
with some algebraic manipulation where the unknowns are λ, the Lagrange multipliers and
uc, the global corner degrees of freedom.[

Frr Frc

F T
rc −K∗

cc

] [
λ
uc

]
=

[
dr

−f∗
c

]
(0.5)

where Frr =

Ns∑
s=1

Bs
rKs−1

rr BsT

r , Frc =

Ns∑
s=1

Bs
rKs−1

rr Ks
rcB

s
c , dr =

Ns∑
s=1

Bs
rKs−1

rr fs
r , and f∗

c =

Ns∑
s=1

[BsT

c (fs
c −KsT

rc Ks−1

rr fs
r )]. The corner degrees of freedom, uc, are condensed out to form

the following symmetric positive definite Dual-Primal FETI interface problem which we solve
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using a preconditioned conjugate gradient method. For a detailed derivation of this equation,
please see [3]. Because of the preconditioning, the number of cg iterations (or FETI iterations)
required for the solution is independent of model size. This scaling is demonstrated in the
following sections. [

Frr + FrcK
∗−1

cc F T
rc

]
λ = dr − FrcK

∗−1

cc f∗
c (0.6)

The FETI operator defined above has an embedded coarse grid problem which can be written
in the following form.

K∗
cc =

Ns∑
s=1

[
BsT

c (Ks
cc −Ks

crK
s−1

rr Ks
rc)B

s
c )
]

(0.7)

This new coarse problem has some highly beneficial properties over the previously defined
two-level FETI coarse problem ([5]). First, this new coarse problem is symmetric positive
definite sparse matrix. Secondly, only one forward/backward substitution has to be per-
formed per FETI iteration. The original FETI algorithms required two forward/backward
substitution operations per iteration. For a detailed derivation of FETI-DP see [9], [3], [4]
and [12]. For a detailed mathematical analysis of the dual-primal FETI method one can
review [8] and [10].

Scaled Problem Size Scalability We generate a series of model cube problems to
assess scalability of Salinas and the underlying FETI-DP linear solver. The target platforms
for assessing the scaled problem scalability of Salinas and FETI-DP are ASCI-Red, ASCI-
Cplant and ASCI-White. The model cube problem is 13x13x13 hex elements per subdomain
on ASCI-Red and ASCI-Cplant. On ASCI-White, we increased the model cube problem to
18x18x18 hex elements per subdomain to utilize the additional memory available. We scale
the model cube problem with the number of processors keeping the size of the subdomains
fixed. The number of subdomains is equal to the number of processors for all of our scalability
experiments. The eight processor model cube problem is shown in figure 0.4.

For each of the platforms we evaluate the number of FETI iterations, the solver time,
and the total time. The solver time (or FETI-DP time) represents the total time spent in
the solver. This includes setup, factorization and solve time. The total time represents the
time it takes to read the input geometry files, generate the subdomain matrices, solve a
single Ax = b problem and output the solution. The right hand side vector in all cases was a
pressure load applied to the face opposite of the face where the Dirichlet boundary conditions
were applied. The convergence tolerance was 0.001 for all platforms.

ASCI-Red The ASCI Option Red supercomputer, also known as the Intel Teraflops
machine, is the first large-scale supercomputer built mostly of commodity, commercial, off-
the-shelf (COTS) components. It has 4,536 compute and 72 service nodes each with 2
Pentium Pro processors. The system was delivered with 128 Mbytes of memory per node,
but has been upgraded to 256 Mbytes of memory per node. The Pentium Pro processor runs
at 333 MHz and has a peak floating-point rate of 333 Mflops. The system has over 1 Terabyte
of real memory, and two independent 1-Terabyte disk systems. The system’s 9216 Pentium
Pro processors are connected by a 38x32x2 custom interconnect mesh with a bandwidth of
800 MB/s.

We show scalability results for up to 1000 nodes on ASCI-Red. Scaling the problem from
sixty-four processors to one-thousand processors saw the number of iterations increase from
45 to 53. In figure 0.1 the total execution time is plotted for Salinas and FETI-DP running
on ASCI-Red.

ASCI-Cplant CPlant is a large-scale massively parallel computer built from commod-
ity computing and network computing components with a theoretical peak performance of
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Figure 0.1: Performance on ASCI-Red for the following linear system sizes (proces-
sors): 446631 (64), 1479117 (216), 3472875 (512) and 6744273 (1000)
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Figure 0.2: Performance on ASCI-Cplant for the following linear system sizes (pro-
cessors): 446631 (64), 1479117 (216), 3472875 (512) and 6744273 (1000)

1.5 Tflops. The project goal of CPlant is to develop an architecture similar to the ASCI Red
machine with entirely off-the-shelf commodity parts. Cplant uses the same partition model
as the ASCI Red machine where pools of nodes can be divided into different categories, such
as service, compute, and IO nodes.The compute processors are Compaq XP1000 worksta-
tions each containing a 500 MHz EV6 21264 microprocessor with 256 MB ECC SDRAM.
The memory subsystem includes a 64KB instruction L1 cache and 4 MB L2 cache. The EV6
can issue four instructions per clock cycle and has two floating point units which amounts
to a theoretical peak performance of 1 Gigaflops. The compute nodes are connected using
Myrinet gigabit network.

We show scalability results for up to 1000 nodes on ASCI-Cplant. Scaling the problem
from sixty-four processors to one-thousand processors saw the number of iterations increase
from 45 to 53, identical to the ASCI-Red results. In figure 0.2 the total execution time is
plotted for Salinas and FETI-DP running on ASCI-Cplant. The same model cube problem
was tested on ASCI-Red and ASCI-Cplant. Therefore, one can directly compare the scal-
ablity results for ASCI-Red in figure 0.1 versus the scalability results for ASCI-Cplant shown
in figure 0.2. Based on these results, one can conclude that the total analysis time is ap-
proximately three times faster on ASCI-Cplant compared to ASCI-Red. This can be readily
explained by the faster processors available on ASCI-Cplant. As expected, communication
affects the overall scalability for large number of processors.
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Figure 0.3: Performance on ASCI-White for the following linear system sizes (proces-
sors): 1167051 (64), 3885087 (216), 9145875 (512), 17789223 (1000), 30654939 (1728),
59707533 (3375)

ASCI-White ASCI White, the third step in a five step computational platform ladder,
is currently the world’s fastest computer with a peak speed slightly greater than 12 Tflops.
The final ASCI platform has a goal to reach 100 Tflops peak performance by 2004. ASCI
White is based upon IBM’s latest SP technology. It comprises 512 symmetric multi-processor
(SMP) machines, each possessing 16 processors, for a total of 8192 processing units. Each
node consists of IBM’s RS/6000 POWER3 symmetric multiprocessor (64 bit) architecture
and this Nighthawk-2 SMP node is a stand-alone system with its own memory, operating
system, local disk and 16 CPUs. POWER3-II processors are super-scalar pipelined 64 bit
RISC chips with two floating point units and three integer units, capable of executing up to
eight instructions per clock cycle and up to two floating point operations per cycle. At 375
Mhertz this processor is capable of producing a peak performance of 750 Mflops peak. The
one cycle latency L1 cache is 128-way set associative and consists of 64KB data cache and
a 32 KB instructions cache. The 4 MB L2 cache runs typically at half the processor speed
and uses a direct mapped approach. Each processor has 1 GigaByte of available memory.
All nodes are interconnected by the internal SP switch network, which has a bidirectional
bandwidth of 300MB/second.

We show scalability results for up to 3375 nodes on ASCI-White. Scaling the problem
from sixty-four processors to 3375 processors saw the number of iterations increase from 58
to 71. In figure 0.3 the total execution time is plotted for Salinas and FETI-DP running on
ASCI-White.

Coarse Grid Solution Options We describe two FETI coarse grid solver technolo-
gies which are implemented in Salinas. The FETI-DP coarse grid as described above is a
sparse matrix that couples all of the subdomains. This coarse sparse matrix has to be factored
during the FETI-DP initialization step. During the FETI-DP solve step, one coarse matrix
forward/backward solve is performed per iteration. The two coarse grid solver technologies
are listed below.

• Redundant storage, factorization and forward/backward solves on each Salinas proces-
sor. In this option, a distributed inverse is computed and the relevant columns are
stored on each processor. Solves are accomplished with local matrix-vector products.

• Distributed storage, parallel factorization and parallel forward/backward solves on a
subset of the Salinas processors.
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,

Figure 0.4: Engine block finite element model and Model cube

Np = Ns N coarse
eqn Serial Sparse Parallel Sparse Memory

25 831 8.3 sec. 7.9 sec. (8 processors) 1.7 MB
115 3999 9.7 sec. 5.9 sec. (16 processors) 14.6 MB
137 4815 14.0 sec. 8.4 sec. (32 processors) 19.9 MB
222 7425 25.8 sec. 11.4 sec. (32 processors) 34.0 MB
276 9339 36.4 sec. 12.8 sec. (32 processors) 45.6 MB

Table 0.1: Coarse grid setup and factorization time for engine block on ASCI-Red

For the redundant storage case, we choose a sparse matrix solver based on a multiple mini-
mum degree ordering ([11]). The parallel factorization case is accomplished by the Domain
Separator Cholesky package (DSCpack) ([13]).

Parallel Sparse Solver Experiments We experiment with solving large scale
problems using large numbers of processors which results in increasingly larger FETI-DP
coarse grid problems. A comparision is done between the redundant factorization and subse-
quent coarse grid matrix inverse technique versus using a parallel distributed memory sparse
solver. At each iteration of FETI-DP, the parallel sparse solver does forward/backward solves
in parallel. In the future, further studies will be conducted to determine if the parallel sparse
solver in conjunction with the coarse grid matrix inverse technique will result in optimal CPU
time.

Coarse Grid Scalability A finite element model of an engine block was chosen for
coarse grid scalability studies. A picture of the engine block finite element model is shown
in figure 0.4. This model is available in three increasing larger sizes. We choose the smallest
model to illustrate the affect of increasing the number of subdomains for a fixed size prob-
lem on the FETI-DP coarse grid matrix. The small engine block model has 28498 nodes,
24363 elements and approximately 75000 degrees of freedom. This problem contains hex,
wedge and triangular shell elements. We partition this model into 25, 115, 137, 222 and
276 subdomains respectively. We then solve an eigenvalue using Salinas and FETI-DP. In
this Salinas solution method, FETI-DP is employed as the linear solver inside of a Lanzcos
based parallel eigensolver. Table 0.1 shows the factorization times of the two coarse grid
options on an increasing number of processors. Table 0.1 also shows the memory require-
ments of the serial sparse solver. The parallel sparse solver distributes the coarse grid LDLT

factor over the number of coarse solver processors. This effectively reduces the per proces-
sor memory requirements. For small coarse grid sizes, the redundant sparse direct method



EXPERIENCES WITH FETI-DP 239

outperforms the parallel sparse solver. Please note that this is mainly due to the calcula-
tion of the coarse grid inverse (a detailed description can be found in [6]) and subsequent
replacement of sparse forward/backward substitution by matrix-vector multiplication during
the FETI-DP iterations. For a sufficiently large problem, the factorization of the coarse grid
becomes the dominant time and the parallel sparse solver begins to out-perform the serial
sparse direct method. More importantly, the coarse grid eventually becomes too large to
store on every processor and the only option is to use the parallel sparse distributed solver.
Future studies will investigate tiling the parallel sparse solver on Np/Ncs = Ntiles while Ncs

equals the number of processors solving the coarse grid matrix. This approach leaves an
integer number of processors, Nrem = mod(Np/Ncs) idle while the current parallel sparse
solver implementation leaves Np − Ncs processors idle during coarse grid factorization and
subsequent forward/backward solves required during FETI-DP iterations.

Conclusion We have shown that FETI-DP performs well in a production finite element
application on a variety of massively parallel platforms. Scalablity was demonstrated on
ASCI-Red, ASCI-Cplant and ASCI-White. We are actively pursuing parallel factorization of
the FETI-DP coarse grid to enable further improvements in scalability.
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22. Unified Theory of Domain Decomposition Methods

I. Herrera1

1. Introduction. Domain Decomposition Methods (DDM) have been derived by Her-
rera using a unifying concept, which consists in viewing DDM as procedures for gathering
information at the internal boundary (Σ) of a partition, sufficient for defining well-posed
problems at each one of its subdomains. Two broad categories of Domain Decomposition
Methods are identified in this manner: ’direct’ and ’indirect (or Trefftz-Herrera)’ methods.
Direct methods are usually understood as procedures for putting together local solutions,
just as bricks, to build the global solution. However, for direct methods the point of view
adopted by the unified theory, here presented, is different: the local solutions are used, as
means for establishing compatibility relations that the global solution of the problem consid-
ered must fulfill. In Trefftz-Herrera methods, on the other hand, local solutions are used in
an indirect manner; as specialized test functions with the property of supplying information
on Σ, exclusively. Important features of Herrera’s unified theory are the use, throughout
it, of ”fully discontinuous functions” and the treatment of a general boundary value prob-
lem with prescribed jumps. The generality of the resulting theory is remarkable, because it
is applicable to any partial (or ordinary) differential equation or system of such equations,
which is linear, independently of its type and with possibly discontinuous coefficients. The
developments that have been carried out, thus far in this framework, have implications along
two broad lines: as tools for incorporating parallel processing in the modeling of continuous
systems and as an elegant and efficient way of formulating numerical methods from a domain
decomposition perspective. In addition, the theory supplies a systematic framework for the
application of fully discontinuous functions in the treatment of partial differential equations.

This paper is part of a sequence of papers, contained in these Proceedings, devoted to
present, and further advance, this unified theory of Domain Decomposition Methods (DDM)
and some developments associated with it. DDM have received much attention in recent
years2, mainly because they supply very effective means for incorporating parallel processing
in computational models of continuous systems. Another aspect that must be stressed is that
it is useful to analyze numerical methods for partial differential equations from a domain-
decomposition perspective, since the ideas related to domain decomposition are quite basic
for them. Indeed, developing numerical procedures as accurate as desired in small regions is
an easy task that can be performed by many numerical schemes and, once this has been done,
the remaining problem is essentially the same as that of Domain Decomposition Methods.
In this respect, it is useful to recall the main objective of DDM:

Given a domain Ω and one of its partitions (Fig. 1.1), to obtain the solution of a boundary
value problem defined on it (the ’global problem’), by solving problems formulated on the
subdomains of the partition (the ’local problems’), exclusively. In what follows the subdomains
of the partition will be denoted by Ωi(i = 1, ..., E) and the internal boundary, which separates
the subdomains from each other, will be Σ.

Herrera has proposed recently a unified theory of DDM [15],[14], in which most of the
known methods may be subsumed, supplying more general formulations of them and hinting
new procedures that should be investigated in the future. The sequence of papers mentioned
above, intends to present briefly such theory in its different aspects. The present paper
contains an exposition of the unified theory. Trefftz-Herrera Method is given in [20], while

1Instituto de Geof́ısica Universidad Nacional Autónoma de México (UNAM), Apartado Postal
22-582, 14000, México, D.F. e-mail: iherrera@servidor.unam.mx

2See: International Scientific Committee for Domain Decomposition ”Proceedings of 13 confer-
ences on Domain Decomposition Methods”, www.ddm.org, 1988-2001
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Figure 1.1: Partition of the domain Ω
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direct methods are described in [9]. Applications to elliptic equations are presented in [6],[22]
and [5] -second order equations are treated in [6] and the biharmonic equation in [5]-.

2. Some Unifying Concepts. Herrera’s theory is formulated in function spaces
whose elements are generally discontinuous, and the theory supplies systematic procedures for
applying discontinuous functions in the numerical treatment of partial differential equations.
Such function spaces have the following general form:

D̂ (Ω) ≡ D (Ω1)⊕ ...⊕D (ΩE) ; (2.1)

If u ∈ D̂ (Ω), then u ≡ (u1, ..., uE) where ui ∈ D (Ωi), i = 1, ..., E. Generally, when
variational formulations are considered, as in the theory of indirect methods, two such spaces
are introduced; namely, the space of trial or base functions D̂1 (Ω) and the space of test or
weighting functions D̂2 (Ω). When D (Ωi), i = 1, ..., E, are Sobolev spaces, a special kind
of Sobolev space, Ĥ

s (Ω), is obtained: Ĥ
s (Ω) ≡ H

s (Ω1) ⊕ ... ⊕ H
s (ΩE). Of course, more

complicated combinations are possible.

In addition, the theory deals with a very general boundary value problem, the Boundary
Value Problem with prescribed Jumps (the BVPJ), in which, in addition to boundary con-
ditions on the external boundary, ∂Ω, jumps are prescribed across the internal boundary Σ.
And it is also applicable when the coefficients of the differential operators are discontinuous
across Σ. The general BVPJ considered by the theory is type-independent and has the form

Lu = fΩ; in Ωi i = 1, ..., E (2.2)

Bju = g∂j ; on ∂Ω (2.3)

[Jku] = jΣk; on Σ (2.4)

Here L is a differential operator of any type; in particular it can be elliptic, hyperbolic
or parabolic. Furthermore, it can be vector-valued and therefore the theory includes systems
of equations and not just a single equation. The solution of the BVPJ will be denoted by
u ≡ (u1, ..., uE). In this setting, the objective of Domain Decomposition Methods is to find
ui ∈ D (Ωi), for i = 1, ..., E. The unified theory is based on the following unifying principle:

Domain Decomposition Methods are procedures for gathering information, on the internal
boundary Σ, sufficient for defining well-posed local problems in each one of the subdomains.
Then it is possible to reconstruct the solution in the interior of the subdomains, ui ∈ D (Ωi),
for i = 1, ..., E by solving local problems exclusively.

3. The Sought Information. The information that one deals with, when formu-
lating and treating partial differential equations (i.e., the BVPJ), is classified in two broad
categories: ’data of the problem’ and ’complementary information’. In turn, three classes of
data can be distinguished: data in the interior of the subdomains of the partition (given by
the differential equation, which in the BVPJ is fulfilled in the interior of the subdomains,
exclusively), the data on the external boundary (Bju, on ∂Ω) and the data on the
internal boundary (namely, [Jku], on Σ). The complementary information can be classi-
fied in a similar fashion: the values of the sought solution in the interior of the subdomains
(ui ∈ D (Ωi), for i = 1, ..., E); the complementary information on the outer boundary (for
example, the normal derivative in the case of Dirichlet problems for Laplace’s equation);
and the complementary information on the internal boundary Σ (for example, the average
of the function and the average of the normal derivative across the discontinuity for ellip-
tic problems of second order [6]). In the unified theory of DDM, a target of information,
which is contained in the complementary information on Σ, is defined; it is called ’the sought
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information’. It is required that the choice of the sought information fulfills the following
assumption:

when ’the sought information’ is complemented with the data of the problem, there is
sufficient information available for defining well-posed problems in each one of the subdomains
of the partition.

In general, however, the sought information may satisfy this property and yet be redundant,
in the sense that if all of it is used simultaneously together with the data of the problem,
ill-posed problems are obtained. Consider for example, a Dirichlet problem of an elliptic-
type second order equation (see [6]), for which the jumps of the function and of its normal
derivative have been prescribed. If for such problem the sought information is taken to be
the average of the function -i.e., (u+ + u−) /2-, and the average of the normal derivative
-i.e., 1

2
∂ (u+ + u−) /∂n, on Σ-, then it may be seen that it contains redundant information.

Indeed, u+ = 1
2

(u+ + u−) + 1
2

(u+ − u−), u− = 1
2

(u+ + u−) − 1
2

(u+ − u−), and a similar
relation holds for the normal derivatives. Therefore, if the ’sought information’ and the ’data
of the problem’ are used simultaneously, one may derive not only the value of the BVPJ solu-
tion on the boundary of each one of the subdomains, but also the normal derivative, at least
in a non-void section of those boundaries. As it is well known, this is an ill-posed problem,
because Dirichlet problem is already well-posed in each one of the subdomains. Thus, the
sought information contains redundant information in this case.

Generally, in the numerical treatment of partial differential equations, efficiency requires
eliminating redundant information. This fact motivates the following definition:

The sought information is ’optimal’ when there is a family of well-posed problems -one
for each subdomain of the partition- which uses all the sought information, together with the
data of the BVPJ.

Analysis of existing methods reveals that there are some for which the sought information
is optimal and others for which this is not the case. In general, except for the simple case of
first order equations, methods for which the sought information is optimal are overlapping.

4. Direct and Indirect Methods. There are two main procedures for gathering
the sought information on Σ: ’direct’ and ’indirect (or Trefftz-Herrera)’ methods. Both
of them derive the sought information, on Σ, from compatibility conditions that the global
solution of the BVPJ must satisfy locally and the local solutions are applied precisely for
deriving such compatibility conditions. The global system of equations, for the sought infor-
mation, is constructed in this manner. Trefftz-Herrera methods were introduced in numerical
analysis by Herrera et al. [10], [16], [11], [4], [17], [12], [13] and [19], and its distinguishing
feature is the use of specialized test functions which have the property of yielding any desired
information on Σ. The guidelines for the construction of such weighting functions is supplied
by a special kind of Green’s formulas (Green-Herrera formulas), formulated in spaces of fully
discontinuous functions [10],[16],[17], which permit analyzing the information on Σ, contained
in approximate solutions. Using Green-Herrera formulas it has been possible to give a very
general formulation of Indirect Methods in terms of a variational principle possessing great
generality. This is Eqs. (7.4),(7.7) of reference [20](see also [19]), which corresponds to an In-
vited Plenary Talk of this Conference that was devoted to a full description of Trefftz-Herrera
Methods and is contained in these Proceedings.

Conventional descriptions of Direct Methods present them as procedures for assembling,
just as bricks, local solutions in order to build the global one. When these methods are
formulated using the unified theory approach, direct methods derive the sought information,
on Σ, from compatibility conditions that the global solution of the BVPJ must satisfy locally
[9] and the local solutions are applied precisely for deriving such compatibility conditions. An
important difference between direct and Trefftz-Herrera methods is that in the latter local
solutions of equations formulated in terms of the adjoint differential operator are used, while
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in the former such equations are formulated in terms of the original differential operator.
To finish this Section some general remarks are in order. In the methods of the unified

theory the only information that is obtained when solving the global problem refers to in-
formation on the internal boundary Σ and no information at all is obtained in the interior
of the subdomains. If such information is desired, it can be derived solving the well-posed
local problems that are obtained in the manner explained before. When the unified theory is
applied as a discretization procedure, the process described above for deriving the solution
in the interior of the subdomains of the partition, which can be carried out by any numerical
method, is referred as ’optimal interpolation’. This is in agreement with, and supplements,
the nomenclature that has been used in some past work, in which the specialized test func-
tions that supply information at the internal boundary exclusively, are referred as optimal
test functions [3].

5. General Conclusions. An elegant framework for Domain Decomposition Meth-
ods, which is quite general and simple, has been presented. The generality of the methodolo-
gies must be stressed, since they are applicable to any linear differential equation, or system
of such equations and to problems with prescribed jumps and with discontinuous coefficients.
In addition, the theory supplies systematic procedures for applying discontinuous functions
in the numerical treatment of partial differential equations. Even more, its applicability is
type-independent. Thus, it is not only applicable to elliptic equations, but also to hyperbolic
and parabolic ones.

Thus far, DDM have been mainly applied as a tool for parallelizing numerical models
of continuous systems [21]. However, Herrera’s Unified Theory permits developing wide
classes of numerical methods with many attractive features [19]. In addition, we claim that
this theory subsumes most of the existing methods of domain decomposition. Using its
framework Schwarz and Steklov-Poincaré methods were incorporated in this framework in [18]
and [19], respectively, while Mixed Methods were derived in [17]. The theory also implies wide
generalizations of the Projection Decomposition Method [1]. We suspect that the capacity
of using fully discontinuous functions systematically -and the foundations of such capacity
is one of the contributions of the theory- permits eliminating Lagrange multipliers in many
instances and that it also has a bearing on partitions of unity and its applications. This,
however, remains to be shown. Other subjects that should be investigated in the future are
the implications of the unified theory on Mortar [2] and FETI methods [7],[8].
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23. Indirect Method of Collocation: 2nd Order Elliptic
Equations

M.A. Diaz1, I. Herrera2, R. Yates3

1. Introduction. These papers is part of a group of papers [7],[9],[4], [3],[10], included
in these Proceedings, devoted to present and illustrate the applications of Herrera’s Unified
Theory of Domain Decomposition Methods (DDM). As an example of the applications of
indirect -or Trefftz-Herrera- methods, in the present paper a new method of collocation -
Trefftz-Herrera collocation- is developed applicable to any elliptic equation of second order,
which is linear. The general problem considered is one with prescribed jumps for the function
and its first order derivatives; actually, the ’fluxes’, as its explained later in the sequel.
Differential operators with discontinuous coefficients are included.

The collocation method based on the use of Hermite cubic polynomials has a good number
of attractive features such as its high accuracy and the simplicity of its formulation [1],[2].
However, it suffers computationally from several drawbacks, such as a large number of degrees
of freedom associated with each node of the discretized mesh. Also, the global matrix of
the system of equations does not enjoy the property of being positive definite even when
the differential operator itself has this property. Up to now, collocation has been applied
by means of splines. However, a broader and more efficient formulation is obtained when
collocation is applied using fully discontinuous functions by means of the indirect (or Trefftz-
Herrera) domain decomposition methodology. In this paper Trefftz-Herrera indirect method,
in combination with orthogonal collocation, is applied to a general boundary value problem
with prescribed jumps to produce a family of ”indirect collocation methods (Trefftz-Herrera
collocation)”. In particular, when the differential equation (or system of such equations) is
positive definite the global matrix is also positive definite. Also, a dramatic reduction in the
number of degrees of freedom associated with each node is obtained. Indeed, in the standard
method of collocation that number is two in one dimension, four in two dimensions and eight
in three dimensions, while for some of the new algorithms they are only one in all space
dimensions. A final comment worth doing refers to the fact that the treatment of problems
with prescribed jumps is just as easy as that without them; as a matter of fact, the global
matrix is exactly the same for both problems.

2. Trefftz-Herrera Approach to Elliptic Equations (2nd Order) . The
general theory of Trefftz-Herrera DDM, presented in [9], is applied in this Section to elliptic
equations of second order. The boundary value problem with prescribed jumps (BVPJ) for
this case was given as an illustration in [9]; it is:

Lu ≡ −∇ · (a · ∇u) +∇ · (bu) + cu = fΩ ≡ LuΩ, in Ωi, i = 1, ..., E (2.1)

subjected to the boundary conditions

u = u∂ ; on ∂Ω, (2.2)

and the jump conditions

[u] = [uΣ] ≡ j0
Σ and [a · ∇u] · n = [a · ∇uΣ] · n ≡ j1

Σ; on Σ, (2.3)
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The notation is the same as that introduced in [9] and [4]. In particular, uΩ ∈ D̂1, u∂ ∈ D̂1

and uΣ ∈ D̂1 are any functions which satisfy the differential equation, the external boundary
conditions and the jump conditions, respectively. and A partition of a domain Ω is being
considered and the internal boundary is denoted by Σ (see [9] for further details).

The general theory introduces the following bilinear functionals:

〈Pu, w〉 ≡
∫

Ω

wLudx; 〈Qw, u〉 ≡
∫

Ω

uL∗wdx (2.4)

〈Bu, w〉 ≡
∫

∂Ω

B(u, w)dx; 〈Cw, u〉 ≡
∫

∂Ω

C(w, u)dx (2.5)

〈Ju, w〉 ≡
∫

Σ

J (u, w)dx; 〈Kw, u〉 ≡
∫

Σ

K(w, u)dx (2.6)

〈SJu, w〉 ≡
∫

Σ

SJ(u, w)dx; 〈RJu, w〉 ≡
∫

Σ

RJ(u, w)dx (2.7)

〈Sw, u〉 ≡
∫

Σ

S(w, u)dx; 〈Rw, u〉 ≡
∫

Σ

R(w, u)dx (2.8)

Where J (u, w) and K(w, u), are given by Eq. (5.4) of Ref. [9]:

J (u, w) ≡ −D([u], ẇ) · n and K(w, u) ≡ D(u̇, [w]) · n (2.9)

where
D (u, w) ≡ u (an · ∇w + bnw)− wan · ∇u (2.10)

has the property that
wLu− uL∗w ≡ ∇ · D (u, w) (2.11)

Here
L∗w ≡ −∇ · (a · ∇w)− b · ∇w + cw; (2.12)

Then, for the case considered in this Section, the bilinear functions occurring in the integrals
of Eqs. (2.4) to (2.8) are defined by [9]:

B (u, w) ≡ u (an · ∇w + bnw) · n, C (w, u) ≡ wan · ∇u (2.13)

J (u, w) ≡ ẇ [an · ∇u]− [u]
˙

(an · ∇w + bnw) (2.14)

K (w, u) ≡ u̇ [an · ∇w + bnw]− [w]
˙

(an · ∇u) (2.15)

SJ (u, w) ≡ ẇ [an · ∇u] , RJ (u, w) ≡ − [u]
˙

(an · ∇w + bnw) (2.16)

S (w, u) ≡ u̇ [an · ∇w + bnw] and R (w, u) ≡ − [w]
˙

(an · ∇u) (2.17)

Define Ñ1 ≡ NP ∩NB ∩NRJ and Ñ2 ≡ NQ ∩NC ∩NR, then a function v ∈ Ñ1 , if and
only if

Pv = 0, Bv = 0 and RJv = 0 (2.18)

and w ∈ Ñ2, if and only if

Qw = 0, Cw = 0 and Rw = 0 (2.19)

The result that is basic for deriving the kind of domain decomposition to be applied in the
present article, is given by the Theorem of Section 10 of Ref. [9]:
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Theorem 2.1 Assume E ⊂ Ñ2 is a system of weighting functions TH-complete for S∗ [9].
Let uP ∈ D̂1 be such that

PuP = PuΩ, BuP = Bu∂ and RJuP = RJuΣ (2.20)

Then there exists v ∈ Ñ1 such that

−〈S∗v, w〉 = 〈SJ (uP − uΣ) , w〉 , ∀w ∈ E ⊂ Ñ2 (2.21)

In addition, define û ∈ D̂1 by û ≡ uP +v . Then û ∈ D̂1 contains the sought information.
Even more, û ≡ u, where u is the solution of the BVPJ.

Observe that Eq.(2.21) can also be written as

−〈S∗v, w〉 = 〈SJuP , w〉 −
〈
j1, w

〉
, ∀w ∈ E ⊂ Ñ2 (2.22)

where
〈
j1, w

〉
≡
∫
Σ

wj1
Σdx.

3. Interpretation of the Algebraic Theory. According to the definitions given
in Section 2, a function v ∈ Ñ1 if and only if

Lv ≡ −∇ · (a · ∇uv) +∇ · (bv) + cv = 0, v = 0, on ∂Ω and [v] = 0, on Σ (3.1)

In addition, a function w ∈ Ñ2, if and only if

L∗w ≡ −∇ · (a · ∇w)− b · ∇w + cw = 0, w = 0, on ∂Ω and [v] = 0, on Σ (3.2)

i.e., such functions satisfy the homogenous adjoint equation, are continuous and vanish on
the external boundary.

When S (w, u) is given by Eq.(2.17), the sought information is the average of the solution
of the BVPJ on Σ. Even more, the choice of the pair of decompositions {SJ , RJ} and {S, R},
is optimal [9], because the problem

(P −B − J) û = PuΩ −Bu∂ − JuΣ (3.3)

subjected to
S∗û = S∗uI (3.4)

is well posed and local. Indeed, Eq.(2.3) corresponds to the following system of equations

Lû ≡ −∇ · (a · ∇û) +∇ · (bû) + cû = fΩ ≡ LuΩ, in Ωi, i = 1, ..., E (3.5)

subjected to the boundary conditions

û = u∂ ; on ∂Ω, (3.6)

and the jump conditions

[û] = [uΣ] ≡ j0
Σ; on Σ, (3.7)

In addition, Eq.(2.4) corresponds to the condition

˙̂u = u̇I ; on Σ, (3.8)

i.e., the average across Σ, of û, is prescribed. Therefore

û+ ≡ ˙̂u +
1

2
[u] = ˙̂uI +

1

2
j0
Σ and û− ≡ ˙̂u− 1

2
[u] = ˙̂uI −

1

2
j0
Σ (3.9)
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and it is seen that the system of equations (2.3) and (2.4), is equivalent to a family of
well-posed local problems defined in each on of the subdomains of the partition.

The Eqs.(2.20), fulfilled by uP ∈ D̂1, are

LuP ≡ −∇ · (a · ∇uP ) +∇ · (buP ) + cuP = fΩ ≡ LuΩ, in Ωi, i = 1, ..., E (3.10)

subjected to the boundary conditions

uP = u∂ ; on ∂Ω, (3.11)

and the jump conditions

[uP ] = [uΣ] ≡ j0
Σ; on Σ, (3.12)

This is the same as Eq. (2.3); i.e., the system of Eqs.(2.5) to (2.7). However, Eq.(2.3) is
not imposed on uP and, therefore, it is not uniquely determined. However, uP is uniquely
determined if it’s average across Σ is specified. This can be chosen arbitrarily, except that it
must be compatible with the external boundary conditions of Eq. (2.11). It must be observed
that in a similar manner, elements of each one of the sets Ñ1 and Ñ2 are determined uniquely
by the traces on Σ. A convenient manner of constructing such functions is, therefore, to
specify their traces on Σ, and then solve each one of the well posed problems which in this
manner are defined in the subdomains of the partition, as will be done numerically in the
following Sections.

4. TH-Complete Systems of Test Functions. Discussions of TH-complete sys-
tems, in the context of the general theory, may be found in [6],[5]. Additional details in
connection with applications to second order elliptic problems may be found in [8]. In what
follows the traces on Σ, of the weighting functions, will be taken to be families of piecewise
polynomials defined on Σij (Fig. 4.1) . This kind of TH-complete families were first described
in [5]. According to that figure, Σij is the union of four intervals and using the numbering of
internal boundaries of Fig. 4.1, associated with each node (xi, yj), five classes of weighting
functions can be constructed [8]:
Class 0.- This is made of only one function, which is linear in each one of the four interior
boundaries between the rectangles of Fig. 4.2, and such that (xi, yj) = 1.
Class 1.- The restriction to interval ”1”, of Fig. 4.2 is a polynomial which vanishes at the
end points of interval ”1”. There is one such polynomial for each degree (G) greater than
one.
Classes 2 to 4, are defined replacing interval ”1” by the interval of the corresponding number
in the definition of Class 1 [5].

5. The Numerical Implementation. In the theory that was presented in previous
Sections, it is assumed that the exact local solutions are available. In numerical applications,
they have to be produced by means of numerical methods and are, therefore only approximate
solutions. Actually, the approximate nature of numerical solutions derived using TH-Domain
Decomposition (TH-DD), stems from two sources: one of them is due to the approximate
nature of the local solutions, which has just been mentioned, and the other one comes from
the fact that TH-complete systems for problems in several dimensions constitute infinite
families and in numerical implementations one can apply only finite sets of test functions. In
particular, with reference to the families of functions introduced in the previous Section, one
may construct algorithms in which only polynomials of degree less or equal to G, where G is
a given number, are kept in each one of the Classes ”1” to ”4”. In general, each choice of G
will give rise to a different kind of algorithm.

In this Section the following notations are used, H0
i (x) is the one dimensional Hermite

cubic polynomial with support in the interval (xi−1, xi+1), which takes the value 1 at node
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Figure 4.1: Subregion Ωij associated with the node (xi, yj).
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Figure 4.2: Supports of five classes of weighting functions.

xi and zero at nodes xi−1 and xi+1; and its first derivative is zero at all nodes xi−1, xi and
xi+1. Similarly, H1

i (x) - is the one dimensional Hermite cubic polynomial with support in
the interval (xi−1, xi+1), which takes the value zero at nodes xi−1, xi and xi+1; and its first
derivative takes the value 1 at node xi and zero at the other nodes xi−1 and xi+1.

5.1. The Weighting Functions. In the numerical implementations reported in [8],
two families of test functions were constructed:

F ≡
{
w0

ij , w
1
ij , w

2
ij

}
and

�

F ≡
{

�
w

0

ij ,
�
w

1

ij ,
�
w

2

ij ,
�
w

3

ij ,
�
w

4

ij

}
(5.1)

Here, w0
ij ≡ �

w
0

ij is the unique function belonging to Class ”0”-i.e., piecewise linear on Σ-,

of Section 6, and
�
w

α

ij is a function of Class ”α”, for each α = 1, ..., 4, which fulfills, at interval

”α”, the boundary condition
�
w

α

ij (x, yj) = H1
i (x) , for α = 1, 3 , and

�
w

α

ij (xi, y) = H1
j (y) ,

for α = 2, 4 . In addition, one defines

w1
ij (x, y) ≡ �

w
1

ij (x, y) +
�
w

3

ij (x, y) and w2
ij (x, y) ≡ �

w
2

ij (x, y) +
�
w

4

ij (x, y) (5.2)

Observe that the supports of w1
ij and w2

ij are the whole rectangle Ωij . In addition, they
fulfill the local boundary conditions w1

ij (x, yj) = H1
i (x) at the interval xi−1 � x � xi+1

together with w2
ij (xi, y) = H1

j (y) at the interval yj−1 � y � yj+1.

In Ref. [8], the family
�

F was first constructed and the family F was then derived by

application of Eq.(4.2). The family
�

F was built by solving local boundary value problems
in each one of the subregions

{
Ω1

ij , Ω
2
ij , Ω

3
ij , Ω

4
ij

}
, separately. This was done introducing a

set of functions
{
B0

ij , B
1
ij , B

2
ij , B

3
ij , B

4
ij

}
, which satisfy the boundary conditions and adding

to it a linear combination of a family of functions
{
N1

ij , N
2
ij , N

3
ij , N

4
ij

}
which vanish on the
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boundary of each one of the subdomains
{
Ω1

ij , Ω
2
ij , Ω

3
ij , Ω

4
ij

}
, in order to fulfill the differential

equation.
This leads to

�
w

α

ij(x, y) = Bα
ij(x, y) +

4∑
β=1

Cαβ
ij Nβ

ij(x, y); α = 0, ..., 4 (5.3)

The coefficients Cαβ
ij are constant at each one of the subdomains

{
Ω1

ij , Ω
2
ij , Ω

3
ij , Ω

4
ij

}
, but

only piecewise constant in Ωij (Fig. 4.1). Therefore, each one of the functions
�
w

α

ij(x, y) has
different expressions at each one of the rectangles

{
Ω1

ij , Ω
2
ij , Ω

3
ij , Ω

4
ij

}
. The same applies to

the functions
{
B0

ij , B
1
ij , B

2
ij , B

3
ij , B

4
ij

}
. The coefficients were obtained solving the system of

collocation equations at four Gaussian points

4∑
β=1

Cαβ
ij L

∗Nβ
ij(x

p, yp) = L∗Bα
ij(x

p, yp); p = 1, ..., 4 (5.4)

5.2. Optimal Interpolation. According to the Theorem of Section 2, the approx-
imate solution û ∈ D̂1 is given by

û = ûP + v (5.5)

The function fulfills Eqs.(2.9) to (2.11). As mentioned in Section 2, for its construction
one can choose the average of this function arbitrarily, but compatible with the external
boundary conditions of Eq.(2.11), and then solve the boundary value problems which are
defined, when this specification is joined to the System of Eqs. (2.10) to (2.12), and Eq.(2.9)
is also applied. These problems may be solved by any numerical method but in [8], orthogonal
collocation was used and similar manner to that explained in the last Sub-Section.

The system of base functions used for building v ∈ D̂1 can be constructed in a similar
manner. It is based on the fact that v ⊂ Ñ1. So those functions must fulfill the system of
equations (2.1); i.e., the homogenous differential equation, and they be continuous and vanish
on the external boundary. It is advantageous in many instances, to choose the traces on Σ of
such base functions to be the same as those of the weighting functions, as was explained in
the Sub-Section 5.1. In that case, Eq.(4.3) can also be applied for the construction the base
functions, but to determine the coefficients Cαβ

ij one has to replace in Eq.(4.4), the adjoint
differential operator L∗ by the differential operator L, itself.

5.3. The Algorithms. To obtain the system of equations satisfied by the values of
v on Σ (the values of v on both sides of Σ are the same since it is continuous), one has to
apply Eq.(2.22). This is

−
∫

Σ

v [an · ∇w]dx =

∫
Σ

w [an · ∇uP ]dx−
∫

Σ

wj1
Σdx (5.6)

This form is simpler than that presented in [8], where additional details can be found.
In [8], two algorithms were developed. In Algorithm 1, both base and test functions

are piecewise linear on Σ, while both of them are piecewise cubic on Σ in Algorithm 2.

6. Conclusions. This article illustrates the applications of Trefftz-Herrera methods
to the derivation of new discretization procedures. In particular, in Trefftz-Herrera method,
the order of approximation that is used in the internal boundary is independent of that used
in the interior of the elements of the partition. Using this fact a non-standard method of
collocation on Hermite cubics is presented which possesses many advantages over standard
methods. Two algorithms are discussed, one in which the interpolation on Σ is piecewise
linear and another in which it is piecewise cubic. Quadratic interpolation is also possible
but was not discussed here. In this manner, a dramatic reduction in the number of degrees
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of freedom associated with each node is obtained: in the standard method of collocation
that number is two in one dimension, four in two dimensions and eight in three dimensions,
while for some of the new algorithms they are only one in all space dimensions -this is due
to the relaxation in the continuity conditions required by indirect methods-. Also, the global
matrix is symmetric and positive definite when so is the differential operator, while in the
standard method of collocation, using Hermite cubics, this does not happen. In addition, it
must be mentioned that the boundary value problem with prescribed jumps at the internal
boundaries can be treated as easily as the smooth problem -i.e., that with zero jumps-, because
the solution matrix and the order of precision is the same for both problems. It must be
observed also that, when the indirect method is applied, the error of the approximate solution
stems from two sources: the approximate nature of the test functions, and the fact that TH-
complete systems of test functions -which are infinite for problems in several dimensions- are
approximated by finite families of such functions. In particular, when Hermite cubics are
used to approximate the local solutions, in the problems treated in this paper, the error is
O
(
h4
)
, if the test functions are piece-wise cubic on Σ, and it is O

(
h2
)

when the test functions
are only piece-wise linear, on that interior boundary. Finally, the construction of the test
functions is quite suitable to be computed in parallel.
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24. Dual preconditioners for mortar discretization of elliptic
problems

M. Dryja1, W. Proskurowski2

1. Introduction. In this paper, we discuss a second order elliptic problem with dis-
continuous coefficients defined on a polygonal region Ω which is a union of two polygons, Ω1

and Ω2. The problem is discretized by the finite element method on non-matching triangu-
lation across Γ = Ω1 ∩ Ω2. The discrete problem is described using the mortar technique in
the space with constraints (the mortar condition) and in the space without constraints using
Lagrange multipliers, see [2] and [1].

The goal of this paper is to compare two preconditioners, dual Neumann-Dirichlet and
dual Neumann-Neumann (or FETI, see [5], [6], [7]) used for solving the discrete problem
formulated in the space without constraints using Lagrange multipliers. An analysis of con-
vergence of the discussed preconditioners is given. Such analysis to our knowledge has not
yet been previously established. The theory is supported by numerical experiments.

The paper is organized as follows. In Section 2, the differential and discrete problems
are formulated. In Section 3, a matrix form of discrete problems is given. The precondi-
tioners are described and analyzed in Sections 4, while some aspects of their implementation
are presented in Section 5. Finally, numerical results and comparisons of the considered
preconditioners are given in Section 6.

2. Mortar discrete problem. We consider the following differential problem:
Find u∗ ∈ H1

0 (Ω) such that

a(u∗, v) = f(v), v ∈ H1
0 (Ω), (2.1)

where
a(u, v) = (ρ(x)∇u,∇v)L2(Ω), f(v) = (f, v)L2(Ω).

We assume that Ω is a polygonal region. Let Ω be a union of two disjoint polygonal subregions
Ωi, i = 1, 2, of a diameter one. We additionally assume that ρ(x) ≥ ρ0 > 0 is a continuous
function in each Ωi and, for simplicity of presentation, that ρ(x) = ρi = constant on Ωi.

In each Ωi, a triangulation is introduced with triangular elements e
(k)
i and a parameter

hi = maxk h
(k)
i , where h

(k)
i is a diameter of e

(k)
i . The resulting triangulation of Ω is non-

matching across Γ = Ω1∩Ω2. We assume that the hi-triangulation in each Ωi is quasi-uniform,
see [3].

Let Xi(Ωi) be the finite element space of piecewise linear continuous functions defined
on the triangulation of Ωi and vanishing on ∂Ωi ∩ ∂Ω, and let

Xh(Ω) = X1(Ω1)×X2(Ω2).

Note that Xh �⊂ H1
0 (Ω); therefore it cannot be used for discretization of (2.1). To dis-

cretize (2.1) some weak continuity on Γ for v ∈ Xh is imposed and it is called a mortar
condition, see [2]. To describe the mortar condition we assume that ρ1 ≤ ρ2 and select a face
of Ω2, geometrically equal to Γ, as a mortar (master) and denote it by γ, while δ = Γ as a
face of Ω1 as non-mortar (slave). This choice is arbitrary in the case ρ1 = ρ2, however in

1Department of Mathematics, Warsaw University, Banacha 2, 02-097 Warsaw, Poland,
dryja@mimuw.edu.pl. This work was supported in part by the National Science Foundation un-
der Grant NSF-CCR-9732208 and in part by the Polish Science Foundation under Grant 2P03A
02116

2Department of Mathematics, University of Southern California, Los Angeles, CA 90089-1113,
USA, proskuro@math.usc.edu.
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our case, ρ1 ≤ ρ2 and it is important for the analysis of convergence to choose as the mortar
side the one where the coefficient is larger. In the analysis of the FETI method we need
that

hγ

hδ
be uniformly bounded, where hδ and hγ are the steps of triangulation on δ and γ,

respectively.
Let W1(δ) and W2(γ) be the restrictions of X1(Ω1) and X2(Ω2) to δ and γ, respectively.

Note that they are different because they are defined on different 1-D triangulations of Γ.
Let M(δ) be a space of piecewise linear continuous functions defined on the triangulation of
δ with constant values on elements which intersect ∂δ.

We say that u = (u1, u2) ∈ Xh(Ω) satisfies the mortar condition on δ(δ = γ = Γ) if∫
δ

(u1 − u2)ψds = 0, ψ ∈ M(δ). (2.2)

Note that (2.2) for a given u2 can be written as u1 = π(u2, T r u1) where π(u2, T r u1) :
L2(δ) → W1(δ) is defined by

∫
δ
π(u2, T r u1)ψds =

∫
δ
u2ψds, ψ ∈ M(δ),

T rπ(u2, T r u1) = Tr u1.
(2.3)

Here Tr v is a trace of v on ∂δ. In our case Tr u1 = 0.
Let V h(Ω) be a subspace of Xh(Ω) of functions which satisfy the mortar condition (2.2)

on δ. The discrete problem for (2.1) in V h is of the form:
Find u∗

h = (u∗
1h, u∗

2h) ∈ V h such that

2∑
i=1

ai(u
∗
ih, vih) = f(vh), vh = (v1h, v2h) ∈ V h, (2.4)

where ai(ui, vi) = ρi(∇ui,∇vi)L2(Ωi)
. This problem has a unique solution and its error

bound is known, see [2].
The discrete problem (2.4) can be rewritten as a saddle-point problem using Lagrange

multipliers as follows:
Let for u = (u1, u2) ∈ Xh(Ω) and ψ ∈ M(δ)

b(u, ψ) ≡
∫
δ

(u1 − u2)ψdx.

Find (u∗
h, λ∗

h) ∈ Xh(Ω)×M(δ) such that a(u∗
h, vh) + b(vh, λ∗

h) = f(vh), vh ∈ Xh(Ω),

b(u∗
h, ψ) = 0, ψ ∈ M(δ).

(2.5)

It is easy to see that (2.5) is equivalent to (2.4), i.e. the solution u∗
h of (2.5) is the solution

of (2.4) and vice versa. Therefore the problem (2.5) has a unique solution. An analysis
of (2.5) can be done straightforwardly using the inf-sup condition, including the error bound,
see [1], [2].

3. Matrix form. In this section we derive the matrix form of the discrete prob-
lem (2.5).

To provide a matrix form of (2.5) we need a matrix formulation of the mortar condition,

i.e. the matrix form of b(·, ·). Using the nodal basis functions, ϕ
(1)
k ∈ W1(δ), ϕ

(2)
k ∈ W2(γ),

and ψl ∈ M(δ), one can rewrite the equation (2.2) as

Bδu1δ −Bγu2γ = 0, (3.1)
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where u1δ and u2γ are vectors that represent u1|δ ∈ W1(δ) and u2|γ ∈ W2(γ), respectively,
and

Bδ = {(ψl, ϕ
(1)
k )L2(δ)}, l, k = 1, . . . , nδ,

Bγ = {(ψl, ϕ
(2)
k )L2(γ)}, l = 1, . . . , nδ; k = 1, . . . , nγ .

Here nδ = dim(M(δ)) = dim(W1(δ)), nγ = dim(W2(γ)). Note that Bδ is a square tridiagonal
matrix nδ×nδ, symmetric and positive definite, and cond(Bδ) ∼ 1, while Bγ is a rectangular
matrix nδ × nγ . Hence for (u, λ) ∈ Xh(Ω)×M(δ)

b(u, λ) = (Bδu1δ, λ)Rnδ − (Bγu2γ , λ)Rnδ ,

where here and below a vector representation of λ is also denoted by λ.

Thus (2.5) can be presented in the form
A

(1)
II A

(1)
Iδ 0 0 0

A
(1)
δI A

(1)
δδ 0 0 Bδ

0 0 A
(2)
II A

(2)
Iγ 0

0 0 A
(2)
γI A

(2)
γγ −BT

γ

0 Bδ 0 −Bγ 0




u

(1)
I

u
(1)
δ

u
(2)
I

u
(2)
γ

λδ

 =


F

(1)
I

F
(1)
δ

F
(2)
I

F
(2)
γ

0

 (3.2)

Here
{

u
(1)
I , u

(1)
δ

}T

and
{

u
(2)
I , u

(2)
γ

}T

correspond to the nodal values of u∗
1 and u∗

2 at the

interior nodal points of Ωi, δ and γ, denoted by Ωih, δh and γh, respectively, and λδ is a
vector representation of λ∗;

A
(1)
II =

{
a1(ϕ

(1)
k , ϕ

(1)
l )
}

xk, xl ∈ Ω1h,

A
(1)
Iδ =

{
a1(ϕ

(1)
k , ϕ

(1)
l )
}

xk ∈ Ω1h and xl ∈ δh,

A
(1)
δδ =

{
a1(ϕ

(1)
k , ϕ

(1)
l )
}

xk, xl ∈ δh;

A
(2)
II , A

(2)
Iγ and A

(2)
γγ are defined in a similar way. Note that (A

(1)
Iδ ) = (A

(1)
δI )T and (A

(2)
Iγ ) =

(A
(2)
γI )T . The matrix of (3.2) is invertible.

4. Preconditioners for (2.5). In this section we define and analyze preconditioners
for problem (2.5). They will be defined for the Schur complement system with respect to
unknowns λδ, the Lagrange multipliers.

Let

A(1) =

(
A

(1)
II A

(1)
Iδ

A
(1)
δI A

(1)
δδ

)
, A(2) =

(
A

(2)
II A

(1)
Iγ

A
(2)
γI A

(2)
γγ

)
.

Their Schur complement matrices with respect to u
(1)
δ and u

(2)
γ , respectively, are of the form

S1 = A
(1)
δδ −A

(1)
δI

(
A

(1)
II

)−1

A
(1)
Iδ , S2 = A(2)

γγ −A
(2)
γI

(
A

(2)
II

)−1

A
(2)
Iγ . (4.1)

We consider system (3.2). We first eliminate the unknowns u
(1)
I and u

(2)
I . Using rows 1

and 3 of (3.2) and substituting the result in rows 2 and 4 of (3.2) we obtain S1 0 Bδ

0 S2 −BT
γ

Bδ −Bγ 0

  u
(1)
δ

u
(2)
γ

λδ

 =

 F
(1)
δ − (A

(1)
Iδ )T (A

(1)
II )−1F

(1)
I

F
(2)
γ − (A

(2)
Iγ )T (A

(2)
II )−1F

(2)
I

0

 , (4.2)

where S1 and S2 are given by (4.1).
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Then, we eliminate the unknowns u
(1)
δ and u

(2)
γ from this system. Using rows 1 and 2

of (4.2) and setting λ̂δ = Bδλδ, we obtain

SLλ̂δ = Fλ, (4.3)

where
SL = S−1

1 + B−1
δ BγS−1

2 BT
γ B−1

δ , (4.4)

and

Fλ = S−1
1 (F

(1)
δ − (A

(1)
Iδ )T (A

(1)
II )−1F

(1)
I )−B−1

δ BγS−1
2 (F (2)

γ − (A
(2)
Iγ )T (A

(2)
II )−1F

(2)
I ).

The dual Schur complement matrix SL is symmetric and positive definite, nδ by nδ.
Our goal is to define preconditioners for (4.3) dual to the Neumann-Dirichlet one and

dual to the Neumann-Neumann one. The latter, for the matching triangulation, is called
FETI (the Finite Element Tearing and Interconnecting), see [5], [6], [7].

4.1. Neumann-Dirichlet (N-D) preconditioner. The Neumann-Dirichlet dual
preconditioner for SL is defined by S−1

1 .

Theorem 4.1 For any λ ∈ Rnδ and ρ1 ≤ ρ2 the following holds(
S−1

1 λ, λ
)

Rnδ
≤ (SLλ, λ)Rnδ ≤ C

(
S−1

1 λ, λ
)

Rnδ
(4.5)

where C is a positive constant independent of hi and ρi, i = 1, 2.

For the proof see [4].

4.2. FETI (N-N) preconditioner. We now discuss FETI method for solving (4.3).
This preconditioner is of the form

G =

(
ρ2

ρ1 + ρ2
S1 +

ρ1

ρ1 + ρ2
B−1

δ BγS2B
T
γ B−1

δ

)−1

. (4.6)

Theorem 4.2 Let
hγ

hδ
be uniformly bounded. For any λ ∈ Rnδ and ρ1 ≤ ρ2 holds

1

2
(Gλ, λ)Rnδ ≤ (SLλ, λ)Rnδ ≤ C(Gλ, λ)Rnδ (4.7)

where C is a positive constant independent of hi and ρi, i = 1, 2.

For the proof see [4].

5. Implementation aspects. In this section we discuss some implementation as-
pects of solving the Schur complement systems.

To solve the dual Schur complement equation (4.3) we use the preconditioned conjugate
gradient (PCG) iterations. Here, we only need to describe the implementation of 1. the
multiplication of a vector by the dual Schur complement matrix SL ∈ Rnδ×nδ (defined
by (4.4)), and 2. solving a system with a. the Neumann-Dirichlet dual preconditioner
S1 (defined by (4.1)), and with b. the Neumann-Neumann dual preconditioner G (defined
by (4.6) ).

Let us recall that the iterations are carried out on the non-mortar side δ of the interface Γ
with the number of grid equal to nδ. The mortar condition (2.3) ensures the proper transfer
of information across the interface.

1. Compute rk = SLλk for any given λk ∈ Rnδ . The multiplication by SL reduces to
solving two independent problems:
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i) Compute rk
1 = S−1

1 λk, i.e. solve

S1r
k
1 = λk. (5.1)

This reduces to solving the Neumann problem on Ω1, and more precisely, the problem with
non-homogeneous Neumann boundary conditions on δ and homogeneous Dirichlet ones on
∂Ω1\δ, see (4.1) (

A
(1)
II A

(1)
Iδ

A
(1)
δI A

(1)
δδ

)(
r
(1)
I

rk
1

)
=

(
0

λk

)
, (5.2)

ii) Compute rk
2 = B−1

δ BγS−1
2 BT

γ B−1
δ λk. This step is similar to (5.2). The only difference

is that before solving the Neumann problem on Ω2 we need first to solve Bδz
(1)
δ = λk, then

to compute BT
γ z

(1)
δ ; and after solving the Neumann problem on Ω2 we need to perform these

operations in reversed order.
Finally, rk = rk

1 + rk
2 .

2a. Compute rk
1 = S1λ

k for any given λk ∈ Rnδ .
We first compute, see (4.1),

S1λ
k = A

(1)
δδ λk −A

(1)
δI

(
A

(1)
II

)−1

A
(1)
Iδ λk.

This reduces to solving the Dirichlet problem in Ω1 as follows

A
(1)
II v

(1)
I = A

(1)
Iδ λk (5.3)

and to computing rk
1 = A

(1)
δδ λk −A

(1)
δI v

(1)
I .

2b. Compute rk = G−1λk for any given λk ∈ Rnδ .
This step consists of solving two Dirichlet problems, one in Ω1, the other in Ω2 (with

the pre- and post- multiplications by B−1
δ Bγ and its transpose, respectively, as in 1.ii) ),

see (4.6) .

6. Numerical experiments. The test example for all our experiments is the weak
formulation, see (2.1), of

−div(ρ(x)∇u) = f(x1, x2) in Ω, (6.1)

with the Dirichlet boundary conditions on ∂Ω, where Ω is a union of two disjoint rectangular
subregions Ωi, i = 1, 2, of a diameter one, and ρ(x) = ρi is a positive constant in each Ωi.

The problem (6.1) is discretized by the finite element method on non–matching triangu-
lation across the interface Γ. The grids used in our experiments are: 1. double grids, where
the grid on one side of the interface Γ is twice the one on the other side of Γ, with every other
position of the nodes coinciding, 2. staggered grids, where the grid size, h on both sides of
Γ is the same but the nodes are staggered, with the distance of h

2
between the nearest two

nodes on the opposite sides of Γ, and 3. mixed grids, where the grid on one side of Γ is coarse
with the grid size 2h, while the grid on the other side of Γ is fine with the grid size h and
staggered by h

2
. The mixed grids may better represent general non-matching grids.

We select a face of Ω2 which coincides with the interface Γ as the mortar side, while
the face of Ω1 is the non–mortar one. We choose the following combinations of the diffusion
coefficients: 1. ρ1 = ρ2, 2. 1 = ρ1 < ρ2 = 1000, and 3. 1 = ρ2 < ρ1 = 1000 (the case not
covered by the theory).

To create a discrete driving function f(x1, x2) we generate a random discrete solution
u(x1, x2) and multiply it by the matrix (3.2).

We solve the problems using the preconditioned conjugate gradient (PCG) iterations
(see Section 5 for the implementation aspects). The iterations are terminated when the
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Table 6.1: Performance of the dual Neumann-Dirichlet (dual N-D, Q = S1SL) and
dual Neumann-Neumann (dual N-N, or FETI, Q = G−1SL) preconditioners for the
finest meshes on different grids. The number of iterations and the estimate of the
condition number are displayed.

precon- continuous ρ2 < ρ1 ρ1 < ρ2

grids ditioner nδ nγ no. iter. κ(Q) no. iter. κ(Q) no. iter. κ(Q)
double dual N-D 255 127 5 2.00 10 ∗ 2 1.001

127 255 4 1.34 6 1.85 2 1.001
dual N-N 255 127 11 9.97 23 ∗ 7 5.00

127 255 6 1.73 7 2.26 5 1.28
staggered dual N-D 256 255 8 1.93 115 997. 3 1.30

255 256 9 3.08 114 1176. 2 1.002
dual N-N 256 255 13 4.27 144 1003. 9 2.85

255 256 12 5.07 146 2957. 8 1.91
mixed dual N-D 256 127 7 2.28 16 ∗ 3 1.31

127 256 10 10.98 13 91.0 3 1.01
dual N-N 256 127 14 19.23 35 ∗ 12 9.98

127 256 15 22.21 18 181.7 8 2.96

norm of the residual has decreased 106 times in the norm generated by the inverse of the
preconditioner matrix.

To estimate the condition number of the PCG iteration matrix we compute the tridiagonal
matrix representing the restriction of the preconditioned Schur complement matrix to the
space spanned by the conjugate gradient residuals.

The preconditioners considered behave as predicted by the theory: for ρ1 ≤ ρ2 the con-
vergence is independent of the grid size, see Table 6.2. Table 6.1 presents performance of the
preconditioners for the finest meshes on different grids. The N-D and dual N-D precondition-
ers converge somewhat faster than the N-N and dual N-N (FETI) preconditioners. All four
preconditioners are robust for cases with the discontinuity ratio of 1000 across the interface,
see Table 6.1.

The differences in performance on different grids are qualitatively insignificant, thus in
Table 6.2 we present only one set of experiments. Comparison of the convergence rate for the
preconditioned and non-preconditioned iterations (on a chosen set of problems, see Table 6.2)
shows that the first remain constant independently of the grid size, while the latter depend
roughly proportional to the square root of the size of the iteration matrix3. From this one can
infer that cond(S) = O( 1

h
) and cond(SL) = O( 1

h
) even for problems with jump discontinuity

at the interface.
Additionally, we performed experiments with the grid ratio across the interface varying

in the range
hγ

hδ
= 2k, k = −5(1)5, i.e. from 1

32
to 32

1
(and different diffusion coefficients ρ, as

before). Performance for the dual N-D preconditioner was virtually independent of the grid

ratio, as was for the FETI preconditioner and
hγ

hδ
< 1. For

hγ

hδ
> 1 the condition number of

the FETI iteration matrix grows almost quadratically with the grid ratio while the number
of iterations increases only very slowly (and depends also on the grid size).

7. Conclusions. The preconditioners considered behave as predicted by the theory:
for ρ1 ≤ ρ2 the convergence is independent of the grid size and the jump of the discontinuity.
All preconditioners considered are very robust for cases with the discontinuity ratio of 1000

3the number of iterations for the non-preconditioned problems in the range nδ = 16 to 256 is
proportional to np

δ , where p = 0.5 ± 0.03 as computed using polyfit in the loglog scale.
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Table 6.2: Examples of the PCG iterations convergence for (2.5) with and without
preconditioners (for ρ1 < ρ2) as a function of grid sizes on the mixed grids. The
number of iterations and estimate of the condition number are displayed.

no precond. dual N-D precond. dual N-N precond.
nδ nγ no. iter. κ(Q) no. iter. κ(Q) no. iter. κ(Q)

16 7 12 14.35 4 1.30 9 9.88
32 15 18 27.06 4 1.30 12 9.96
64 31 24 52.39 4 1.31 12 9.97
128 63 33 102.9 3 1.31 12 9.98
256 127 44 203.8 3 1.31 12 9.98

7 16 7 6.29 3 1.01 7 2.81
15 32 11 12.95 3 1.01 8 2.96
31 64 17 25.68 3 1.01 8 2.96
63 128 23 51.29 3 1.01 8 2.96
127 256 33 102.7 3 1.01 8 2.96

across the interface. One should be cautious not to generalize conclusions drawn on such
limited two subdomain case. Nevertheless, the results are illuminating, and we intend to
extend the experimental evidence to more complex subdivisions.
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25. The Direct Approach to Domain Decomposition Methods

F. Garćıa-Nocetti 1, I. Herrera2, E. Rubio 3, R. Yates4, L. Ochoa 5

1. Introduction. Recently, Herrera presented a general and unifying theory of do-
main decomposition methods (DDM), and this paper is part of a group of articles [5], included
in these Proceedings, devoted to present an overview of this theory and some of its appli-
cations. According to it, DDM are classified into direct and indirect methods. This paper
is devoted to briefly present direct methods from the point of view of the unified theory. A
related and more detailed discussion may be found in [6]. It must be mentioned that Direct
Methods subsume Schwartz and Steklov-Poincaré Methods among others [6], [7].

2. Notations. The notations will be as in [6].In what follows, unless otherwise ex-
plicitly stated, Ω will be an open, bounded region. The closure of any set Ω will be denoted
by Ω. The (outer) boundary of Ω will be denoted by ∂Ω.

As usual, a collection Π = {Ω1, ..., ΩE} of open subregiones Ωi (i = 1, ..., E) of Ω, is said
to be a partition of Ω, iff

i. Ωi ∩ Ωj = φ, foreveryi �= j and

ii. Ω̄ =
i=E⋃
i=1

Ω̄i

In addition, the partitions considered throughout this paper are assumed to be such that

the subregiones Ωi are manifolds with corners [6]. The manifold
E⋃

i=1

∂Ωi will be referred to

as the ’generalized boundary’, while the ’internal boundary’ of Ω -to be denoted by Σ- is
defined as the closed complement of ∂Ω, considered as a subset of the generalized boundary.
Observe that the internal boundary -and the generalized boundary as well- are concepts
whose definition is relative to both the region Ω and the partition Π. Thus, when deemed
necessary, the notation Σ(Ω, Π), which is more precise, will be used.

A partition Π′ =
{

Ω
′
1, ..., Ω

′
E′
}

of Ω, is said to be a sub-partition of Π, when for each

given any i = 1, .., E′ , there is a subset of natural numbers N(i) ⊂ {1, .., E} , such that

Ω̄
′
i =

⋃
j∈N (i)

Ω̄j (2.1)

Given a sub-partition Π′ =
{

Ω
′
1, ..., Ω

′
E′
}

, the function µ′ : {1, ..., E} → {1, ..., E′} is

defined, for every j = 1, ..., E, by the equation µ′(j) = i , whenever j ∈ N(i). Two partitions:

Π′ =
{

Ω
′
1, ..., Ω

′
E′
}

and Π′′ =
{

Ω
′′
1 , ..., Ω

′′
E′′
}

, respectively, are said to be conjugate with

respect to a partition Π, when:
i. They are both sub-partitions of Π ;
ii. In the measure of the generalized boundary, the sets

Σ
′
−

Σ
′
∩

i=E
′⋃

i=1

Ω
′′
i

 and Σ
′′
−

Σ
′′
∩

i=E
′′⋃

i=1

Ω
′
i

 (2.2)

1Instituto de Investigaciones en Matemáticas Aplicadas y Sistemas (IIMAS), Universidad Nacional
Autónoma de México (UNAM), fabian@uxdea4.iimas.unam.mx

2Instituto de Geof́ısica (IGF), Universidad Nacional Autónoma de México (UNAM) , iher-
rera@servidor.unam.mx

3IIMAS-UNAM, ernesto@uxdea4.iimas.unam.mx
4IGF-UNAM, yates@altcomp.com.mx
5IGF-UNAM, ochoa75@yahoo.com
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have measure zero;
iii. And

Σ′ ∪ Σ′′ = Σ (2.3)

Here, Σ′ = Σ(Ω, Π′) and Σ′′ = Σ(Ω, Π′′).

When Π′ =
{

Ω
′
1, ..., Ω

′
E′
}

and Π′′ =
{

Ω
′′
1 , ..., Ω

′′
E′′
}

are conjugate partitions, in addition

to the mapping µ
′

introduced above, it will be necessary to consider a second mapping µ
′′
,

associated with Π
′′
, which is defined correspondingly.

The formulation and treatment of boundary problems with prescribed jumps requires the
introduction of a special class of Sobolev spaces in which some of their functions are fully
discontinuous [6]. The jump of u across Σij , is defined by

[v] ≡ v+ − v− (2.4)

and the average by

v̇ ≡ 1

2
(v+ + v−) (2.5)

3. The General Problem with Prescribed Jumps (BVPJ). The direct ap-
proach to Domain Decomposition Methods, here presented, as well as Herrera’s unified theory,
can be applied to a very general class of boundary value problems for which jumps are pre-
scribed in the internal boundaries. Given Ω, the region of definition of the problem, and a
partition of Ω (or domain-decomposition) Π ≡ {Ω1, ..., ΩE}, let Σ ≡ Σ(Ω, Π) be the internal
boundary. Then, using a notation similar to that presented in [8], the general form of such
boundary value problem with prescribed jumps (BVPJ) is

Lu = LuΩ ≡ fΩ; in Ωi,i = 1, ..., E (3.1)

Bju = Bju∂ ≡ gj ; in ∂Ω (3.2)

[Jku] = [JkuΣ] ≡ jk; in Σ (3.3)

where the Bj ’s and Jj ’s are certain differential operators (the j ’s and k ’s run over suitable
finite ranges of natural numbers) and uΩ ≡

(
u1

Ω, ..., uE
Ω

)
, together with u∂ and uΣ are given

functions of the space of trial functions. In addition, fΩ, gj and jj may be defined by Eq.
(3.1).

It must be emphasized that the scope of the methodology presented in this and the other
papers of this series is quite wide, since in principle it is applicable to any partial differential
equation or system of such equations that is linear, independently of its type and including
equations with discontinuous coefficients. But, of course, every kind of equation has its own
peculiarities, which require special developments that have to be treated separately.

4. The Elliptic Equation of Second Order. In this Section we describe the
overlapping direct method under investigation, for the second-order differential equation of
elliptic type, when the problem is defined in a space of arbitrary dimension. For definiteness,
only boundary conditions of Dirichlet type will be presented, but the procedure is applicable
to any kind of boundary conditions for which the problem is well posed, as was done in [4].
With the notation introduced in Section 2, a region Ω and a partition Π ≡ {Ω1, ..., ΩE} of
Ω, will be considered. The solution to the boundary value problem with prescribed jumps
in this case, will be sought in a Sobolev space of the kind introduced in that Section. More
precisely, a function u ∈ Ĥ2(Ω) ≡ H2(Ω1)⊕ ...⊕H2(ΩE) is sought, such that
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Lu ≡ −∇ • (a • ∇u) +∇ • (bu) + cu = fΩ; inΩi, i = 1, ..., E (4.1)

subjected to the boundary conditions

u = u∂ ; in ∂Ω (4.2)

and jump conditions

[u] = j0 = [uΣ]; on Σ (4.3)

[a • ∇u] • n = j1 = [a • ∇uΣ] • n; on Σ (4.4)

The above formulation and the methodology that follows applies even if the coefficients
of the differential operator are discontinuous. In the particular case when the coefficients are
continuous, the jump condition of Eq. (4.4), in the presence of Eq. (4.3), is equivalent to[

∂u

∂n

]
=

[
∂uΣ

∂n

]
; on Σ (4.5)

In what follows, it will be assumed that this problem possesses one and only one solution.
Conditions under which this assumption is fulfilled, are well-known.

According to the unified theory one has to choose an information-target, that is referred
as ’the sought information’, as a suitable part of the complementary information defined
on Σ. In the procedure that is explained next, the sought information is taken to be the
average, across Σ, of the solution of the BVPJ. This choice is suitable, because the boundary
value problem defined by the system of equations (4.1) to (4.4), when this latter equation is
replaced by

•
û =

•
uI (4.6)

is local and well-posed. Here, uI ∈ D̂1 is a given function, This can be verified using the
relation

u+ =
•
u +

1

2
[u] andu− =

•
u−1

2
[u] (4.7)

It permits evaluating the values of the function, on both sides of the internal boundary
Σ, when the average is known. When this information is complemented with the boundary
data on the external boundary, a Dirichlet problem can be formulated in each one of the
subdomains of the partition.

In the Theorem that follows, two conjugate partitions Π′ =
{

Ω
′
1, ..., Ω

′
E′
}

and Π′′ ={
Ω

′′
1 , ..., Ω

′′
E′′
}

, as well as the mappings µ
′
and µ

′′
associated to them in the manner explained

in Section 2, will be considered. Also, the notations Σ′ ≡ Σ(Ω, Π′) and Σ′′ ≡ Σ(Ω, Π′′) will
be adopted.

Theorem 4.1 .- Let Π′ =
{

Ω
′
1, ..., Ω

′
E′
}

and Π′′ =
{

Ω
′′
1 , ..., Ω

′′
E′′
}

be two partitions of

Ω which are conjugate with respect to Π, and let

{
�
u

1
, ...,

�
u

E′}
and

{
�
u

1
, ...,

�
u

E′}
be two

families of functions, such that

1) For every i = 1, ..., E′, the function
�
u

i ∈ Ĥ2(Ω
′
i, Π

′
) fulfills Eqs.(4.1) to (4.3) and

satisfies Eq.(4.4) in Σ
′

2) For every j = 1, ..., E′′, the function
�
u

j ∈ Ĥ2(Ω
′′
j , Π

′′
) fulfills Eqs.(4.1) to (4.3) and

satisfies Eq.(4.4) in Σ
′′
.
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Then, define u′ =
(
u′1, ..., u′E) ∈ Ĥ2 (Ω, Π) and u′′ =

(
u′′1, ..., u′′E) ∈ Ĥ2 (Ω, Π), by

u′i =
�
u

µ′(i)
∣∣∣∣
Ωi

; i = 1, ..., E (4.8)

u′′j =
�
u

µ′′(j)
∣∣∣∣
Ωj

; i = 1, ..., E (4.9)

Under these assumptions the following statements are equivalent:
i. u

′
and u

′′
are solutions of the BVPJ in Ω;

ii.
u′ ≡ u′′ (4.10)

iii.
u̇′ (x) = u̇′′ (x) , a.e. on Σ = Σ

′
∪ Σ

′′
(4.11)

Proof..- That i) implies ii) is immediate, because of the assumption of uniqueness of solution
for the BVPJ. That ii) implies iii) follows from the jump condition of Eq.(4.3) and the
definition of the average across Σ. Eq.(4.11) in the presence of Eq.(4.3), in turn imply

u′ (x+) = u̇′ (x) +
1

2

[
u′] = u̇′ (x) +

1

2
j0 = u̇′′ (x) +

1

2
j0 = u̇′′ (x) +

1

2

[
u′′] = u′′ (x+) (4.12)

Recalling that Σ = Σ′ ∪ Σ′′ and that Σ ∪ ∂Ω =
E⋃

i=1

∂Ωi, it is seen that the boundary

values of u
′

and u
′′

coincide on each side of Σ. This, together with the assumed uniqueness
of solution of the boundary value problem at each one of the sub-regions of the partition,
imply u′ ≡ u′′.

It is timely to point out the connections between the method discussed in this paper and
the Schwarz alternating methods. Indeed, this latter approach can be derived from Eqs.(4.1)
to (4.3) and (4.11), when an iterative procedure is adopted for fulfilling Eq.(4.11). To show
this, let u2n(n = 0, 1, ...) and u2n+1(n = 0, 1, ...) satisfy Eqs.(4.1) to (4.3), together with

•︷ ︸︸ ︷
u2n+1 =

•︷︸︸︷
u2n , on Σ′,(n = 0, 1, ...) (4.13)

•︷ ︸︸ ︷
u2n+2 =

•︷ ︸︸ ︷
u2n+1 , on Σ′′,(n = 0, 1, ...) (4.14)

Then, if the sequence u2n(n = 0, 1, ...) converges to
�
u, while the sequence u2n+1(n =

0, 1, ...) converges to
�
u, one has

�
u =

�
u = u, and this function fulfills Eqs. (4.1) to (4.3),

together with Eq.(4.11). In the cases when a variational principle can be applied, the pro-
jection interpretation is possible and the Schwarz alternating procedure can be derived (see,
for example, [2], [3], [1]).

5. The One-Dimensional Case. The one dimensional version of the problem de-
scribed in Section 4 corresponds to the two-point boundary value problem of the general differ-
ential equation of second order. Let be Ω ≡ (0, l) and Π ≡ {(0, x1) , (x1, x2) , ..., (xE−1, xE = l)}.
Then

Lu ≡ − d

dx
(a

du

dx
) +

d

dx
(bu) + cu = fΩ, in (xi−1, xi), i = 1, ..., E (5.1)
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Assume that the boundary and jump conditions are:

u(0) = g∂0, u(l) = g∂l (5.2)

[u] = j0
i ≡ [uΣ] and

[
du

dx

]
= j1

i ≡
[

duΣ

dx

]
; i = 1, ..., E − 1 (5.3)

respectively. In addition, it will be assumed that the Dirichlet problem is well-posed in
each one of the subintervals and that u (x) ∈ H2 (Ω) is the unique solution of this BVPJ, in
Ω. As in Section 4, the sought information will be the average of the solution, across Σ.

In every subinterval (xi−1, xi+1), i = 1, ..., E − 1 define the function ui (x) to be the
restriction of u (x) to Ωi. Then, for every i = 1, ..., E − 1, ui (x), is the unique solution of a
boundary value problem with prescribed jumps defined in the subinterval (xi−1, xi+1), which
is derived from the following conditions:

Lui = fΩ, in (xi−1, xi+1); i = 1, ..., E − 1 (5.4)

[ui]i = j0
i ;

[
dui

dx

]
i

= j1
i ; i = 1, ..., E − 1 (5.5)

ui(xi−1+) = u(xi−1+) = u̇(xi−1) +
1

2
j0
i−1; i = 2, ...E − 1 (5.6)

ui(xi+1−) = u(xi+1−) = u̇(xi+1)−
1

2
j0
i+1; i = 1, ..., E − 2 (5.7)

u1(0) = u(0) = g∂0 (5.8)

uE−1(l) = u(l) = g∂l (5.9)

Let the functions ui
H(x) and ui

P (x) be defined in (xi−1, xi+1) by the following conditions:

Lui
H = 0, in (xi−1, xi+1); i = 1, ..., E (5.10)

[ui
H ]i =

[
dui

H

dx

]
i

= 0; i = 1, ...E − 1 (5.11)

ui
H(xi−1+) = u(xi−1+) = u̇(xi−1) +

1

2
j0
i−1; i = 2, ...E − 1 (5.12)

ui
H(xi+1−) = u(xi+1−) = u̇(xi+1)−

1

2
j0
i+1; i = 1, ..., E − 2 (5.13)

u1
H(x0) = u(0) = g∂0; (5.14)

uE−1
H (xE) = u(l) = g∂l; (5.15)

together with

Lui
P = fΩ, in (xi−1, xi) and (xi, xi+1), separately, for i = 1, ..., E − 1 (5.16)

ui
P (xi−1+) = ui

P (xi+1−) = 0, for i = 1, ..., E − 1 (5.17)
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[ui
P ]i = j0

i and

[
dui

P

dx

]
i

= j1
i ; i = 1, ..., E − 1 (5.18)

Then, it can be verified that

ui(x) = ui
H(x) + ui

P (x); i = 1, ..., E − 1 (5.19)

Even more:

ui
H(x) = ui

H(xi−1−)φi
−(x) + ui

H(xi+1+)φi
+(x) (5.20)

when φi
−(x) and φi

+(x) are defined by the conditions:

Lφi
+ = 0; φi

+(xi−1) = 0, φi
+(xi+1) = 1 (5.21)

Lφi
− = 0; φi

−(xi−1) = 1, φi
−(xi+1) = 0 (5.22)

together with

[φi
+]i = [φi

−]i =

[
dφi

+

dx

]
i

=

[
dφi

−
dx

]
i

= 0 (5.23)

From Eqs. (5.6), (5.7), (5.19), and (5.20), it follows that

u̇(xi)− u̇i
P (xi) = u̇i

H(xi) = {u̇(xi−1) +
1

2
j0
i−1}φi

−(xi) + {u̇(xi+1)−
1

2
j0
i+1}φi

+(xi) (5.24)

Hence

−ρi
−u̇i−1 + u̇i − ρi

+u̇i+1 = µi; i = 2, ..., E − 2 (5.25)

u̇i − ρi
+u̇i+1 = µi; i = 1 (5.26)

−ρi
−u̇i−1 + u̇i = µi; i = E − 1 (5.27)

where

ρi
− = φi

−(xi), ρ
i
+ = φi

+(xi); i = 1, ..., E − 1 (5.28)

µi =
ρi
−
2

j0
i−1 + u̇i

P (xi)−
ρi
+

2
j0
i+1; i = 2, ..., E − 2 (5.29)

µi = ρi
−g∂0 + u̇i

P (xi)−
ρi
+

2
j0
i+1; i = 1 (5.30)

µi =
ρi
−
2

j0
i−1 + u̇i

P (xi) + ρi
+g∂l; i = E − 1 (5.31)

Eqs. (5.25) to (5.27), constitute an E − 1 tridiagonal system of equations, which can be
solved for u̇i(i = 1, ..., E − 1).

Once the averages u̇i(i = 1, ..., E − 1) are known, it is possible to apply ’optimal interpo-
lation’ to obtain the solution in the interior of each one of the subintervals of the partition.
This kind of interpolation consists in deriving enough information for defining well-posed
problems in each of those subintervals. To this end, apply the identities
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u (xi+) ≡ u̇i +
1

2
[u]i = u̇i +

1

2
j0
i and u (xi−) ≡ u̇i −

1

2
[u]i = u̇i −

1

2
j0
i (5.32)

When these values are complemented with the prescribed boundary values of Eq. (5.2),
well-posed boundary value problems in each one of the subintervals of the partition can be
defined. In this manner, all that is required to reconstruct the solution of the BVPJ is to solve
such ”local problems”, in each one of the subintervals. Using the previous developments, one
can apply Eqs. (5.19), and (5.20), to obtain u(x) in the interior of the subintervals of the
partition.

Up to now, all the developments have been exact. However, one can apply the system
of equations (5.25) to (5.27), as well as Eqs. (5.19), and (5.20), only if the functions φi

−,
φi

+ and ui
P , (i = 1, ..., E − 1), are available. In general applications it will be necessary to

resort to numerical approximations for the construction of such functions and the system of
equations so obtained will not be exact any longer. Instead, its precision will depend on the
error introduced by the numerical procedure that is applied for solving the problems defined
by Eqs. (5.10) to (5.18). A similar comment can be made with respect to the construction
of the solution of the local boundary value problem whose solution is given by Eqs. (5.19)
and (5.20). In reference [6] collocation was used, obtaining in this manner a non-standard
method of collocation.
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26. Parallel Implementation of Collocation Methods

R. Yates1, I. Herrera2

1. Introduction. Domain decomposition methods (DDM) have received much atten-
tion in recent years3 in that they offer very effective means for parallelizing computational
models of continuous systems. Combining collocation procedures with domain decomposition
methods, however, presents complications which must be overcome in order to profit from
the advantages of parallel computing. Such methods can in fact be derived using a variety of
approaches. One possibility involves the use of Steklov-Poincaré operators [7] while another
is to apply an indirect formulation [3],[4],[6],[1]. In this paper, a method is derived based
upon the application of collocation together with an indirect formulation which is suitable for
parallel computation. As a first approach, we shall consider the case of a symmetric, elliptic
differential operator which will allow for the utilization of the conjugate gradient method in a
novel manner - where successive iterations involve the (parallel-computed) solutions of local
problems.

2. Formulation. We shall use the indirect or Trefftz-Herrera formulation [5] for a
boundary-value problem with prescribed jumps (BVPJ) for the case of a symmetric, elliptic
operator L as follows:

Let Ω be a domain in R
n with external boundary ∂Ω together with a partition Π =

{Ω1, ..., ΩE} and internal boundary Σ (Fig. 2.1). Let

Lu = −∇ ·
(
a · ∇u

)
+ cu (2.1)

be a symmetric, elliptic operator with c ≥ 0 and

Lu = f on Ωi for i = 1, ..., E (2.2)

u(x) = g(x) on ∂Ω (2.3)

[u] = j0 and [an · ∇u] = j1 on Σ (2.4)

Then u is said to be a solution of the BVPJ. Here, as in the general theory, the notation
[u] = u+ − u− and u̇ = 1

2
(u+ + u−) is used for the jump of a function and average value

across a (possibly discontinuous) internal boundary Σ.
The Green-Herrera formula [2] for this problem is given as

P −B − J = Q∗ − C∗ −K∗; (2.5)

where

〈Pu, w〉 =

∫
Ω

wLudx, 〈Q∗u, w〉 =

∫
Ω

uL∗wdx, (2.6)

〈Bu, w〉 =

∫
∂Ω

uan · ∇wds, 〈C∗u, w〉 =

∫
∂Ω

wan · ∇uds, (2.7)

〈Ju, w〉 =
〈
(J0 + J1)u, w

〉
= −

∫
Σ

j0 ˙an · ∇wds +

∫
Σ

j1wds, (2.8)

1Instituto de Geof́ısica Universidad Nacional Autónoma de México (UNAM) ,
yates@altcomp.com.mx

2Instituto de Geof́ısica Universidad Nacional Autónoma de México (UNAM) , iher-
rera@servidor.unam.mx

3See: International Scientific Committee for Domain Decomposition ”Proceedings of 13 confer-
ences on Domain Decomposition Methods”, www.ddm.org, 1988-2001
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Figure 2.1: Partition of the domain Ω

〈K∗u, w〉 = 〈(R∗ − S∗)u, w〉 = −
∫

Σ

[w] ˙an · ∇uds +

∫
Σ

u̇[an · ∇w]ds (2.9)

In the indirect formulation, the test functions w are chosen so that w ∈ Ñ ≡ NQ∩NC∩NR,
or equivalently:

L∗w = 0, w = 0 on ∂Ω and [w] = 0 on Σ (2.10)

In this case, the resulting formula reduces to

〈S∗u, w〉 = 〈(P −B − J)u, w〉 (2.11)

which is a variational formulation of the problem. A straightforward calculation shows that

〈S∗u, w〉 = −
∫

Σ

u̇ [an · ∇w] =

∫
Ω

(∇u · a · ∇w + cuw) ∀u, w ∈ Ñ (2.12)

so that S∗ is symmetric, positive-definite when L is.
In order to obtain the formulation suitable for parallelization, the notion of a particular

solution must be introduced.
Definition 2.1.- A function up is said to be a particular solution of the BVPJ provided

(P −B − J0)up = f − g − j0 (2.13)

or equivalently, if

Pup = Lup = f in each Ωi (2.14)

up = g on ∂Ω (2.15)

and
[up] = j0 on Σ (2.16)

A particular solution is therefore a function which satisfies the differential operator locally,
the external boundary conditions and the jump conditions of the function values on the
internal boundary. Nothing is specified regarding the jump conditions of the normal derivative
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(or flux) of a particular solution. As will be shown later, particular solutions can be obtained
readily from solutions of the local problems only. Clearly, a particular solution up of the
BVPJ is a solution of the BVJP if and only if J1up = j1.

From this last remark, the following result is easily derived:

Theorem 2.1 A function u is a solution of the BVPJ if and only if, for any particular
solution up we have

〈S∗v, w〉 =
〈
J1up − j1, w

〉
; ∀w ∈ Ñ where v = u− up (2.17)

3. The Numerical Algorithm. To derive a numerical procedure for the BVPJ in a
parallel processing environment, we first obtain a matrix equation from the above variational
principle and then develop an iterative solution process using the conjugate gradient method
in which each iteration involves the solution of local problems in the subregions Ωi; these
local problems can be effectively solved in parallel.

We first assume that we have a particular solution up of the BVPJ and, as above, let
v = u − up where u is the desired solution. Since the differential operator L is symmetric
and [v] = v|∂Ω = 0, then we have v ∈ Ñ . From the above result Eq. (2.17), we have:

〈S∗v, w〉 =
〈
J1up − j1, w

〉
; ∀w ∈ Ñ (3.1)

A more explicit form of the above equation is

−
∫

Σ

v[an · ∇w]ds =

∫
Σ

w([an · ∇up]− j1)ds (3.2)

To obtain the matrix equation, we will use a system of weighting functions {w1, ..., wN}
of Ñ whose restrictions to the internal boundary Σ form a suitable subspace of L2(Σ). These
restrictions, w1|Σ , ..., wN |Σ will be used as basis functions to represent v:

v =
N∑

j=1

cjwj (3.3)

In this case we have:

−
N∑

j=1

cj

∫
Σ

[an · ∇wi]wjds =

∫
Σ

wi([an · up]− j1)ds (3.4)

which can be rewritten as:

A · c = b (3.5)

where Aij = −
∫
Σ

[an · ∇wi]wjds and bi =
∫
Σ

([an · ∇up]− j1)wids. It should be noted that

the matrix A is both symmetric and positive definite from Eq. (2.12) as wi, wj ∈ Ñ .
The solution of this matrix equation will provide the solution u = up + v to the BVPJ on

the interior boundary Σ. The solution on Ω can then be obtained by obtaining local solutions
in each subregion Ωi with boundary values supplied by u.

However, a direct computation of the matrix A and the obtention of the solution vector
c is expensive since the subdomains can be quite large. An alternative approach involves the
use of the conjugate gradient method, included in Appendix A, which requires the calculation
of the matrix product A · c once for each iteration. In fact, this method does not require the
calculation or storage of the components of the matrix A. Rather, the product is derived
from the local solutions of homogeneous BVPs in the subregions Ωi. To this end, we make
use of the following theorem:
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Theorem 3.1 Let p = (p1, ..., pn) be a vector and let ϕ be the solution to the homogeneous
boundary value problem in Ωi defined by:

L∗ϕ = 0 on Ωi for each i = 1, ..., E (3.6)

ϕ = 0 on ∂Ω ∩ ∂Ωi (3.7)

ϕ =
N∑

j=1

pjwj on Σ (3.8)

then

(A · p)i =

∫
Σ

wi[an · ∇ϕ]ds (3.9)

Proof. Since ϕ is continuous and vanishes on the exterior boundary ∂Ω, then ϕ ∈ Ñ . Then

we must have ϕ ≡
N∑

j=1

pjwj in each Ωi so that
N∑

j=1

pj [an · ∇wj ] = [an · ∇ϕ] which is essentially

the statement of the theorem.

4. The Numerical Procedure. Implementation of the above algorithm requires
both the construction of a particular solution up and the test function basis {w1, ..., wN}.
One way to obtain a particular solution is by setting u̇p = 0 on Σ ie. by solving local problems
ui

p on each Ωi such that:

Lui
p = f in each Ωi (4.1)

ui
p = g on ∂Ω ∩ ∂Ωi (4.2)

ui
p = ± 1

2
j0 on Σ ∩ ∂Ωi (4.3)

where the sign is chosen according the outward normal.
The resulting up will satisfy the differential equation, the external boundary conditions

and the internal jump operator J0. An alternative way of deriving a up is to solve first
the global BVPJ on the coarse grid and then solve the problem locally on each of the local
domains Ωi using boundary values supplied by the coarse solution. This latter method would
tend to give an approximate solution ”closer” to the desired solution.

To obtain the test functions, the discretization of the local subdomains gives rise to a
discretization of the internal boundary Σ. For each such node point ni ∈ Σ a test function
wi can be constructed s.t.

L∗wi = 0 (4.4)

wi = 0 on ∂Ω ∩ ∂Ωj for all j (4.5)

and

wi(nj) = δij (4.6)

so that a function φ(x) on Σ can be approximated as φ(x) �
N∑

j=1

φ(nj)wj(x) .

Techniques for such constructions using both linear and cubic polynomials on can be
found in [5]. It should be stressed that in the computations of the required integrals of the
form
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∫
Σ

wi[an · ∇u]ds =

∫
Σ

wiā
∂u

∂n
ds where ā = n · a · n (4.7)

that care must be taken to evaluate ∂u
∂n

with consistent precision.

5. Conclusions. The method presented above defines a procedure for parallelizing
the numeric solution for second order symmetric elliptic equations. As the solution matrix
obtained is symmetric and positive definite, direct application of the conjugate gradient
metod is utilized to insure adequate convergence; no preconditioning techniques are required.
Moveover, the method is applicable to problems with prescribed jumps (BVPJ) as well as
to the case of discontinuous coefficients with no additional complications to the numerical
procedure. Finally, it should be stressed that in the solution of the local problems, any
numerical procedure can be successfully employed.

Appendix A: The Conjugate Gradient Algorithm

To solve A · v = b where A is an N ×N symmetric, positive definite matrix.

v0 = 0

r0 = b

p0 = r0

k = 0

while
∥∥rk
∥∥
∞ ≥ ε

u = A · pk[Singlematrixmultiplication/iteration]

αk+1 = rk · rk/(pk · u)

vk+1 = vk + αk+1pk

rk+1 = rk − αk+1u

βk+1 = rk+1 · u/(pk · u)

pk+1 = rk+1 − βk+1pk

k = k + 1
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27. A Non-Overlapping Optimized Schwarz Method which
Converges with Arbitrarily Weak Dependence on h

M.J. Gander1, G.H. Golub2

1. Introduction. Optimized Schwarz methods have been introduced in [11] to correct
the uneven convergence properties of the classical Schwarz method. In the classical Schwarz
method high frequency components converge very fast, whereas low frequency components are
only converging very slowly and hence slow down the performance of the overall method. This
can be corrected by replacing the Dirichlet transmission conditions in the classical Schwarz
method by Robin or higher order transmission conditions which approximate the classical
absorbing boundary conditions used to truncate infinite domains for numerical computations
on bounded domains. The new methods are called optimized Schwarz methods because the
new transmission conditions are obtained by optimizing their coefficients for the performance
of the method.

Using transmission conditions different from the Dirichlet ones is however not new. P.-L.
Lions proposed in [14] to use Robin transmission conditions to obtain a converging non-
overlapping variant of the Schwarz method, a result not possible with Dirichlet transmission
conditions. But it was in the context of a particular problem, namely the Helmholtz equa-
tion, where the importance of radiation conditions was first realized in the PhD thesis of
Deprés [5]. Several publications for the Helmholtz equation followed; in the context of con-
trol [1], for an overlapping variant in [2], and a first approach to optimize the transmission
conditions without overlap in [4]. An interesting variant of a Schwarz method using perfectly
matched layers can be found in [17]. Fully optimized transmission conditions were published
in [9, 12] for the non-overlapping variant of the Schwarz method and a first approach for
the overlapping case can be found in [11]. Very soon it was realized that approximations to
absorbing boundary conditions were very effective for other types of equations as well. For
the convection-diffusion equation, the first paper proposing optimized transmission condi-
tions for a non-overlapping variant of the Schwarz method is [3]. Around the same time, a
discrete version of such a Schwarz method was developed at the algebraic level in [16, 15],
but it proved to be difficult to optimize the free parameters. Second order optimized trans-
mission conditions for convection-diffusion were explored in [13] for the non-overlapping case
and for symmetric positive definite problems in [7] with the first asymptotic results of the
performance of those methods. Such transmission conditions are also crucial in the case of
evolution problems, as shown in [10], and for systems of equations, for the Euler equations,
see [6]. A complete survey for symmetric positive definite problems with all the asymptotic
performances for overlapping and non-overlapping variants, is in preparation [8].

We show in this paper that the transmission conditions in the optimized Schwarz methods
can be chosen such that the convergence rate of the method has an arbitrarily weak asymp-
totic dependence on the mesh parameter h, even if no overlap is used. This result is obtained
by choosing a sequence of transmission conditions which is applied cyclicly in the optimized
Schwarz iteration. Closed form expressions for the transmission conditions are derived which
give an asymptotic convergence rate ρ = 1−O(h1/m) for m an arbitrary power of 2.

2. The Model Problem. We consider for this paper the self adjoint coercive model
problem

L(u) := (η −∆)u = f, in Ω = R
2 (2.1)

and we assume that the solution u(x, y) stays bounded at infinity. We can pose an equivalent
problem on R

2 decomposed into two overlapping subdomains Ω1 = (−∞, L) × R, Ω2 =

1McGill University, mgander@math.mcgill.ca, supported in part by NSERC grant 228061.
2Stanford University, golub@sccm.stanford.edu, supported in part by DOE DE-FC02-01ER41777.
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Figure 2.1: Decomposition for the model problem.

(0,∞) × R, L > 0, with boundaries ΓL at x = L and Γ0 at x = 0 as shown in Figure 2.1,
namely

(η −∆)v = f in Ω1, (η −∆)w = f in Ω2,
v = w on ΓL, w = v on Γ0.

(2.2)

Then the restriction of the solution u of the original problem to Ω1 coincides with the solution
v of the partitioned problem and the restriction of the solution u to Ω2 coincides with w of
the partitioned problem. If the overlap however becomes zero, L = 0, then the subdomain
problems do not necessarily coincide with the solution u of the original problem any more,
one has to introduce the additional condition that the derivatives need to match,

∂xw = ∂xv on Γ0 = ΓL.

To make the coupling more robust with respect to small overlap, we introduce the subdomain
coupling

(∂x + Sv)v = (∂x + Sv)w on ΓL, (∂x + Sw)w = (∂x + Sw)v on Γ0, (2.3)

where Sv and Sw are for the moment undetermined linear operators acting in the y direction.
Note that for example choosing Sv = −Sw = p for some constant p > 0 leads to subdomain
solutions v and w which coincide with the solution u of the original problem even if the overlap
is zero, L = 0, since then the conditions (∂x+p)v = (∂x+p)w and (∂x−p)w = (∂x−p)v on Γ0

imply both continuity of the subdomain solution and its derivative at x = 0. The subdomain
problems are then coupled by a Robin transmission condition, an idea introduced in [14].
The goal of optimized Schwarz methods is to determine good choices for the operators Sv

and Sw to obtain fast domain decomposition methods at a computational cost comparable
to the classical Schwarz method.

3. An Optimized Schwarz Method. We introduce a Schwarz relaxation to the
system coupled with the new conditions,

(η −∆)vn = f, in Ω1,
(η −∆)wn = f, in Ω2,

(∂x + Sv)vn = (∂x + Sv)wn−1 on ΓL,
(∂x + Sw)wn = (∂x + Sw)vn−1 on Γ0.

(3.1)

This iteration can be analyzed using Fourier analysis, see for example [11]. The convergence
rate of this algorithm is

ρ(k) =

√
η + k2 − σv(k)√
η + k2 + σv(k)

·
√

η + k2 + σw(k)√
η + k2 − σw(k)

e−2
√

η+k2L (3.2)
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where k is the Fourier variable in the y direction and σv and σw denote the symbols of
Sv and Sw. The optimal transmission operators Sv and Sw have thus the symbols σv =√

η + k2 and σw = −
√

η + k2 because then the convergence rate vanishes and hence the
algorithm converges in 2 steps, independent of the size of the overlap L. Unfortunately these
operators are non-local, they require the evaluation of a convolution and hence polynomial
approximations have been introduced for various types of partial differential equations, see
[3, 13, 4, 7, 10, 11, 9, 12]. The simplest approximation is to use a constant, which leads to
the Robin transmission conditions Sv = −Sw = p for some constant p > 0. The sign of p
is needed for well-posedness, but it also guarantees convergence of the algorithm, since then
the convergence rate becomes

ρ(k, p) =

(√
η + k2 − p√
η + k2 + p

e−
√

η+k2L

)2

which is less than one for all k < ∞, even if the overlap is zero, i.e. L = 0. To find the best
Robin parameter, one minimizes the convergence rate over all the frequencies relevant to a
given discretization, kmin < |k| < kmax, which leads to the min-max problem

min
p≥0

(
max

kmin<k<kmax
ρ(k, p)

)
.

The solution of this problem, with or without overlap, can be found in [8] and the convergence
rate depends mildly on the mesh parameter h; for L = 0 one finds ρ = 1 − O(

√
h) and for

L = O(h) the result is ρ = 1−O(h1/3). In the following section we will make the convergence
rate as weakly dependent on h as desired for the case L = 0.

4. Arbitrarily Weak Dependence on h. The idea is to use different parame-
ters pj for different steps of the iteration. Suppose we want to use m different values pj ,
j = 1, . . . , m in the Robin transmission condition. We then cycle through these different
parameters in the optimized Schwarz algorithm,

(η −∆)vn = f, in Ω1,
(η −∆)wn = f, in Ω2,

(∂x + pn mod m+1)vn = (∂x + pn mod m+1)wn−1 on ΓL,

(∂x − pn mod m+1)wn = (∂x − pn mod m+1)vn−1 on Γ0.

(4.1)

Performing again a Fourier analysis in y with the parameter k of this algorithm, we obtain
the convergence rate depending on p = (p1, p2, . . . , pm)

ρ(m,p, η, k) = e−2
√

η+k2L

(
m∏

j=1

(√
η + k2 − pj√
η + k2 + pj

)2) 1
m

.

To optimize the performance of this new algorithm, the parameters pj , j = 1, . . . , m in the
vector p have to be the solution of the min-max problem

min
p≥0

(
max

kmin<k<kmax
ρ(m,p, η, k)

)
.

This optimization problem has to be solved numerically in general, but for L = 0 and m = 2l

it has an elegant solution in closed form for the ADI method in [19].

Theorem 4.1 (Wachspress (1962)) If m = 2l then the optimal choice for the parameters
pj, j = 1, 2, . . . , m is given by

pj = α0,j , j = 1, 2, . . . , m (4.2)
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Figure 4.1: On the left dependence of |ρopt| on the frequency k when 1, 2, 4, 8 and
16 optimization parameters are used on a fixed range of frequencies, kmax = 100π,
and on the right dependence of 1 − ρmax on h as h goes to zero for 1, 2, 4, 8 and 16
optimization parameters.

where the α0,j are recursively defined using the forward recursion

x0 =
√

η + kmin , xi+1 =
√

xiyi

y0 =
√

η + kmax , yi+1 = xi+yi
2

i = 0, 1, . . . , l (4.3)

and the backward recursion

αl,1 =
√

xlyl,
αi,2j−1 = αi+1,j −

√
α2

i+1,j − xiyi

αi,2j = αi+1,j +
√

α2
i+1,j − xiyi

(4.4)

where i = l− 1, l − 2, . . . , 0 and j = 1, 2, . . . 2l−i−1 for each i. The convergence rate obtained
with these parameters is given by

max
kmin≤k≤kmax

|ρ(k, m)| =
(√

yl −
√

xl√
yl +

√
xl

) 1
m

. (4.5)

Proof. The proof uses the equioscillation property of the optimum similar to the case of the
Chebyshev polynomials and is due to Wachspress in [19]. An elegant version of the proof can
be found in Varga [18].
In Figure 4.1 we show how the optimal choice of an increasing number of parameters pj

affects the convergence rate of the optimized Schwarz method. From Figure 4.1 on the right
we see that the more optimization parameters we use, the weaker the dependence on h of the
convergence rate becomes. This indicates that we can define a sequence of non-overlapping
optimized Schwarz methods with an arbitrarily weak dependence of the convergence rate on
the mesh parameter h using m different constants in the Robin transmission conditions. To
prove this result, we first need the following

Lemma 4.1 For kmax = π/h the recursively defined xi and yi in equation (4.3) have for h
small the asymptotic expansion

xi = 2
2−i− 1

2i−1 (η + k2
min)

1
2i+1

(
π
h

)1− 1
2i + O(( 1

h
)
1− 5

2i )

yi = 1
2i

π
h

+ O(( 1
h
)
1− 1

2i−1 )
i = 0, 1, . . . (4.6)
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Proof. The proof is done by induction. For i = 0, we have

x0 =
√

η + k2
min, y0 =

√
η +

(π

h

)2

=
π

h
+ O(h).

Now we assume that (4.6) holds for i and compute for i + 1, using the recursive definition
(4.3) first for xi+1

xi+1 =
√

xiyi

=

√(
2
2−i− 1

2i−1 (η+k2
min)

1
2i+1

(
π
h

)1− 1
2i+O(( 1

h
)
1− 5

2i )
)(

1
2i

π
h

+O(( 1
h
)
1− 1

2i−1 )
)

=

√
2
2−2i− 1

2i−1 (η + k2
min)

1
2i+1

(
π
h

)2− 1
2i + O(( 1

h
)
2− 5

2i )

= 2
2−(i+1)− 1

2i (η + k2
min)

1
2i+2

(
π
h

)1− 1
2i+1

√
1 + O(h

1
2i−2 )

= 2
2−(i+1)− 1

2i (η + k2
min)

1
2i+2

(
π
h

)1− 1
2i+1 + O(( 1

h
)
1− 5

2i+1 )

and then for yi+1

yi+1 = xi+yi
2

=
2
2−i− 1

2i−1 (η+k2
min)

1
2i+1 ( π

h )
1− 1

2i +O(( 1
h

)
1− 5

2i )+ 1
2i

π
h

+O(( 1
h

)
1− 1

2i−1 )

2

= 1
2i+1

π
h

+ O(( 1
h
)
1− 1

2i )

which completes the induction.
The asymptotic convergence rates for small mesh parameter h are given in the following

Theorem 4.2 The non-overlapping optimized Schwarz method (4.1) with m = 2l optimally
chosen parameters pj, j = 1, 2, . . . , m in the Robin transmission conditions according to (4.2)
has for small mesh parameter h the asymptotic convergence rate

ρopt = 1− 2
21− 1

m (η + k2
min)

1
4m

mπ
1

2m

h
1

2m + O(h
1
m ). (4.7)

Proof. We first need the asymptotic expansions of the square roots of xl and yl given in
Lemma 4.1,

√
xl = 2

1− l
2− 1

2l (η + k2
min)

1
2l+2

(
π
h

) 1
2− 1

2l+1 + O(( 1
h
)

1
2− 9

2l+1 ),
√

yl =
(

1
2

) l
2
√

π
h

+ O(( 1
h
)

1
2− 1

2l−1 ).

Inserting these expansions into the expression for the optimized convergence rate (4.5) of
Theorem 4.1 we obtain

ρopt =
(√

yl−√
xl√

yl+
√

xl

) 1
m

=

(
1−2

1− 1
2l (η+k2

min)
1

2l+2 ( h
π )

1
2l+1 +O(h

1
2l−1 )

1+2
1− 1

2l (η+k2
min)

1
2l+2 ( h

π )
1

2l+1 +O(h
1

2l−1 )

) 1
m

=

(
1−2

2
1− 1

2l (η+k2
min)

1
2l+2

π
1

2l+1
h

1
2l+1 +O(h

1
2l )

) 1
m

=1−2
2
1− 1

2l (η+k2
min)

1
2l+2

mπ
1

2l+1
h

1
2l+1 +O(h

1
2l )

and the result follows by noting that m = 2l.
Hence increasing m we can achieve an as weak dependence of the convergence rate on the
mesh parameter h as we like. The numerical experiments in the next section show that this
result also holds for the discretized algorithm.



286 GANDER, GOLUB

5. Numerical Experiments. We perform all our computations on a bounded do-
main for the model problem

L(u) := (η −∆)u = f, in Ω = [0, 1]2

with homogeneous Dirichlet boundary conditions. We decompose the domain into two non-
overlapping subdomains Ω1 = [0, 1

2
] × [0, 1] and Ω2 = [ 1

2
, 1] × [0, 1] and apply the optimized

non-overlapping Schwarz method for various values of the parameter m. We simulate directly
the error equations, i.e. f = 0, and we show the results for η = 1. To solve the subdomain
problems, we use the standard five point finite difference discretization with uniform mesh
spacing h in both the x and y directions. We start the iteration with a random initial guess
so that it contains all the frequencies on the given mesh and we iterate until the relative
residual is smaller than 1e − 6. Table 5.1 shows the number of iterations required as one
refines the mesh parameter h. There are two important things to notice: first one can

Schwarz as a solver Schwarz as a preconditioner
h m = 1 m = 2 m = 4 m = 1 m = 2 m = 4

1/50 24 6 3 10 5 3
1/100 34 8 3 12 6 3
1/200 48 10 4 14 6 3
1/400 68 12 4 17 7 4
1/800 95 14 4 20 8 4

Table 5.1: Dependence on h and m of the number of iterations when the optimized
Schwarz method is used as a solver or as a preconditioner for a Krylov method.

see that the dependence of the number of iterations gets weaker as m becomes larger, as
predicted by the analysis. Second for small m, using Krylov acceleration leads to significant
improvement in the performance, whereas for bigger m, the improvement is almost negligible,
Schwarz by itself is already such a good solver that Krylov acceleration is not needed. This
is a property also observed for multi-grid methods applied to this problem. To see the
dependence of the convergence rate on h more clearly, we plotted in Figure 5.1 the number
of iterations together with the asymptotic rates expected from our analysis. One can see
that the asymptotic analysis predicts very well the numerically observed results. One even
gains almost the additional square-root from the Krylov method when Schwarz is used as a
preconditioner.

Finally we emphasize that the number of iterations given in Table 5.1 is the number of
times we cycled through all parameter values. In the current implementation therefore the
cost of one iteration with m = 4 is four times the cost of one iteration with m = 1. But
note that not each iteration of the Schwarz method needs the same resolution now, since it
only needs to be effective in the frequency range around the corresponding pj . The values
of pj for m = 4 with h = 1/400 are for example p1 = 4.78, p2 = 25.85, p3 = 160.26 and
p4 = 866.71. Hence the solve with p1 in the transmission condition can be done on a very
coarse grid, the one with p2 on quite a coarse grid, the one with p3 on an intermediate grid
and only the solve with p4 needs to be on a fine grid. In addition we do not need to solve
exactly; it is only required to reduce the error in the corresponding frequency range, using
a relaxation iteration, which leads to an algorithm with natural inner and outer iterations.
Doing this, the cost for arbitrary m will be only a constant times the cost for m = 1 and
hence the number of iterations we gave become the relevant ones to compare. Furthermore
in that case, the factor 1/m in the asymptotic convergence rate (4.7) disappears because
now the relevant quantities to compare are ρm

opt and hence one can obtain a convergence rate
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Figure 5.1: Asymptotic behavior of the optimized Schwarz method, on the left used
as an iterative solver and on the right as a preconditioner.

independent of h by choosing the number m like the logarithm of 1/h as h is refined. Such an
algorithm then has the key properties of multigrid, but is naturally parallel like the Schwarz
algorithm.
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28. An optimized Schwarz method in the Jacobi-Davidson
method for eigenvalue problems

M. Genseberger1, G. L. G. Sleijpen2, and H. A. van der Vorst3

1. Introduction. The Jacobi-Davidson method [3] is an iterative method suitable for
the computation of solutions to large scale (generalized) eigenvalue problems. Most of the
computational work of the Jacobi-Davidson method arises from performing (approximate)
solves for the so-called correction equation. In order to relieve this amount of work and/or
the local memory requirements we propose a strategy based on domain decomposition.

The domain decomposition method is based on previous work for ordinary systems of
(definite) linear equations (§3). It requires specific knowledge of the underlying PDE’s. For
eigenvalue problems the situation is more complex as the correction equation is (highly)
indefinite. In this paper we describe and analyze the situation for the correction equation
(§4). Results of the analysis are of practical interest for more general cases like PDE’s with
variable coefficients, many subdomains in two directions and complex geometries (§5). The
proposed domain decomposition approach enables a massively parallel treatment of large
scale eigenvalue problems ([1, §4]).

2. The Jacobi-Davidson method. The Jacobi-Davidson method [3] projects the
original eigenvalue problem on a suitable search subspace. From the projected eigenvalue
problem approximate solutions to the original problem are computed. The search subspace
is expanded iteratively with the most important direction in the residual not already present.
Compared to other methods the Jacobi-Davidson method offers many advantages and flexi-
bility such as the exploitation of a good preconditioner.

For a standard eigenvalue problem Ax = λx each iteration step Jacobi-Davidson

• extracts an approximate solution (θ,u) ≈ (λ,x) from a search subspace

construct H ≡ V∗AV,

solve H s = θ s, and compute u = V s

where the columns of V form an orthonormal basis for the search subspace

• corrects the approximate eigenvector u

compute a correction t from the correction equation:

t ⊥ u, PBPt = r

where P ≡ I− uu∗
u∗u

, B ≡ A− θ I, and r ≡ −Bu

• expands the search subspace with the correction t

Vnew =
[
V | t⊥]

where t⊥ = α (I−VV∗) t such that ‖t⊥‖2 = 1

3. An optimized Schwarz method. For the domain decomposition technique we
adapt a locally optimized additive Schwarz method based on work by Tan & Borsboom [5, 4]
for linear systems which in its turn is a generalization of work by Tang [6]. We show the
main ingredients and discuss some details for ordinary linear systems. The situation for the
correction equation is described and analysed in §4.

1Utrecht University & CWI - Amsterdam, The Netherlands, menno.genseberger@wldelft.nl
2Utrecht University, The Netherlands, sleijpen@math.uu.nl
3Utrecht University, The Netherlands, vorst@math.uu.nl
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We describe the domain decomposition technique for the two subdomain case. It can be
generalized to more than two subdomains in a straightforward manner.

Let Ω be a domain over which some partial differential Lϕ = f is defined, together
with appropriate boundary conditions on ∂ Ω. In order to compute numerical solutions, Ω is
covered by a grid. The PDE is discretized accordingly, with unknowns defined on the grid
points.
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Figure 3.1: Decomposition in one (left picture) and two dimensions (right picture).

We decompose Ω in two nonoverlapping subdomains Ω1 and Ω2. The subdomains are
covered by subgrids such that no splitting of the original discretized operator has to be made
(see Figure 3.1). For that purpose additional grid points (the open bullets “◦” in Figure 3.1)
are introduced on the opposite side of the subgrids next to the internal interface between the
subdomains. Since this introduces extra unknowns on the additional grid points, we must
also provide extra equations that describe these extra unknowns. Furthermore, for the exact
solution of the discretized PDE we want the function values on these additional points of
one subgrid to be equal to the function values on the grid points of the other subgrid on the
same location. Now, the enhancement consists of providing the original system with extra
unknowns at the additional grid points and extra equations with precisely this property.

To do so, suppose we have ordered the discretized PDE in a linear system

By = d, (3.1)

with unique solution and the following structure:
B11 B1� B1r 0
B�1 B�� B�r 0
0 Br� Brr Br2

0 B2� B2r B22




y1

y�

yr

y2

 =


d1

d�

dr

d2

 .

Here the labels 1, 2, �, and r, respectively, refer to operations from/to and (un)knowns on
subdomain Ω1, Ω2, and left, right from the interface, respectively. Subvector y� (yr respec-
tively) contains those unknowns on the left (right) from the interface that are coupled by the
stencil both with unknowns in Ω1 (Ω2) and unknowns on the right (left) from the interface.
This explains the zeros in the expression for matrix B.

We enhance the linear system (3.1) to

BC y∼ = d (3.2)
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which has the following structure:
B11 B1� B1r 0 0 0
B�1 B�� B�r 0 0 0
0 C�� C�r −C�� −C�r 0
0 −Cr� −Crr Cr� Crr 0
0 0 0 Br� Brr Br2

0 0 0 B2� B2r B22




y1

y�

ỹr

ỹ�

yr

y2

 =


d1

d�

0
0
dr

d2

 . (3.3)

Here ỹr (ỹ� respectively) contains the unknowns at the additional grid points (the open bullets
“◦” in Figure 3.1) of the subgrid for Ω1 (Ω2) on the right (left) of the interface. So, for the
exact solution of (3.2) we want that ỹ� = y� and ỹr = yr. The only requirement for the extra
equations in (3.3) that the submatrix

C ≡
[

C�� C�r

Cr� Crr

]
,

the interface coupling matrix, is nonsingular. For nonsingular C it can be proven ([5, Theorem
1]) that the solution of the enhanced system (3.2) is unique, ỹ� = y� and ỹr = yr as required,
and the restriction of this solution y∼ to y is the unique solution of the original system (3.1).

However, we want to perform solves on the subgrids only. For that purpose we split the
matrix of the enhanced system (3.2) as BC = M−N. Here M is the boxed part in (3.3) that
does not map elements from one subgrid to the other subgrid. Note that compared to M
the remainder N has a relatively small number of nonzero elements. (The rank of N equals
the dimension of C which corresponds to the amount of virtual overlap that we have created.
For a five point stencil in the two subdomain case the dimension of C is for instance 2ni,
where ni is the number of grid points along the interface.)

A simple iterative solution method for the splitting BC = M − N is the Richardson
iteration:

y∼
(i+1) = y∼

(i) + M−1
(
d−BC y∼

(i)
)

. (3.4)

Due to the splitting the iterates y∼
(i) of (3.3) are perturbed by errors. With M−1 BC =

I−M−1 N it can easily be verified that in each step these errors are amplified by the error
propagation matrix M−1 N. Now, the idea is to use the degrees of freedom that we have
created by the introduction of additional unknowns near the interface in order to damp the
error components. Before we can perform this tuning of the interface coupling matrix C,
we need to analyze the spectral properties of M−1 N for the specific underlying PDE. For
ordinary systems of linear equations originating from advection dominated problems this was
done in [5, 4]. In §4 we describe and analyze the situation for the correction equation.

Besides the tuning of the interface coupling matrix we can further speed up the process
for finding a solution of (3.3). The Richardson iteration uses only information from the last
iterate for the computation of a new one. The process can be accelerated by interpreting the
iterates as a Krylov subspace

Km

(
M−1 BC ,M−1 d

)
= span

(
M−1 d,M−1 BC M−1 d, . . . ,

(
M−1 BC

)m−1
M−1 d

)
and computing an approximate solution for (3.3) with respect to Km.

In fact, in this way the Krylov method computes a solution for the left preconditioned
equation

M−1 BC x∼ = M−1
(
d−BC y∼

(0)
)

, (3.5)

where y∼
(0) is some initial guess (y∼

(0) = 0 is convenient, but other good choices are possible

as well) and a solution for (3.2) is computed from (3.5) via y∼ = y∼
(0) + x∼.
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Note that right preconditioning is possible as well and has some nice additional properties.
As it is slightly more complicated, we don’t discuss it here but refer to [1, §3.2.4, §3.3.3].

4. The correction equation. In this section we describe and analyze the domain
decomposition technique for the correction equation.
First it is shown how the correction equation is enhanced and how the preconditioner is
incorporated. Then we pay attention to the spectrum of the error propagation matrix for
a model eigenvalue problem. With this knowledge in mind, a strategy is developed for the
tuning of the interface coupling matrix.

Similar to the enhancements (3.3) in 3, the following components of the correction equa-
tion have to be enhanced: the matrix B ≡ A−θ I to BC , the correction vector t to t∼, and the
vectors u and r to u and r, respectively. For the enhancement of the additional projection
P see [1, §3.3.2].

The preconditioner M for BC is constructed in the same way as in §3. In case of left
preconditioning with M we compute approximate solutions to the correction equation from

P′ M−1 BC P′ t∼ = P′ M−1 r with P′ ≡ I− M−1 uu∗

u∗ M−1 u
.

In [1, §3.4.3] the spectrum of the error propagation matrix is analyzed for the eigenvalue
problem of an advection-diffusion operator with no cross terms and constant coefficients on
two subdomains. We summarize the main results here.
The interface between the two subdomains Ω1 and Ω is again in the y-direction. To facili-
tate the analysis, the discretized operator is written as a tensor product of one-dimensional
discretized advection diffusion operators Lx and Ly: Lx ⊗ I + I ⊗ Ly. It turns out that
the eigenvectors of the error propagation matrix show two typical types of behavior for the
correction equation. This is illustrated in Figure 4.1.

y x y x

Figure 4.1: Typical eigenvectors of the error propagation matrix for the correction
equation.

Parallel to the interface, all eigenvectors are coupled by eigenvectors of the one-dimensional
operator Ly in the y-direction. Because of this, for the subblocks C��, C�r, Cr� and Crr of the
interface coupling matrix C we can take any linear combination of powers of Ly, for instance
C�� = Crr = I and C�r = Cr� = α I + β Ly. Here we are free to choose values for α and
β, i.e. we can use these parameters for the minimization of the spectral radius of the error
propagation matrix.
Perpendicular to the interface, however, there are differences. Most of the eigenvectors of
the error propagation matrix show exponential behavior in the x-direction, the error grows
exponentially fast when moving towards the interface (the left picture in Figure 4.1). A small
number (this number depends on the location of the shift θ in the spectrum of matrix A)
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show harmonic behavior in the x-direction (the right picture in Figure 4.1), which has the
disadvantage of being global.

For the eigenvectors of the error propagation matrix with exponential behavior in the x-
direction we can estimate effective values for the interface coupling matrix C without specific
knowledge of the subdomain size. In §5 we will see that this is of interest for more practical
situations. For this reason we minimize the spectral radius of the error propagation matrix
only with respect to these eigenvectors. With deflation the remaining eigenvectors, those
with harmonic behavior in the x-direction, are controlled. We illustrate deflation by means
of an example.

4.1. Deflation. Now we show, by example, how deflation improves the condition of
the preconditioned correction equation. We consider θ equal to the 20th eigenvalue of the
Laplace operator on a domain [0, 1] × [0, 1]. The domain is covered by a 31 × 31 grid and
decomposed in two equal subdomains.
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Figure 4.2: The effect of deflation.

In Figure 4.2 the nonzero eigenvalues of the error propagation matrix are shown for this
situation.

Twelve eigenvectors of the error propagation matrix behave harmonic perpendicular to
the interface. As we do not include them for the optimization, we do not necessarily damp
these eigenvectors with the constructed interface coupling matrix as indicated by the twelve
rightmost ‘+’-s (no deflation) in Figure 4.2.
Two of these eigenvectors are connected to the y-component of the eigenvector that corre-
sponds to the 20th eigenvalue of the original eigenvalue problem: these eigenvectors can not
be controlled at all with the interface coupling matrix because the operator A is shifted by
this 20th eigenvalue and therefore singular in the direction of the corresponding eigenvec-
tor. In the correction equation the operator stays well-conditioned due to the projection
P that deflates precisely this direction. Since the error propagator originates from the en-
hanced operator in the correction equation, this projection is actually incorporated in the
error propagator and the ‘�’-s at positions 57 and 58 in Figure 4.2 show the positive effect.
The other eigenvectors with harmonic behavior perpendicular to the interface can be con-
trolled with information from the search subspace of Jacobi-Davidson itself: in practice one
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starts the computation with the largest eigenvalues and when arrived at 20th one, the 19
largest eigenvalues with corresponding eigenvectors are already computed and will be deflated
from the operator B. Deflation with these 19 already computed eigenvectors drastically re-
duces the absolute values, as the ‘◦’-s at the horizontal positions 51, . . . , 56 and 59, . . . , 62
show in Figure 4.2.

From this example we learned that deflation may help to cluster the part of the spectrum
that we can not control with the coupling parameters, and therefore improves the conditioning
of the preconditioned correction equation. The remaining part of the spectrum, that is the
eigenvalues that are in control (indicated by the dotted lines in Figure 4.2), can be damped
even more with a stronger optimized coupling.

5. Applications. With the results from the analysis for the two subdomain case with
constant coefficients in §4 we can accurately estimate optimal interface coupling matrices C
for more than two subdomains, variable coefficients, and complicated geometries.

As an illustration we give two numerical examples, for specific details we refer to [1].
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Figure 5.1: Eigenvalues of the error propagation matrix of the correction equation for
an operator with a large jump.

5.1. Variable coefficients. In this example we illustrate the effectiveness of the
determination of interface coupling matrices C for eigenvalue problems with variable coeffi-
cients.

Consider the following operator with a large jump:

L ≡ ∂

∂x
[c(y)

∂

∂x
] +

∂

∂y
[c(y)

∂

∂y
] with c(y) =


1 for 0 ≤ y < 0.25

1000 for 0.25 ≤ y < 0.75
1 for 0.75 ≤ y ≤ 1

defined on [0, 2]×[0, 1]. We focus on the largest eigenvalue of this operator, the corresponding
eigenvector is the most smooth one among all eigenvectors. The domain is decomposed into
two equal subdomains with physical sizes [0, 1] × [0, 1] and [1, 2] × [0, 1], and covered by a
31× 31 grid.

Based on a local optimization strategy [1, §4.3], which uses results of the constant coef-
ficients case, we determined appropriate values for the interface coupling matrix. Figure 5.1
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shows the eigenvalues of the corresponding error propagation matrix. It shows the effective-
ness of C: smaller eigenvalues result in faster damping of the errors.

For the optimization three values of le are considered. This le marks the subdivision in
harmonic and exponential behavior perpendicular to the interface of the eigenvectors of the
error propagation matrix. For constant coefficients we were able to determine the precise,
fixed value of le. For variable coefficients the value of le varies.

If we concentrate on the eigenvalues at the horizontal positions 4, 5, . . . , 59 in Figure 5.1,
then we see that, compared to the local optimization with le (the ‘�’-s), these eigenvalues
are closer to zero for the local optimization with le +1 (the ‘∗’-s). So, for variable coefficients,
the outcome of this experiment indicates that the value of le should not be chosen too sharp.

From the figure it can be concluded that, except for a couple of outliers at the horizon-
tal positions 1, 2, 3, 60, 61, and 62 (which can be controlled by deflation and/or the Krylov
acceleration), the local optimization strategy yields an effective interface coupling matrix C.

5.2. More than two subdomains. For this example, we start with an eigenvalue
problem that is defined on two square subdomains of equal size. The subdomains are covered
by a 63 × 63 subgrid. The number of subdomains is increased by pasting a new subdomain
of the same size. So we model a channel that becomes larger each time. With Jacobi-
Davidson we compute an approximate solution of the eigenpair that corresponds to the
largest eigenvector of the two-dimensional Laplace operator. Each step of Jacobi-Davidson
we use 4 steps of the Krylov method GMRES [2] preconditioned with the preconditioner
based on domain decomposition. Given a number of subdomains (first row in Table 5.1) we
compare the total number of Jacobi-Davidson steps that are needed such that the �2-norm
of the residual r of the approximate eigenvalue is less than 10−9 for three kinds of coupling:
Neumann-Dirichlet coupling (“ad hoc” choice for C: Neumann boundary condition on the
left: C�� = I, C�r = −I and Dirichlet boundary condition on the right: Cr� = Crr = I),
simple optimized coupling (C�� = Crr = I and C�r = Cr� = α I), and stronger optimized
coupling (“finetuning” of C: C�� = Crr = I + γLy and C�r = Cr� = α I + β Ly). For
the simple and stronger optimized coupling we estimate optimal values for C by doing as if
the decomposition is in two subdomains only. With the results from the analysis in §3 we
determine optimal values for C for the two subdomain case. Because only the eigenvectors
of the error propagation matrix that damp exponentionally when moving away from the
interface are taken into account for the optimization, these values for C are also fairly good
when the number of subdomains is larger than two.

number of subdomains 2 3 4 5 6
Neumann-Dirichlet coupling 5 9 19 21 22
simple optimized coupling 6 8 9 10 12

stronger optimized coupling 5 6 8 9 10

Table 5.1: Overall Jacobi-Davidson process on more subdomains for three different
types of coupling.

From the table it can be concluded that a finer tuning of C pays off in the overall Jacobi-
Davidson process. Note that for ease of presentation we used the Laplace operator here,
experiments with more general advection-diffusion operators showed similar results.
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29. Optimization of Interface Operator Based on Algebraic
Approach

François-Xavier Roux1, Frédéric Magoulès2, Stéphanie Salmon, Laurent Series

1. Introduction. This paper is dedicated to recent developments of an optimized
two-Lagrange multiplier domain decomposition method [5], [8]). Most methods for optimiz-
ing the augmented interface operator are based on the discretization of approximations of
the continuous transparent operator [4], [1], [2], [7]. At the discrete level, the optimal oper-
ator can be proved to be equal to the Schur complement of the outer domain. This Schur
complement can be directly approximated using purely algebraic techniques like sparse ap-
proximate inverse methods or incomplete factorization. The main advantage of such algebraic
approach is that it is much more easy to implement in existing code without any information
on the geometry of the interface and the finite element formulation used. Convergence results
and parallel efficiency of several algebraic optimization techniques of interface operator for
acoustic analysis applications will be presented.

2. Algebraic Formulation of Domain Decomposition Methods.

2.1. General Presentation. Consider a splitting of the domain Ω as in Figure 2.1
and note by subscripts i and p the degrees of freedom located inside subdomain Ω(s), s = 1, 2,
and on the interface Γp. Then, the contribution of subdomain Ω(s), s = 1, 2 to the matrix
and the right-hand side of a finite element discretization of a linear PDE on Ω can be written
as follows:

K(s) =

[
K

(s)
ii K

(s)
ip

K
(s)
pi K

(s)
pp

]
, b(s) =

[
b
(s)
i

b
(s)
p

]
(2.1)

where K
(1)
pp and K

(2)
pp represent the interaction matrices between the nodes on the interface

obtained by integration on Ω(1) and on Ω(2). The global problem is a block system obtained
by assembling local contribution of each subdomain: K

(1)
ii 0 K

(1)
ip

0 K
(2)
ii K

(2)
ip

K
(1)
pi K

(2)
pi Kpp


 x

(1)
i

x
(2)
i

xp

 =

 b
(1)
i

b
(2)
i

bp

 . (2.2)

The block Kpp is the sum of the two blocks K
(1)
pp and K

(2)
pp . In the same way, bp = b

(1)
p + b

(2)
p

is obtained by local integration in each subdomain and sum on the interface.

1ONERA, francois-xavier.roux@onera.fr, stephanie.salmon@onera.fr, laurent.series@onera.fr
2Université Henri Poincaré, frederic.magoules@iecn.u-nancy.fr

(1)Ω
Ω (2)

Γp

Γp

Figure 2.1: Non-overlapping domain splitting
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Theorem 2.1 (existence and uniqueness) Given any splitting of Kpp = K
(1)
pp +K

(2)
pp and

bp = b
(1)
p + b

(2)
p , and any matrices A(1), A(2) there is only one pair of Lagrange multipliers

λ(1), λ(2) such as the following coupled problem:[
K

(1)
ii K

(1)
ip

K
(1)
pi K

(1)
pp + A(1)

] [
x

(1)
i

x
(1)
p

]
=

[
b
(1)
i

b
(1)
p + λ(1)

]
(2.3)[

K
(2)
ii K

(2)
ip

K
(2)
pi K

(2)
pp + A(2)

] [
x

(2)
i

x
(2)
p

]
=

[
b
(2)
i

b
(2)
p + λ(2)

]
(2.4)

x(1)
p − x(2)

p = 0 (2.5)

λ(1) + λ(2) −A(1)x(1)
p −A(2)x(2)

p = 0 (2.6)

is equivalent to the problem (2.2).

Proof. The admissibility condition (2.5) derives from the relation x
(1)
p = x

(2)
p = xp.

If x
(1)
p = x

(2)
p = xp, the first rows of local systems (2.3) and (2.4) are the same as the two

first rows of global system (2.2), and adding the last rows of local systems (2.3) and (2.4)
gives:

K
(1)
pi x

(1)
i + K

(2)
pi x

(2)
i + Kpp xp − bp = λ(1) + λ(2) −A(1)x(1)

p −A(2)x(2)
p (2.7)

So, the last equation of global system (2.2) is satisfied only if:

λ(1) + λ(2) −A(1)x(1)
p −A(2)x(2)

p = 0 (2.8)

Reversely, if x
(1)
p , x

(2)
p and xp are derived from global system (2.2), then local systems (2.3)

and (2.4) define λ(1) and λ(2) in a unique way.

2.2. Two-Lagrange Multiplier Domain Decomposition Method . If the

local inner matrix K
(s)
ii is non singular, a direct relation between x

(s)
p and λ(s) can be obtained

from (2.3) and (2.4):

x(s)
p = [S(s) + A(s)]

−1
(c(s)

p + λ(s)) (2.9)

where S(s) = K
(s)
pp −K

(s)
pi [K

(s)
ii ]

−1
K

(s)
ip is the Schur complement and c

(s)
p = b

(s)
p −K

(s)
pi [K

(s)
ii ]

−1
b
(s)
i

is the condensed right hand side in subdomain Ω(s).
After substitution of x

(1)
p and x

(2)
p in the interface continuity conditions (2.5) and (2.6) the

following linear system is obtained:[
[S(1) + A(1)]

−1 −[S(2) + A(2)]
−1

I −A(1)[S(1) + A(1)]
−1

I −A(2)[S(2) + A(2)]
−1

] [
λ(1)

λ(2)

]
=[

−[S(1) + A(1)]
−1

c
(1)
p + [S(2) + A(2)]

−1
c
(2)
p

A(1)[S(1) + A(1)]
−1

c
(1)
p + A(2)[S(2) + A(2)]

−1
c
(2)
p

]
(2.10)

The solution of this system by a Krylov method defines a non overlapping domain decompo-
sition method.
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2.3. Discrete Transmission Conditions as Local Preconditioner. Instead
of relations (2.5) and (2.6) on the interface, it may be more interesting to consider another
set of conditions:

C(1) (2.5) + (2.6) = 0 (2.11)

−C(2) (2.5) + (2.6) = 0 (2.12)

which are equivalent to the initial relations, as soon as the two matrices C(1) and C(2) are
such that C(1) + C(2) is invertible. Following the same steps than in section 2.2, the matrix
and the right hand side of the linear system takes now the block form:[

I − (A(1) − C(1))[S(1) + A(1)]
−1

I − (A(2) + C(1))[S(2) + A(2)]
−1

I − (A(1) + C(2))[S(1) + A(1)]
−1

I − (A(2) − C(2))[S(2) + A(2)]
−1

]
(2.13)[

(A(1) − C(1))[S(1) + A(1)]
−1

c
(1)
p + (A(2) + C(1))[S(2) + A(2)]

−1
c
(2)
p

(A(1) + C(2))[S(1) + A(1)]
−1

c
(1)
p + (A(2) − C(2))[S(2) + A(2)]

−1
c
(2)
p

]
(2.14)

This manipulation on the interface relations simply correspond to a left multiplication of the
linear system (2.10) by the following preconditioner:

[
C(1) I

−C(2) I

]
(2.15)

Different choices can be considered for the matrices C(1) and C(2), but a natural choice consist
in C(1) = A(1) and C(2) = A(2). Indeed, with this choice, the constraints on the interface
becomes:

λ(1) + λ(2) − (A(1) + A(2))x(1)
p = 0 (2.16)

λ(1) + λ(2) − (A(1) + A(2))x(2)
p = 0 (2.17)

and the diagonal block of the matrix of the linear system reduces to the identity block:[
I I − (A(1) + A(2))[S(2) + A(2)]

−1

I − (A(1) + A(2))[S(1) + A(1)]
−1

I

] [
λ(1)

λ(2)

]
=[

(A(1) + A(2))[S(2) + A(2)]
−1

c
(2)
p

(A(1) + A(2))[S(1) + A(1)]
−1

c
(1)
p

]
(2.18)

3. Optimal Discrete Transmission Conditions. In the context of the additive
Schwarz method with no overlap, it is shown in [9], [3] that the best choice for the continuous
augmented operators A(s), s = 1, 2 corresponds to the continuous transparent operators,
which are not partial differential operators. Different techniques of approximation based on
two dimensional Fourier analysis of Steklov-Poincaré operator in an half space have been
analyzed in the recent years [4], [1] [2], [7].

In the following, a new analysis is performed directly on the discrete problem and shows
that the optimal convergence of a two-Lagrange multiplier algorithm is obtained with a choice
of the augmented term A(s), s = 1, 2 equal to the complete outer Schur complement. The
extension to the case of a one-way splitting is analyzed.
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Ω(s-1) Ω (s) Ω
(s+1)

Γp-1 Γp

Figure 3.1: One-way decomposition without cross-points

3.1. Two-domain splitting. Eliminating of the inner unknowns of outer subdo-

main, x
(q)
i , q = 1, 2, q �= s in sysstem (2.2) leads to:[

K
(s)
ii K

(s)
ip

K
(s)
pi K

(s)
pp + S(q)

] [
x

(s)
i

xp

]
=

[
b
(s)
i

b
(s)
p + c

(q)
p

]
(3.1)

where S(q) and c
(q)
p denote the Schur complement and condensed right hand side like in section

2.2. Equation (3.1) suggests that the optimal augmented term to add to local admittance
matrix K(s) on interface is S(q), since then system (3.1) is similar to the augmented local
problem: [

K
(s)
ii K

(s)
ip

K
(s)
pi K

(s)
pp + A(s)

] [
x

(s)
i

x
(s)
p

]
=

[
b
(s)
i

b
(s)
p + λ(s)

]
(3.2)

Theorem 3.1 In a case of a two-domain splitting, the simple (Jacobi) iterative algorithm
for 2-Lagrange multiplier with augmented term equal to the complete outer Schur complement
defined as in equation (3.1) converges in one iteration at most.

Proof. Choosing augmented local terms A(s) = S(q), s = 1, 2, q = 1, 2, s �= q makes the
matrix of condensed interface system (2.18) equal to identity.

3.2. One-way Splitting. Consider a one-way splitting of the domain as in Figure
3.1 and note by subscripts i, p − 1 and p the degrees of freedom located inside subdomain
Ω(s), on left interface Γp−1 and right interface Γp. Then, the contribution of subdomain Ω(s)

to admittance matrix and right-hand side can be written:

K(s) =

 K
(s)
ii K

(s)
ip−1 K

(s)
ip

K
(s)
p−1i K

(s)
p−1p−1 0

K
(s)
pi 0 K

(s)
pp

 , b(s) =

 b
(s)
i

b
(s)
p−1

b
(s)
p

 (3.3)

The global system of equations can be reduced on the interfaces by elimination of inner
degrees of freedom. The contribution of subdomain Ω(s) to the condensed matrix and right-
hand side is as follows:[

S
(s)
p−1p−1 S

(s)
p−1p

S
(s)
pp−1 S

(s)
pp

]
=

=

[
K

(s)
p−1p−1 −K

(s)
p−1i[K

(s)
ii ]

−1
K

(s)
ip−1 −K

(s)
p−1i[K

(s)
ii ]

−1
K

(s)
ip

−K
(s)
pi [K

(s)
ii ]

−1
K

(s)
ip−1 K

(s)
pp −K

(s)
pi [K

(s)
ii ]

−1
K

(s)
ip

]
[

c
(s)
p−1

c
(s)
p

]
=

[
b
(s)
p−1 − K

(s)
p−1i [K

(s)
ii ]

−1
b
(s)
i

b
(s)
p − K

(s)
pi [K

(s)
ii ]

−1
b
(s)
i

] (3.4)
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The global condensed problem on interfaces is a block 3-diagonal system obtained by assem-
bling local contribution of each subdomain:

... ... 0 0

S
(s−1)
p−1p−2 S

(s−1)
p−1p−1 + S

(s)
p−1p−1 S

(s)
p−1p 0

0 S
(s)
pp−1 S

(s)
pp + S

(s+1)
pp S

(s+1)
pp+1

0 0 ... ...

 ,


...

c
(s−1)
p−1 + c

(s)
p−1

c
(s)
p + c

(s+1)
p

...

(3.5)

If the system (3.5) is factorized by successive condensation of matrix and right-hand side
starting from both ends up to block associated with subdomain Ω(s), the following final
condensed problem is obtained in one subdomain:[

S−
p−1p−1 + S

(s)
p−1p−1 S

(s)
p−1p

S
(s)
pp−1 S

(s)
pp + S+

pp

] [
xp−1

xp

]
=

[
c−p−1 + c

(s)
p−1

c
(s)
p + c+

p

]
(3.6)

The condensed right and left blocks and right-hand sides of system (3.6) that are noted with
plus and minus super-script are defined by the following recurrence relations:

S+
p−1p−1 = S

(s)
p−1p−1 − S

(s)
p−1p [S

(s)
pp + S+

pp]
−1

S
(s)
pp−1

S−
pp = S

(s)
pp − S

(s)
pp−1 [S−

p−1p−1 + S
(s)
p−1p−1]

−1
S

(s)
p−1p

c+
p−1 = c

(s)
p−1 − S

(s)
p−1p [S

(s)
pp + S+

pp]
−1

[c
(s)
p + c+

p ]

c−p = c
(s)
p − S

(s)
pp−1 [S−

p−1p−1 + S
(s)
p−1p−1]

−1
[c−p−1 + c

(s)
p−1]

(3.7)

Equation (3.6) suggests that the optimal augmented term to add to local admittance matrix
K(s) on left or right interface is respectively S−

p−1p−1 and S+
pp, since then, if Ω(s) is the only

subdomain with non zero right-hand side, c−p−1 = 0 and c+
p = 0, and system (3.6) is exactly

the condensation of the augmented local problem: K
(s)
ii K

(s)
ip−1 K

(s)
ip

K
(s)
p−1i K

(s)
p−1p−1 + S−

p−1p−1 0

K
(s)
pi 0 K

(s)
pp + S+

pp


 x

(s)
i

x
(s)
p−1

x
(s)
p

=


 b

(s)
i

b
(s)
p−1

b
(s)
p

 (3.8)

Theorem 3.2 In a case of a one-way splitting, the simple (Jacobi) iteration algorithm for
2-Lagrange multiplier with augmented term equal to complete outer Schur complement defined
as in equation (3.8) converges in (number of subdomain - 1) iterations at most.

Proof. If Ω(s) is the only subdomain with non zero right-hand side, equations (3.6) and (3.8)
mean that the first iteration with null initial Lagrange multipliers gives exact solution in Ωs

and zero in the other subdomains.
Since λ and x are zero everywhere except on Γp−1 and Γp, the initial gradient is non zero on
adjacent interfaces only:

g
(s−1)
p−1 = λ

(s−1)
p−1 + λ

(s)
p−1 − (S−

p−1p−1 + S+
p−1p−1)x

(s)
p−1 = −(S−

p−1p−1 + S+
p−1p−1)x

(s)
p−1

g
(s+1)
p = λ

(s+1)
p + λ

(s)
p − ( S−

pp + S+
pp ) x

(s)
p = −( S−

pp + S+
pp ) x

(s)
p

(3.9)

By condensation of equation (3.6) it comes that initial solution on interface Γp−1 satisfies:

(S−
p−1p−1 + S

(s)
p−1p−1 − Sp−1p[S

(s)
pp + S+

pp]−1Spp−1)x
(s)
p−1 = (3.10)

c
(s)
p−1 − Sp−1p[S

(s)
pp + S+

pp]−1c(s)
p (3.11)
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Under the assumption that right-hand-side is non zero in Ωs only, c
(s)
p = c+

p . So, from
definition of condensed matrices and right-hand sides (3.7) it derives from equation (3.11)
that:

( S−
p−1p−1 + S+

p−1p−1 ) x
(s)
p−1 = c+

p−1 (3.12)

and so:

g
(s−1)
p−1 = − ( S−

p−1p−1 + S+
p−1p−1 ) x

(s)
p−1 = −c+

p−1 (3.13)

A similar result is obtained for g
(s+1)
p .

The Jacobi algorithm on the condensed interface problem consists in updating λ by λ−g. So,
at the second iteration, both subdomains s− 1 and s + 1 will have their complete condensed
right-hand side, as well as subdomain s for which λ

(s)
p−1 and λ

(s)
p will remain unchanged and

equal to zero. After the second iteration, the solution in the three subdomain will be the
exact restriction of the solution of the global problem.
It is easy to see now that, at iteration 2, the situation on interface Γp−2 between subdomains
Ωs−2 and Ωs−1 is exactly the same as, at iteration 1, on interface Γp−1 between subdomains
Ωs−1 and Ωs. So, exact condensed right-hand side will be passed to subdomain Ωs−2 when
updating λ at iteration 2.
On the other hand, if λ is such that in two neighboring subdomains Ωs−1 and Ωs with
interface Γp−1, the local condensed right-hand sides are complete, then x

(s)
p−1 = x

(s)
p−1 = xp−1.

Condensation on interface Γp−1 of equation (3.6) gives:

(S−
p−1p−1 + S+

p−1p−1)xp−1 = c−p−1 + c+
p−1 (3.14)

So, if λ
(s−1)
p−1 + λ

(s)
p−1 = c−p−1 + c+

p−1 then:

g
(s−1)
p−1 = g

(s)
p−1 = λ

(s−1)
p−1 + λ

(s)
p−1 − (S−

p−1p−1 + S+
p−1p−1)xp−1 = 0 (3.15)

This is exactly the situation between Ωs−1 and Ωs as well as between Ωs and Ωs+1 at iter-
ation 2. This means that the gradient will be zero on all the interfaces of these subdomains
at iteration 2.
In the same way, it can be proved by recurrence that each Jacobi iteration will propagate
the complete condensed right-hand side one subdomain further on the left and on the right
while leaving the values of λ unmodified in all subdomains where the condensed right-hand
side is already complete.
So, Jacobi method will converge in at most (number of subdomain - 1) iterations if the initial
right-hand side is non zero in only one subdomain. As any general right-hand side can be
decomposed in the sum of right-hand sides that are non zero in one subdomain only, and
since the Jacobi procedure is additive, the same result holds for any case.

4. Approximation of Optimal Discrete Transmission Conditions. Unfor-
tunately, the optimal choice derive in the previous section can not be done in practice since
the computational cost of the complete Schur complement matrix is too expensive. A first
natural step to reduce the cost consists in approximating the complete Schur complement
with the Schur complement of the neighboring subdomains. Nevertheless, even with this ap-
proximation, the matrix A(s) is still dense and adding it to the local matrix K(s) increases its
bandwidth a lot. So, rather than to consider the exact Schur complement, we can consider its
approximation with a sparse matrix. One method of choice to approximate this dense matrix
is based on the Sparse Approximate Inverse (SPAI) method. It consists in approximating
the inverse of a N ×N matrix A by a sparse matrix M which minimizes the Frobenius norm
of AM − I [10].
The ultimate step consists in approximating the Schur complement matrix by its first term
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Figure 5.1: Decomposition of the air-cooling tube into four subdomains

Exact Schur Approximation of Absorbing
Complement Schur Complement Interface Conditions

Complete Neighbor Sparse Lumped Taylor Optimized
Number of Schur Schur Approx. Approx.
Subdomains Complement Complement

2 1 1 12 10 92 86
4 3 4 27 30 155 137
6 5 8 41 46 212 174
8 7 12 56 77 311 247

Table 5.1: Number of iterations for different regularization matrix and different num-
ber of subdomains for the air-cooling tube problem

K
(s)
pp like in the lumped preconditioner for the FETI method [6]. Such an approximation is

extremely easy to implement and since K
(s)
pp and K

(q)
pp have the same sparse structure, the

sparse structure of the local subdomain matrix is not modified.

5. Numerical Experiments. A three dimensional simulation of the noise level
distribution in an air-conditionned tube is performed. Figure 5.1 shows the decomposition of
the initial mesh into four subdomains. It is important to notice that the interface between the
subdomains is irregular. The problem is characterized by a reduced frequency ωa = 75.60
which corresponds, with the relation ω = 2πF/c with c the sound celerity in the fluid, a
the length of the tube, to a frequency F of 2500 Hz. The length a is equal to 1.6365 and
the diameter to 0.045. When using zeroth order Taylor conditions and a decomposition
into 16 subdomains, the method needs 100 iterations to converge, whereas when using the
”lumped” approximation of the Schur complement the method converges in 10 iterations.
The SPAI approximation gives slightly faster convergence than the lumped for larger number
of subdomains. The stopping criterion on the relative global error is set to 10−9. More results
are reported Table (5.1).

6. Conclusions. A general algebraic presentation of two-Lagrange multiplier domain
decomposition method has been introduced. Optimal transmission conditions have been
derived from this algebraic analysis. Since the optimal augmented operator in a subdomain
is the Schur complement of the outer domain, it is not possible to compute it in practice.
Promising results have been obtained using simple approximation techniques for this Schur
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complement. The key issue to improve the method presented in this paper lies in the design
of good sparse approximation method.
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30. On multigrid methods for vector–valued Allen–Cahn
equations with obstacle potential

R. Kornhuber1, R. Krause 2

1. Introduction. Phase field models provide a well–established framework for the
mathematical description to free boundary problems for phase transitions. In contrast to
sharp interface models, the phase field approach postulates a diffuse interface with a small
but finite thickness. Approximations of the interface are recovered as level sets of a function u,
called order parameter or phase field. The main advantage of this approach is that topological
changes of the approximate interface cause no problems, because bulk phases and interface
are treated in the same manner. In this paper, we consider multicomponent phase transitions
as described by a vector–valued Allen–Cahn equation with obstacle potential [2, 3]. Semi–
implicit discretization in time is unconditionally stable but, after finite element discretization
in space, leads to large non–smooth algebraic systems. So far, fast solvers for such kind of
problems were not available. As a consequence, explicit schemes are applied, in spite of severe
stability restrictions on the time step [4]. We present a new class of multigrid methods based
on successive minimization in the direction of well selected search directions and prove global
convergence. Similar multigrid techniques have been applied in [6, 8] in a different context.
Numerical experiments illustrate the reliability and efficiency of our method.

2. Vector–valued Allen–Cahn equations and discretization. We consider
isothermal, multicomponent phase transitions in a polygonal (polyhedral) domain Ω ⊂ R

d,
d = 1, 2, 3. Each phase at a particular point (x, t) ∈ Q = Ω × [0, T0], T0 > 0, is represented
by the value of a component ui(x, t) of the order parameter u = (u1, . . . , uN )T . In practical
applications the components ui may represent concentrations or volume fractions of the
different phases in the system. Hence, we impose the condition that values of ui are non–
negative and add up to unity [3], i.e.

u(x, t) ∈ G = {v ∈ R
N | vi ≥ 0,

∑
i vi = 1} ∀(x, t) ∈ Q.

We further assume that the Ginsburg–Landau total free energy of our system is given by

E(u) =

∫
Ω

1
2
ε2∑

i |∇ui|2 + Ψ(u) dx, ε > 0.

The quadratic term describes interfacial energy and the non–convex free energy functional
Ψ has N distinct local minima on G giving rise to phase separation. Phase kinetics should
satisfy the second law of thermodynamics stating that total free energy is non–increasing
along solution paths. The vector–valued Allen–Cahn equation

ut = − d

du
E(u) = ε2∆u− T∇uΨ(u) (2.1)

is the most simple model with this property. Denoting 1 = (1, 1, . . . , 1) ∈ R
N , the projection

T : R
N → Σ0 = {v ∈ R

N |
∑

i vi = 0}, defined by

Tv = v − 1
N

(v · 1)1,

accounts for the fact that the values u(x, t) ∈ G ⊂ Σ = {v ∈ R
N |

∑
i vi = 1} must only vary

on the affine hyperplane Σ. See [3] for details.

1FU Berlin, kornhuber@math.fu-berlin.de
2FU Berlin, krause@math.fu-berlin.de
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From now on, we concentrate on the obstacle potential Ψ = Ψ∞,

Ψ∞(u) =


∑

i<j uiuj , u ∈ G,

+∞, else.

Minimal values of Ψ∞ on G are attained at the N unit vectors e1, . . . , eN ∈ R
N which are

associated with pure phases. Imposing Neumann boundary conditions, a weak formulation
of (2.1) takes the form

d

dt
(u, v) + ε2(∇u,∇(v − u))− (u, v − u) ≥ − 1

N
(1, v − u) ∀v ∈ G, (2.2)

where the time derivative is understood in an appropriate weak sense and

u(·, t) ∈ G := {v ∈ H1(Ω)N | v(x) ∈ G a.e. in Ω}, 0 < t ≤ T0.

In addition, we prescribe initial conditions u(·, 0) = u0 ∈ G.
Let TJ be a given partition of Ω into triangles (tetrahedra) with minimal diameter hJ =

O(2−J). The set of vertices is denoted by NJ and we set

SJ = {v ∈ C(Ω) | vi|t is linear ∀t ∈ TJ}.

Now we discretize (2.2) in time by backward Euler with step size τ > 0. The concave part
−(u, ·) of Ψ∞ is taken explicitly (cf. e.g. [1]). Discretization in space by piecewise linear finite
elements then leads to the discrete variational inequality

uJ,k ∈ GJ : 〈uJ,k, v − uJ,k〉+ τε2(∇uJ,k,∇(v − uJ,k)) ≥

〈(1 + τ)uJ,k−1 − τ
N

1, v − uJ,k〉 ∀v ∈ GJ

(2.3)

to be solved in the k–th time step. Here, 〈·, ·〉 stands for the lumped L2–product and the
continuous constraints G are approximated by

GJ = {v ∈ SN
J | v(p) ∈ G ∀p ∈ NJ}. (2.4)

As GJ is a non–empty, closed, convex subset of SN
J and the bilinear form appearing on the

left hand side of (2.3) is symmetric, positive definite on SN
J there is a unique solution uJ,k

for arbitrary step size τ > 0, see [5].

3. Polygonal relaxation. We now derive a Gauß–Seidel type relaxation scheme for
discrete variational inequalities of the form

uJ ∈ GJ : a(uJ , v − uJ) ≥ �(uJ , v − uJ) ∀v ∈ GJ (3.1)

with a symmetric, positive definite bilinear form a(·, ·) on SN
J , � ∈ (SN

J )′ and GJ defined in
(2.4). Of course, (2.3) is a special case of (3.1).

Note that GJ is a subset of an affine subspace of SN
J spanned by the hyperplane HJ =

{v ∈ SN
J |

∑
j vj(p) = 0}. Hence, each splitting of HJ gives rise to a successive subspace

correction method for (3.1). We consider the splitting

HJ =

mJ∑
l=1

Vl, Vl = span{µl}, µl(i,j) = λ(J)
pi

Ej , l = 1, . . . , mJ , (3.2)

where λ
(J)
pi , i = 1, . . . , nJ , denotes the nodal basis of SJ , the vectors Ej ∈ R

N , i = 1, . . . , M :=
1
2
N(N − 1) are given by the edges of G, l = l(i, j) is some enumeration and mJ := nJM .
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The resulting successive subspace correction method reads as follows. Starting with
the given ν–th iterate uν

J =: wν
0 ∈ GJ , we compute a sequence of intermediate iterates

wν
l = wν

l−1 = v∗
l , l = 1, . . . , mJ . The corrections v∗

l are the unique solutions of the local
subproblems

v∗
l ∈ D∗

l a(v∗
l , v − v∗

l ) ≥ �(v − v∗
l )− a(wν

l−1, v − v∗
l ) ∀v ∈ D∗

l , (3.3)

where the closed convex subsets D∗
l = D∗

l (wν
l−1) are defined by

D∗
l (wν

l−1) = {v ∈ Vl | wν
l−1 + v ∈ GJ}.

Finally, we obtain the next iterate uν+1
J ,

uν+1
J = M(uν

J) := wν
mJ

= uν
J +

mJ∑
l=1

v∗
l . (3.4)

It is well–known from, e.g., [5] that (3.1) is equivalent to the constrained minimization
problem

uJ ∈ GJ : J (uJ) ≤ J (v) ∀v ∈ GJ (3.5)

for the quadratic energy functional

J (v) = 1
2
a(v, v)− �(v), v ∈ SN

J .

Successive subspace correction (3.4) can be regarded as a successive minimization of J in
the direction of µl, l = 1, . . . , mJ . In particular, we have

J (uν+1
J ) ≤ J (wν

l ) ≤ J (uν
J), ∀l = 1, . . . , mJ , ν = 0, 1, . . . . (3.6)

The following lemma is crucial for the convergence of (3.4).

Lemma 3.1 For any given U, W ∈ G there is a decomposition

W = U +

M∑
j=1

ωjEj , (3.7)

which is feasible in the sense that

U + ωjEj ∈ G ∀j = 1, . . . , M.

Proof. We only sketch the basic idea of the proof which is easy for N = 2, 3, 4, but becomes
technical for arbitrary N . Let U, W ∈ G be given. Recall that e1, . . . , eN ∈ R

N denote the
unit vectors in R

N . By definition of G, there are coefficients α1, . . . , αN with the properties

w =
N∑

i=1

αiei, αi ≥ 0, α1 + · · ·+ αN = 1. (3.8)

Now it can be shown that the unit vectors ei can be decomposed in such a way that insertion
in (3.8) provides the desired feasible decomposition (3.7).

We are ready to prove convergence.

Theorem 3.1 For any initial iterate u0
J ∈ GJ , the polygonal relaxation (3.4) converges to

the solution uJ of (3.1).
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Proof. We only sketch the proof based on similar arguments as the proof of Theorem 2.1
in [7]. Utilizing (3.6), we have J (uν

J) ≤ J (u0
J) < ∞ for all ν ≥ 0. As a consequence, the

sequence of iterates (uν
J)ν∈N is bounded. As SN

J has finite dimension, any subsequence of
(uν

J)ν∈N has a subsubsequence (uνk
J )k∈N that converges to some u∗

J ∈ GJ . We now show that
u∗

J = uJ . Observe that (3.6) leads to

J (u
νk+1
J ) ≤ J (M(uνk

J )) ≤ J (uνk
J ) ∀k = 1, . . . ,

where M is defined in (3.4). As J , M are continuous on GJ , we can pass to the limit in
order to obtain

J (M(u∗
J)) = J (u∗

J).

Hence, starting with w0 = u∗
J , all corrections v∗

l computed from (3.3) are zero, giving

0 ≥ �(v)− a(u∗
J , v) ∀v ∈ D∗

l (u∗
J), l = 1, . . . , mJ . (3.9)

Now, let w ∈ GJ be arbitrary chosen. As an immediate consequence of Lemma 3.1, there is
a decomposition w = u∗

J +
∑mJ

l=1 vl such that vl ∈ Vl and u∗
J + vl ∈ GJ , i.e. vl ∈ D∗

l (u∗
J).

Inserting v = vl in (3.9) and summing up for l = 1, . . . , mJ , we obtain

a(u∗
J , w − uJ) ≥ �(w − uJ).

Hence, u∗
J is a solution of (3.1). As uJ is the unique solution of (3.1), we get u∗

J = uJ . We
have shown that any subsequence has a subsubsequence converging to uJ . Hence, the whole
sequence (uν

J)ν∈N must converge to uJ .

Implementation of (3.4) is based on the representation

D∗
l(i,j) = {v ∈ Vl | v = zλ(J)

pi
Ej , ψ

i,j
≤ z ≤ ψi,j}

with local obstacles ψ
i,j
≤ 0 ≤ ψi,j depending on the actual intermediate iterate wν

l . In

contrast to box constraints, each correction vl(i,j) requires an update of all local obstacles

ψ
i,s

, ψi,s s = 1, . . . , M . As a consequence, each iteration step of the polygonal relaxation

requires O(M2nJ) = O(N4nJ) point operations.

4. Extended polygonal relaxation. The convergence speed of Gauß–Seidel type
relaxation (3.4) deteriorates rapidly with decreasing mesh size hJ . In order to accelerate
convergence, we consider the extended splitting

HJ =

mJ∑
l=1

Vl +

Mν
J∑

l=mJ+1

V ν
l , V ν

l = span{µν
l }, µν

l ∈ HJ , (4.1)

with Vl, l = 1, . . . , mJ , defined in (3.2). The additional search directions µν
l are intended

to improve the representation of the low–frequency contributions of the error and therefore
should have large support. The µν

l might be iteratively adjusted to the unknown solution uJ

and, for this reason, are allowed to vary in each iteration step.

We consider the resulting extended polygonal relaxation defined as follows. Starting from
a given iterate uν

J ∈ GJ , we first compute a smoothed iterate ūν
J = wν

mJ
= M(uν

J) by fine
grid smoothing (3.4). Successive “coarse grid corrections” vl are then obtained from

vl ∈ Dl : a(vl, v − vl) ≥ �(v − vl)− a(wν
l−1, v − vl) ∀v ∈ Dl, (4.2)
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denoting wν
l = wν

l−1 + vl, l = mJ + 1, . . . , Mν
J . Due to large support of µν

l , it might be
too costly to check whether some v ∈ V ν

l is contained in D∗
l or not. Hence, we may use

approximate closed convex subsets Dl, satisfying

0 ∈ Dl ⊂ D∗
l = {v ∈ V ν

l | wν
l−1 + v ∈ GJ}.

The next iterate is given by

uν+1
J = wν

Mν
J

= ūν
J +

Mν
J∑

l=mJ+1

vl. (4.3)

The convergence proof is almost literally the same as for Theorem 2.1 in [6].

Theorem 4.1 For any initial iterate u0
J ∈ GJ , the extended polygonal relaxation (4.3) con-

verges to the solution uJ of (3.1).

The subset of all nodes with vanishing i–th phase is denoted by

N •
J,i(uJ) = {p ∈ NJ | uJ,i(p) = 0}, i = 1, . . . , N.

It would be interesting to know whether

N •
J,i(u

ν
J) = N •

J,i(uJ), ν ≥ ν0, (4.4)

holds for some ν0 ∈ N. In fact, assuming reasonable search directions µν
l , a non–degeneracy

condition of the form

a(uJ , λ(J)
p Ej) < (−1)rj �(λ(J)

p Ej) ∀j with (ei · Ej) �= 0 ∀p ∈ N •
J,i(uJ)

with suitable rj depending on the orientation of Ej and finally that uJ(p) �= ej holds for all
j �= i and p ∈ N •

J,i(uJ), convergence of phases (4.4) can be shown in a similar way as Lemma
2.2 in [6]. Unfortunately, this result is of minor relevance for discretized vector–valued Allen–
Cahn equation (2.3), because uJ(p) = ej stands for pure phase j. Recall that pure phases
are local minima of Ψ∞.

5. Monotone multigrid. Assume that TJ is resulting from J refinements of an
intentionally coarse triangulation T0. In this way, we obtain a sequence of triangulations
T0 ⊂ · · · ⊂ TJ and corresponding nested finite element spaces S0 ⊂ · · · ⊂ SJ . Though the
algorithms to be presented can be easily generalized to the non–uniform case, we assume for
simplicity that the triangulations are uniformly refined. More precisely, each triangle t ∈ Tk

is subdivided into four congruent subtriangles in order to produce the next triangulation
Tk+1.

Using the nodal basis functions λ
(k)
p , p ∈ Nk on all levels k = J, . . . , 0, we define the

search directions µν
l appearing in the splittings (3.2) and (4.1) by

µl(i,j,k) = λ(k)
pi

Ej , l = 1, . . . , MJ := M(nJ + · · ·+ n0).

The enumeration l(i, j, k) is taken from fine to coarse, i.e. l(i, j, k) > l′(i′, j′, k′) implies k ≤ k′.
Approximate constraints in (4.2) have the form

Dl = {v = zλ(k)
pi

Ej ∈ Vl(i,j,k) | ψl
≤ z ≤ ψl}, l = MnJ + 1, . . . , MJ .

Local obstacles ψ
l
, ψl can be constructed by quasioptimal monotone restriction [6]. As a

consequence of Theorem 4.1, the resulting standard monotone multigrid method converges
for all initial iterates u0

J ∈ GJ . It can be implemented as a multigrid V –cycle. Smoothing
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Figure 6.1: Initial condition u0 and approximate solution at t = 4

is performed by polygonal relaxation (3.4) on each level. Restriction of stiffness matrix and
residual and prolongation of corrections are canonical, if representation in terms of search
directions λ

(k)
p Ej is used. The numerical complexity of each iteration step is O(N4nJ), i.e.

of the same order as fine–grid smoothing. Asymptotic multigrid convergence rates could be
derived in the framework of linear successive subspace correction (cf. [6, 9]), provided that
convergence of phases (4.4) holds for all i = 1, . . . , N .

In related algorithms, convergence speed of standard monotone multigrid could be im-
proved by so–called truncation of coarse grid nodal basis functions [6, 7, 8]. In the present
case, truncation leads to the coarse grid search directions

µ̃ν
l(i,j,k) = T ν

J,k,jλ
(k)
pi

Ej , l = MnJ + 1, . . . , MJ .

For each direction Ej , the truncation operators T ν
J,k,j : SJ → Sk are defined according to

[6]. Truncation is implemented by modification of quasioptimal restriction and canonical
restriction and prolongation: All entries from N •

J,i(ū
ν
J) are set to zero. In this way, we ob-

tain a truncated monotone multigrid method. Again, convergence follows from Theorem 4.1
and asymptotic multigrid convergence rates could be derived, if all phases i = 1, . . . , N con-
verge according to (4.4). Mesh independent global bounds for convergence rates of monotone
multigrid methods, e.g. from [6], are still an open problem.

6. Numerical experiments. We consider grain growth as described by the vector–
valued Allen–Cahn equation (2.2) on the unit square Ω = (0, 1) × (0, 1) with N = 3 and
ε = 0.002. For example, each of the N = 3 different phases may reflect a different crystalline
structure. The initial condition u0 ∈ G is a randomly chosen superposition of 500 circular
grains, each of which corresponds to a pure phase. The randomly chosen radii are ranging
from 0.01 to 0.04. See the left picture in Figure 6.1 for illustration.

The continuous problem is approximated by the discretization (2.3) with step size τ = 1
and triangulation TJ resulting from J = 8 uniform refinements. The initial triangulation T0

is obtained by subdivision of Ω into two congruent triangles and a subsequent refinement
step. The right picture in Figure 6.1 and Figure 6.2 show the approximate discrete solution
at t = 4, t = 100 and T0 = 600, respectively. Observe that reduction of total free energy
goes with a reduction of the (diffuse) interfaces by smoothing and coarsening. Interfaces at
triple junctions tend to meet at an angle of 120◦. This supports formal asymptotic analysis
in [2]. In order to illustrate the convergence behavior of our iterative schemes, we consider
the spatial problem to be solved in the first time step. The left picture in Figure 6.3 shows
the iteration history of polygonal relaxation (cf. Section 3) as compared to the standard
monotone multigrid method with V –cycle and three pre–smoothing and post–smoothing
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Figure 6.2: Approximate solutions at t = 100 and T0 = 600
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Figure 6.3: Iteration history and averaged convergence rates

steps, respectively (cf. Section 5). The algebraic error ‖uJ − uν
J‖ is measured by the energy

norm ‖ · ‖ = a(·, ·)1/2. The initial iterate u0
J = e3 ∈ GJ has little to do with uJ . Nevertheless,

we observe very fast convergence of our multigrid method throughout the iteration process.
The averaged convergence rate is ρSTD

J := ν0
√
‖uJ − uν0

J ‖/‖uJ − u0
J‖ ≈ 0.005 where ν0 is

chosen such that ‖uJ − uν0
J ‖ < 10−12. Taking into account that each iteration step is

much cheaper, polygonal relaxation performs reasonably well with averaged convergence
rate ρGS

J = 0.56. This seems to be a consequence of the redundancy of search directions
in combination with a moderate number of grid points in the diffuse interface. The right
picture in Figure 6.3 illustrates the mesh dependence of averaged convergence rates ρGS

j , ρSTD
j ,

j = 0, . . . , 8. Iteration always starts with the “arbitrary” initial iterate u0
j = e3 ∈ Gj . As

expected, we observe only minor sensitivity of multigrid as compared to single grid. On the
other hand, it seems that the mesh size hJ = 2−9 ≈ 1

2
ε is still too large to provide saturation.

7. Conclusion an perspective. We have introduced and analyzed new Gauß–
Seidel type relaxation and monotone multigrid methods for systems of variational inequalities
with local triangular constraints. Such problems arise in mathematical description of certain
free boundary problems by phase field models. Future work will concentrate on more realistic
Ginzburg–Landau functionals, involving anisotropic interfacial energy and logarithmic free
energy [4]. Of course, adaptive mesh refinement will be indispensable for a better resolution
of the diffuse interface. In this case, truncated multigrid might also be profitable.
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31. Successive Subspace Correction method for Singular
System of Equations

Young-Ju Lee1, Jinchao Xu2, Ludmil Zikatanov3 4

1. Introduction. The method of successive subspace corrections, an abstraction of
general iterative methods such as multigrid and Multiplicative Schwarz methods, is an algo-
rithm for finding the solution of a linear system of equations. In this paper, we shall study
in particular, Multiplicative Schwarz methods in a Hilbert space framework and present a
sharp result on the convergence of the methods for singular system of equations.

For the symmetric positive definite (SPD) problems, a variety of literatures on the con-
vergence analysis are available. Among others, we would like to refer to the upcoming paper
by Xu and Zikatanov (Refer to [3]). In [3], the convergence rate of the method of subspace
corrections has been beautifully established by introducing a new identity for the product of
nonexpansive operators.

The main result in this paper is in that we obtained an appropriate identity for the non-
SPD problems, which is suitably applied to devise or improve algorithms for singular and
especially nearly singular system of equations. The related results and the corresponding
estimate of the convergence rate of multigrid methods for singular system of equations shall
be reported in the forthcoming paper.

The rest of this paper is organized as follows. In section 2, we set up a problem and review
a successive subspace correction method in a Hilbert space setting. In section 3, we estabilsh
the convergence factor of the algorithm and present an identity for the convergence rate of
the method of successive subspace correction for singular system of equations. In section
4, we adapt our identity for Multiplicative Schwarz method and present various identities
for the special algorithm such as Gauss-Seidel and Block Gauss-Seidel method. In the final
section 5, we give some concluding remarks and future works.

2. MSC: The Method of Subspace Corrections. Let V be a Hilbert space
with an inner product (·, ·)V = (·, ·) and an induced norm ‖ · ‖V = ‖ · ‖. Let V ∗ denote the
dual space of V . We consider the following variational problem: Find u ∈ V for any given
f ∈ V ∗ such that

a(u, v) = 〈f, v〉 ∀v ∈ V (2.1)

where 〈·, ·〉 is a dual paring and a(·, ·) is a symmetric and nonnegative definite bilinear form
satisfying a(u, v) ≤ ‖a‖‖u‖‖v‖ where ‖a‖ > 0 is a constant. We shall define N and N ◦

by N = {v ∈ V : a(v, w) = 0 ∀w ∈ V } and N ◦ = {f ∈ V ∗ : 〈f, v〉 = 0 ∀v ∈ N}
respectively. The latter is often called the polar set of N . By usual convention, for any
set W ⊂ V , W⊥ shall denote the orthogonal complement of W with respect to the inner
product, (·, ·)V . Throughout this paper, we shall assume that f ∈ N ◦ and the continuous
bilinear form a(·, ·) : V ×V �→ R satisfies the following coercivity conditions on N⊥, namely:
There exists a constant α > 0 such that a(v, v) ≥ α‖v‖2. This assumption implies that the
problem (2.1) is well-posed on N⊥. We would like to remark that the problem (2.1) is not
well-posed on V in a sense that it has infinitely many solutions, namely if u is a solution
to (2.1), then u + c will be again a solution to the problem for any c ∈ N .

Now we shall discuss the method of successive subspace correction for solving 2.1. The
idea of the method of successive subspace correction is to solve the residual equation on some

1The Pennsylvania State University, lee y@math.psu.edu
2The Pennsylvania State University, xu@math.psu.edu
3The Pennsylvania State University, ltz@math.psu.edu
4This work is supported by National Scientific Foundation Grant No. DMS-0074299
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properly chosen subspaces. A decomposition of V consists of a number of closed subspaces
Vi ⊂ V, (1 ≤ i ≤ J) satisfying V =

∑J
i=1 Vi.

Associated with each subspaces Vi, we introduce a continuous bilinear form ai(·, ·) which
can be viewed as an approximation of a(·, ·) restricted on Vi. We shall assume that the
following inf-sup conditions are satisfied for all i = 1, 2, ..., J ,

inf
vi∈Vi

sup
w∈Vi

ai(vi, wi)

‖vi‖‖wi‖
= inf

wi∈Vi

sup
v∈Vi

ai(vi, wi)

‖vi‖‖wi‖
= αi > 0 (2.2)

and for all i = 1, 2, ..., J , there exists βi > 0 such that

a(vi, vi) ≥ βi‖vi‖2 ∀vi ∈ Vi. (2.3)

These inf-sup conditions are often known as Babuska-Brezzi conditions or B-B conditions.
(See e.g. [4]) This is equivalent to say that the approximate subspace problems and subspace
problems are uniquely solvable. While we can not in general impose the inf-sup condition for
a(·, ·) on Vi due to the fact that Vi may contain a non trivial subspace of N . In this paper,
we shall assume that a(·, ·) satisfies the B-B conditions since we are mainly concerned with
Multiplicative Schwarzs methods.

2.1. SSC: Successive Subspace Corrections.. The method of successive sub-
space corrections (MSSC) is an iterative algorithm that corrects residual equation successively
on each subspace.

Algorithm[MSSC] Let u0 ∈ V be given.

for l = 1, 2, ...

ul−1
0 = ul−1

for i = 1 : J

Let ei ∈ Vi solve

ai(ei, vi) = f(vi)− a(ul−1
i−1, vi) ∀vi ∈ Vi

ul−1
i = ul−1

i−1 + ei

endfor

ul = ul−1
J

endfor

We note that the above algorithm is well-defined, thanks to the inf-sup conditions for (2.2).
For the analysis of this algorithm, let us introduce another class of linear operators Ti : V �→
Vi defined by ai(Tiv, vi) = a(v, vi) ∀vi ∈ Vi. Again, thanks to inf-sup condition (2.2), each
Ti is well-defined and R(Ti) = Vi. In the special case when the subspace equation is solved
exactly, we shall use the notation Pi for Ti, namely Ti = Pi if ai(·, ·) = a(·, ·).

It is easy to see that for given u ∈ V a solution to (2.1),

u− ul−1
i = (I − Ti)(u− ul−1

i−1).

By a simple recursive application of the above identity, we obtain that

u− ul = EJ(u− ul−1) = ... = El
J(u− u0) (2.4)

where

EJ = (I − TJ)(I − TJ−1) · · · (I − T1). (2.5)

which is often called an error transfer operator. Because of this special form of EJ , the suc-
cessive subspace correction method is also known as the Multiplicative or Product (Schwarz)
method. The general notion of subspace corrections by means of space decomposition was
described in Xu[2].
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3. An identity for the convergence factor of MSSC. In view of (2.4), the
convergence of the method of subspace correction is equivalent to liml→∞ El

J = 0. As was
discussed before in this paper, for the case when a(·, ·) : V × V �→ R is a symmetric
positive definite bilinear form, the uniform convergence result under some natural condi-
tions on the subspace solvers Ti was established as an identity for the convergence factor
‖EJ‖a = sup‖v‖a=1 ‖EJv‖a, namely the norm of the product of nonexpansive operators.
(Refer to [3].) In our case when a(·, ·) is nonnegative definite, two types of convergences can
be considered, namely the classical convergence (or norm convergence in the space V ):

‖ul − u‖V → 0 as l →∞

and quotient norm or energy norm convergence (Refer to [1]):

‖ul − u‖V/N → 0 as l →∞,

where V/N is the quotient space. We shall present that the following quantity is both the
norm and the quotient norm convergence factor for the MSSC under some suitable conditions.

Definition[Convergence Factor]

‖EJ‖L(N⊥,V )a
= sup

v∈N⊥

|EJv|a
‖v‖a

In the sequel of this paper, we shall establish an identity for the convergence factor ‖EJ‖L(N⊥,V )a

under certain assumptions.

3.1. Assumptions on subspace solvers. We shall now try to derive conditions
on the subspaces and subspace solvers for the convergence of the MSSC.

First of all, we shall assume that

Assumption[A0] A decomposition of V consists of closed subspaces Vi ⊂ V, i =
1, 2, ..., J satisfying

V =
J∑

i=1

Vi.

This assumption is necessary for any quantitative convergence even for SPD problems.
(See [3] page 15.)

Assumption[A1] There exists αi > 0 such that

a(vi, vi) ≥ αi‖vi‖2 ∀vi ∈ Vi

inf
vi∈Vi

sup
w∈Vi

ai(vi, wi)

‖vi‖‖wi‖
= inf

wi∈Vi

sup
v∈Vi

ai(vi, wi)

‖vi‖‖wi‖
= βi > 0

This assumption implies that the subspace problems are well-posed and that Ti : Vi �→ Vi

is isomorphic for each i = 1, 2, 3, ..., J .

Assumption[A2] For each 1 ≤ i ≤ J , there exists ω ∈ (0, 2) such that

a(Tiv, Tiv) ≤ ωa(Tiv, v) ∀v ∈ V.

Let us discuss the assumption (A1) briefly for the finite dimensional case. For the notational
simplicity and invoking Riesz Representation theorem (See e.g. [5] (e.g. a(·, ·) ⇔ A and
ai(·, ·) ⇔ Ri), let us put the discretization of the system of equation (2.1) as following
operator equation: Find u ∈ R

n such that

Au = b
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R(A) and N (A) denote the range of A and kernel of A respectively. The iterative method is
based on the classical matrix splitting as follows:

A = D − L− LT

where D is the diagonal and L is the strictly lower triangular matrix. In this situation, one
can easily show that the sufficient condition that (A1) holds true is that A has a positive
diagonal and the symmetric part of the approximate subspace operators, say Ri to A is
positive definite.

Remark 3.1 For the case multigrid method with nested subspaces, with the assumption that
a(·, ·) satisfies the inf-sup condtion on R(Ti), an appropriate identity can be deriven.

3.2. On the Convergence factor of the MSSC. In this subsection, we shall
see that the convergence factor of the MSSC is given by ‖EJ‖L(N⊥,V )a

as mentioned before.
Let us begin with simple but important lemma.

Lemma 3.1 Let EJ = (I − TJ) · · · (I − T1). Then

a(EJv, EJv) ≤ ‖EJ‖L(N⊥,V )a
a(v, v) ∀v ∈ V

The following lemma and the theorem shall reveal that ‖EJ‖L(N⊥,V )a
is indeed both the

norm and quotient norm convergence rate of the MSSC.

Theorem 3.1 Assume (A1) and (A2). Then for any initial guess u0 ∈ V , the followings
hold true:

‖u− uk‖ ≤ C‖EJ‖k−1
L(RA,V )a

‖u− uk−1‖
and

‖u− uk‖V/N ≤ C‖EJ‖k
L(RA,V )a

‖u− uk−1‖V/N ,

where u is a solution to (2.1).

3.3. An identity for the convergence factor for the MSSC. We are in
a position to present the identity for the convergence factor for the MSSC. The theorem
presented below is based on the aforementioned assumptions (A0), (A1) and (A2). Let us
first introduce an operator QA : V �→ N⊥ defined by ∀v ∈ V and ∀w ∈ N⊥, (QAv, w) = (v, w)
and define Qi,A by the restriction of QA on R(Ti) = Vi. We also denote a space QAW for
any set W ⊂ V by QAW = {QAw ∈ V : w ∈ W}. We shall also introduce linear operators
Ti,A : V �→ V defined by Ti,A = Qi,ATi.

Lemma 3.2 Let us define EJ,A by EJ,A = (I − TJ,A) · · · (I − T1,A). Then,

‖EJ‖L(N⊥,V )a
= ‖EJ,A‖a = sup

v∈N⊥

‖EJ,Av‖a

‖v‖a

Proof. The proof is completed by the simple observation that

|EJv|2a = ‖QAEJv‖2a = ‖EJ,Av‖2a.

We would like to remark that we use the notation ‖ · ‖a rather than | · |a. This is because
EJ,A is invariant operator on N⊥ and a(·, ·) is SPD on N⊥. We shall use this rule in the
sequel of this paper if no confusion arises.

In view of the lemma (3.2), the convergence factor for the MSSC is transformed into
the norm of a product of nonexpansive operators on N⊥. Now, by this observation, the
acquisition of an identity for the convergence factor of the MSSC is in showing the three
assumptions on Ti,A’s (Refers to [3]) under which we can apply the known theory in Xu and
Zikatanov [3] and obtain the desired result.
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Lemma 3.3 Assume (A0), (A1) and (A2). Then the followings hold true.

• Each R(Ti,A) = QAR(Ti) is closed and Qi,A : R(Ti) �→ R(Ti,A) is an isomorphism.

• Each Ti,A : R(Ti,A) �→ R(Ti,A) is an isomorphism.

• The following holds true: for each 1 ≤ i ≤ J , there exists ω ∈ (0, 2) such that

a(Ti,Av, Ti,A) ≤ ωa(Ti,Av, v) ∀v ∈ V.

• N⊥ =
∑J

i=1R(Ti,A).

Theorem 3.2 Under the assumptions (A0), (A1) and (A2), we obtain the following identity:

‖EJ‖L(N⊥,V )a
= ‖EJ,A‖a =

c0

1 + c0

where

c0 = sup
v∈N⊥

inf∑J
i=1 Ti,Avi=v

∑J
i=1(T̄

−1
i,AT ∗

i,Aui, T
∗
i,Aui)a

(v, v)a

, ui =
∑J

j=i Tj,Avj − vi and ṽT = (v1, ..., vJ) ∈ R(T1,A)× · · · × R(TJ,A).

Proof. From the lemma (3.3) and by applying the main result theorem 4.2 (page 10) in [3],
the proof is completed.
We would like to point out that c0 is a bit different from that given in [3]. One can obtain
this by the following simple change of variable: Ti,Avi ↔ vi.

4. Multiplicative Schwarz Method. We shall devote this section to write the
expression c0 in terms of the real subspace solvers Ti instead of Ti,A. We shall first discuss
an adjoint operator of Ti.

4.1. On the adjoint operator T ∗
i . It is easy to see that it is not possible to define

a unique adjoint of Ti with respect to a(·, ·) in a classical sense due to the fact that a(·, ·) is
semi definite. While this is the fact, we shall see that we need to define the adjoint of Ti in
some sense so that we can write c0 in terms of the real subspace solvers Ti. In doing so, let us
introduce another class of operators as follows: For each 1 ≤ i ≤ J , we define Ri : Vi �→ Vi and
Qi : V �→ Vi by (Rivi, wi) = ai(vi, wi) and (Qiv, wi) = (v, wi) ∀v ∈ V, wi ∈ Vi respectively.
We would like to remark that by inf-sup condition (2.3), Ri is an isomorphism. We can then
introduce the adjoint T ∗

i and symmetrization T̄i of Ti as follows:

T ∗
i = RT

i QiA and T̄i = Ti + T ∗
i − T ∗

i Ti.

where RT
i is the adjoint of Ri with respect to (·, ·)V . We here point out that T ∗

i satisfies

a(Tiv, w) = a(v, T ∗
i w) ∀v, w ∈ V.

Correspondingly, we also define T ∗
i,A and T̄i,A by

T ∗
i,A = Q∗

i,AT ∗
i and T̄i,A = Ti,A + T ∗

i,A − T ∗
i,ATi,A.

where Q∗
i,A is the restriction of QA on R(T ∗

i ). Note that Qi,A = Q∗
i.A if R(Ti) = R(T ∗

i ).

Lemma 4.1 Assume that (A1), (A2). Then the followings hold true:

• R(Ti) = R(T ∗
i ) = R(T̄i) = Vi

• Ti, T
∗
i and T̄i are all isomorphic from Vi to itself.
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• T̄i is nonnegative on V and symmetric positive definite on Vi.

Here we provide the main theorem in the paper.

Theorem 4.1 Assume that (A0), (A1) and (A2). Then the convergence rate of subspace
correction method above is given by the following identity.

‖EJ‖L(N⊥,V )a
=

c0

1 + c0

where

c0 = sup
v∈N⊥

inf∑
i vi=v∈N⊥

inf∑
i ci=c∈N

∑J
i=1(TiT̄

−1
i T ∗

i wi, wi)a

‖v‖a

wi =
∑J

j=i(vj + cj)− T−1
i (vi + ci). and vi, ci ∈ Vi.

Proof. By theorem (3.2) and simple change of variable, it is easy to see that we can write an
identity for the convergence rate as follows:

‖EJ‖L(N⊥,V )a
=

c0

c0 + 1

where

c0 = sup
v∈N⊥

inf∑J
i=1 Tiwi=v+c

∑J
i=1(T̄

−1
i,AT ∗

i,Aui, T
∗
i,Aui)a

(v, v)a

with ui = (
∑J

j=i Tjwj−wi). Let us denote Ṽ by V1×·· ·×VJ and ṽ by (v1, ·, ·, ·, vJ) ∈ Ṽ . We

note that since T̃ : Ṽ �→ V is onto, c may vary arbitrarily in N . Let us decompose w̃ ∈ Ṽ as
followings: w̃ = ṽ + c̃ with ṽ, c̃ ∈ Ṽ and T̃ ṽ = v and T̃ c̃ = c. Thanks to this decomposition,
we see that

c0 = sup
v∈N⊥

inf
T̃ ṽ+T̃ c̃

=

∑J
i=1(T̄

−1
i,AT ∗

i,Aui, T
∗
i,Aui)a

(v, v)a

with ui =
∑J

j=i T ∗
j (vj + cj)− (vi + ci).

Now let us set

c1 = inf
T̃ (ṽ+c̃)

∑J
i=1(T̄

−1
i,AT ∗

i,Aui, T
∗
i,Aui)a

(v, v)a

c2 = inf
T̃ ṽ=v

inf
T̃ c̃=c

∑J
i=1(T̄

−1
i,AT ∗

i,Aui, T
∗
i,Aui)a

(v, v)a

and we shall show that c1 = c2. It is clear that c1 ≥ c2, since if

w̃ = arg( inf
T̃ w̃=v+c

∑J
i=1(T̄

−1
i,AT ∗

i,Aui, T
∗
i,Aui)a

(v, v)a
) ∈ Ṽ

with ui =
∑

j=i Tjwj −wi. We can choose any decomposition of w̃ = ṽ + c̃ such that T̃ ṽ = v

and T̃ c̃ = c with ṽ, c̃ ∈ Ṽ . Let us show the reverse inequality. Now for any given ṽ ∈ Ṽ , let

c̃(ṽ) = arg{ inf
T̃ c̃=c

∑J
i=1(T̄

−1
i,AT ∗

i,Aui, T
∗
i,Aui)a

(v, v)a
)}

with ui =
∑J

i=1 Tj(vj + cj)− (vi + ci) and now again set

ṽ = arg( inf
T̃ ṽ=v

∑J
i=1(T̄

−1
i,AT ∗

i,Aui, T
∗
i,Aui)a

(v, v)a
)}
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with ui =
∑J

i=1 Tj(vj + cj(ṽ))− (vi + ci(ṽ)). Then it is easy to see that

ṽ + c̃ = arg{ inf
T̃ ṽ=v

( inf
T̃ c̃=c

∑J
i=1(T̄

−1
i,AT ∗

i,Aui, T
∗
i,Aui)a

(v, v)a
)}

with ui = (
∑J

j=i Tj(vj + cj)− (vi + ci)) and T̃ (ṽ + c̃) = v + c, which implies that c1 ≤ c2.
Hence it has been shown that

c0 = sup
v∈N⊥

inf
T̃ ṽ=v∈N⊥

inf
T̃ c̃=c∈N

∑J
i=1(T̄

−1
i,AT ∗

i,A(vi + ci), (vi + ci))a

(v, v)a

Finally, we insert an explicit expression for T̄−1
i,A as follows and obtain:

a(T̄−1
i Q−1

i,AQi,AT ∗
i v, w) = a(T̄−1

i T ∗
i v, w) ∀v ∈ N⊥ and ∀wi ∈ Vi

This completes the proof.
Let us consider some special cases : in the case we use exact solvers Ti ⇔ Pi, c0 in the
theorem (4.1) is given by

c0 = sup
v∈N⊥

inf∑
i vi=v∈N⊥

inf∑
i ci=c∈N

∑J
i=1 |Pi(

∑J
j=i+1(vj + cj)|2a
‖v‖a

(4.1)

where vi, ci ∈ Vi. and in particular, for Gauss-Seidel method, c0 is given by

c0 = sup
v∈N⊥

inf
c∈N

(S(v − c), v − c)

(v, v)a
(4.2)

where A = D − L− LT and S = LT D−1L.

5. Conclusion and extensions. We would like to remark that we can also consider
the sharp result on the convergence rate of Multigrid methods with a nested subspace decom-
position by modifying the assumption (A1) slightly, in which case, the subspace problems are
not well-posed. The theory presented in this paper can be applied to devise algorithms for
Singular system of equations and especially Nearly singular system of equations. We shall
report such related and further results in the forthcoming paper.
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32. Some new domain decomposition and multigrid methods
for variational inequalities

Xue–Cheng Tai1

1. Introduction. Domain decomposition (DD) and multigrid (MG) methods are
powerful iterative methods for solving some partial differential equations. Some recent
progress has shown that DD and MG methods are also efficient for some nonlinear ellip-
tic problems and some convex minimization problems [15, 14, 18, 17]. Mesh independent
convergence rate has been proved and it is shown that the convergence rate for some non-
linear problems is as good as the convergence rate of the methods when they are used for
the Laplace equation. In many industrial applications, we need to solve nonlinear partial
differential equations and at the same time the solutions of the equations need to satisfy
some constraints. For such problems, the solutions always satisfy some variational inequal-
ities. To apply DD and MG methods for variational inequalities is a difficult task, see
[1, 3, 4, 5, 7, 8, 2, 9, 12] for some literature results. It is even more difficult to analyse the
convergence rate. In this work, we shall propose some new algorithms using DD and MG
methods for variational inequalities and at the same it is shown that the proposed algorithms
have a convergence rate that is as good as DD and MG are used for some linear elliptic
equations. Another feature of our approach is that we interpret DD and MG methods as
space decomposition techniques [19, 18] and our algorithms are proposed for general space
decomposition techniques. Thus, the algorithms and the analysis cover both DD and MG
in the same frame work. The algorithms proposed here are different from the algorithms of
[16, 6, 7].

Algorithms and convergence rate analysis for DD method with a coarse mesh seem still
missing in the literature. When no coarse mesh is used, DD method is essentially a block
relaxation method and some results are available in the literature, see [13] for some reference.
For MG method, the only uniform convergence rate estimate we know is [6, 7] which is valid
in the asymptotic sense and need very special conditions.

2. Some subspace correction algorithms. Consider the nonlinear convex min-
imization problem

min
v∈K

F (v), K ⊂ V , (2.1)

where F is a convex functional over a reflexive Banach space V and K ⊂ V is a nonempty
closed convex subset. The norm of V will be denoted by ‖ · ‖. In order to solve the minimiza-
tion problem efficiently, we shall decompose V and K into a sum of subspaces and subsets of
smaller sizes respectively as in [10] [17]. More precisely, we decompose

V =

m∑
i=1

Vi, K =

m∑
i=1

Ki, Ki ⊂ Vi ⊂ V , (2.2)

where Vi are subspaces and Ki are convex subsets. We use two constants C1 and C2 to
measure the quality of the decompositions. First, we assume that there exits a constant
C1 > 0 and some operators Ri : K �→ Ki, i = 1, 2, · · ·m, which are generally nonlinear
operators, such that the following relations are correct for all u, v ∈ K

u =

m∑
i=1

Riu , v =

m∑
i=1

Riv, and

(
m∑

i=1

‖Riu−Riv‖2
) 1

2

≤ C1‖u− v‖. (2.3)

1Department of Mathematics, University of Bergen, Johannes Brunsgate 12, 5008, Bergen, Nor-
way, email: tai@math.uib.no, http://www.mi.ubi.no/̃ tai. This work is supported by the research
council of Norway and also by grants NSF ACI-0072112, NSF INT-0072863 and ONR-No0014-96-1-
10277 at UCLA.
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We also need to assume that there is a C2 > 0 such that for any wi ∈ V, v̂i ∈ Vi, ṽj ∈ Vj it
is true that

m∑
i=1

m∑
j=1

∣∣〈F ′(wij + v̂i)− F ′(wij), ṽj〉
∣∣ ≤ C2

( m∑
i=1

‖v̂i‖2
) 1

2
( m∑

j=1

‖ṽj‖2
) 1

2

. (2.4)

In the above, F ′ is the Gâteaux differential of F and 〈·, ·〉 is the duality pairing between V
and its dual space V ′, i.e. the value of a linear function at an element of V . We also assume
that there exists a constant κ > 0 such that

〈F ′(v1)− F ′(v2), v1 − v2〉 ≥ κ‖v1 − v2‖2, ∀w, v ∈ V . (2.5)

Under the assumption (2.5), problem (2.1) has a unique solution. For some nonlinear prob-
lems, the constant κ may depend on v1 and v2 and our algorithms and anaylsis are still valid
for such cases [18]. For a given approximate solution u ∈ K, we shall find a better solution
w using one of the following two algorithms.

Algorithm 1 Choose a relaxation parameter α ∈ (0, 1/m]. Find ŵi ∈ Ki in parallel for
i = 1, 2, · · · , m such that

ŵi = arg min
vi∈Ki

G(vi) with G(vi) = F

( m∑
j=1,j �=i

Rju + vi

)
. (2.6)

Set wi = (1− α)Riu + αŵi and w = (1− α)u + α
∑m

i=1 ŵi .

Algorithm 2 Choose a relaxation parameter α ∈ (0, 1]. Find ŵi ∈ Ki sequentially for
i = 1, 2, · · · , m such that

ŵi = arg min
vi∈Ki

G(vi) with G(vi) = F

(∑
j<i

wj + vi +
∑
j>i

Rju

)
(2.7)

where wj = (1− α)Rju + αŵj , j = 1, 2, · · · i− 1. Set w = (1− α)u + α
∑m

i=1 ŵi .

Denote u∗ the unique solution of (2.1), the following convergence estimate is correct for
Algorithms 1 and 2 (see Tai [13]):

Theorem 2.1 Assuming that the space decomposition satisfies (2.3), (2.4) and that the func-
tional F satisfies (2.5). Then for Algorithms 1 and 2, we have

F (w)− F (u∗)
F (u)− F (u∗)

≤ 1− α

(
√

1 + C∗ +
√

C∗)2
, C∗ =

(
C2 +

[C1C2]
2

2κ

)
2

κ
. (2.8)

Algorithms 1 and 2 are written for general space decompositions. In implementation for
a specific space decomposition technique, auxiliary functions may be introduced to make the
implementation simpler and easier. For example, by defining ei = ŵi − Riu, Algorithms 1
and 2 can be written in the following equivalent form:

Algorithm 3 Choose a relaxation parameter α ∈ (0, 1/m]. Find ei ∈ Vi in parallel for
i = 1, 2, · · · , m such that

ei = arg min
vi+Riu∈Ki

vi∈Vi

G(vi) with G(vi) = F

(
u + vi

)
. (2.9)

Set w = u + α
∑m

i=1 ei .
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Algorithm 4 Choose a relaxation parameter α ∈ (0, 1]. Find ei ∈ Vi sequentially for i =
1, 2, · · · , m such that

ei = arg min
vi+Riu∈Ki

vi∈Vi

G(vi) with G(vi) = F

(
u +

∑
j<i

ej + vi

)
(2.10)

Set w = u + α
∑m

i=1 ei .

3. Some Applications. We apply the algorithms for the following obstacle problem:

Find u ∈ K, such that a(u, v − u) ≥ f(v − u), ∀v ∈ K, (3.1)

with

a(v, w) =

∫
Ω

∇v · ∇w dx, K = {v ∈ H1
0 (Ω)| v(x) ≥ ψ(x) a.e. in Ω}.

It is well known that the above problem is equivalent to the minimization problem (2.1)
assuming that f(v) is a linear functional on H1

0 (Ω). For the obstacle problem (3.1), the
minimization space V = H1

0 (Ω). Correspondingly, we have κ = 1 for assumption (2.5).
Later, | · |1 and ‖ · ‖1 are used to denote the semi-norm and norm of H1

0 (Ω). The finite
element method shall be used to solve (3.1). It shall be shown that domain decomposition and
multigrid methods satisfy the conditions (2.3) and (2.4). For simplicity of the presentation,
it will be assumed that

ψ = 0.

3.1. Overlapping domain decomposition methods. For the domain Ω, let
TH be a shape regular quasi-uniform finite element division, or a coarse mesh, of Ω, with
a mesh size H. Further more, assume that {Ωi}M

i=1 is a non-overlapping decomposition
of Ω where each Ωi has a diameter of order H and is the union of several coarse mesh
elements. We further refine TH to get a fine mesh partition Th with mesh size h. We
assume that Th forms a shape regular quasi-uniform finite element subdivision of Ω. We
call this the fine mesh or the h-level subdivision of Ω. We denote by SH ⊂ W 1,∞

0 (Ω) and
Sh ⊂ W 1,∞

0 (Ω) the continuous, piecewise linear finite element spaces over the H-level and
h-level subdivisions of Ω respectively. For each Ωi, we consider an enlarged subdomain Ωδ

i

consisting of elements τ ∈ Th with distance(τ, Ωi) ≤ δ. The union of Ωδ
i covers Ω̄ with

overlaps of size δ. For the overlapping subdomains, assume that there exist m colors such
that each subdomain Ωδ

i can be marked with one color, and the subdomains with the same
color will not intersect with each other. Let Ωc

i be the union of the subdomains with the ith

color, and Vi = {v ∈ Sh| v(x) = 0, x �∈ Ωc
i}, i = 1, 2, · · · , m. By denoting the subspaces

V0 = SH , V = Sh, we find that

a). V =
m∑

i=1

Vi and b). V = V0 +
m∑

i=1

Vi. (3.2)

Note that the summation index is now from 0 to m instead of from 1 to m when the coarse
mesh is added. For the constraint set K, we define

K0 = {v ∈ V0| v ≥ 0}, and Ki = {v ∈ Vi| v ≥ 0}, i = 1, 2, · · · , m. (3.3)

Under the condition that ψ = 0, it is easy to see that (2.2) is correct both with or without
the coarse mesh. When the coarse mesh is added, the summation index is from 0 to m. Let
{θi}m

i=1 be a partition of unity with respect to {Ωc
i}m

i=1, i.e. θi ∈ Vi, θi ≥ 0 and
∑m

i=1 θi = 1.
It can be chosen so that

|∇θi| ≤ C/δ, θi(x) =

{
1 if x ∈ τ , distance (τ, ∂Ωc

i ) ≥ δ and τ ⊂ Ωc
i ,

0 on Ω\Ωc
i .

(3.4)
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Later in this paper, we use Ih as the linear Lagrangian interpolation operator which uses
the function values at the h-level nodes. In addition, we also need a nonlinear interpolation
operator I�

H : Sh �→ SH . Assume that
{
xi

0

}n0

i=1
are all the interior nodes for TH and let ωi be

the support for the nodal basis function of the coarse mesh at xi
0. The nodal values for I�

Hv
for any v ∈ Sh is defined as (I�

Hv)(xi
0) = minx∈ωi v(x), c.f [13]. This operator satisfies

I�
Hv ≤ v, ∀v ∈ Sh, and I�

Hv ≥ 0, ∀v ≥ 0, v ∈ Sh. (3.5)

Moreover, it has the following monotonicity property

I�
h1

v ≤ I�
h2

v, ∀h1 ≥ h2 ≥ h, ∀v ∈ Sh. (3.6)

As I�
Hv equals v at least at one point in ωi, it is thus true that for any u, v ∈ Sh

‖I�
Hu− I�

Hv − (u− v)‖0 ≤ cdH|u− v|1, |I�
Hv|1 ≤ cd|v|1, (3.7)

where d indicates the dimension of the physical domain Ω, i.e. Ω ⊂ Rd, and

cd =


C if d = 1;

C
(
1 +

∣∣log H
h

∣∣ 12 ) if d = 2,

C
(

H
h

) 1
2 if d = 3,

With C being a generic constant independent of the mesh parameters. See Tai [13] for a
detailed proof.

3.2. Decompositions with or without the coarse mesh. We first give the
definition for the operators Ri : K �→ Ki for the decomposition (3.2.a), i.e. we consider the
domain decomposition method without using the coarse mesh. For any given v ∈ Sh, we
decompose v as

v =
m∑

i=1

vi, , vi = Ih(θiv), (3.8)

and we define the mapping from v to vi as Ri, i.e. Riv = vi, ∀v ∈ Sh. In case that v ≥ 0, it
is true that vi ≥ 0, i.e. Ri is a mapping from K to Ki. In addition,

m∑
i=1

‖Riu−Riv‖21 ≤ C

(
1 +

1

δ2

)
‖u− v‖21,

which shows that C1 ≤ C(1 + δ−1). It is known that C2 ≤
√

m with m being the num-
ber of colors. From Theorem 2.1, the following rate is obtained for the one level domain
decomposition method (c.f. (3.2.a)):

F (w)− F (u∗)
F (u)− F (u∗)

≤ 1− α

1 + C(1 + δ−2)
.

For Algorithm 2, we can take α = 1 .
Numerical experiments and the convergence analysis for the two-level domain decom-

position method, i.e. an overlapping domain decomposition with a coarse mesh, seem still
missing in the literature. To apply our algorithms for the two-level domain decomposition
method , i.e. for the decomposition (3.2.b), the operators Ri are defined as

R0v = I�
Hv, Riv = Ih(θi(v − I�

Hv)), i = 1, 2, · · ·m ∀v ∈ Sh. (3.9)

For a given v ≥ 0, it is true using (3.5) that 0 ≤ R0v ≤ v and so Riv ≥ 0, i = 1, 2, · · · , m,
which indicates that R0v ∈ K0 and Riv ∈ Ki, i = 1, 2, · · · , m for any v ∈ K. It follows from
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(3.7) that for any u, v ∈ K ‖R0u−R0v‖1 ≤ cd‖u− v‖1. Note that Riu−Riv = Ih

(
θi(u− v−

I�
Hu + I�

Hv)
)
. Using estimate (3.7) and a proof similar to those for the unconstrained cases,

c.f. [17], [18], it can be proven that ‖Riu−Riv‖21 ≤ cd

(
1 + H

δ

)
‖u− v‖21. Thus(

‖R0u−R0v‖21 +
m∑

i=1

‖Riu−Riv‖21

) 1
2

≤ C(m)cd

(
1 +

(
H

δ

) 1
2
)
‖u− v‖1.

The estimate for C2 is known, c.f. [17], [18]. Thus, for the two-level domain decomposition

method, we have C1 = C(m)cd

(
1 +

√
H√
δ

)
, C2 = C(m), where C(m) is a constant only

depending on m, but not on the mesh parameters and the number of subdomains. An
application of Theorem 2.1 will show that the following convergence rate estimate is correct
for the two-level domain decomposition method (3.2.b):

F (w)− F (u∗)
F (u)− F (u∗)

≤ 1− α

1 + c2
d(1 + Hδ−1)

.

3.3. Multigrid decomposition. Multigrid methods can be regarded as a repeated
use of the two-level method. We assume that the finite element partition Th is constructed
by a successive refinement process. More precisely, Th = TJ for some J > 1, and T j for
j ≤ J is a nested sequence of quasi-uniform finite element partitions, see [13], [17], [18]. We
further assume that there is a constant γ < 1, independent of j, such that hj is proportional
to γ2j . Corresponding to each finite element partition T j, a finite element space Mj can be
defined by

Mj = {v ∈ W 1,∞
0 (Ω) : v|τ ∈ P1(τ), ∀τ ∈ Tj}.

let {xk
j }

nj

k=1 be the set of all the interior nodes. Denoted by {φi
j}

nj

i=1 the nodal basis functions
satisfying φi

j(x
k
j ) = δik. We then define a one dimensional subspace V i

j = span(φi
j). Letting

V = MJ and Ki
j = {v ∈ V i

j | v ≥ 0}, we have the following trivial space decomposition:

V =

J∑
j=1

nj∑
i=1

V i
j , K =

J∑
j=1

nj∑
i=1

Ki
j , . (3.10)

Each subspace V i
j is a one dimensional subspace. Let I�

hj
to be the nonlinear interpolation

operator from Mj to MJ . For any v ≥ 0 and j ≤ J−1, define vj = I�
hj

v−I�
hj−1

v ∈Mj . Let

vJ = v − I�
hJ−1

v ∈ MJ . A further decomposition of vj is given by vj =
∑nj

i=1 vi
j with vi

j =

vj(x
i
j)φ

i
j . It is easy to see that

v =

J∑
j=1

vj =

J∑
j=1

nj∑
i=1

vi
j . (3.11)

We define the mapping from v to vi
j to be Ri

j , i.e. Ri
jv = vi

j . It follows from (3.5) and (3.6)
that vi

j ≥ 0 for all v ≥ 0, i.e. Ri
j is a mapping from K to Ki

j under the condition that ψ = 0.
Define

c̃d =


C, if d = 1;

C(1 + | log h| 12 ), if d = 2;

Ch− 1
2 , if d = 3.

For any given u ∈ Sh, we define uj and ui
j in a similar way as we did for v. The following

estimate can be obtained using approximation properties (3.7) (see [13]):

J∑
j=1

nj∑
i=1

‖Ri
ju−Ri

jv‖21 ≤ C

J∑
j=1

h−2
j ‖uj − vj‖20 ≤ c̃2

d

J∑
j=1

h−2
j h2

j−1 |u− v|21 ≤ c̃2
dγ−2J |u− v|21 ,
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which proves that

C1
∼= c̃dγ−1J

1
2 ∼= c̃dγ−1| log h|

1
2 .

The estimate for C2 is known, i.e. C2 = C(1 − γd)−1, see Tai and Xu [18]. Thus for the
multigrid method, the error reduction factor for the algorithms is

F (w)− F (u∗)
F (u)− F (u∗)

≤ 1− α

1 + c̃2
dγ−2J

.

3.4. Numerical experiments. For the implementation of the proposed algorithms,
we need some subroutines to carry out the actions of the decomposition operators and some
other subroutines to solve the sub-minimization problems in the algorithms. If we implement
the algorithms in the form as given in Algorithms 3 and 4, it can be seen the decomposition
operators Ri are only needed to determine the obstacles for the subproblems.

Let us first sketch the implementation for the DD methods with or without the coarse
mesh. Without the coarse mesh, we need to have some subroutines to calculate the θi

functions for the decomposition operators Ri given in (3.8). The construction of the θi

functions are not unique and we just choose one of them. The sub-minimization problems
over the subdomains are solved by the augmented Lagrangian method as stated in [11] (but
without the dimensional splitting). Once the coarse mesh is added, we need a subroutine
to calculate I�

Hv for any given v ∈ Sh and this will give the decomposition operator R0 as
given in (3.9). Once this is done, the other operators Ri can be done using the functions
θi. The sub-minimization problem over the coarse mesh is also solved by the augmented
Lagrangian method, see [16, 11]. The subproblems need more computing time in the first
iteration. From the second iteration, very good intial guess is available and the iterations are
terminated after a few iterations.

For the multigrid decomposition (3.10), we need to calculate I�
hj

to get the actions of

operators Ri
j . The cost for calculating this is very cheap. For any v ∈ Sh and v ≥ 0, we

use a vector zj to store the values minτi
j
v for all the elements τ i

j ⊂ T j. As the meshes are

nested, the vectors zj can be computed recursively starting from the finest mesh and ending
with the coarsest mesh. From the vectors zj , it is easy to compute I�

hj
v on each level. The

value of I�
hj

v at a given node is just the smallest value of zj in the neighboring elements.

The sub-minimization problems are just some minimization problems over a one-dimensional
subspace and explicit formula can be given for these sub-minimization problems and they
can be implemented similarly as for unconstrained problems, see [16]. The operation cost
per iteration for the algorithms is O(nJ).

We shall test our algorithms for the obstacle problem (3.1) with Ω = [−2, 2]× [−2, 2], f =
0 and ψ(x, y) =

√
x2 + y2 when x2 + y2 ≤ 1 and ψ(x, y) = −1 elsewhere. This problem has

an analytical solution [13]. Note that the continuous obstacle function ψ is not even in
H1(Ω). Even for such a difficult problem, uniform linear convergence has been observed in
our experiments. In the discrete case, the non-zero obstacle can be shifted to the right hand
side.

Figure 3.1 shows the convergence rate for Algorithm 2 with different overlapping sizes
for decomposition (3.9). Figure 3.2 shows the convergence rate for Algorithm 2 with the
multigrid method for decomposition (3.11) and J indicates the number of levels. In the
figures en is the H1-error between the computed solution and the true finite element solution
and e0 is the initial error. log(en/e0) is used for one of the subfigures. The convergence rate
is faster in the beginning and then approaches a constant after some iterations.
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Finite element methods, fifty years of the Courant element, Lecture notes in pure and
applied mathematics, volume 164, pages 421–432. Marcel Dekker inc., 1994. Available online
at http://www.mi.uib.no/̃ tai.

[11] X.-C. Tai. Parallel function decomposition methods and numerical applications. In J. Wang,
M. B. Allen, B. M. Chen, and T. Mathew, editors, Iterative methods in scientific computa-
tion, volume 4 of Series in computational and applied mathematics, pages 231–238. IMACS,
1998.

[12] X.-C. Tai. Convergence rate analysis of domain decomposition methods for obstacle problems.
East-West J. Numer. Math., 9(3):233–252, 2001.



330 TAI

0 10 20 30 40 50
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Iteration number

lo
g(

en
/e

0)

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration number

C
on

ve
rg

en
ce

 r
at

e

J=5
 

J=6
 

J=7
 

J=8
 

Figure 3.2: Convergence for the multigrid method

[13] X.-C. Tai. Rate of convergence for some constraint decomposition methods for nonlinear
variational inequalities. Numer. Math., accepted and to appear. Available online at
http://www.mi.uib.no/̃ tai, report-150, Department of Mathematics, University of Bergen.

[14] X.-C. Tai and M. Espedal. Applications of a space decomposition method to linear and nonlinear
elliptic problems. Numer. Math. for Part. Diff. Equat., 14:717–737, 1998.

[15] X.-C. Tai and M. Espedal. Rate of convergence of some space decomposition method for linear
and nonlinear elliptic problems. SIAM J. Numer. Anal., 35:1558–1570, 1998.

[16] X.-C. Tai, B. ove Heimsund, and J. Xu. Rate of convergence for parallel subspace correction
methods for nonlinear variational inequalities. In Proceedings of the 13th International
Conference on Domain Decomposition Methods in Lyon, France.

[17] X.-C. Tai and P. Tseng. Convergence rate analysis of an asynchronous space decomposition
method for convex minimization. Math. Comput., 2001.

[18] X.-C. Tai and J.-C. Xu. Global and uniform convergence of subspace correction methods for
some convex optimization problems. Math. Comput., 71:105–124, 2001.

[19] J. Xu. Iteration methods by space decomposition and subspace correction. SIAM Rev., 34:581–
613, 1992.



Part VII

Contributed Papers





Fourteenth International Conference on Domain Decomposition Methods
Editors: Ismael Herrera , David E. Keyes, Olof B. Widlund, Robert Yates c©2003 DDM.org

33. Flow in complex river networks simulation through a
domain decomposition method

J. Aparicio1, A. A. Aldama2, H. Rubio3

1. Introduction. Lower river basins are characterized by rivers flowing on flood-
plains, usually forming interconnecting networks of streams that frequently interact with
lagoons directly or indirectly connecting to the stream reaches. The flood plains both in the
Pacific and in the Atlantic coasts of México have experienced, during the last few decades, an
accelerated economic development and therefore an appreciable population growth, and some
flood-related disasters have occurred in this zones recently. In order to avoid this kind of
disasters and the consequent loss of human lives and property, the need to build flood defense
infrastructure arises, constituted for instance by levees or dikes, and/or to develop real time
flood-warning systems. In any case, computational models are needed to adequately simu-
late the passage of floods through the river networks. These computational models should
take into account the fact that when river reaches flow into or from lagoons, their length is
modified according to whether the free surface level in the lagoon is rising or lowering. A
model of this kind is presented in this paper. Aldama and Aparicio (1994) [1] presented the
fundamentals of this model elsewhere. Here, the complete development is addressed and an
application to a real case in the lower Grijalva River is presented.

2. Fundamental equations. The equations on which the model is based are the
one-dimensional, free surface Saint-Venant equations: [4]

Continuity

B
∂H

∂t
+

∂UA

∂x
= q (2.1)

Momentum

∂U

∂t
+ U

∂U

∂x
+ g

∂H

∂x
+ gn2 U |U |

R
4/3

= 0 (2.2)

where B is the free surface width; H, free surface elevation or level; U , velocity; A,
hydraulic area; q, lateral inflow per unit length; g, acceleration of gravity; n, Manning
roughness coefficient; R, hydraulic radius and x and t represent distance and time respectively.

In a channel network such as that shown in fig. 1, two types of flooding areas (heretofore
called “lagoons”) may be formed: those directly connected to one or more channel reaches,
which will be called interconnecting lagoons and those receiving or delivering water from or
to the river, but not having any influence in the water level of any reach, which will be called
lateral lagoons.

Interconnecting lagoons will be linked to the corresponding channel reaches by means of
a mass conservation equation of the form

∂V

∂t
+

∫∫
©
sc

U • dA = 0 (2.3)

where V is the lagoon volume, sc is the control surface defined by the lagoon boundaries
and the scalar product U • dA represents the outflow discharge from the lagoon (see fig. 2;
note that inflow to the lagoon is negative).

1Mexican Institute of Water Technology, aparicio@tlaloc.imta.mx
2Mexican Institute of Water Technology, aaldama@tlaloc.imta.mx
3National Water Commision, Mexico, hrubio@grfs.cna.gob.mx
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On the other hand, lateral lagoons are connected to the channel reaches by means of the
riverbanks. The unit discharge between river reaches and lateral lagoons will be assumed to
be governed by a long-crested weir law:

q = Cqh
√
|h| (2.4)

where Cq is a discharge coefficient and h is the net head. Cq is assumed to be a function
of the parameter [3]

φ =
|η2 − η1|
η − E

(2.5)

where η2 and η1 are, respectively, the water surface elevation in the river reach and in
the lagoon and E is the elevation of the river bank (see fig. 3). η = η1 when flow is from
lagoon to river and η = η2 when the river flows into the lagoon. The discharge coefficient is
then computed as [3]

Cq =


0.871

√
2gφ0.478 for 0 < φ < 0.1

0.446
√

2g for φ = 1.0
0.446

√
2gφ0.155 for 0.1 < φ < 1.0

(2.6)

Due to the fact that flow in these conditions occurs in extremely flat terrain, only storage
effects are taken into account and no dynamical effects will be considered neither in the
interconnecting nor in the lateral lagoons.

3. Transformed equations. River reaches in flat floodplains are frequently confined
between lagoons that change in size as floods progress, therefore changing the reach length,
which requires solving eqs. (2.1) and (2.2) in variable domains. To avoid the sometimes
severe inaccuracies arising from the use of fixed grids in these cases, and following Austria &
Aldama [2] and Aldama & Aparicio [1], a coordinate transformation strategy of the following
form is employed:

ξ =
x− xr(t)

xf (t)− xr(t)
(3.1)

τ = t (3.2)

where xr(t)and xf (t)are, respectively, the position of the rear and front of the size-
changing river reach and ξ and τ are the transformed coordinates. Applying the coordinate
transformation to eqs. (2.1) and (2.2), the following transformed equations are obtained: [1]

B(xf − xr)
∂H

∂τ
−Bξ

∂H

∂ξ

dxf

dt
−B(ξ + 1)

∂H

∂ξ

dxr

dt
+

∂(UA)

∂ξ
= q(xf − xr) (3.3)

(xf − xr)
∂U

∂τ
− ξ

∂U

∂ξ

dxf

dt
− (ξ + 1)

∂U

∂ξ

dxr

dt
+ U

∂U

∂ξ
+ g

∂H

∂ξ
+ g(xf − xr)n

2 U |U |
R

4/3
= 0 (3.4)

4. Domain decomposition and numerical solution. Eqs. (3.3) and (3.4) are
solved using an implicit, fractional step scheme [5], which leads to a system of algebraic linear
equations of the form [1]

[A]k {H}k+1 = {C}k (4.1)

where [A]k and {C}k are respectively a matrix and a vector which depend on known values
at time level k. Matrix [A] is tridiagonal for a single channel, which makes the solution of eq.
(3.1) very efficient, while preserving a second order accuracy. However, in a complex channel
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network such as that shown in fig. 1, due to interactions between the different reaches,
nonzero elements appear outside the three main diagonals, thus making the solution far less
efficient. Therefore, Aldama & Aparicio [1] proposed a solution algorithm based on the use
of numerical Green’s functions consisting of writing eq. (4.1) as

[AR]k {HR}k+1 + Bk
R,r {HR,r}k+1 + Bk

R,f {HR,f}k+1 = {CR}k (4.2)

where [A]k is a tridiagonal coefficients matrix, {HR}k+1 is the unknown water surface ele-

vations vector within the reach, Bk
R,r and Bk

R,f are scalars and {HR,r}k+1 ≡
{
Hk+1

R,r , 0, ..., 0
}T

and {HR,f}k+1 ≡
{

0, ..., 0, Hk+1
R,f

}T

, Hk+1
R,r and Hk+1

R,f representing the water surface eleva-

tions at the rear and front ends of the reach. The vector of unknowns is decomposed as the
sum of a homogeneous and an inhomogeneous solutions:

{HR}k+1 = {HR,h}k+1 + {HR,i}k+1 (4.3)

where the homogeneous solution is defined by

[AR]k {HR,h}k+1 = {CR}k (4.4)

and the inhomogeneous solution is given by

{HR,i}k+1 = Hk+1
R,r {GR,r}k+1 + Hk+1

R,f {GR,f}k+1 (4.5)

where {GR,r}k+1 and {GR,f}k+1 are rear and front numerical Green’s functions, repre-
senting the response of channel reach R to unit variations in the water surface elevations at
its rear and front ends and defined respectively by

[AR]k {GR,r}k+1 = −Bk
R,r {1, 0, ...., 0}T (4.6)

and

[AR]k {GR,f}k+1 = −Bk
R,f {0, ...., 0, 1}T (4.7)

On the other hand, the mass conservation equation for interconnecting lagoons (eq. 3) is
discretized as

AL
Hk+1

c −Hk
c

∆τ
−
∑

i

AiUi = 0 (4.8)

where AL is the lagoon surface area, Hc is the free surface elevation at the lagoon and Ai

are the hydraulic areas of the river reaches concurring to the lagoon. In the case of lateral
lagoons, free surface elevations and therefore stored volumes are computed simply from

AL

∆τ

(
Hk+1

c −Hk
c

)
=
∑

Qi (4.9)

where total discharge Qi = qLi, Li being the crest length on the river bank. Note that
several river reaches can be connected to the same lateral lagoon. For the sake of simplicity,
discharges Qi are computed explicitly from the previous time step.

In this way, eqs. (4.4), (4.6) and (4.7) are tridiagonal systems and eqs. (4.3) and (4.5),
along with the mass conservation equation (4.8) for each interconnecting node, lead to a
sparse but relatively small system of equations in terms of the water surface elevation at the
node.

Therefore, with the above outlined procedure, three small tridiagonal systems for each
channel and a small sparse system for the interconnection nodes are solved, which makes the
overall solution considerably more efficient than the large, nonbanded system which would
otherwise arise.
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5. Boundary conditions. Every channel reach within the network is connected to
a node with any of the several possible boundary conditions. The most common boundary
conditions are known upstream or downstream discharge, specified upstream or downstream
water level or interconnecting lagoon. In the first case, the known discharge is susbstituted
into equation (3.3) an a two-term equation is obtained. In the second case, the known level is
directly substituted into equation (4.1) and in the third case, equation (4.8) is used to couple
the lagoon level with the corresponding channel reach level, either at the reach rear or front.

6. Application. The numerical model described above was integrated in a computa-
tional system called Trans-R and was applied to the uncontrolled part of the lower Grijalva
river basin in the Southeastern region of México (see fig. 1). This river flows from a moun-
tainous zone into a considerably flat region and finally into the Gulf of México. Four major
tributaries can be identified as part of the river network: the La Sierra, Pichucalco, Teapa
and Puyacatengo rivers. A main concern in this case is the city of Villahermosa, located
downstream of the confluence of these major tributaries as shown in fig. 1. With a fast-
growing population of about 400,000 inhabitants, the city and its surroundings are subject to
flooding caused by the intense precipitations frequently produced by cyclones. A high popu-
lation growth index produces a severe urban pressure on the Grijalva River and its naturally
flooding lagoons, therefore requiring a real-time forecasting system and quantitative aids for
the urban growth planning process. For the analysis, about 200 topographic maps of the
zone were used, and some ad hoc topographic surveys were performed, from which channel
sections for the whole network were obtained, and 21 lagoons were identified, including two
interconnecting lagoons (lagoons 3 and 8) and 19 lateral lagoons (see fig. 1).

Data for boundary conditions were provided by four gauging stations in each of the major
tributaries located at the boundary between the mountains and the floodplains and one at
the downstream end of the considered region, called Gaviotas, where Villahermosa city is
located.

Several flooding events were considered. Due to lack of space, only three of them will be
shown here. Figures 4 to 6 show the May 1970 flood; in fig. 4 the measured hydrographs
at each of the five gauging stations are shown. Only the stage-discharge relationship at
the Gaviotas Station was used for the simulation as boundary condition and the measured
hydrograph was reserved for comparison purposes. In figures 5 and 6 some of the results are
shown. Figure 5 shows a comparison between measured and computed hydrographs at the
Gaviotas gauging station. A reasonable agreement is observed. In fig. 6 a sequence of the
flood progress in plan view is shown. It can be seen that two interconnecting lagoons are
flooded in the first place (fig. 6 b); in fig. 6 c, one interconnecting lagoon is totally flooded
and one lateral lagoon is affected. In fig. 6 d, the flood hydrograph has started to recede,
one lagoon has disappeared and another has started to do so. In fig. 6 e, this interconnecting
lagoon has completely disappeared. Figures 7 and 8 show recorded and simulated limnigraphs
for the May-August, 1967 and September-October, 1999 flows at the Gaviotas Station. The
latter event produced extensive flooding and damages in Villahermosa City and vicinity.
Good agreement is observed.

7. Conclusions. A numerical model for transient flow simulation in complex river
networks with interconnecting and lateral flooding lagoons has been developed. The model
uses a coordinate transformation, which allows the channel-interconnecting lagoon interaction
simulation and numerical Green’s functions to decompose the domain and efficiently solve
the problem in the whole river reaches-lagoons hydraulic system. Lateral lagoons connected
to the river through the riverbanks are also taken into account in the model. Application
to the lower Grijalva River network shows good agreement between computed and measured
hydrographs and limnigraphs at the basin outlet.
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34. On Aitken Like Acceleration of Schwarz Domain
Decomposition Method Using Generalized Fourier

J.Baranger1, M.Garbey2 and F.Oudin-Dardun3

1. Introduction. The idea of using Aitken acceleration [5] [11], on the classical
Schwarz additive domain decomposition (dd) method [9] [7] [8] [6] has been introduced in
[3]. For an elliptic operator with constant coefficients on a regular grid, this method is called
Aitken-Schwarz (AS) procedure, and is a direct solver. This method has shown very good
numerical performance, and has been used in more complex situations [4]. We have also
extended the Aitken-Schwarz procedure to the case of a 2-D cartesian grid, not necessarily
regular, with two subdomains [1].

In the present paper, we extend this method to more complex situations and give a general
framework for our method. We first consider overlapping strip domain decomposition with
P domains on a non-uniform Cartesian grid. The key idea is the replacement of the 1-D
Fourier transform used on the regular space step discretization of the artificial interface grid
by a transform using the eigenvectors of a suitable 1-D operator. We give a direct solver
version of the Aitken-Schwarz algorithm for arbitrary number of subdomains, as well as an
iterative version when acceleration is applied to dominant modes only. In this last case, the
number of iterates is not sensitive to the number of subdomains with overlap of few mesh
steps. Second, we consider non-matching grids to apply our method to non-trivial geometries.
We present some experimental results for the Poisson and Helmholtz operator and comment
on an adaptive version of our acceleration technique for incompressible unsteady flow in a
channel past a disc. This paper is restricted to problems in two space dimensions, but most
of the concepts introduced here can be extended to 3 space dimensions.

2. A general framework. We briefly describe a general framework for AS method.
For more details see [2]. The AS method is built on three ideas:

- Schwarz’s method is an iterative method on a trace transfer operator acting on functions
defined on the interfaces. Sparsity of the Jacobian of this operator is related to the domain
decomposition (dd).

- discretization and choice of the interface representation may in some cases, and if well
chosen, increase this sparsity.

- for an operator with a sparse matrix, simple acceleration processes can be constructed.
The Aitken process, for example, provides an exact solver in the linear case if the trace
transfer operator can be diagonallized .

• Trace transfer operator for Schwarz iterative method: we consider a bounded
domain Ω in R

N with a strip dd in P domains Ωp, i.e Ωp only intersects Ωp−1 and Ωp+1, with
obvious modifications for p=1 and P.

The boundary Γp of Ωp is decomposed into three subsets: Γl
p (resp.Γr

p) included in Ωp−1

(resp.Ωp+1) and the remaining part Γ̃p.

Let (Π) be a boundary value problem (bvp) well posed in Ω. One step of the additive
Schwartz dd method with Dirichlet-Dirichlet boundary conditions (bc) is: for all p, given
the Dirichlet bc lp (resp.rp) on Γl

p (resp.Γr
p) solve the problem (Πp) the restriction of (Π) to

Ωp with these bc and the one of (Π) on Γ̃p.

(Πp) is assumed to be well posed. We denote r̄p−1 (resp. l̄p+1) the trace of the solution of
(Πp) on Γr

p−1 (resp. Γl
p+1). So, one step of Schwarz method is described by one application

1MCS-ISTIL-Universit Lyon1, baranger@mcs.univ-lyon1.fr
2Dept. of Computer Science-University of Houston, garbey@cs.uh.edu
3MCS-ISTIL-Universit Lyon1, foudin@mcs.univ-lyon1.fr
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of the trace transfer operator

(l̄2, r̄1, . . . , l̄P , r̄P−1) = T (l2, r1, . . . , lp, rp−1, . . . , lP , rP−1)

acting on trace spaces of functions or distributions adapted to the bvp.
T has the special structure:

l̄2 = T r
1 (r1), . . . ,

{
r̄p−1 = T l

p(lp, rp)
l̄p+1 = T r

p (lp, rp)

}
p = 2 to P − 1, . . . , r̄P−1 = T l

P (lP )

Here (r̄p−1, l̄p+1) = Tp(lp, rp) is composed of a local solver of the bvp (Πp) and the trace
operators on Γr

p−1 and Γl
p+1. These operators can be exact or approximated.

Formally, the 2(P-1) Jacobian matrix of T has the pentadiagonal structure, pointed out
for a special case in [3]: 

0 δrr
1 0 0

δll
2 0 0 δlr

2 0

δrl
2 0 0 δrr

2 0 0

0 0 δll
3 0 0 δlr

3

. . .

0 δrl
3 0 0 δrr

3

. . .

0 0 δll
4 0

. . .

. . .
. . .

. . .
. . .


(2.1)

with δlr
p = ∂T l

p/∂rp(lp, rp). The derivatives are assumed to exist in some sense in the traces
functional spaces.

• Discretization and interface representation: we introduce a discrete approxima-
tion of the traces. Each trace lp (resp. rp) is approximated by J numbers lpj (resp. rpj),
j = 1 to J . These numbers may be point values, coefficients in a basis, and so on. J may
vary with p if, for example, one has non-matching grids between subdomains. Retaining the

previous notations, lp and rp are now J-vectors and δp =

(
δll

p δlr
p

δrl
p δrr

p

)
is a 2J square ma-

trix. T is an application from R
2J(P−1) into itself with a sparse Jacobian matrix. For some

problems, dd and meshes, a well-chosen change of unknowns lpj → l̂pj may greatly increase
the sparsity of the Jacobian of the transformed trace transfer operator T̂ . This idea which is
the core of AS method has been introduced on a uniform mesh -using Fourier transform- in
[3]. An extension to non-uniform rectangular meshes is given in the next section.

• Acceleration process: Schwarz method can be considered as an iterative method for
the hat transform (associated with the interface representation) of T which map vectors of
size 2J(P-1). Any acceleration process can be used. The AS method uses Aitken method,
taking advantage of the sparsity coming on the one hand from the special dd, and on the
other hand from the generalized Fourier transform.

In the next section, we describe a special situation in which a good choice of the interface
representation leads to a very sparse Jacobian. For proofs and extensions of the content of
this section, we refer the reader to[2].

3. Generalized Fourier transform and interface representation on a
non-uniform rectangular mesh. We restrict ourselves to two space dimensions and
a rectangular domain Ω with a strip dd into rectangles. The left (resp. right) boundary of
Ωp is x = xl

p (resp. xr
p). (Π) is a homogenous Dirichlet bvp whose equation Lu = f has a

separable second order operator L = L1 + L2 with

L1 = a1∂xx + b1∂x + c1, L2 = a2∂yy + b2∂y + c2.
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a1, b1, c1 are functions of x, and a2, b2, c2 functions of y.
The grid is a tensorial product of the following two irregular meshes: x-mesh xi, i ∈ I,

and y-mesh yj , j = 0 to J + 1. Lh
1 (resp.Lk

2) are discretization of L1 (resp. L2) on the
x (resp. y)-mesh. The unknowns uij are approximations of u(xi, yj) with fij some given
approximation of f(xi, yj). We use the notation Uj = (uij)i∈I.

Let [e,w]x[n,s] be the generic rectangular subdomain. The discrete approximation (Πhk
p )

of problem (Πp) can be written

Lh
1Uj + Lk

2Uj = Fj , Uj(w) and Uj(e) given, ui0 = uiJ+1 = 0, i ∈ I

The following result is proved in [2]:

Theorem 3.1 Assume that the eigenvalue problem

Lk
2Φm = λmΦm, Φm0 = ΦmJ+1 = 0 (E)

has J linearly independent real eigenvectors associated with real eigenvalues. We define the
generalized Fourier transform:

uij =
J∑

m=1

ûimΦmj , j = 1 to J.

Then (Π̂hk
p ) -the hat transform of (Πhk

p )- is a set of J uncoupled discrete one-dimensional
linear problems:

[Lh
1 + λm]Ûm = F̂m, m = 1 to J, û0m and ûI+1m given .

The hat trace transfer operator is affine on R
2J(P−1) with a block-diagonal matrix of J blocks.

The m-th diagonal block has the form (2.1) and corresponds to the mode Φm and the operator
Lh

1 + λm.

We are going to apply this result to construct the AS algorithm.

3.1. Algorithm. We apply an Aitken-like acceleration procedure to each mode of the
generalized Fourier transform of the interfaces values given by Schwarz dd method. It follows
from theorem 3.1 that the method is an exact solver in this context. The algorithm is:

Step 1: compute the eigenvectors λm, Φm, m = 1 to J solution of problem (E).
Step 2: given traces on the interfaces, perform 3 steps of the Schwarz method.
Step 3: take the generalized Fourier transform of the last 4 traces.
Step 4: apply the one-dimension Aitken acceleration formula to each mode of these

transformed traces.
Step 5: recompose the physical traces from the result of step 4.
Step 6: from these traces, make one step of the Schwarz method.
We observe that Step 1, 3, 5 and 6 can be processed in parallel. Step 2 is the additive

Schwarz algorithm that has, in general, poor numerical efficiency but scales very well on a
so called MIMD architecture. Step 4 requires global communication of the hat transform of
the traces but makes the numerical algorithm efficient.

In order to minimize the amount of global communications in the parallel algorithm
and decrease the number of arithmetic operations, it is interesting to accelerate only the
eigenvector components of the traces that correspond to dominant eigenvalues λm, m =
1..J ′, with J ′ < J. As a matter of fact, eigenvector components that corresponds to small
eigenvalues λm converge fast with the Schwarz method itself. In that case, steps 3 and 5 are
modified and the direct and inverse hat transforms use only the J ′ < J first modes. Further,
we may have to iterate step 2 to step 6 until convergence. We call this variant of our method
as the Steffensen-Schwarz method.

We are going to apply this result to the Poisson problem discretized by FE as done in [1]
on a rectangular irregular grid.
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Figure 3.1: Mesh

3.2. Numerical experiments. We consider, on the domain Ω =]0, 1[×]0, 1[, the
Poisson problem : −(uxx + uyy) = f, with u = 0 on ∂Ω, such that the exact solution is :
u(x, y) = 150x(x− 1)y(y − 1)(y − 1/2). We use a Cartesian grid of Ω with 73× 73 elements,
uniform in x, random in y (see Figure 3.1).

In Figure 3.2, we compare the error and the residual according to the number of subdo-
maims, and the number of modes that are accelerated. The error versus the exact discrete
solution is then order 10−6, after one Aitken acceleration, and becomes of order 10−5 with
J ′ = J

2
, regardless of the number of subdomains used.

Figure 3.3 shows error and residual at the first and second iteration, for different number
of modes, and different sizes of overlap. We conclude that the larger the overlap, the better
is the acceleration. These results suggest that one should adaptively select the minimum
number of modes to accelerate as a function of the overlap and subdomain sizes. This is an
essential feature of our method that may provide parallel scalability and should be the topic
of further investigation.

We are going now to consider non-matching grids and application to CFD problems.

4. Experiments with Steffensen-Schwarz and Non-overlapping grids.
We consider elliptic solvers with Dirichlet bc in a non-trivial geometric domain that are com-
ponent of Navier Stokes incompressible flow simulations around obstacles. A good example
is the two-dimensional test case proposed by Shäfer & Turek in [10] of incompressible flow
in a straight channel around a disc. The domain Ω is (0, Lx)× (0, Ly) with a circular hole of
radius R centered in (xo, yo). ∂ΩR is the boundary of the rectangle and ∂ΩC is the boundary
of the disc. The linear elliptic solver corresponds either to the Poisson or the Helmholtz
operator −ε∆+ Id. Figure 4.1 gives an illustration of the two non-matching grids that we do
consider. This splitting of the domain is motivated by the physics for large Reynolds number.
The boundary layer is approximated on the grid ΩC in polar coordinates and the Cartesian
grid ΩR is used to approximate the main part of the flow. The overlap between subdomains
is of the order of one mesh step of ΩR.

We denote ΓR (resp. ΓC), the artificial boundary of the rectangular mesh ΩR (resp. the
mesh in polar coordinates ΩC). If LR (resp. LC) represents the standard finite difference
approximation of our linear operator on ΩR in Cartesian coordinates, (resp. on ΩC in polar
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coordinates), we close our discrete approximation problem by imposing:

I C
R (UR) = UC on ΓC , I R

C (UC) = UR on ΓR, (4.1)

where I R
C and I C

R are linear second-order interpolation operators that satisfy a maximum
principle. The discrete problem can be written as:

LR[UR] = fR in ΩR, LC [UC ] = fC in ΩC , (4.2)

with matching conditions (4.1), and Dirichlet bc on ∂ΩR ⋃ ∂ΩC .
The discrete solution process is the following alternate Schwarz iterative procedure:

LR[UR
n ] = fR, in ΩR, UR

n = I R
C (UC

n−1) on ΓR,

followed by LC [UC
n ] = fC , in ΩC , UC

n = I C
R (UR

n ) on ΓC , using the corresponding Dirichlet
bc on ∂ΩR ⋃ ∂ΩC , and an initial value for the artificial bc UC

0 .
From the maximum principle satisfied by the discrete operators LR and LC as well as the

maximum principle satisfied by the interpolant operator I R
C and I C

R , one concludes the linear
convergence of this iterative scheme to the unique solution of (4.2, 4.1 ), with Dirichlet bc on
∂ΩR ⋃ ∂ΩC . One applies then the Steffensen-Schwarz method described in [3] on the interface
operator UC

n |ΓC → UC
n+1 |ΓC . To be more precise, let ÛC =

∑
k=−N/2,...,N/2 ÛC

k eikΘ be the

Fourier expansion of the discrete function UC restricted to the circle ΓC . The matrix P of the
interface operator (UC

n |ΓC → UC
n+1 |ΓC ) in the set of basis function eikΘ, k = −N/2, ..., N/2

satisfies
(ÛC

n+1 |ΓC − ÛC
∞ |ΓC ) = P (ÛC

n |ΓC − ÛC
∞ |ΓC ).

One reconstructs a bandwidth approximation of P of size Z from the knowledge of the partial
sequence (ÛC

0 |ΓC , ..., ÛC
n+Z+2 |ΓC ). The Aitken-like acceleration procedures can be written:

ÛC
∞ |ΓC = (Id− P )−1 (ÛC

n+1 |ΓC − P ÛC
n |ΓC ). (4.3)

We have observed that this Steffensen-Schwarz procedure is numerically most efficient with di-
agonal approximation of P . Each cycle of Steffensen-Schwarz algorithm requires two Schwarz
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iterates to get from the sequence of interfaces, the diagonal approximation of P , and then
one more Schwarz iterate to exploit the bc on the artificial interfaces (4.3). These Poisson or
Helmholtz solvers have been used to solve an unsteady incompressible Navier Stokes (NS)
equation written in Vorticity-Stream function (ω − ψ) formulation, for the two-dimensional
test case proposed by Shäfer & Turek in [10]. The main cost of the NS solution procedure
corresponds to the Poisson problem for the stream function. The application of Steffensen-
Schwarz procedure to ψ at every time step can take advantage of two interesting features.
First, the initial guess for the trace of the stream function on the circle ΓC in the iterative
procedure is a second-order extrapolation in time of this trace value of ψ using the two pre-
vious time step’s solution,i.e ΨC

0 = 2ΨC(tn)−ΨC(tn−1). The diagonal approximation of the
trace transfer operator T should be time-independent, but is in fact, with our approximation
technique, solution-dependent. In practice, one can reuse the same diagonal approximation
of P for O(10) time steps. The Steffensen-Schwarz cycle then reduces to two Schwarz iter-
ates for those time steps that keep the same P approximation than the previous time step.
For oscillatory flow with moderately large Reynolds number, time steps satisfying the CFL
condition and grids of order 100× 100, we can typically maintain the residual of order 10−6

with only one Steffensen-Schwarz cycle per time step.

5. Conclusion. We have presented a generalization of Aitken-Schwarz method [3] to
grids that are tensorial products of one-dimensional grids with irregular mesh stepping and
domain decomposition with non-matching grids. Our current work addresses the problem of
the generalization of this method to unstructured meshes with Finite Volume approximation.
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35. An Aitken-Schwarz method for efficient metacomputing of
elliptic equations

N. Barberou1, M. Garbey1,2, M. Hess3, M. Resch2,3, T. Rossi4, J. Toivanen4, D. Tromeur-
Dervout1

1. Introduction. Metacomputing as defined by Larry Smarr [13] has been imple-
mented in many projects among which GLOBUS is the most widely developed one [2].
Experiments with large configurations have however shown that the latency of wide area
networks is prohibitively high and that substantial bandwidth can hardly be achieved [10].
From that some people have concluded that metacomputing does not make sense.

However, there are two strong arguments for metacomputing. First, with the introduction
of clusters of fat nodes, varying latencies, and bandwidths are a characteristic feature of any
modern hardware. Algorithms developed in metacomputing environments are therefore well
suited also for such systems. Second, some large problems require a level of computing power
not available on a single system. Especially in cases of industrial or natural disasters reliable
predictions based on extremely large models may only be achievable on clustered supercom-
puters in a metacomputing environment. Such simulations of emergency scenarios will again
need clever algorithms that can tolerate the bad performance of wide area communication
networks.

The development of such algorithms is difficult. For Poisson or Helmholtz operators the
speed of propagation of information in the spatial domain is infinite. However, two factors
help to design latency-aware algorithms; firstly information propagating at infinite speed can
be damped in space relatively fast, secondly, more than 90 percent of the information carried
in a practical computation is noise.

In this paper, we address the significant challenge to build a fast solver for the Helmholtz
operator. It combines the Aitken-Schwarz domain decomposition method [4, 5] associated
with the Partial Solution variant of Cyclic Reduction (PSCR) method [11, 12] on large scale
parallel computers.

2. Numerical methods.

2.1. The PDC3D inner solver. The parallel solver PDC3D developed by T. Rossi
and J. Toivanen [11] [12] following the ideas of Y. Kuznetsov [9] and P. Vassilevski [15] is
a parallel fast direct solution method for linear systems with separable block tridiagonal
matrices. Such systems appear, for example, when discretizing the Poisson equation in a
rectangular domain using the seven-point finite difference scheme or piecewise linear finite
elements on a triangulated, possibly nonuniform rectangular mesh. The method under con-
sideration has the arithmetical complexity O(N log2 N) and is closely related to the cyclic
reduction method. But instead of using the matrix polynomial factorization the so-called
partial solution technique is employed. Based on the analysis of [12], the radix-4 variant
is chosen for the parallel implementation using the MPI standard. However, the method
works for blocks of arbitrary dimension. [11] [12] show that the sequential efficiency and
numerical stability of the PSCR method compares favorably to the well-known BLKTRI im-
plementation of the generalized cyclic reduction method. The current PDC3D code is using
a two-dimensional domain decomposition. It requires a high performance communication
network mainly because of global reduction operations to gather the partial solution. Its
very good scalability has been shown on a CrayT3E (table 4.2).

1MCS/CDCSP/ISTIL - University Lyon 1, 69622 Villeurbanne, France
2Department of Computer Science, University of Houston, USA
3HLRS, University of Stuttgart, Germany
4Department of Mathematical Information Technology, University of Jyväskylä, Finland
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2.2. The Aitken-Schwarz outer solver. Following a different approach than the
PDC3D solver, M. Garbey and D. Tromeur-Dervout [4] [5] [6] have developed an Aitken-
Schwarz algorithm (respectively Steffensen-Schwarz) for the Helmholtz operator, (respec-
tively for general linear and non linear elliptic problems) that is highly tolerant to low band-
width and high latency. In the specific case of separable elliptic operators, the Aitken-Schwarz
algorithm might be less efficient in terms of arithmetic complexity than PDC3D as the num-
ber of processors increases [5], but it is very competitive when using O(10) sub-domains.

Let us recall briefly the salient feature of the method in 1D to solve

L[u] = f, on Ω = [0, 1] (2.1)

B[u] = 0 (2.2)

where operator B denotes the linear operator on boundary conditions, and L is some linear
operator. Let Ωi = (xl

i, x
r
i ), i = 1..q be a partition of Ω with xl

2 < xr
1 < xl

3 < xr
2, ..., x

l
q <

xr
q−1. We consider the additive Schwarz algorithm:

for i = 1..q, do L[un+1
i ] = f in Ωi, un+1

i (xl
i) = un

i−1(x
l
i), un+1

i (xr
i ) = un

i+1(x
r
i ),

enddo

Let ul,n+1
i = un+1

i (xl
i), ur,n+1

i = un+1
i (xr

i ) and ũn (respectively ũ) be the n iterated
(respectively exact) solution restricted at the interface, i.e

ũn = (ul,n
2 , ur,n

1 , ul,n
3 , ur,n

2 , ..., ul,n
q , ur,n

q−1)

The operator ũn− ũ → ũn+1− ũ is linear. Let us denote its matrix by P . P has the following
pentadiagonal structure:

0 δr
1 0 0 ....

δl,l
2 0 0 δl,r

2 ...

δr,l
2 0 0 δr,r

2 ...

... δl,l
q−1 0 0 δl,r

q−1

... δr,l
q−1 0 0 δr,r

q−1

... 0 0 δr
q 0

The sub-blocks Pi =
δl,l

i δl,r
i

δr,l
i δr,r

i

i = 2..q−1 can be computed with 3 Schwarz iterates

as follows.
We have (ur,n+1

i−1 − ũr
i−1, u

l,n+1
i+1 − ũl

i+1)
t = Pi(u

l,n
i − ũl

i, u
r,n
i − ũr

i )
t. Therefore(

ur,n+3
i−1 − ur,n+2

i−1 ur,n+2
i−1 − ur,n+1

i−1

ul,n+3
i+1 − ul,n+2

i+1 ul,n+2
i+1 − ul,n+1

i+1

)
= Pi

(
ul,n+2

i − ul,n+1
i ul,n

i − ul,n
i

ur,n+2
i − ur,n+1

i ur,n
i − ur,n

i

)
In practice the last matrix on the right hand side of the previous equation is non singular

and Pi can be computed, but it cannot be guaranteed. However, one can always compute
beforehand the coefficients of Pi -see [4]. For the Helmholtz operator L[u] = u′′ − λu,
or generally speaking elliptic problems with constant coefficients, the matrix P is known
analytically.

From the equality ũn+1− ũ = P (ũn− ũ), one obtains the generalized Aitken acceleration
as follows:

ũ∞ = (Id− P )−1(ũn+1 − P ũn). (2.3)

If the additive Schwarz method converges, then ||P || < 1 and Id− P is non singular.
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The aim of our paper is therefore to combine the two methods in order to have a highly
efficient solver for the Helmholtz operator for metacomputing environments. This solver can
be used to solve the elliptic equations satisfied by the velocity components of a incompressible
Navier Stokes (NS) code written in velocity-vorticity formulation. The elliptic part of such
an NS solver is usually the most time consuming part as these equations must be solved very
accurately to satisfy the velocity divergence free constraint. Similarly this solver can be used
for the pressure solve in NS written in velocity pressure formulation using the projection
method.

Our parallel implementation is then as follows: first one decomposes the domain of com-
putation into a one-dimensional domain decomposition (DD) of O(10) macro sub-domains.
This first level of DD uses the Aitken Schwarz algorithm. The macro sub-domains are dis-
tributed among clusters or distinct parallel computers. Secondly, each macro sub-domain is
decomposed into a two-dimensional DD: this level of DD uses the PDC3D solver. Globally
we have a three-dimensional DD and a two-level algorithm that matches the hierarchy of the
network and access to memory.

3. Hardware and software components for metacomputing. Metacomput-
ing in heterogeneous environments introduces problems that are partly similar to those well
known from clusters and partly very new and specific. Among the most critical ones is the
concurrent scheduling of resources. Another one is the mapping of processes to processors.
For these problems we refer to projects like GLOBUS [2], Legion [7] or TME [14]. In this
section we focus on communication.

The communication can be done using several MPI-implementations [1] [3][8]. All these
implementations provide a simple way to start and run MPI-applications across a meta-
computer. They differ, however, in completeness of implementing the MPI-standard and
in the degree of optimization. For the experiments described in this paper we have chosen
PACX-MPI [3] from the High Performance Computing Center Stuttgart (HLRS) which al-
lows metacomputing for MPI-codes without any changes [10]. Based on the experience of
several projects the library relies on four main concepts:

• For the programmer the metacomputer looks like any other parallel system.
• Usage of communication daemons to clearly split external from internal communication

and ease support of different communication protocols (e.g. TCP/IP, ATM).
• Use of native MPI for internal communication and standard protocols for external

communication. MPI-implementations based on native protocols typically are superior in
performance to any other approach.

• Optimized global communication by minimizing traffic between systems.

4. Results. We are going to present some numerical experiences in metacomputing
environments. For simplicity, we restrict ourselves to a network of two or three parallel
computers. For large scale metacomputing experiments, we are using the hardware described
in Table 4.1. Once and for all we denote CrayS the Cray of HLRS in Stuttgart University,
CrayN of the von Neumann Institute in Jülich (NIC), CrayP of the Pittsburgh center of
high performance computing in USA and CrayH the Cray T3E of the National Scientific
Computing Center of Finland at CSC. The goal is to demonstrate on classical problems
that make intense use of Poisson solves, that efficient numerical results and high performance
are attainable in a metacomputing environment with standard network connections.

4.1. Fast Poisson solver experiment. We make three hypotheses:
• First, we restrict ourselves to the Poisson problem, i.e the Helmholtz operator with

λ = 0. As a matter of fact, it is the worst situation for metacomputing because any pertur-
bation at an artificial interface decreases linearly in space, instead of exponentially as for the
Helmholtz operator.

• Second, we do a priori load balancing on the heterogeneous network of Cray supercom-
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Machine #proc MHz
internal
latency

internal
bandwidth Localization

CrayS 512 450 12 µs 320 MB/s HLRS, Stuttgart
CrayP 512 450 12 µs 320 MB/s PSC, Pittsburgh
CrayH 512 375 12 µs 320 MB/s CSC, Helsinki
CrayN 512 375 12 µs 320 MB/s NIC , Jülich

Table 4.1: System configuration at Stuttgart, Pittsburgh, Helsinki, Jülich.

puters. We verified that PDC3D solver is roughly 30% slower on CrayH than on CrayS for
our test cases. The number of grid points in the Aitken domain decomposition is balanced in
such way that PDC3D in each parallel computer uses approximatively the same CPU time.

• Third, and this is a key point, we are running our metacomputing experiment on two or
three supercomputers with the existing ordinary area network. During all our experiments,
the bandwidth fluctuated in the range of (1.6Mb/s − 5.Mb/s) and the latency was about
30ms.

Let us show that a fast elliptic solver that is quasi optimal on a single parallel computer
gives poor performance in a metacomputing environment.

The PDC3D solver is an almost optimal solver with good parallel scalability in parallel
computers having a good balance of network and processor. By analyzing the PDC3D al-
gorithm, we can deduce that the number of communications per processor is of the order of
log(px) + (Nx/px) log(Nx) log(py) and the total length of all messages for one processor is of
the order of (Ny/py)Nz log(px) + (Nx/px) log(Nx)Nz log(py) floating point numbers.
Each processor stores (Nx/nx)(Ny/ny)Nz floating point numbers which is considerably more
than the amount of communication. Thus, the computational work per processor greatly
exceeds the amount of data to be transferred. This leads to a rather efficient code as can be
seen in Table 4.2, where the results of experiments made on CrayS are presented. Also, it
can be seen from the communication estimates and the numerical results that it is favorable
to choose py to be larger than px.

The PDC3D solver obviously cannot be used efficiently in a metacomputing environment.
Based on the performances -see Table 4.2- of the PDC3D on CrayS, we select the most
efficient data distribution and run the same problem on the metacomputing architecture, i.e
on CrayS and CrayH that share equally the total number of processors used. Table 4.2 gives a
representative set of the performance of PDC3D on the metacomputing architecture (CrayS-
CrayH). We conclude that no matter what the number of processors, most of the elapsed
time is spent in communication between the two computer sites. This conclusion holds for
a problem of smaller size, that is 2563: the elapsed time grows continuously from 0.76 s,
up to 18.73 s with 512 processors. Obviously the PDC3D performance degrades drastically
when using a slow network. In the following we show how Aitken-Schwarz can overcome this
problem.

4.2. Aitken-Schwarz experiment. We proceed with a performance evaluation of
our two level domain decomposition method combining Aitken-Schwarz and PDC3D (AS).
We define the barrier between low and medium size frequencies in each space variable to be
1/4 of the number of waves; We do not accelerate the highest half of the frequencies. We
checked that the impact on the numerical error against an exact polynomial solution is in the
interval [10−7, 10−6] for our test cases with minimum overlap between macro sub-domains.
Let us give first the performance of our method on a single Cray.

Figure 4.1 gives the elapse time for the following growing size of Poisson problems
158 × 192 × 384, 316 × 192 × 384, 633 × 192 × 384. When increasing the number of do-



EFFICIENT METACOMPUTING OF ELLIPTIC EQUATIONS 353

No metacomputing: localization of processors : 100% ∈ CrayS
128 procs (px × py) 256 procs (px × py) 512 procs (px × py)

25.9 s (4 x 32) 17.6s (4 x 64)
22.0 s (16 x 8) 11.5s (16 x 16) 7.2 (16 x 32)
21.8 s (64 x 2) 11.2s (64 x 4) 5.77 (64 x 8)

Metacomputing: localization of processors :50% ∈ CrayS and 50% ∈ CrayH
72.0s (64 x 2) 77.2s (64 x 4) 75.1 (64 x 8)

Table 4.2: Elapsed time in (s) for the PDC3D solver on CrayS and on
metacomputing architecture (CrayS, CrayH) to solve a problem of global
size 511× 511× 512

mains in the same proportion as the number of processors the elapsed time remains constant.
Our solver has therefore good scalability properties on the Cray T3E. Further, our method
requires no more than 6 seconds to solve the problem with 46 106 unknowns on a Cray T3E
with 256 processors running at 450 MHz. Figure 5.2 shows also that the speedup of our
solver is fairly good. Now let us proceed with the metacomputing experiment. We make the
two following hypothesis:

• First we fix the size of our problem in such a way that it cannot be solved on one single
computer at our disposal. As a matter of fact, we use almost all memory available on our
network of supercomputers.

• Second, we focus our study in this context on the extensibility properties of our direct
linear solver. To benefit of the Gustafson law for scalability, we believe that a direct mea-
surement of the speedup is not appropriate. We have also not estimated the speedup from a
model analysis, because our two level domain decomposition method is too complex to give
any realistic estimate in a metacomputing environment. Table 4.3 summarizes our results.
Let us notice that each case has been run several times and our measurements give elapsed
time with a variation of few seconds, depending on the quality of the network during the
experiment. We provide here an average value that corresponds to two or three consecutive
runs excluding the cases where the network died during the runs.
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Figure 4.1: Extensibility of the Aitken Schwarz algorithm for the 3D Poisson problem

Our two main observations are as follows:
• We have in our experiments an irreducible overhead that varies from 17s to 24s and
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Figure 4.2: Speedup of the Aitken Schwarz algorithm for the 3D Poisson problem

that depends mostly on the speed of the network that interlinks our supercomputers. We
recall that the bandwidth of the network was in the range of 2 to 5 Mb/s. This overhead is
quasi independent of the size of the problem considered here.

• Beside the overhead due to the network between distant sites, we observe an excellent
scalability of our Poisson solver. This result is a combination of two factors: first the arith-
metic complexity of our solver grows almost linearly with the number of macrosubdomains.
Second the ratio of computation time per macrodomains to communication time is large even
with a slow network and fast supercomputers.

Finally, we would like to underline that the conditions of our experiments were by defi-
nition difficult. It is not realistic to stop simultaneously the production of several national
computing centers for long. We had therefore few windows for experiments with few hours
each time. We are extremely grateful to all centers participating in these sets of experiments
for their cooperations. Further, to our knowledge, there are no other known results of ef-
ficient large scale metacomputing simulations of PDE problems that assume tidily coupled
computation as it is the case in a Poisson solver. This work is currently extended to 3D
Navier Stokes equation using our Poisson solver as a preconditioner.

5. Conclusions. In this paper, we demonstrate the feasibility of numerical efficient
metacomputing between distantly located parallel computing resources for tidily coupled
problems as Helmholtz solvers. In order to achieve this result, we use the best components
we can get at each stage that is to say:

• PDC3D : one of the best efficient solvers for separable operators that scales well on
homogeneous computers with fast communication network.

• PACX-MPI to achieve excellent performance of MPI communication on both the inter-
nal and external communication network.

• Aitken-Schwarz that is numerically efficient, tolerant to slow communication networks
and high latencies and scales well up to O(10) domains.

High latencies and slow communication networks with fluctuating bandwidth shared by
thousands of users are typical difficulties encountered in grid computing. The Aitken-Schwarz
DDM seems to be an example of a numerical tools that adresses to such difficulties.
Acknowledgment: The authors would like to thank the John von Neumann Institute and
the Pittsburgh Supercomputing Center for providing access to their systems for experiments.
All authors would like to thank their home organizations Cines, CSC and HLRS for sup-
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# of pts
in x

per MD

# of MD
per

machine

# of pts
in y, z

per proc.

# of proc.
per MD

NxJ NxS NxP MJ MS MP ny nz py pz Time (s)

225 321 0 1 1 0 49 49 16 16 60

225 321 0 1 2 0 49 49 16 16 58

0 321 0 2 0 0 49 49 8 16 30 .4

225 321 0 1 1 0 49 49 8 16 47

225 321 0 1 2 0 49 49 8 16 47

0 321 0 0 2 0 49 49 8 8 27.3

0 321 0 0 3 0 49 49 8 8 27.3

0 321 0 0 4 0 49 49 8 8 27.2

225 321 0 4 4 0 49 49 8 8 51

0 321 0 0 2 0 43 43 16 16 25,4

225 321 0 2 2 0 43 43 16 16 50

225 321 321 2 2 1 43 43 16 16 59

0 401 0 0 2 0 43 43 16 16 30.5

281 401 401 2 2 1 43 43 16 16 62

Table 4.3: Extensibility of the Aitken-Schwarz on the Poisson problem in a metacom-
puting framework
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36. The Mortar Method with Approximate Constraint

S. Bertoluzza1, S. Falletta2

1. Introduction. The Mortar method is a non conforming approach for solving PDEs
in domain decomposition. It consists in imposing weak continuity across the interfaces by
requiring that the jump of the solution along two adjacent subdomains is orthogonal to a
suitable Multiplier space. This method is particulary well suited for choosing different kinds
of discretizations in each subdomain.
We will consider here the case of coupling finite elements with wavelets, which will allow us
to overcome the limit of application of wavelet basis to tensor product domains, using FEM
for more complicated shapes.
The constraint operator, which is used to impose weak continuity, leads to the problem
of computing integrals of product of functions of different type and this can be extremely
technical or even impossible. This is the case of wavelet/finite elements coupling, where such
integral can not be computed exactly due to the particular nature of wavelets, which are
not known in closed form. We will propose here to approximate it by a technique that is
particulary well suited for the case we are treating. Moreover we will show that the use of
such a technique allows to easily integrate new type of functions in existing codes, without
the need of providing specific tools for computing the integrals of the product of a function
of the new type with all functions of each of the types already present in the code.
The paper is organized as follows: in Section 2 we introduce the general context in the case of
a simple splitting of the domain into two subdomains, introducing the approximate constraint
and analizing the error estimate. In Section 3 we consider the particular case of coupling
Wavelet and Finite Element disctretiations by studing the explicit form of the approximate
constraint in both the cases of Wavelet type discretization in the Master subdomain and
Finite Element discretization in the Slave one, and viceversa. Finally, Section 4 is devoted
to a brief overwiev of the C++ code implemented for such an approach.

2. The mortar method with approximate constraint. Let Ω ⊂ R
2 be a

bounded polygonal domain and consider the model problem: given f ∈ L2(Ω) find u : Ω → R

s.t.
−∇ · (a∇u) = f in Ω, u = 0 on Γ = ∂Ω, (2.1)

where for simplicity we assume that the matrix a is constant symmetric positive definite. We
consider here a very simple example of non conforming domain decomposition. More precisely
consider a splitting of Ω in two subdomains as Ω̄ = Ω̄+ ∪ Ω̄−, with γ = ∂Ω+ ∩ ∂Ω−.

Denote by V +
h and V −

h

V +
h ⊂ H1

Γ(Ω+) = {u ∈ H1(Ω+) : u = 0 on Γ ∩ Ω+} (2.2)

V −
h ⊂ H1

Γ(Ω−) = {u ∈ H1(Ω−) : u = 0 on Γ ∩ Ω−} (2.3)

the two discrete spaces chosen for approximating u in Ω+ and Ω− respectively, and let
Mh ⊂ H−1/2(γ), with dim(Mh) = dim(V −

h |γ) be a suitable multiplier space — which in the
mortar method is obtained from a subspace of V −

h |γ with suitable modifications at the vertices
of γ ([1]), or which coincides, in a more general formulation, with a suitable “dual space” of
V −

h |γ ([3], [5]). In the classical formulation of the mortar method, the approximation of the
solution of (2.1) is sought in the constrained space Xh defined as

Xh = {u : u|Ω+ ∈ V +
h , u|Ω− ∈ V −

h ,

∫
γ

[u]λ = 0 ∀λ ∈ Mh},

1I.A.N - C.N.R Pavia, Italy. aivlis@dragon.ian.pv.cnr.it
2Dip. MAtematica Università di Pavia, Italy. falletta@dragon.ian.pv.cnr.it
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where introducing the notation u+ = u|Ω+ and u− = u|Ω− , [u] = u+|γ−u−|γ denotes the
jump of the function u across the interface γ. The solution u to problem (2.1) is approximated
by looking for uh in Xh such that for all vh ∈ Xh it holds∫

Ω+

a∇uh∇vh +

∫
Ω−

a∇uh∇vh =

∫
Ω

fvh.

In the solution of the linear system resulting from such problem the need arises eventually
of computing the integrals appearing in the constraint∫

γ

(u+
h − u−

h )λ = 0, ∀λ ∈ Mh. (2.4)

Since in the mortar method the multiplier space Mh is strongly related to the “slave” space
V −

h , it is not reasonable to assume that the integrals of the products u−
h λ are computable

in practice. This is not necessarily the case of the products u+
h λ where functions originating

from totally unrelated spaces are involved. We will concentrate here on approximating this
term in the constraint.

In order to do that, let us introduce two auxiliary spaces U−
δ ⊂ L2(γ) and U+

δ ⊂ L2(γ)
depending on a parameter δ, which we assume to have the same finite dimension and to
satisfy

inf
ζ∈U−

δ

sup
η∈U+

δ

∫
γ

ζ η

‖ζ‖
H

1/2
00 (γ)

‖η‖H−1/2(γ)

≥ α > 0. (2.5)

Assume that the two auxiliary spaces are chosen in such a way that the integrals of the form∫
γ

ζ η are computable provided either ζ ∈ V +
h |γ and η ∈ U+

δ or ζ ∈ V −
h |γ and η ∈ U−

δ . For

all ζ ∈ L2(γ) let P−(ζ) ∈ U−
δ be the unique element in U−

δ such that∫
γ

P−(ζ) η =

∫
γ

ζ η, ∀η ∈ U+
δ . (2.6)

We propose here to approximate the integral of the product u+
h λ with the integral of

P−(u+
h )λ (where, by abuse of notation we will write u+

h instead of u+
h |γ). The constraint

(2.4) is then replaced by the approximated constraint∫
γ

(P−(u+
h )− u−

h ) λ = 0, ∀λ ∈ Mh, (2.7)

which corresponds to defining a new constrained space as

X ∗
h = {u : u|Ω+ ∈ V +

h , u|Ω− ∈ V −
h ,

∫
γ

(P−(u+)− u−)λ = 0 ∀λ ∈ Mh}, (2.8)

and approximating the solution to (2.1) by the solution of the following discrete problem:
find uh ∈ X ∗

h such that for all vh ∈ X ∗
h it holds∫

Ω+

a∇uh∇vh +

∫
Ω−

a∇uh∇vh =

∫
Ω

fvh. (2.9)

Denoting by ‖ · ‖1,∗ = ‖ · ‖H1(Ω+) + ‖ · ‖H1(Ω−) the broken H1 norms, we can prove the
following bound [2]

Theorem 2.1 Let the multiplier space Mh be chosen in such a way that the following as-
sumptions are satisfied:
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(A1) there exists a bounded projection π : L2(γ)→ V −
h |γ , such that for all η ∈ H

1/2
00 (γ) and

for all λ ∈ Mh it holds that∫
γ

(η − π(η)) λ = 0, and ‖πη‖
H

1/2
00 (γ)

� ‖η‖
H

1/2
00 (γ)

. (2.10)

(A2) there exists a discrete lifting Rh : V −
h |γ → V −

h such that for all η ∈ V −
h |γ , ‖Rhη‖H1(Ω−) �

‖η‖
H

1/2
00 (γ)

.

Moreover let the two auxiliary spaces U+
δ and U−

δ be chosen in such a way that the
following Jackson type inequality holds for some R̃, R ≥ 1/2: for all r, 1/2 ≤ r ≤ R (resp.
for all r̃, −1/2 ≤ r̃ ≤ R̃)

∀η ∈ Hr
0 (γ), inf

ηδ∈U−
δ

‖η − ηδ‖H1/2(γ) � δr−1/2‖η‖Hr(γ), (2.11)

∀η ∈ H r̃(γ), inf
ηδ∈U+

δ

‖η − ηδ‖H−1/2(γ) � δr̃+1/2‖η‖Hr̃(γ), (2.12)

Then, if uh is the solution of problem (2.9), and if the solution u of problem (2.1) verifies
u ∈ Hs(Ω) for some s, 2 ≤ s ≤ min{R̃ + 3/2, R + 1/2}, the following error estimate holds:

‖u− uh‖1,∗ � δs−1‖u‖Hs(Ω) + inf
λ∈Mh

‖∂νau− λ‖H−1/2(γ)

+ inf
vh∈V +

h

‖u− vh‖H1(Ω+) + inf
vh∈V −

h

‖u− vh‖H1(Ω−) (2.13)

where ∂νa denotes the trace on γ of outer co-normal derivative to the subdomain Ω+.

Remark 2.1 The extremely simple configuration considered (only two subdomains), hides
some of the issues related to the analysis of the mortar method in more general configurations
— namely the treatment of cross points. However, the approach used and the results obtained
in this paper carry over to more complex cases (with the presence of cross-points), with, in
the worse case, a loss of a logarithmic factor in the error estimate.

3. Wavelet/FEM Coupling. Let us now consider the case of Wavelet/FEM cou-
pling. In order to get two suitable auxiliary spaces, we will in such a case need a couple
of biorthogonal multiresolution analyses {Vj}j≥j0 and {Ṽj}j≥j0 of L2(γ) with the following
characteristics ([4]).

• Vj ⊂ H1(γ) is the subspace of P1 finite elements on the uniform grid Gj obtained by
splitting γ into 2j equal segments;

• Ṽj ⊂ H1(γ) is a subspace having the same dimension as Vj , which is biorthogonal to
Vj in the following sense: denoting by ej,k (k = 0, . . . , 2j) the nodal basis function
in Vj corresponding to the k-th point in the grid Gj , the space Ṽj has a Riesz’s basis
{ẽj,k, k = 0, . . . , 2j} which satisfies

∫
γ

ej,k ẽj,k′ = δkk′ , ∀k, k′ = 0, . . . , 2j ;

• the functions ẽj,k can be obtained as linear combination of the restriction to γ (iden-
tified through a suitable mapping with the interval (0, 1)), of the translates and con-
tracted (with a contraction factor 2j) of a compactly supported function ẽ, which
we assume to be refinable, to verify, for suitable values of the coefficients hk, ẽ(s) =∑N

k=0 hk ẽ(2s− k);
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• Ṽj satisfies a Strang-Fix condition of order M , that is it contains polynomials up to
degree M − 1, while, of course, Vj contains polynomials of order 1.

Let V 0
j = Vj ∩ H1

0 (γ) and Ṽ 0
j = Ṽj ∩ H1

0 (γ), it is possible (see [3]) to construct two

subspaces V ∗
j ⊂ Vj and Ṽ ∗

j ⊂ Ṽj satisfying dim(V ∗
j ) = dimṼ 0

j , dim(Ṽ ∗
j ) = dimV 0

j , and

inf
η∈V 0

j

sup
ζ∈Ṽ ∗

j

∫
γ

η ζ

‖η‖
H

1/2
00 (γ)

‖ζ‖H−1/2(γ)

≥ α1, inf
η∈Ṽ 0

j

sup
ζ∈V ∗

j

∫
γ

η ζ

‖η‖
H

1/2
00 (γ)

‖ζ‖H−1/2(γ)

≥ α2,

in such a way that they satisfy a Strang-Fix condition with the same order as Vj and Ṽj

respectively. Moreover it is possible to construct Riesz’s bases e∗j,k and ẽ∗j,k for V ∗
j and Ṽ ∗

j

respectively in such a way that the two following biorthogonality relations hold:∫
γ

ej,k ẽ∗j,k′ = δk,k′ ,

∫
γ

ẽj,k e∗j,k′ = δk,k′ , ∀k, k′ = 1, . . . , 2j − 1. (3.1)

Thanks to the refinable property of the function ẽ, it is well known that it is possible to
compute integrals of the product of a wavelet type function times any function in Ṽj (and
therefore in Ṽ 0

j and in Ṽ ∗
j ), while the product of a function in Vj , V 0

j and V ∗
j with a finite

element type function can be computed by standard techniques, already implemented in the
mortar method for finite elements with non-matching grids.

For using such spaces for coupling wavelets and finite elements in the mortar method we
distinguish two cases.

Case 1. FEM master / Wavelet slave. In this case we set V +
h to be a finite element space

on an unstructured, non uniform grid while V −
h and Mh are two wavelet type spaces. The

approximate integration is done by setting U+
δ = V 0

j and U−
δ = Ṽ ∗

j .

Case 2. Wavelet master / FEM slave. In this case we set V +
h to be a wavelet type space,

while V −
h and Mh are two finite element spaces defined on unstructured, non uniform grid,

the grid for Mh being the trace on γ of the grid for V −
h . The approximate integration is this

time performed by setting U+
δ = Ṽ 0

j and U−
δ = V ∗

j .

Once P−(v+
h ) is known, the space U−

δ is chosen in both cases in such a way that the
integrals of the product λhP−(v+

h ) can be computed. We then only need to compute the
P−(v+

h ). This can be done by taking advantage of the biorthogonality property (3.1). In fact
it is not difficult to see that, depending on which of the two cases we are in, we have

Case 1: P−u =

2j−1∑
k=1

(∫
γ

u e∗j,k

)
ẽj,k, Case 2: P−u =

2j−1∑
k=1

(∫
γ

u ẽ∗j,k

)
ej,k.

Again, in both cases the two auxiliary spaces have been chosen in such a way that the two
integrals defining the projectors are computable. Moreover, biorthogonality implies that no
linear system has to be solved in order to compute the auxiliary projector.

By applying Theorem 2.1 we can finally estimate the effect of using the approximate
integration technique proposed in the previous section. In both cases we get the following
bound: if u ∈ Hs(Ω) with 2 ≤ s ≤ T it holds

‖u− uh‖1,∗ � 2−j(s−1)‖u‖Hs(Ω) + inf
λ∈Mh

‖∂νau− λ‖H−1/2(γ)

+ inf
vh∈V +

h

‖u− vh‖H1(Ω+) + inf
vh∈V −

h

‖u− vh‖H1(Ω−).
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Discretization

FE_Discretization WAV_Discretization

Figure 4.1: Inheritance diagram for Discretization

where, depending on the choice of the master and slave, the limit T in the bound is respec-
tively T = min{7/2, M + 1/2} for the ‘FEM master’ case and T = min{5/2, M + 3/2} for
the ‘Wavelet master’ case. The effect of approximating the constraint is contained in the
first term on the r.h.s. which, by suitably choosing j can be tuned up in such a way it is
comparable to the other three terms.

4. The implementation. The idea of replacing the classical Mortar method with
the new approximate constraint, allows not only to overcome the problem of integrating func-
tions of different kind, but gives also an advantage from the implementation point of view. In
the first case, in fact, the introduction of a new discretization space in an existing code would
require to provide specific tools for computing the integrals of the product of a function of
the new type with all functions of each of the types already present in the code. On the
other hand, the use of a projection on an auxiliary space to approximate the above integral
reduces such a problem to the one of compute only the integral of an new type function with
an auxiliary function.

We are now going to give a brief and schematic idea of the domain decomposition C++
code we implemented to couple Finite element and Wavelet discretitazions in the Mortar
method. Without going into detailed descriptions, we will just give a brief overview to the
two main classes defined in the code: the Class Discretization and the Class Mortar.

The Class Discretization It is a virtual class, from which the FE Discretization
(Finite Element Discretization) and the WAV Discretization (Wavelet Discretization) classes
are derived (Figure 4). It is associated to each subdomain of the global domain and provides
the following main methods:

• Trace X AuxBasis: returns the integrals of a trace function with the auxiliary basis.

• Get Trace: given a function, returns the trace of the function on an edge of the
corresponding subdomain.

• Set Trace: given a trace function f , sets the trace of the global function of the
corresponding subdomain equals to f .

• local Stiff x u: returns the Matrix-vector multiplication of the subdomain stiffness
matrix with a vector u.

The Class Mortar The class Mortar is the class which allows to couple different
kinds of discretization, in the sense that it is the way two Discretization classes comunicate
with each other. It takes the traces of the functions of two adjacent subdomains and applies
the approximate constraint operator, making use of the following methods:

• Paux: computes the projection of a trace function onto the auxiliary space.
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• Mortar Projection: returns the projection of a master edge function onto the mul-
tiplier space.

• Local Constraint: applies the local Constraint operator.

In Figure (4.2), we show the numerical solution obtained by applying the approximate
constraint to the Laplace equation

−∆u = 1 in Ω, u = 0 on Γ = ∂Ω,

REFERENCES

[1] C. Bernardi, Y. Maday, and A. T. Patera. A new non conforming approach to domain decompo-
sition: The mortar element method. In H. Brezis and J.-L. Lions, editors, Collège de France
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Figure 4.2: a):the case WAV master/FEM slave. b): the case FEM master/WAV slave
c): the solution with mixed choice of discretizations and the presence of crosspoints.
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37. Generic parallel multithreaded programming of domain
decomposition methods on PC clusters

A.S. Charão1, I. Charpentier2, B. Plateau3, B. Stein1

1. Introduction. Since the early implementations of domain decomposition methods
on parallel computers, programming techniques and computer architectures have significantly
evolved. Due to the increasing availability of powerful microprocessors and high-speed net-
works, clusters of PCs become an attractive, low cost option for high-performance computing.
While this trend makes parallel computing much more accessible, developing efficient pro-
grams for these architectures needs in general some expertise in parallel programming. In
this paper we focus our attention on generic and object-oriented programming techniques for
parallel implementation of domain decomposition methods. These techniques are central to
Ahpik, our multithreaded programming tool targeted to such families of numerical methods.

Parallel efficiency is not the only goal when developing applications based on domain
decomposition: flexibility and portability of parallel codes are also essential to preserve in-
vestments made in their development. Some existing parallel libraries, like PSPARSLIB[12]
and PETSc[4], offer a compromise among all these goals. They provide a large set of linear
equation system solvers which use domain decomposition methods as parallel precondition-
ers. Ahpik differs from these tools as it is rather an experimental library for doing research
and experimentation involving parallel computing and numerical methods. It does not aim to
provide a fairly complete set of algorithms and data structures for numerical computations,
however it has some “plug-in” points allowing for easy integration of such components.

Ahpik offers a highly modular support for developing parallel domain decomposition
solvers where numerical aspects are completely decoupled from parallel implementation de-
tails. This tool includes patterns of parallel coordination (task identification, communication
and synchronization) that can be reused to implement different domain decomposition meth-
ods for the resolution of a PDE problem. These patterns can be viewed as drivers for parallel
iterative computations, provided as C++ templates that must be “filled-in” with computa-
tions characterizing each numerical method. Performance results obtained with Ahpik were
published in [2, 3, 1]. In this paper we concentrate on qualitative aspects of our approach. To
do so, our evaluation criteria are based on the visualization of the parallel, multithreaded exe-
cution of some domain decomposition methods within different scenarios (good/bad workload
distribution, synchronous/asynchronous iterations).

The outline of the paper is as follows. Our experience with a generic programming
approach for parallel implementation of a large spectrum of domain decomposition methods
is reported in section 2. Execution traces of a multithreaded driver are presented in section
3.

2. Genericity. A key idea within Ahpik is the representation of a parallel program
as a graph of interacting tasks, namely internal and interface tasks. As far as domain de-
composition methods are concerned, internal tasks correspond to local computations, i.e.
computations that require only data local to a sub-domain (solving the linear system asso-
ciated to a sub-domain for instance). Besides, interface tasks carry out operations requiring
data from neighboring sub-domains.
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Brazil, andrea@inf.ufsm.br, benhur@inf.ufsm.br
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In previous works[2, 3, 1] Ahpik was presented as a three level library: the domain de-
composition level containing specificities of some mainstream methods (Schwarz[13], FETI[8],
Mortar[5]), the parallel drivers level (fixed-point, conjugate gradient and generalized mini-
mum residual schemes), and the kernel of Ahpik which is based on a communicating threads
library named Athapascan[6]. In this paper, Ahpik is described in an enhanced manner in
order to point out the genericity of its parallel patterns and its abilities in the context of
experimental studies.

2.1. Parallel patterns. While mathematical arguments differ significantly from one
domain decomposition method to another, the parallel behavior of such methods is generally
the same: it is dictated by the iterative, intrinsically synchronous, resolution procedure.
In a traditional parallel programming method, the internal task (local computation) and
three interface tasks (send, receive, interface computations) corresponding to a subdomain
are gathered and executed sequentially on a unique UNIX process. Using multithreading,
these four independent tasks may be assigned to different threads that are gathered on a
UNIX process. There is no real order between them until one applies a parallel pattern
for scheduling these tasks. This property eases the balancing of the computations and the
implementation of asynchronous algorithms that allow for masking communication overhead.
Such a programming model is particularly interesting when using clusters of shared-memory
multiprocessors[10].

The assignment of the tasks onto threads depends on the iterative method one chooses to
drive the parallel resolution of the domain decomposition problem. For the sake of simplicity,
we present the fixed point parallel driver (coded in Ahpik) within a domain decomposition
into two subdomains. Since we work with threads, we distinguish read and write tasks that
are carried out through the memory shared by the threads associated to the same subdomain,
from send and receive tasks that require communication through message passing. Threads
are denoted using letters and numbers, the latter is equal to 1 (resp. 2) for threads of
subdomain 1 (resp. 2), and equal to 0 for the thread devoted to the verification of the
stopping criterion related to the convergence of the scheme. According to these definitions,
threads perform the following tasks:

1. Internal Thread IT1: computes local PDE solutions, writes data for ST1, reads data
from ST1, computes a local error and sends it to CT0, and finally reads data from CT1,

2. Send Thread ST1: reads data from IT1, sends them to RT2, reads data from RT1,
computes and updates interface contributions and writes them for IT1,

3. Receive Thread RT1: receives data from ST2 and writes them for ST1,

4. Convergence Thread CT1: receives data from CT0 and writes them for IT1,

5. Convergence Thread CT0: receives data from IT1 and IT2, computes a global error
as specified by the user and sends it to CT1 and CT2.

Send and receive tasks are assigned to different threads: this allows for overlapping
communication with computations, because no sequential order is imposed between send
and receive operations. For example, thread RT1 may receive data from ST2 before IT1 has
finished its computations. There exist other manners of achieving that (for example using
non-blocking send and receive primitives), but multithreading is a more elegant alternative.

When the fixed point driver is a synchronous one, these tasks are ordered uniquely. This
may be observed on figure 2.1. In that picture, we draw the activity of threads, during one
iteration, with respect to the execution time: a colored box signifies that the thread is active,
a white box indicates the thread is blocked, waiting for data. Threads assigned to the same
processor communicate through shared memory: a red arrow represents a synchronization
point where one thread must wait for data made available by another. Message passing (blue
arrows) is used to exchange data between threads running on different processing nodes. For
the sake of clarity, the size of colored boxes corresponding to interface tasks has been enlarged
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Figure 2.1: Theoretical traces for a synchronous “fixed point” parallel driver: (a)
well-balanced workload (b) non-balanced workload

in order to avoid the superposition of blue and red arrows as it happens in actual execution
traces presented in section 3.

Figure 2.1.a corresponds to a well-balanced domain decomposition in which the internal
tasks of the two subdomains have the same computational cost. One observes that the two
sets of threads have the same activity: the main steps described before are drawn on the
scheme. In figure 2.1.b the two internal tasks have different computational costs. Since IT1

performs less local computations than IT2, data are sent by ST1 before the termination of
local computations perfomed by IT2. In that case these data may be received by RT2 quite
immediately, this is why a break in the activity of IT2 can occur4. Other steps are similar to
those of figure 2.1.a. One observes that the four threads of subdomain 1 are inactive in the
shadowed time interval. They wait for data sent by ST2, available only at the end of local
computations performed by IT2. This induces idle times that may be reduced by placing
multiple subdomains on each processing node.

An alternate solution relies on asynchronous iterations. As described in [9], an asyn-
chronous scheme may be designed for the Schwarz alternating method. A theoretical trace
is proposed in figure 2.2. There are no more synchronization points (no red arrows) between
RT and ST threads (resp. CT and IT threads) because ST threads (resp. IT) do not wait
for data made available by their RT (resp. CT) counterparts. In practice, ST and IT threads
simply read data from shared memory without concern on the moment these data have been
updated. As a consequence, there is always an active thread at any time.

On our trial trace, one observes that IT1 is performing twice the same computation (first
two iterations) because it uses the same interface data. The latter are updated when IT2

has finished its first iteration. In more general situations (large number of subdomains),
this problem is not so glaring because some interface data are usually updated before a new
iteration begins.

2.2. An experimental library for domain decomposition methods. Ah-
pik is a generic parallel multithreaded environment that allows for the implementation of
domain decomposition methods. We have been using generic programming facilities of the
C++ programming language to allow users of Ahpik for a rather easy modification of the
library with respect to the PDE problem of interest. This is why we decide to build Ahpik
with regards to usual mathematical components. Moreover many “plug-in” points exist for

4Such breaks actually depend on the threads package and the operating system, they are not
visible in the traces presented on section 3.
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Figure 2.2: Theoretical trace for a non-balanced asynchronous “fixed point” parallel
driver

coupling Ahpik with other existing libraries. The following classes and C++ templates are
part of Ahpik5:

1. mesh capabilities: mesh data structures, mesh partitioning algorithms, subdomain
and interface;

2. some discretization methods;
3. domain decomposition methods: additive Schwarz method as well as FETI and

mortar methods;
4. local solvers: these are provided by SuperLU[7] for a LU direct solver and IML++[11]

for iterative solvers. When appropriate, one may also define a matrix-vector product to
perform local computation tasks;

5. generic parallel drivers: fixed point and conjugate gradient.

On one hand, Ahpik classes may be viewed as model classes for experimental solution of a
PDE problem by a parallel domain decomposition method. Any user may plug his own C++
library at the level of interest (local solver, domain decomposition, discretization, etc.) as far
as the mathematical aspects have been verified. For instance, changing the data structures
representing matrices and vectors does not affect the code corresponding to subdomain or
interface computations because these functions occur as C++ templates.

It is also possible to develop a new multithreaded parallel pattern that takes into account
a preconditioner for example. Whatever the parallel pattern is, the management of the
multithreading implementation remains hidden in the Ahpik kernel. Such an implementation
allows to use Ahpik in a more general framework: grid-nesting and multigrid schemes are
potential targets for our future works.

One the other hand, Ahpik is an experimental library devoted to parallel implementation
of domain decomposition methods. It can be viewed as a set of trial problems (Laplace equa-
tion, various DDM, ...) for the evaluation of parallel programming alternatives. Developing
new strategies to deal with parallelism only affects the kernel of Ahpik: the trial applications
included in the object-oriented library are reusable.

3. Visualizing the execution of parallel drivers. Ahpik generates execution
traces compatible with the post-processing tool Pajé[14]. This allows to make clear the role
of each thread and the interactions between threads. Execution traces we present in this
section are relative to a fixed point parallel driver again. The choice of this method against a

5More information on these components along with examples of their utilization will be included
in the Ahpik distribution: http://www.inf.ufsm.br/ahpik



GENERIC PARALLEL MULTITHREADED PROGRAMMING OF DDM 369

laplace-uzawa-sync-3nodes-iter.trace  —  ~/Traces

     6.757652

Thread State Communication

Synchronization

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Node 0 CT 0

Node 1 CT 1

IT 1

ST 1-2

RT 1-2

Node 2 CT 2

IT 2

ST 2-1

RT 2-1

s

Figure 3.1: Synchronous fixed point driver, iterative local solver

conjugate gradient method is done for the sake of clarity of the drawings: the former induces
a unique global synchronization point per iteration (global error computation), while the
latter requires two global synchronizations (descent step and global error computation).

The main window of Pajé provides a space-time diagram which shows the activity of
threads running on each processing node. As seen in section 2.1, Ahpik uses a set of threads
for each subdomain. A single node can deal with multiple sets of threads i.e multiple sub-
domains. In the following, all executions are realized on 3 processing nodes, the first one
checking the global convergence criterion of the domain decomposition method only.

Therefore node 0 runs a single thread (CT0) while nodes 1 and 2 run the sets of threads
devoted to subdomain computations (CT, IT, ST, RT). The thread activity along the iter-
ations is represented by a horizontal bar which is either green when the thread is working
or pink when the thread is waiting for data. Two kinds of arrows are used to represent syn-
chronization points. Red ones are synchronization between threads associated to the same
subdomain (synchronized access to shared data) whereas blue ones show communication
phases (message passing). The problem solved is the Laplace equation applied in rectangular
domains, the geometric decompositions are described gradually.

3.1. General behavior of synchronous drivers. Figure 3.1 points out idle times
that may appear when dealing with synchronous parallel drivers. For this experiment we
used the domain decomposition of a rectangular domain into two well-balanced subdomains.
Local computations are performed using a conjugate gradient solver which converges faster for
subdomain 2 than for subdomain 1. The same behavior would have been observed using either
a LU solver on a non-balanced domain decomposition or different discretization methods on
each side of the interface. There are several ways of reducing idle times. Two of them,
assignment of several process to a processor and implementation of asynchronous schemes,
are discussed below. Solutions depending on dynamic load-balancing techniques will be
discussed in a future work.

One of the key points of this work lies on the genericity of parallel drivers, which are
completely independent of computations characterizing each domain decomposition method.
As said before, the execution trace shows the behavior of a parallel driver. As a matter of
fact, a Schwarz method or a FETI method applied to a domain decomposition in vertical
stripes lead to the same kind of execution trace, the difference being in the computational
cost and the number of iterations.
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Figure 3.2: Synchronous fixed point driver, 2 subdomains assigned to node 1.

3.2. Reducing idle times. In MPI parallel programming, diminution of idle times
can be achieved by placing multiple Unix processes (each one corresponding to a subdomain)
to a processing node. A similar solution may be adopted for threaded programming. In
that case a processor deals with a unique Unix process. The latter manages multiple sets of
threads, each one being associated to a subdomain. Such a balancing method is presented
in figure 3.2 for a decomposition of a rectangle into 3 subdomains (vertical bands). This
execution trace, as well as others presented before, was generated on uniprocessor nodes.
The first two (smaller) contiguous subdomains are assigned to node 1, while node 2 works
on a single band. Even though subdomains have different computational costs (the first two
subdomains are smaller than the third), one notices that the workload is well distributed over
the processing nodes. Indeed, each node always has at least one active thread at any time
interval. The interleaving of active threads on node 1 is due to the concurrent computation of
two neighboring subdomains. When running the same experiment on 3 multiprocessor (SMP)
nodes, the aspect of this execution trace changes for node 1 because the two subdomains can
be treated not concurrently but in parallel.

Figure 3.3 presents an execution trace corresponding to an asynchronous parallel driver
(fixed point) applied with the additive Schwarz method. The rectangular domain is decom-
posed in two overlapping (non-balanced) bands. One clearly observes that no idle times occur
for this execution. Besides, no more red arrows representing synchronizations occur between
RT and ST threads (resp. CT and IT threads). Indeed, in such asynchronous methods,
threads devoted to local computations do not block, they do not wait for data. As a conse-
quence, the overall iterative procedure is less structured and some processors may perform
more iterations than others. In this execution trace, we can assume that each arrow arriv-
ing at a receive thread (the fourth thread on each node) indicates the beginning of a new
iteration for each subdomain. Therefore node 1 performs 5 iterations while node 2 performs
only 3. As predicted in theoretical traces, a same local computation can be performed twice.
In practice, the use of asynchronous drivers could be interesting when the decomposition
involves a larger number of subdomains distributed over non-homogeneous processing nodes.
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Figure 3.3: Asynchronous fixed point driver.
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for tuning multi-threaded parallel applications. Parallel Computing, 26:1253–1274, 2000.



Fourteenth International Conference on Domain Decomposition Methods
Editors: Ismael Herrera , David E. Keyes, Olof B. Widlund, Robert Yates c©2003 DDM.org

38. A preconditioner for the Schur complement domain
decomposition method

J.-M. Cros 1

1. Introduction. This paper presents a preconditioner for the Schur complement
domain decomposition method inspired by the dual-primal FETI method [4]. Indeed the
proposed method enforces the continuity of the preconditioned gradient at cross-points di-
rectly by a reformulation of the classical Neumann-Neumann preconditioner. In the case of
elasticity problems discretized by finite elements, the degrees of freedom corresponding to the
cross-points coming from domain decomposition, in the stiffness matrix, are separated from
the rest. Elimination of the remaining degrees of freedom results in a Schur complement ma-
trix for the cross-points. This assembled matrix represents the coarse problem. The method
is not mathematically optimal as shown by numerical results but its use is rather economical.
The paper is organized as follows: in sections 2 and 3, the Schur complement method and
the formulation of the Neumann-Neumann preconditioner are briefly recalled to introduce
the notations. Section 4 is devoted to the reformulation of the Neumann-Neumann precon-
ditioner. In section 5, the proposed method is compared with other domain decomposition
methods such as generalized Neumann-Neumann algorithm [7][9], one-level FETI method
[5] and dual-primal FETI method. Performances on a parallel machine are also given for
structural analysis problems.

2. The Schur complement domain decomposition method. Let Ω denote
the computational domain of an elasticity problem. Consider a symmetric and positive
definite linear system obtained by finite element discretization of the equations of equilibrium:

K u = f, (2.1)

with the stiffness matrix K, the vector of degrees of freedom u, and the right-hand side f .
The original domain Ω is partioned into ns non-overlapping subdomains Ωs. Let Ks be the
local stiffness matrix and us the vector of degrees of freedom corresponding to subdomain Ωs.
Let Ns denote the Boolean matrix mapping the degrees of freedom us into global degrees of
freedom u:

us = NsT

u. (2.2)

Then the stiffness matrix is obtained by the standard assembly process:

K =

ns∑
s=1

Ns Ks NsT

. (2.3)

The union of all boundaries between subdomains is Γ such that Γ = ∪ns
s=1Γ

s with Γs =
∂Ωs\∂Ω. For each subdomain the total set of degrees of freedom is then split into two subsets,
the interface degrees of freedom us

b associated with Γs and the other degrees of freedom us
i of

the subdomain Ωs. After this partition, the subdomain stiffness matrix, displacement vector,
right-hand side and Boolean matrix take the following form:

Ks =

[
Ks

ii Ks
ib

KsT

ib Ks
bb

]
,
{
us} =

{
us

i

us
b

}
,
{
fs} =

{
fs

i

fs
b

}
, and Ns = [Ns

i Ns
b ]. (2.4)
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374 CROS

With this notation, the linear system (2.1) takes the form:

K1
ii · · · 0 K1

ibN
1T

b

...
. . .

...
...

0 · · · Kns
ii Kns

ib N
nT

s
b

N1
b K1T

ib · · · Nns
b K

nT
s

ib

ns∑
s=1

Ns
b Ks

bbN
sT

b




u1

i

...
uns

i

ub

 =



f1
i

...
fns

i
ns∑

s=1

Ns
b fs

b


. (2.5)

After elimination of the interior degrees of freedom, the problem (2.5) reduces to a problem
(2.6) posed on the interface Γ:( ns∑

s=1

Ns
b

(
Ks

bb −KsT

ib Ks−1

ii Ks
ib

)
NsT

b

)
ub =

ns∑
s=1

Ns
b

(
fs

b −KsT

ib Ks−1

ii fs
i

)
. (2.6)

Defining the global Schur complement matrix S by:

S =

ns∑
s=1

Ns
b Ss NsT

b (2.7)

where the local Schur complement matrix is given by Ss = Ks
bb −KsT

ib Ks−1

ii Ks
ib. The linear

system (2.6) is solved iteratively without assembling S, using a preconditioned conjugate
gradient algorithm.

3. Neumann-Neumann preconditioners. For mechanical problems, the most
classical preconditioner used is the Neumann-Neumann method [1][7]. The preconditioner
(3.1) is defined by approximating the inverse of the sum of local Schur complement matrices
by the weighted sum of the inverses:

z = M r =

ns∑
s=1

Ns
b Ds Ss−1

Ds NsT

b r, (3.1)

where r is the conjugate gradient and z is the preconditioned conjugate gradient. For con-
vergence reasons [7], the diagonal weight matrices Ds must verify:

ns∑
s=1

Ns
b Ds NsT

b = IΓ. (3.2)

However, the convergence rate decreases rapidly for a large number of subdomains. Then,
the balancing domain decomposition method [8] includes a coarse problem in order to reduce
significantly this dependence on the number of subdomains. The balancing method or the
generalized Neumann-Neumann preconditioner [7] writes:

M =
(
I −G [GT S G]−1 GT S

) ns∑
s=1

Ns
b Ds S̃s−1

Ds NsT

b , (3.3)

with G = [N1
b D1Z1, ..., N

nf

b Dnf Znf ], (3.4)

where nf is the number of floating subdomains (subdomain without natural Dirichlet con-
dition), the block matrices Zs are boundary values of subdomain solutions with restriction

of rigid body modes on Γs, and S̃s−1
is the pseudo inverse of the local Schur complement

matrix. The method has been extended [9] for second or fourth order elasticity problems, by
using corner modes. By definition, a corner or a cross-point is a node belonging to more than
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two subdomains and also, for plate and shell problems, a node located at the beginning and
the end of each edge of each subdomain. Then, the block matrices Zs are boundary values of
subdomain solutions with successively one degree of freedom fixed to one at one corner, all
other corner degrees of freedom fixed to zero. The method is efficient, but the coarse matrix
[GT S G] is costly to build because it involves a product with S.

4. A new coarse problem. We propose to build a Neumann-Neumann precondi-
tioner by enforcing a continuous field at the cross-points. In the classical Neumann-Neumann
preconditioner with or without coarse problem, the field is continuous only by averaging the
contributions of each subdomain at the cross-points. Then, we introduce a new partitioning

c
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Ω4Ω1

2

r

rr

r

c

Figure 4.1: Mesh partition : corner (c) and remainder nodes (r)

(figure 4.1), by splitting us into two sub-vectors (4.1) where uc is a global solution vector
over all defined corner degrees of freedom and us

r is the remainder subdomain solution vector.

{
u
}

=

{
ur

uc

}
=


u1

r

...
uns

r

uc

 . (4.1)

The Boolean matrix Ns
c (4.2) maps the local corner equation to the global corner equation:

us
c = NsT

c uc. (4.2)

Then, we introduce new Boolean matrices (4.3) which extract from the interface Γs, the
cross-points and the remainder unknowns:

{
us} =

 us
r = [Rs

ri Rs
rb]

{
us

i

us
b

}
us

c = Rs
c us

b

 . (4.3)

According to this new partition of the degrees of freedom, the preconditioned gradient is
the restriction on Γ of the solution of problem (4.4) with subdomains connected by the
cross-points as shown in figure 4.1:

K1
rr · · · 0 K1

rcN
1T

c

...
. . .

...
...

0 · · · Kns
rr Kns

rc N
nT

s
c

N1
c K1T

rc · · · Nns
c K

nT
s

rc

ns∑
s=1

Ns
c Ks

ccN
sT

c




u1

r

...
uns

r

uc

=



f1
r

...
fns

r
ns∑

s=1

Ns
c fs

c


, (4.4)
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with fs
r = Rs

rb Ds NsT

b r (with fs
i = 0) and fs

c = Rs
c Ds NsT

b r. It is noted that by definition

of Ds, the quantity

ns∑
s=1

Ns
c fs

c =

ns∑
s=1

Ns
c Rs

c Ds NsT

b r is the restriction of gradient r at the

cross-points (rc). Thus the solution of (4.4) is written:

us
r = Ks−1

rr

(
fs

r −Ks
rc NsT

c uc

)
, (4.5)

uc =
( ns∑

s=1

Ns
c

(
Ks

cc −KsT

rc Ks−1

rr Ks
rc

)
NsT

c

)−1
ns∑

s=1

Ns
c

(
fs

c −KsT

rc Ks−1

rr fs
r

)
. (4.6)

Finally, the preconditioned gradient is given by:

z = Mr =

ns∑
s=1

Ns
b DsRsT

c NsT

c uc +

ns∑
s=1

Ns
b DsRsT

rb us
r, (4.7)

and the proposed preconditioner takes the form:

M =

ns∑
s=1

Ns
b Ds

(
Ns

c (Rs
c−KsT

rc Ks−1

rr Rs
rb)
)T

S−1
c

ns∑
s=1

(
Ns

c (Rs
c−KsT

rc Ks−1

rr Rs
rb)
)
DsNsT

b

+

ns∑
s=1

Ns
b Ds

[
RsT

rb Ks−1

rr Rs
rb

]
DsNsT

b . (4.8)

The first term is a coarse problem which couples all subdomains. We suppose that each sub-
domain owns enough cross-points to have local Neumann problems (4.5) well posed, otherwise
artificial cross-points are added. The coarse matrix is built easily by forming the matrices
Ss

c in each subdomain and by assembling Sc:

Sc =

ns∑
s=1

Ns
c

[
Ks

cc −KsT

rc Ks−1

rr Ks
rc

]
NsT

c =

ns∑
s=1

Ns
c Ss

c NsT

c . (4.9)

In comparison with coarse problem of the balancing method, the size of the coarse problem
Sc (equals to the number of degrees of freedom per node multiplied by the total number of
cross-points) is small, because of the definition of corner modes.

5. Numerical results. The parallel implementation of the different methods has
been developed within message passing programming environment. Each subdomain is al-
located to one processor. All coarse problems are assembled and solved by a skyline solver
during the iterations of the preconditioned conjugate gradient algorithm.

In all the tables below, GNN denotes the Neumann-Neumann preconditioner with coarse
grid solver based on rigid body modes (RBM) [8] or corner modes (CM) [9], NN+C is the
proposed Neumann-Neumann preconditioner with coarse grid solver, FETI-DP is a dual-
primal Finite Element Tearing and Interconnecting method [4] and FETI-1 is a classical
FETI method [5]. In the absence of other specification, the FETI methods are equipped with
the Dirichlet preconditioner. The stopping criterion to monitor the convergence is the same
in all cases presented and it is related to the global residual:

‖ K u− f ‖ / ‖ f ‖ ≤ 10−6. (5.1)

We investigate the numerical scalability of the proposed method with respect to the mesh
size h and to the number of subdomains ns. For this purpose, we consider a cylindrical shell
roof (figure 5.1) subjected to a loading of its own weight. The roof is supported by walls
at each end and is free along the sides. For symmetry reasons only a quarter of the roof is
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considered and is meshed with 3-node shell elements. We study three discretizations denoted
respectively by h (3,750 degrees of freedom), h/2 (14,406 degrees of freedom) and h/4 (56,454
degrees of freedom). The meshes h/2 et h/4 are obtained from the first one by global regular
refinement.

R
 = 7,62 m

 7,
62

 m
40°

Figure 5.1: A cylindrical shell roof, mesh h/2 decomposed into 24 subdomains

First, the three meshes were decomposed into 24 subdomains, we note (figure 5.1) that
automatic decomposition by METIS [6] induces rugged interfaces. The results were obtained
on a Origin 2000 system (64 processors) of “Pôle Parallélisme Île de France Sud”. We report

Table 5.1: A cylindrical shell roof, numerical scalability, ns = 24
MESH THICKNESS (m) GNN (CM) NN+C FETI-DP

h 0.1 30 iter. (726) 42 iter. (270) 44 iter. (270)
0.01 31 iter. 48 iter. 50 iter.
0.001 54 iter. 99 iter. 106 iter.

h/2 0.1 36 iter. (714) 41 iter. (270) 44 iter. (270)
0.01 37 iter. 48 iter. 50 iter.
0.001 45 iter. 74 iter. 80 iter.

h/4 0.1 39 iter. (738) 40 iter. (276) 45 iter. (276)
0.01 39 iter. 44 iter. 47 iter.
0.001 42 iter. 67 iter. 73 iter.

(table 5.1) the number of iterations to converge for the different methods and in brackets
the size of the coarse problem. The number of iterations remains roughly constant for the
different methods (thickness = 0.1 m and 0.01 m). However all the methods are sensitive to
the small thickness of the roof, and especially the FETI-DP method and the NN+C method.

The second test (table 5.2) consists in fixing the size of the problem (h/4, 56,454 degrees
of freedom, thickness = 0.1 m) but we change the number of subdomains (12, 24, 48). The
CPU times are reported (table 5.2) for both the preparation step (finite element operations,
building of coarse problem,...) and for the solution. It appears clearly that the building of
coarse problem takes a large part of the cpu time for GNN method. The two other methods
have a good speed-up.

We consider now the modal analysis of a plate (1×1 m) embeded on one side. The problem
is discretized in 10,086 degrees of freedom with 3-node shell elements. The mesh is partitioned
into 20 subdomains. The two lowest eigenmodes are obtained in five iterations of the subspace
iteration method. The conjugate gradient method with restart technique [2][5] is used to deal
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Table 5.2: A cylindrical shell roof, parallel scalability, mesh h/4
ns INTERFACE METHOD ITERATION CPU (sec.)

GNN (CM) 38 iter. (426) 46.22 + 9.81 = 56.03
12 3,144 NN+C 40 iter. (216) 6.42 + 10.38 = 16.80

FETI-DP 45 iter. (216) 6.38 + 12.79 = 19.17

GNN (CM) 39 iter. (738) 18.82 + 5.30 = 24.12
24 4,818 NN+C 40 iter. (276) 1.59 + 5.21 = 6.80

FETI-DP 45 iter. (276) 1.52 + 5.45 = 6.97

GNN (CM) 45 iter. (1602) 18.67 + 8.18 = 26.85
48 7,295 NN+C 51 iter. (630) 0.81 + 3.21 = 4.02

FETI-DP 56 iter. (630) 0.86 + 3.64 = 4.50

with successive and multiple right-hand sides. This technique is based on the exploitation
of previously computed conjugate directions. Figure 5.2 shows the iteration history with
respect to the number of right-hand sides using different methods, and we report also the
total number of iterations, the size of the coarse problem (in brackets) and the CPU times.
The GNN (CM) method converges quickly but the cost of one iteration is more important
than the other methods, because of the large size of the coarse problem. Similar results
are obtained for transient analysis. In addition, the solution of time-dependent problems by
the implicit Newmark algorithm calls for successive solution of the linear system with the
same matrix [M + β ∆t2 K]. In this case, there are no longer floating subdomains due to
the inertia term. Then, building a coarse grid based on the rigid body modes of stiffness
matrices Ks becomes costly [3]. While the methods using the corner modes are not affected
by this shifting of M .
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GNN (CM) : 278 itr. (582), 1.97 + 7.72 = 9.69 s
NN+C : 332 itr. (222), 0.22 + 4.00 = 4.22 s

FETI-DP : 361 itr. (222), 0.21 + 4.36 = 4.57 s

Figure 5.2: A shell problem, modal analysis

Another test example concerns a plane stress problem with a square (1×1 m) embeded on
one side and subjected to a distributed load on the opposite side. The problem is discretized
in 20,402 degrees of freedom with 3-node elements (101×101 nodes). The mesh is partitioned
into 14 and 28 subdomains. The NN+C method is proved (table 5.3) to be efficient for this
kind of problems.

Finally, we consider a three-dimensional cantilever beam (4×4×40 m) subjected to a
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Table 5.3: 2D elasticity problem, 3-node elements, 101×101 nodes, 20,402 d.o.f.
ns GNN (RBM) GNN (CM) NN+C FETI-DP FETI-1

14 24 iter. (30) 14 iter. (132) 20 iter. (52) 22 iter. (52) 24 iter. (30)

28 26 iter. (72) 14 iter. (286) 23 iter. (108) 24 iter. (108) 26 iter. (72)

bending load. The finite element discretization is done with 8-node brick elements (12×12×76
nodes, 32,832 degrees of freedom). The beam (figure 5.3) is cut into 20 and 40 subdomains.

Figure 5.3: A cantilver beam, 20 subdomains (interface 7,614 d.o.f.) and 40 subdo-
mains (interface 10,262 d.o.f.)

Table 5.4: Cantiler beam, 32,832 d.o.f.
FETI-DP FETI-1

ns GNN (RBM) NN+C DIRICHLET LUMPED DIRICHLET LUMPED

20 44 iter. 30 iter. 31 iter. 60 iter. 43 iter. 67 iter.
(102) (852) (102)

40 54 iter. 30 iter. 30 iter. 53 iter. 58 iter. 77 iter.
(216) (1968) (216)

For this analysis, the FETI methods use equally the lumped preconditioner. Table 5.4 sum-
marizes the results with the size of the coarse problem (in brackets). Methods using corner
modes have the best convergence rate, but the size of the coarse problem is very large (almost
20% of the interface for 40 subdomains). This size can be reduced easily. In fact, with brick
elements, the number of cross-points can be chosen just enough to remove the singularities
in subdomains.

6. Conclusion. In this paper, we have presented a modified Neumann-Neumann pre-
conditioner validated by several examples. The results suggest that the proposed method
(NN+C method) is numerically scalable with respect to the number of subdomains and to
the mesh size. On the representative examples considered the NN+C method has the same
performance as the FETI-DP method. Moreover, from the viewpoint of CPU time, the
proposed method outperforms the optimal but expensive GNN preconditioner. However,
the results depend largely on the implementation of the algorithm for solving the coarse
problem.
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39. Interface Preconditioners for Splitting Interface
Conditions in Air Gaps of Electrical Machine Models

H. De Gersem1,2, S. Vandewalle3, M. Clemens1, T. Weiland1

1. Introduction. Electrical machine design is typically based on finite element (FE)
simulations of steady-state working conditions. Motional eddy current effects are commonly
resolved by transient simulation, which may be too expensive if only steady-state behaviour
has to be simulated. This paper offers a time-harmonic FE approach for machines operating
at steady-state, incorporating motional eddy current effects. The formulation incorporates
interface conditions connecting the boundary of one stator model to the boundaries of several
rotor models based on Fast Fourier Transforms and restriction operations. The matrix-
free discretisation of the interface conditions excludes the use of algebraic iterative solution
techniques. Instead, techniques related to iterative substructuring are proposed to solve the
model.

2. Finite element machine models. Two common approaches for simulating
electrical machines are the transient approach and the time-harmonic approach. The tran-
sient approach accounts for motional eddy currents by the Lagrange technique: between two
successive time steps, the previous solution is azimuthally moved together with the rotor
part. Accordingly, the interface conditions between stator and rotor are updated. The rela-
tive motion of both motor parts can be modelled by a moving band technique [5], a hybrid
FE, boundary-element approach [8], discontinuous finite elements [1] or a sliding surface tech-
nique, possibly resolved by mortar finite elements [2]. Transient methods are however too
expensive when only stationary operations have to be simulated.

For electrical machines excited by alternating current sources and rotating at constant
velocities, formulations in frequency domain are preferred. The simplest case is when only
one frequency f is present in the excitating voltages. Then, one can adopt the time-harmonic
formulation

∇× (ν∇×A) + jωσA = −σ∇V (2.1)

with the phasor A related to the magnetic vector potential A by

A(x, y, z, t) = Re
{
A(x, y, z)ejωt

}
, (2.2)

ν the reluctivity, σ the conductivity, V the phasor of the voltage and ω = 2πf the pulsation.
Time-harmonic simulations are remarkably accurate and extremely efficient for the steady-
state simulation of devices supplied with alternating currents. Unfortunately, accounting for
motional effects in such simulations is not straightforward.

For many machines, a 2D FE model of the cross-section of the machine, extended with
an equivalent circuit modelling the electric connections at the front and rear machine ends,
achieves a sufficient accuracy [12]. Then, the vectorial PDE (2.1) simplifies to a scalar PDE
in terms of the z-component Az of A:

− ∂

∂x

(
ν

∂Az

∂x

)
− ∂

∂y

(
ν

∂Az

∂y

)
+ jωσAz =

σ

�z
∆V (2.3)
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Ω̃0

stator

Ω̃p

rotor

ω/λ

ωm

θθ′

∇× (ν∇×A) + jωσA = −σ∇V

Az(θ, t) = Re
{

cλej(ωt−λθ)
}

coordinate transformation

θ′ = θ − ωmt

Az(θ
′, t) = Re

{
cλej((ω−λωm)t−λθ′)

}
∇× (ν∇×A) + j (ω − λωm)︸ ︷︷ ︸

ωs,λ

σA = −σ∇V

Figure 3.1: Slip transformation technique, illustrated for a simplified machine model.

with �z the device length and ∆V the voltage drop between the machine’s front and back
side. The discretisation of (2.3) by linear triangular FE shape functions Ni(x, y) yields the
system of equations

Ku + g = f (2.4)

with u containing the degrees of freedom for Az,

Kij =

∫
Ω

(
ν

∂Ni

∂x

∂Nj

∂x
+ ν

∂Ni

∂y

∂Nj

∂y
+ jωσNiNj

)
dΩ , (2.5)

f
i

=

∫
Ω

σ

�z
∆V Ni dΩ , (2.6)

g
i

= −
∫

∂Ω

ν
∂Az

∂n
Ni dΓ (2.7)

and ∂/∂n the normal derivative outward to Ω.

3. Slip transformation. Only in a very particular case, i.e., if the air gap field is a
rotating wave, it is possible to account for motional eddy currents while keeping the classical
time-harmonic formulation (2.3). Consider the simplified machine model of Fig. 3.1. Suppose
the field at a circular interface between stator and rotor equals the rotating wave

Az(θ, t) = Re
{

cλej(ωt−λθ)
}

(3.1)

with the phasor cλ, the pole pair number λ and the azimuthal coordinate θ along the interface.
An observer attached to the stator experiences the wave as a cosine rotating at the velocity
ω/λ along the interface. Consider a second observer attached to the rotor and hence inheriting
its rotation at a constant mechanical velocity ωm. The corresponding azimuthal coordinate
θ′ along the interface is related to θ by

θ′ = θ − ωmt . (3.2)

The rotating observer experiences the field at the interface as

Az(θ
′, t) = Re

{
cλej((ω−λωm)t−λθ′)

}
(3.3)

which is also a rotating wave with the same phasor and pole pair number, but with a different
pulsation ωs,λ = ω − λωm, called the slip pulsation. Hence, phenomena at the stator side
induce phenomena at the rotor side at slip pulsation. Motional eddy currents are easily
incorporated in (2.3) by replacing the pulsation ω by the slip pulsation ωs,λ for the rotating
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Figure 4.1: Scheme of the air gap flux decomposition approach illustrating the splitting
of the total stator flux φ0 into three parts φ1, φ2 and φ3.

model parts. This procedure is called slip transformation. The assumption of a rotating
wave form as field distribution in the air gap is approximately true for three-phase induction
machines. Then, time-harmonic steady-state simulation with slip transformation commonly
gives reliable results [4]. Other alternating current machines, e.g. single-phase induction
machines, do not feature this property. Hence, time-harmonic simulation is at first glance
not applicable.

4. Decomposition of the air gap field. The slip transformation technique is ex-
tendable to cases with more general air gap field distributions. The key point is to decompose
the arbitrary air gap field into rotating field components and distribute these components
towards distinct rotor models such that slip transformations can be defined for each rotating
component independently [3]. Consider a model consisting of one stator model Ω0 and n
rotor domains Ωp, p = 1, . . . , n (see Fig. 4.1 for an example with n = 3). The stator and
rotor models share a circular interface Γb in the middle of the air gap. For each rotor do-
main, the slip pulsation ωp = ω − λpωm is selected according to one of the field component
present at Ωp, i.e., the component with pole pair number λp. Because the stator windings
do not experience eddy currents, ω0 is set to zero. For each submodel independently, a FE
subsystem is set up:[

Kp,aa Kp,ab

Kp,ba Kp,bb

] [
up,a

up,b

]
+

[
0

g
p,b

]
=

[
f

p,a

f
p,b

]
, p = 0, . . . , n (4.1)

where the subscripts a and b distinguish between degrees of freedom associated with inner
nodes and degrees of freedom associated with nodes at Γb. Since in general ωp1 �= ωp2 , the
FE stiffness matrices for the rotor domains are different although they feature the same FE
mesh and reluctivities. The subsystems are collected in the block diagonal matrices Kaa,
Kab, Kba and Kbb, the vectors of unknowns ua and ub, the boundary terms g

b
and the load
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vectors f
a

and f
b
. For convenience, assume all submodels have equidistant and matching

grids at Γb. An appropriate selection of rotating field components is performed by interface
conditions applied at Γb:

Fup,b −RpFu0,b = 0, p = 1, . . . , n (4.2)

with F denoting the discrete Fourier transform and Rp a set of restriction operators such
that

∑n
p=1 Rp = I. The interface conditions (4.2) take the distribution of Az at the stator

side of Γb (u0,b), transform this into harmonic components (Fu0,b), next restrict these to
a particular subset (RpFu0,b) and finally equal this subset of harmonics to the harmonic
components of the distribution of Az at one of the rotor sides of Γb (Fup,b). The choices of
the sets {Rp} and {ωp} are motivated by technical considerations [3]. For many electrical
machines, only a few harmonics are responsible for the major machine behaviour whereas the
remaining harmonics only have a marginal influence. Therefore, an important rotating field
component λp is assigned to an individual rotor model Ωp equipped with the corresponding
slip pulsation ωp = ω − λpωm. The remaining harmonics are arbitrarily propagated to one
of the already existing rotor models. Eddy current phenomena due to these harmonics are
only approximately taken into account. The constraints (4.2) are added to the FE system
(4.1). The boundary integral terms g

p,b
are resolved in terms of a set of Lagrange multipliers

ξ, i.e., g
b

= BHξ. The FE model including air gap flux decomposition corresponds to the
saddle-point problem  Kaa Kab 0

Kba Kbb BH

0 B 0

 ua

ub

ξ

 =

 f
a

f
b

0

 (4.3)

with

B =

 −R1F F
...

. . .

−RnF F

 . (4.4)

Although the FE system part is complex symmetry, this property is not maintained in the
system (4.3).

It is possible to eliminate the inner degrees of freedom up,a with respect to the degrees
of freedom up,b at Γb for each submodel independently. The Schur complement subsystems

Dpup,b = q
p

with stiffness matrices Dp = Kp,bb − Kp,baK−1
p,aaKp,ab and load vectors q

p
=

f
p,b
−Kp,baK−1

p,aaf
p,a

, are collected in Dub = q. The system with interface conditions reads[
D BH

B 0

] [
ub

ξ

]
=

[
q

0

]
. (4.5)

Two other reductions can be considered: one eliminating all u and hence left with the La-
grange multipliers only:

Sξ = BD−1q (4.6)

with S = BD−1BH and one eliminating all ξ and up,b, p = 1, . . . , n and hence left with an
independent set of degrees of freedom for the magnetic vector potential:[

I
QH

] [
Kaa Kab

Kba Kbb

] [
I

Q

] [
ua

u0,b

]
=

[
I

QH

] [
f

a

f
b

]
; (4.7)

QH =
[

I F HR1F · · · F HRnF
]

(4.8)

with F H = F−1 the inverse discrete Fourier transform. The operator Q assigns a particular
set of rotating field components generated by the stator winding at Γb to each of the rotor
sides of Γb.
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5. Solution of the coupled system. For computational efficiency, the operators
F , F H , Rp and B are not constructed as matrices. Instead, we apply Fast Fourier Transforms
(FFTs) for F and F H and explicit restrictions for Rp. This excludes the usage of direct
solution and algebraic preconditioning techniques. The coupled systems (4.3), (4.5), (4.6)
and (4.7) are neither Hermitian nor complex symmetric and are solved by a preconditioned Bi-
Conjugate Gradient Stabilised (BiCGStab) method [10]. An appropriate algebraic multigrid
preconditioner K̃AMG is available for the FE matrix part with circuit equations [9]. The block
corresponding to the Lagrange multipliers has to be preconditioned by an approximation to
system S [11, 13].

The constraint equation Bub = 0 enforces flux continuity whereas the relation g
b

= BHξ
ensures the correct distribution of the magnetic field strength. The Lagrange multipliers
represent the Fourier coefficients of the boundary integral terms g

p,b
of the individual rotor

domains. This physical interpretation indicates a possible problem-based preconditioning
technique. A preconditioner is constructed based on a classical analytical model for cylin-
drical induction machines which neglects the stator and rotor slotting and the saturation of
the ferromagnetic materials. The approximate model consists of a set of concentric rings,
each with equivalent homogeneous material properties [7]. Here, the stator and the rotor are
represented by a single homogeneous domain: the stator domain Ω̃0 with equivalent reluctiv-
ity ν̃st and the rotor domains Ω̃p with equivalent reluctivities ν̃rt, equivalent conductivities
σ̃rt and the slip pulsations ωp (Fig. 3.1). The analytical relations for the Fourier coefficients
h̃p,b,λ of the magnetic field strength at the stator and rotor sides of Γb with respect to the
Fourier coefficients ãp,b,λ of Az at Γb are

h̃0,b,λ = ν̃st

λ

rb

γλ + γ−λ

γλ − γ−λ
ã0,b,λ (5.1)

h̃p,b,λ = −ν̃rt

βpI ′
λ (βprb)

Iλ (βprb)
ãp,b,λ (5.2)

with the factor βp =
√

jωpσrt/νrt, Iλ the modified Bessel function of order λ, γ = rb/rs the
stator form factor, rb the radius of Γb and rs the outer radius of the stator. Weighting (5.1)
and (5.2) by the FE shape functions and integration along Γb yields an approximate relation
between ãp,b,λ and the weighted magnetic field strengths g̃

p,b,λ
they exert at the stator and

rotor sides of Γb:

g̃
0,b,λ

= ν̃st∆θκλλ
γλ + γ−λ

γλ − γ−λ
ã0,b,λ (5.3)

g̃
p,b,λ

= ν̃rt∆θκλ
βprbI

′
λ (βprb)

Iλ (βprb)
ãp,b,λ (5.4)

with κλ = sin(λ∆θ/2)
λ∆θ/2

and ∆θ the angle between two successive FE nodes at Γb. Expressions

(5.3) and (5.4) are gathered in the matrix systems g̃
p,b

= H̃pãp,b, further collected in g̃
b

=

H̃ãb, combined into a preconditioner for D and inserted in an approximation to S:

D̃ = diag
(
F HH̃0F, F HH̃1F, . . . , F HH̃pF

)
, (5.5)

S̃dyn = BD̃−1BH = diag
(
H̃−1

1 + R1H̃
−1
0 , . . . , H̃−1

n + RnH̃−1
0

)
(5.6)

where the factors Rp introduce appropriate weights in order to account for the flux splitting
at Γb. A similar approximation S̃stat is built based on a static analytical model with ωp = 0
for all rotor models. Since all matrices in (5.6) are diagonal, the cost of applying S̃−1

dyn or

S̃−1
stat to a vector is negligible. The systems (4.3), (4.5) and (4.6) can be solved by BiCGStab
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Table 6.1: Number of iteration of BiCGStab with a block Jacobi preconditioner applied
to a small motor model.

1 rotor domain 6 rotor domains 12 rotor domains

conductivity σ in S/m 50 500 5000 50 500 5000 50 500 5000

K S 3 3 3 3 3 3 3 3 3

K̃AMG S 6 6 6 7 6 6 7 6 6

K̃ILU(0) S 51 46 24 125 109 57 173 145 57

K S̃ILU(0) 21 19 13 200 184 98 198 195 100

K̃ILU(0) S̃ILU(0) 43 43 24 59 71 50 61 101 50

K S̃stat 5 5 7 5 5 7 5 5 5

K̃AMG S̃stat 6 14 20 12 24 53 12 24 55

K̃ILU(0) S̃stat 51 52 44 110 167 200 150 192 198

K S̃dyn 3 3 3 3 3 3 3 3 3

K̃AMG S̃dyn 7 6 6 7 6 6 7 6 6

K̃ILU(0) S̃dyn 78 49 34 125 109 57 173 145 57

using as a preconditioner diag(K̃, S̃), diag(D̃, S̃) and S̃ respectively. We prefer to solve (4.3),
preconditioned by diag(K̃, S̃).

6. Numerical experiments. The performance of the preconditioner is tested for a
small technical induction machine model (Table 6.1). The system (4.3) is solved by BiCGStab
and preconditioned by a block Jacobi preconditioner of which the diagonal blocks are indi-
cated in the table. The dependence of the number of iterations is checked with respect to the
number of rotor domains and the importance of the eddy current effects, characterised by
the conductivity. The system (4.3) preconditioned by diag(K, S) has three eigenvalues and,
hence, converges in 3 steps [6]. Replacing the exact solution of the FE system part by the
AMG preconditioner K̃AMG causes only a small increase of the number of iterations. The
next numerical test with the Incomplete LU-preconditioner without fill-in (ILU(0)) K̃ILU(0)

indicates that, for this problem, the choice of a good preconditioner for the FE part is more
critical than the choice of the preconditioner for the Lagrange multiplier space. Notice that
the construction of a Schur complement preconditioner using the preconditioner for the FE
part, e.g. S̃ILU(0) = BK̃−1

ILU(0)B
H , is in practice too expensive. The number of iterations with

the ILU(0) preconditioner may decrease with respect to increasing conductivity since then,
the FE system becomes more diagonally dominant which explains the better performance of
ILU(0). The last two numerical experiments demonstrate the performance of the precondi-
tioners S̃stat and S̃dyn based on a static and dynamic analytical model respectively. For the
static Schur complement preconditioner S̃stat, the number of iterations increases significantly
with the conductivity due to the fact that eddy current effects are neglected in the Schur
complement preconditioner. The more sophisticated analytical model from which S̃dyn is
constructed, leads to an iteration number independent from the conductivity. Because of the
factors Rp in the Schur complement preconditioners, the number of iterations is not affected
by the number of rotor domains.

7. Capacitor motor. The air gap flux decomposition technique is applied to a ca-
pacitor motor (Fig. 7.1). The fundamental forward and backward rotating air gap flux com-
ponents, i.e., those with pole pair numbers 1 and −1, produce the most important torque
components. Two rotor models are considered: Ω1 for all components with positive pole pair
numbers and Ω2 for all components with negative pole pair numbers (Fig. 7.2). At Ω1, the
slip pulsation ω1 = ω−ωm is applied whereas at Ω2, the slip pulsation ω2 = ω +ωm, is used.
Hence, only motional eddy current effects with respect to the fundamental rotating air gap
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(a)

(b)

Figure 7.1: (a) Stator
and (b) rotor of the
capacitor motor.
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Figure 7.2: Plot of the magnetic flux lines at t0 and t1 of a
capacitor motor operating at 1500 rotations per minute.

field components are correctly taken into account. The flux patterns plotted at two instants
of time shifted over a quarter of a period, show the true alternating true rotor field φ0 and
the rotating forward and backward field components φ1 and φ2.

8. Conclusions. Motional eddy currents are considered within time-harmonic FE
machine models by decomposing the air gap flux into rotating components and distributing
these to independent rotor models. An appropriate solution scheme for the FE system incor-
porating interface conditions based on FFTs, consists of the BiCGStab algorithm and block
preconditioning based on AMG for the FE part and an approximation for the interface Schur
complement matrix based on approximate analytical machine models.
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40. Indirect Method of Collocation for the Biharmonic
Equation

M.A. Diaz1, I. Herrera2

1. Introduction. Indirect methods of collocation (Trefftz-Herrera collocation), that
were introduced in previous papers [5],[2], are formulated and applied to the biharmonic equa-
tion in two dimensions in combination with orthogonal collocation. The new approach allows
relaxed continuity conditions. Two alternative procedures are considered and compared. The
first one consists on the straight-forward application of the Trefftz-Herrera indirect colloca-
tion method to the biharmonic equation. From another hand, the second one uses the split
formulation, also known as the mixed method of Ciarlet and Raviart, in which an auxiliary
function is introduced and the biharmonic equation is rewritten as a coupled system of two
Poisson equations. Then, to each one of these Poisson equations, Trefftz-Herrera indirect
collocation method is applied. As illustration, some preliminary results of application of the
last one approach to a numerical example are presented.

2. First Approach: Trefftz-Herrera Formulation for the Biharmonic
Equation. In this Section, the general theory of Trefftz-Herrera DDM, presented in [6],
will be applied to the biharmonic equation, when the problem is defined in a space of an
arbitrary number of dimensions. The procedures are applicable to any kind of boundary
conditions for which the problem is well-posed.

The notation is the same as that introduced in [6] and [3]. In particular, uΩ ∈ D̂1,
u∂ ∈ D̂1 and uΣ ∈ D̂1 are any functions which satisfy the differential equation, the external
boundary conditions and the jump conditions, respectively. and A partition of a domain Ω
is being considered and the internal boundary is denoted by Σ (see [6] for further details).

Then, the boundary value problem with prescribed jumps (BVPJ) to be considered is

∆2u = fΩ, in Ω (2.1)

subjected to the boundary conditions

u = g0
∂ and ∆u = g2

∂ , on ∂Ω (2.2)

and the jump conditions

[u] = j0
Σ,

[
∂u

∂n

]
= j1

Σ, [∆u] = j2
Σ,

[
∂∆u

∂n

]
= j3

Σ, on Σ (2.3)

Since the biharmonic operator L of Eq.(2.1) is self adjoint, i.e., L ≡ L∗, then its formal
adjoint operator L∗ is given by:

L∗w ≡ ∆∆w; (2.4)

Introducing the bilinear vector valued function D(u, w)

D(u, w) ≡ w∇∆u + ∆w∇u−∆u∇w − u∇∆w (2.5)

which satisfies the property that

wLu− uL∗w = ∇ · D (u, w) (2.6)

1Instituto de Geof́ısica Universidad Nacional Autónoma de México (UNAM),
mdiaz@tonatiuh.igeofcu.unam.mx

2Instituto de Geof́ısica Universidad Nacional Autónoma de México (UNAM) , iher-
rera@servidor.unam.mx
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where

wLu ≡ −∇w · (∇∆u) +∇ · (w∇∆u)

= ∆w∆u +∇ · (w∇∆u−∇w∆u)
(2.7)

and
uL∗w ≡ ∆u∆w +∇ · (u∇∆w −∇u∆w) (2.8)

Recalling that

D (u, w) · n = B (u, w)− C∗ (u, w) (2.9)

− [D (u, w)] · n = J (u, w)−K∗ (u, w) (2.10)

where

J (u, w) = −D ([u] , ẇ) · n; and K∗ (u, w) = D (u̇, [w]) · n (2.11)

Then, the bilinear functions B(u, w) and C(w, u) in according to the boundary conditions
given by Eqs. (2.2) may be defined as follow:

B(u, w) ≡ (∆w)
∂u

∂n
− u

∂

∂n
(∆w) , C(w, u) ≡ (∆u)

∂w

∂n
− w

∂

∂n
(∆u) (2.12)

and correspondingly J (u, w) and K(w, u) are defined as:

J (u, w) ≡ [u]
˙∂∆w

∂n
−
[

∂u

∂n

]
∆̇w + [∆u]

˙∂w

∂n
−
[

∂∆u

∂n

]
ẇ, (2.13)

K(w, u) ≡ − u̇

[
∂∆w

∂n

]
+

∂̇u

∂n
[∆w]− ∆̇u

[
∂w

∂n

]
+

˙∂∆u

∂n
[w] (2.14)

Introducing the weak decompositions {SJ , RJ} and {S, R} of J and K, respectively, as
was defined in [6]:

SJ(u, w) ≡ −ẇ

[
∂∆u

∂n

]
− ∆̇w

[
∂u

∂n

]
, RJ(u, w) ≡ [u]

˙∂∆w

∂n
+ [∆u]

˙∂w

∂n
(2.15)

S∗(u, w) ≡ − u̇

[
∂∆w

∂n

]
− ∆̇u

[
∂w

∂n

]
, R∗(u, w) ≡ [w]

˙∂∆u

∂n
+ [∆w]

∂̇u

∂n
(2.16)

Thus, the bilinear functionals P , B, J , SJ , RJ , Q∗, C∗, K∗, S∗ and R∗ are defined in
the same fashion of Eqs. (5.6)-(5.8) given in Ref. [6], by means of corresponding integrals.

Define Ñ1 ≡ NP ∩ NB ∩ NRJ and Ñ2 ≡ NQ ∩ NC ∩ NR, but Ñ1 ≡ Ñ2 ≡ Ñ since the
biharmonic operator is self adjoint. Then, a function φ ∈ Ñ , if and only if

∆∆φ = 0, in Ωi (i = 1, ..., E)
φ = ∆φ = 0, on ∂Ω
[φ] = [∆φ] = 0, on Σ

(2.17)

Applying the Theorem of Section 10 of Ref. [6] a Trefftz-Herrera domain decomposition
procedure can be obtained:

Assume E ⊂ Ñ is a system of weighting functions TH-complete for S∗ [6]. Let uP ∈ D̂1

be such that
PuP = PuΩ, BuP = Bu∂ and RJuP = RJuΣ (2.18)
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Then there exists v ∈ Ñ such that

−〈S∗v, w〉 = 〈SJ (uP − uΣ) , w〉 , ∀w ∈ E ⊂ Ñ (2.19)

In addition, define û ∈ D̂1 by û ≡ uP +v . Then û ∈ D̂1 contains the sought information.
Even more, û ≡ u, where u is the solution of the BVPJ.

The general outlines about the construction of a TH-complete system of weighting func-
tions E ⊂ Ñ for the biharmonic equation are given in [4]. As is known, TH-complete systems
for such problems in several dimensions are constituted by infinite families, but, in numerical
implementation, only one can use finite sets of test functions produced by means of numerical
methods.

In particular, one may construct such systems of test functions solving local BVP prob-
lems of Eqs. (2.17) applying collocation method for families of piecewise polynomials of
degree less or equal to G on the internal boundary Σ, where G is a given number, in the
same manner as was developed in [5],[2] for the second order elliptic equation. In this sense,
an indirect Trefftz-Herrera collocation method is obtained, which possesses the property that
its global matrix is symmetric and positive definite.

3. Second Approach: Trefftz-Herrera Collocation for the Biharmonic
Equation using the splitting formulation. A common approach for solving the
biharmonic equation is to use the splitting principle in which an auxiliary function v = ∆u
is introduced and the biharmonic equation is rewritten as a system of two Poisson equations
in the form [7]: {

−∆u = −v;
−∆v = −fΩ;

in Ω (3.1)

In the context of the finite element Galerkin method, this approach is known as the mixed
method of Ciarlet and Raviart [1].

Using the splitting principle of Eq.(3.1), the boundary value problem with prescribed
jumps (BVPJ) of the previous section Eqs. (2.1), (2.2) and (2.3), becomes one of solving
sequentially two nonhomogeneous Dirichlet problems with prescribed jumps for Poisson’s
equation:


−∆u = −v; in Ω
u = g1; on ∂Ω
[u] = j0,

[
∂u
∂n

]
= j1 on Σ

and


−∆v = −fΩ; in Ω
v = g2; on ∂Ω
[v] = j2,

[
∂v
∂n

]
= j3, on Σ

(3.2)

The resulting coupled system of equations (3.2) can be solved applying the indirect
Trefftz-Herrera collocation procedures, developed in [5],[2] for the second order elliptic equa-
tion, sequentially to each one of the BVPJs of Eq. 3.2).

In short, the algorithms reported in papers [5],[2] have the following features:

Algorithm I.- The family of test functions, using linear polynomials on the internal
boundary Σ, contained only one member associated with each internal node. This leads to
an algorithm in which only one degree of freedom is associated with each internal node. The
resulting global matrix for each one of the BVPJs of Eqs. (3.2) is nine-diagonal, symmetric
and positive definite.

Algorithm II.- Using cubic polynomials on the internal boundary Σ, a family of test
functions is composed by three functions (or less, at those nodes in which some of the functions
of this family do not satisfy the required zero boundary condition on the external boundary)
associated with each node, including boundary nodes. This leads to an algorithm in which
three, or less, degrees of freedom are associated with each node. The global matrix for each
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one of the BVPJs of Eqs. (3.2) is block nine-diagonal, with blocks 3x3, symmetric and
positive definite.

Here, it is worth to point out, that the resulting systems in both previous algorithm
are symmetric and positive definite and consequently they can be solved using a Conjugate
Gradient Method. In contrast, hermite collocation method does not enjoy this property.

4. The Numerical Experiments. In this section, some preliminary results of ap-
plication of the second approach to a numerical example are presented.

The numerical experiments were carried out for the following BVPJ of the biharmonic
equation in two dimensions:

∆2u = fΩ; in Ω = [0, 1]× [0, 1] (4.1)

where the right hand side term is fΩ = 24 (ex + ey) +
(
y2 − 1

)2
ex +

(
x2 − 1

)2
ey +

8
[(

3y2 − 1
)
ex +

(
3x2 − 1

)
ey
]

and the corresponding analytical solution has the expression:

u(x, y) =
(
y2 − 1

)2
ex +

(
x2 − 1

)2
ey (4.2)

Consequently, the imposed boundary conditions implied by the analytical solution were:

u =
(
y2 − 1

)2
ex +

(
x2 − 1

)2
ey; on ∂Ω (4.3)

∆u =
(
y2 − 1

)2
ex + 4

(
3x2 − 1

)
ey + 4

(
3y2 − 1

)
ex +

(
x2 − 1

)2
ey; on ∂Ω (4.4)

and it was considered the continuous case, i.e, the jump conditions imposed were taken equal
to zero.

The numerical results are summarized in Figures 4.1 and 4.2. Each one of the examples
was solved in a uniform rectangular partition (E = Ex = Ey) of the domain using Algorithm
I and, subsequently, Algorithm II, for which the weighting functions are piecewise linear and
piecewise cubic, respectively, on Σ. The convergence rate of the error -measured in terms of
the norm ‖.‖∞ - is O

(
h2
)

and O
(
h4
)

respectively, as shown in those figures.

5. Conclusions. In the present article, the indirect approach to domain decomposi-
tion methods has been applied to the BVPJ for the biharmonic equation using two different
approaches. In the first one, the Trefftz-Herrera indirect method has been applied in straight-
forward manner to the biharmonic equation without further elaboration, while, in the second
one, a BVPJ for the biharmonic equation has been reduced to a system of two BVPJs for
Poisson’s equation. In both cases, when the numerical procedure which is used for producing
the local solutions is collocation, a non-standard method of collocation is obtained which
possesses several attractive features. Indeed, a reduction with respect to other collocation
methods, in the number of degrees of freedom associated with each node is obtained. This is
due to the relaxation in the continuity conditions required by indirect methods-. Also, the
global matrix is symmetric and positive definite when so is the differential operator, while in
the standard method of collocation, using Hermite cubics, this does not happen. In addition,
it must be mentioned that the boundary value problem with prescribed jumps at the inter-
nal boundaries can be treated as easily as the smooth problem -i.e., that with zero jumps-,
because the solution matrix and the order of precision is the same for both problems. It
must be observed also that, when the indirect method is applied, the error of the approxi-
mate solution stems from two sources: the approximate nature of the test functions, and the
fact that TH-complete systems of test functions -which are infinite for problems in several
dimensions- are approximated by finite families of such functions.
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Figure 4.1: Convergence rate of Trefftz-Herrera collocation method for Algorithm I
(using linear weighting functions).
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Figure 4.2: Convergence rate of Trefftz-Herrera collocation method for Algorithm II
(using cubic weighting functions).
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41. Toward scalable FETI algorithm for variational
inequalities with applications to composites

Zdeněk Dostál, David Horák, Oldřich Vlach 1

1. Introduction. In this paper we review our results related to development of scal-
able algorithms for solution of variational inequalities. After describing a model problem,
we apply the FETI methodology to reduce it to the quadratic programming problem with
equality and non-negativity constraints. Then we present the basic algorithm with a ”nat-
ural coarse grid” proposed by Dostál, Friedlander, Santos and Gomes [9, 10, 12] and report
recent theoretical results that may be used either to prove scalability of parts of the basic
algorithm or to modify the basic algorithm so that it is scalable. Finally we give results of
parallel solution of the model problem discretized by up to more than eight million of nodal
variables and show application of the algorithm to analysis of fibrous composite material that
was studied by Wriggers [20]. The results related to development of scalable algorithms for
elliptic variational inequalities include experimental evidence of numerical scalability of the
algorithm based on monotone multigrid [17] by Kornhuber. Another interesting algorithm
was proposed by Schöberl [18]. Also the authors of the original FETI method proposed
its adaptation to the solution of variational inequalities and gave experimental evidence of
numerical scalability of their algorithm with a coarse grid initial approximation [14]. Let
us recall that the FETI (Finite Element Tearing and Interconnecting) method proposed by
Farhat and Roux [16] for solving of linear elliptic boundary value problems is based on the
decomposition of the spatial domain into non-overlapping subdomains that are ”glued” by
Lagrange multipliers. Using the so called ”natural coarse grid”, Farhat, Mandel and Roux [15]
modified the basic FETI algorithm so that they were able to prove its numerical scalability.
These results are key ingredients in our research.

2. Model problem. Let Ω = Ω1 ∪ Ω2, Ω1 = (0, 1)× (0, 1) and Ω2 = (1, 2)× (0, 1)
denote open domains with boundaries Γ1, Γ2 decomposed into Γ1

u = {(x1, x2) ∈ Γ1 : x1 = 0},
Γi

c = {(x1, x2) ∈ Γi : x1 = 1}, and Γi
f formed by the remaining sides of Ωi, i = 1, 2. Let

H1(Ωi) denote the Sobolev space of first order on the space L2(Ωi) of the functions on Ωi

whose squares are integrable in the sense of Lebesgue. Let

V 1 =
{
v ∈ H1(Ω1) : v1 = 0 on Γ1

u

}
denote the closed subspace of H1(Ω1), V 2 = H1(Ω2), and let

V = V 1 × V 2 and K =
{
(v1, v2) ∈ V : v2 − v1 ≥ 0 on Γc

}
denote a closed subspace and a closed convex subset of H = H1(Ω1)×H1(Ω2), respectively.
The relations on the boundaries are in terms of traces. On H we shall define a symmetric
bilinear form

a(u, v) =

2∑
i=1

∫
Ωi

(
∂ui

∂x

∂vi

∂x
+

∂ui

∂y

∂vi

∂y

)
dΩ

and a linear form

�(v) =
2∑

i=1

∫
Ωi

f ividΩ,

1Department of Applied Mathematics, FEI VŠB-Technical University Ostrava, Tř 17. listopadu,
CZ-70833 Ostrava, Czech Republic
zdenek.dostal@vsb.cz, david.horak@vsb.cz, oldrich.vlach2@vsb.cz,
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where f i ∈ L2(Ωi), i = 1, 2 are the restrictions of

f(x, y) =


−3 for (x, y) ∈ (0, 1)× [0.75, 1)

0 for (x, y) ∈ (0, 1)× [0, 0.75) and (x, y) ∈ (1, 2)× [0.25, 1)
−1 for (x, y) ∈ (1, 2)× [0, 0.25)

 .

Thus we can define a problem

Minimize q(u) =
1

2
a(u, u)− �(u) subject to u ∈ K. (2.1)

More details about this model problem including a discussion of the existence and uniqueness
may be found in [9].
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Figure 2.1: Model problem and its solution

3. Domain decomposition and discretized problem with a natural coarse
grid. To enable efficient application of the domain decomposition methods, we can option-
ally decompose each Ωi into square subdomains Ωi1, . . . , Ωip, p = s2 > 1 . The continuity
in Ω1 and Ω2 of the global solution assembled from the local solutions uij will be enforced
by the ”gluing” conditions uij(x) = uik(x) that should be satisfied for any x in the interface
Γij,ik of Ωij and Ωik. After modifying appropriately the definition of problem (2.1), intro-
ducing regular grids in the subdomains Ωij that match across the interfaces Γij,kl, indexing
contiguously the nodes and entries of corresponding vectors in the subdomains, and using
the finite element discretization, we get the discretized version of problem (2.1) with the
auxiliary domain decomposition that reads

min
1

2
xT Ax− fT x s.t. BIx ≤ 0 and BEx = 0. (3.1)

In (3.1), A denotes a positive semidefinite stiffness matrix, the full rank matrices BI and BE

describe the discretized inequality and gluing conditions, respectively, and f represents the
discrete analog of the linear term �(u). Details may be found in [9]. Introducing the notation

λ =

[
λI

λE

]
and B =

[
BI

BE

]
,

we can observe that B is a full rank matrix and write the Lagrangian associated with problem
(3.1) briefly as

L(x, λ) =
1

2
xT Ax− fT x + λT Bx.
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It is well known that (3.1) is equivalent to the saddle point problem

Find (x, λ) s.t. L(x, λ) = sup
λI≥0

inf
x

L(x, λ). (3.2)

After eliminating the primal variables x from (3.2), we shall get the minimization problem

min Θ(λ) s.t. λI ≥ 0 and RT (f −BT λ) = 0, (3.3)

where

Θ(λ) =
1

2
λT BA†BT λ− λT BA†f, (3.4)

A† denotes a generalized inverse that satisfies AA†A = A, and R denotes the full rank matrix
whose columns span the kernel of A. Using the fact that RT BT is a full rank matrix, it may
be verified that the Hessian of Θ is positive definite. Even though problem (3.3) is much
more suitable for computations than (3.1) and was used to efficient solving of the discretized
variational inequalities [7], further improvement may be achieved by adapting some simple
observations and the results of Farhat, Mandel and Roux [15]. Let us denote

F = BA†BT , d̃ = BA†f,

G̃ = RT BT , ẽ = RT f,

and let λ̃ solve G̃λ̃ = ẽ. Let d = d̃−Fλ̃ and let G denote a regular matrix with orthonormal
rows and the same kernel as G̃, so that

Q = GT G and P = I −Q

are the orthogonal projectors on the image space of GT and on the kernel of G, respectively.
Problem (3.3) may then be reduced to

min
1

2
λT PFPλ− λT Pd s.t Gλ = 0 and λI ≥ −λ̃I . (3.5)

The Hessian Hρ = PFP + ρQ of the augmented Lagrangian

L(λ, µ, ρ) =
1

2
λT (PFP + ρQ)λ− λT Pd + µT Gλ (3.6)

is decomposed by the projectors P and Q whose image spaces are invariant subspaces of Hρ.
The key point is that the analysis by Farhat, Mandel and Roux [15] implies that the spectral
condition number κ(Hρ) of Hρ is bounded independently of h for a regular decomposition
provided H/h is uniformly bounded, where h and H are the mesh and subdomain diameters,
respectively.

4. Solution of bound and equality constrained quadratic programming
problems and optimal penalty. Dostál, Friedlander and Santos [8] proposed a variant
of the augmented Lagrangian type algorithm by Conn, Gould and Toint [3] that fully exploits
the specific structure of problem (3.3). To describe it, let us recall that the gradient of the
augmented Lagrangian 3.6 is given by

g(λ, µ, ρ) = PFPλ− Pd + GT (µ + ρGλ),

so that the projected gradient gP = gP (λ, µ, ρ) of L at λ is given componentwise by

gP
i = gi for λi > −λ̃i or i /∈ I and gP

i = g−
i for λi = −λ̃i and i ∈ I

with g−
i = min(gi, 0), where I is the set of indices of constrained entries of λ.

Algorithm 4.1 (Quadratic programming with simple bound and equality constraints)
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Step 0. Set 0 < α < 1, 1 < β, ρ0 > 0, η0 > 0, M > 0, µ0 and k = 0.

Step 1. Find λk so that ||gP (λk, µk, ρk)|| ≤ M ||Gλk||.

Step 2. If ||gP (λk, µk, ρk)|| and ||Gλk|| are sufficiently small, then stop.

Step 3. µk+1 = µk + ρkGλk

Step 4. If ||Gλk|| ≤ ηk

Step 4a. then ρk+1 = ρk, ηk+1 = αηk

Step 4b. else ρk+1 = βρk, ηk+1 = ηk

end if.

Step 5. Increase k by one and return to Step 1.

The algorithm has been proved [8] to converge for any set of parameters that satisfy the
prescribed relations. Moreover, it has been proved that the asymptotic rate of convergence
is the same as for the algorithm with an exact solution of the auxiliary QP problems (i.e.
M = 0) and that the penalty parameter is uniformly bounded. These results give theoretical
support to Algorithm 4.1. The performance of the algorithm depends essentially on the
rate of convergence of the method that minimizes L in the inner loop as the number of the
outer iterations was rather small ranging from two to six. We use the active set strategy
in combination with the proportioning conjugate gradient algorithm [4] and the gradient
projection [18]. We managed to get the rate of convergence for the inner loop in terms of
κ(Hρ) [6]. Combining this result with that on the boundedness of κ(Hρ), we find that the rate
of convergence in the inner loop does not depend on the discretization parameter h . The best
results were achieved with relatively high penalty parameters which may be explained by the
fact that it is possible to give the rate of convergence for the conjugate gradient method for
minimization of the quadratic form with the Hessian Hρ that depends neither on ρ nor on
the rank of G [5]. This suggests that we could try to enforce the equality constraints by the
penalty method. Closer inspection reveals nice optimality property of the penalty method
applied to 3.5, namely if H/h is bounded, then there is a constant C independent of h such
that if ‖gP (λ, 0, ρ)‖ ≤ ε‖Pd‖, then

‖Gλ‖ ≤ C(1 + ε)

ρ
‖Pd‖.

It follows that using the penalty in combination with the algorithm with the rate of con-
vergence, it is possible to get an approximate solution with the prescribed precision in a
number of iterations independent of the discretization parameter h. We shall give the details
elsewhere. Another way to achieve scalability, at least for coercive problems, is to apply
FETI-DP method [2].

5. Numerical experiments. In this section we report some results of numerical
solution of the model problem of Section 2 and of a problem with the fibrous composite
material in order to illustrate the performance of the algorithm, in particular its numerical
and parallel scalability. To this end, we have implemented Algorithm 4.1 in C exploiting
PETSc [1] to solve the basic dual problem (3.3) so that we could plug in the projectors
to the natural coarse space (3.5) and the dual penalty method. Each domain Ωi, i = 1, 2
was first decomposed into identical rectangles Ωij with the sides H that were discretized
by the regular grids defined by the stepsize h as in Figure 2.1. The stopping criterium∥∥gP (λ, µ, 0)

∥∥ ≤ 10−4 ‖d‖ and ‖Gλ‖ ≤ 10−4
∥∥∥(G̃GT )−1ẽ

∥∥∥ was used in all calculations.
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Solution of the model problem for h = 1/8 and H = 1/2 is in Figure 2.1. The experiments
were run on the Lomond 18-processor Sun HPC 6500 Ultra SPARC-II based SMP system
with 400 MHz, 18 GB of shared memory, 90 GB disc space, nominal peak performance 14.4
GFlops, 16 kB level 1 and 8 MB level 2 cache of the EPCC Edinburgh, and on the SGI
Origin 3800 128-processor R12000 shared memory (MIMD) system with 400 Mhz, 48.128
GB of RAM, 500 GB disc space, FDDI 1 Gb/sec of the Johannes Kepler University Linz.
All the computations were carried out with parameters M = 1, ρ0 = 10, Γ = 1, λ0 = 1

2
Bf .

Table 5.1: Parallel scalability for 128 subdomains
processors 1 2 4 8 16 32 64 128
Time[sec] 1814.0 566.4 185.9 54.5 32.0 32.7 62.5 147.0

Table 5.2: Performance for varying decomposition and discretization
H 1 1/2 1/4 1/8

H/h \ procs 2 8 16 16
128 33282/129/41.95 133128/1287/89.50 532512/6687/74.9 2130048/29823/421.5

28 59 36 47
32 2178/33/0.20 8712/327/0.50 34848/1695/1.48 139392/7551/11.66

17 33 30 37
8 162/9/0.03 648/87/0.10 2592/447/0.39 10365/1983/2.06

10 20 23 27

Table 5.3: Highlights
h H prim. dual. num. of procs out. cg. time

dim. dim. subdom. iter. iter. [sec]
1/1024 1/8 2130048 29823 128 32 2 47 167.8
1/2048 1/8 8454272 59519 128 64 2 65 1281.0

The selected results of the computations are summed up in Tables 5.1 - 5.4. Table
5.1 indicates that the algorithm presented enjoys high parallel scalability for problem with
h = 1/512, H = 1/8, primal dimension 540800, and dual dimension 14975 that was solved
on the computer SGI Origin. Table 5.2 indicates that Algorithm 4.1 may enjoy also high
numerical scalability, even though the latter is so far supported by theory only for the inner
loops of the algorithm. In particular, for varying decompositions and discretizations, the
upper row of each field of the table gives the corresponding primal/dual dimensions and
times in seconds on the Lomond, while the number in the lower row gives a number of
the conjugate gradient iterations that were necessary for the solution of the problem to
the given precision. We can see that the number of the conjugate gradient iterations for
a given ratio H/h varies very moderately. The results for the largest problems using the
SGI Origin are in Table 5.3. Optimality of dual penalty is illustrated in Table 5.4. We
conclude that at least for our model problem, the experiments indicate that the cost of
numerical solution of the variational inequalities may be comparable to the cost of solution
of corresponding linear problem. To check the performance and robustness of our algorithm
on a more challenging problem, we considered linear elastic response of a sample of fibrous
composite material. For simplicity, we assumed that the fibers are inserted into the matrix
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Table 5.4: Optimal enforcing of ‖Gλ‖ / ‖d‖
prim.dim./dual.dim. 1152/591 10368/1983 139392/7551 2130048/29823

ρ = 10 3.027e-03 3.108e-03 3.115e-03 3.117e-03

‖Gλ‖ / ‖d‖ ρ = 1000 3.144e-05 3.213e-05 3.222e-05 3.225e-05

ρ = 100000 3.145e-07 3.212e-07 3.224e-07
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Figure 5.1: Fiber composite and homogeneous sample in strain
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so that there is no adhesion. Such composites may be useful e.g. in design of materials with
different response to strain and stress. The algorithm may be modified to model debonding of
more realistic material as considered in Wriggers [20]. The problem is difficult due to the long,
split, a priori unknown contact interface with many points in which the condition of strict
complementarity is violated. We decomposed the space domain of the sample into squares,
each square comprising two subdomains consisting of a circular fiber and corresponding part
of the matrix, and discretized the problem as in Figure 5.1. The primal and dual dimensions
of the problem were 6176 and 990, respectively. The number of outer iterations was only
four, while the solution to the relative precision 1E-4 required 591 iterations with 157 faces
examined. We conclude that the performance of the algorithm is acceptable even for problems
where the results related to scalability mentioned above do not apply as in this case when
the decomposition includes subdomains that are not simply connected.

6. Comments and conclusions. We have reviewed a domain decomposition algo-
rithm for the solution of variational inequalities. The method combines a variant of the FETI
method with projectors to the natural coarse grid and recently developed algorithms for the
solution of special QP problems. We have also introduced the penalty approximation that is
optimal in the sense that a fixed penalty parameter can enforce feasibility to the prescribed
relative precision regardless of the discretization parameter. The theory gives relevant re-
sults concerning the scalability of main parts of the basic algorithm and yields full theoretical
support of its variants presented in the paper. Numerical experiments with the model varia-
tional inequality discretized by up to more than eight million of nodal variables indicate that
even the basic algorithm may enjoy full numerical and parallel scalability and confirm a kind
of optimality for the dual penalty. Numerical solution of a problem with fibrous composite
material confirm that the algorithm presented is effective for more challenging problems. In
fact, it has already been exploited for solving 2D problems with Coulomb friction [11] and
contact shape optimization [13, 19].
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42. Error Estimation, Multilevel Method and Robust
Extrapolation in the Numerical Solution of PDEs

M. Garbey 1, W.Shyy 2

1. Introduction and Motivation. Richardson extrapolation (RE) is a simple, el-
egant and general mathematical idea that works for numerical quadrature with the Romberg
method or ODE integrations that have smooth enough solution with the Bulirsch-Stoer
method. Its use in Computational Fluid Dynamics (CFD) raises the following questions
[3] [4] [5]:

- Does all mathematical hypotheses needed by RE are fulfilled by the numerical approx-
imation ?

- Are the (3D) meshes fine enough to satisfy accurately the a priori convergence estimates
that are only asymptotic relations in nature?

- What to do, if the order of convergence of a CFD code is space dependent and eventually
solution dependent?

- Can we afford three grid levels with a coarse grid solution that has a satisfactory level
of accuracy, to be used in RE?

Our objective is to use any PDE or CFD solvers, independent of their inner working algo-
rithm and procedures, provided that they can offer the information including the residual of
the numerical approximation, stability estimates, and varying grid resolutions and numerical
solutions, to accomplish the following goals:

- Automatic estimate of the order of convergence in space,

- Using three different grid solutions (not necessarily with uniformly increasing mesh
resolution), obtain a solution with improved accuracy

The extrapolation procedure is simple to implement and can be incorporated into any
computer code without requiring detailed knowledge of the source code. Its arithmetic cost
should be negligible compare to a direct computation of the fine grid solution. Finally the
procedure should overall enhance the accuracy and trust of a CFD application in the context
of code verification.

In this paper, we pursue the research presented in [2] as follows. We first summarize
basic properties of Richardson extrapolation method and evaluate its application to CFD.
Then we provide elementary approximation theory for least square extrapolation applied to
grid functions. Further, we generalise this technique to PDEs, and provide some numerical
results for a turning point problem. For a detailed version of this work with results on steady
incompressible Navier Stokes flows, we refer to [7].

2. Basic Properties of Richardson Extrapolation and Computational
Implications.

2.1. Asymptotic expansion for continuous function in a normed vector
space . Let E be a normed linear space, || || its norm, v ∈ E, p > 0, and h ∈ (0, h0).
ui ∈ E, i = 1..3 have the following asymptotic expansion,

ui = v + C(
h

2i−1
)p + δ,

with C positive constant independent of h, and ||δ|| = o(hp).

1Department of Computer Science, Houston TX 77204, University of Houston, USA
2Department of Aerospace Engineering, Mechanics and Engineering Science, Gainesville FL 32611,

Univ. of Florida, USA
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For known p, RE formula,

vi
r =

2p ui+1 − ui

2p − 1
, i = 1, 2

provides improved convergence:
||v − vi

r|| = o(hp).

2.2. Numerical approximation for discrete functions defined on a mesh.
Let Ei be a family of normed linear space, associated with a mesh Mh/2i−1 . We suppose a

set of equations,

U i = v + Ci(
h

2i−1
)p + δi,

with Ci = (1+εi)C, and εi = o(1). δi is a model for the h independent numerical perturbation
induced by consistency errors and/or arithmetic error. The Richardson extrapolate

V 2
r =

2p U3 − U2

2p − 1
,

has then for error in E1,

v − V 2
r =

1

2p − 1
((δ2 − 2pδ3) + C (ε2 − ε3)(

h

2
)p).

The numerical perturbation is amplified by a factor 2p+1
2p−1

. For applications in (complex) CFD
calculation, the asymptotic order of convergence is not well established and one uses:

p ∼ log2

||u1 − u2||
||u2 − u3|| (2.1)

If one considers {ui} as a set of real numbers instead of a set of functions in (E, || ||),
combining three ordered approximations gives the so-called ∆2 Aitken formula,

v2
r ∼

u1u3 − (u2)2

u1 − 2u2 + u3
.

But this formula has generally no rigorous basis in the corresponding space of approximation.
From the numerical point of view,

p = log2 ||(1− γ(p))
U1 − U2 − (δ1 − δ2)

U2 − U3 − (δ2 − δ3)
||,

where γ(p) ∼ κ(2pε1 − (2p + 1)ε2 + ε3), and κ = (2p − 1)−1.
In practice,

p ≈ log2 ||
U1 − U2

U2 − U3
||, in (E1, || ||)

The second order error term ε2 on u2 (respt ε1 on u1) has therefore 2p + 1 (respt 2p)
more impact on p calculation error than the second order error term ε3 on u3. Further, the
“pointwise” extrapolation

v2
r =

U1U3 − (U2)2

U1 − 2U2 + U3
, ∀x ∈ M1

that is routinely used in CFD is very sensitive to numerical perturbation.
The convergence order approximation and RE presented so far is a common tool for

solution quality assessement in CFD. In our experience [5] [7], we have observed, for example,
that for two different codes for the steady state, 2-D laminar incompressible lid-driven square
cavity flow with the Reynolds number (Re) in the range of 20 to 1000 and squared regular
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meshes using either ω − ψ formulation and FD approximation or v − p formulation and FV
approximation with centered cells, RE can improve the order of accuracy, but not consistently.
If the quality of the grid solution is poor then RE may provide worse approximations.

Further, the theoretical bases of classical RE formula presented here, are not satisfied
when the convergence order of the solution process is space dependent and solution dependent,
which is rather common in CFD. We propose in this paper a method that seems to be more
robust than RE, and that further can be used as a framework for aposteri estimates.

3. Least Square Extrapolation for Numerical Functions. Let E = L2(0, 1),
u ∈ E. Let v1

h and v2
h be two approximations of u in E:

v1
h, v2

h → u in E as h → 0.

A consistent linear extrapolation formula formally written

αv1
h + (1− α)v2

h = u.

In p order RE the α function is a constant. We adopt here a more general point of view
than RE. We formulate the following problem as a Least Square Extrapolation (LSE):

Pα: Find α ∈ Λ(0, 1) ⊂ L∞ such that αv1
h + (1− α)v2

h − u is minimum in L2(0, 1).

If 1/(v1
h − v2

h) is in L∞(0, 1), we get an explicit solution for this problem. If v1
h − v2

h

vanishes, we can approximate then vi
h by a wi

h function in L2(0, 1) such that

wi
h − ui

h = O(hq), q >> p, and 1/(w1
h − w2

h) ∈ L∞(0, 1).

where p is the expected order of convergence of vh as h → 0. We get then

α =
u− w2

h

w1
h − w2

h

, and α ∈ L2(0, 1).

We have easily
Lemma 1: If αM − α = 0(M−1) as M →∞ and v1

h − v2
h = 0(hp) then

u = αv1
h + (1− α)v2

h + O(hp) × O(M−1).

In the present work, we set Λ(0, 1) to be the space of α functions

α = α0 + α1 cos(xπ) + Σj=1..Mαj sin((j − 1)xπ).

with αj , j = 0..M reals. We can then show using [1]
Lemma 2: Let α be in L2(0, 1). Let xj = j

N
be a regular discretization of (0, 1). Let M be

an integer such that M << N. There is a unique trigonometric polynomial

αM = α0 + α1 cos(xπ) + Σj=1..Mαj sin((j − 1)xπ)

that minimizes the discrete L2 norm

Σj=0..N (α(xj)− αM (xj))
2.

αM converges to α in L2(0, 1) as M → ∞ while the ratio M
N

stays constant and less than
one. If α ∈ C1(0, 1), the convergence αM → v is pointwise and of order M−1 in (0,1) and
M−2 away from the end points.

We have now a solution to the approximation problem Pα or its modified analog if we
have possibly to modify locally the vi

h function at neighborhood of points where v1
h − v2

h

cancels.
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From Lemma 1 and Lemma 2, we have

Theorem: if u, vi
h,∈ C1(0, 1), i = 1, 2 , if 1

v1
h
−v2

h
∈ L∞(0, 1) and v2

h − v1
h = 0(hp) then

αv1
h + (1− α)v2

h is an 0(M−1)× 0(hp) approximation of u.

Special care must be done if v1
h − v2

h << u− v2
h, in some set of non zero measure ΩS .

These outliers points should not affect globally the least square extrapolation as long
as we impose that α be a bounded function independently of h. Further, a more robust
approximation procedure consists to use three levels of grid solution as follows:

Pα,β: Find α, β ∈ Λ(0, 1) such that αv1
h +βv2

h +(1−α−β)v3
h−u is minimum in L2(0, 1).

Existence of the solution (α, β) is established if one can partition (0, 1) into two over-
lapping subset Ω1

⋃
Ω2 = (0, 1) of nonzero measure intersection, such that 1/(v1

h − v3
h) is in

L∞(Ω1) and 1/(v2
h − v3

h) is in L∞(Ω2). But uniqueness is no longer guaranteed. We can use
a Singular Value Decomposition method (SVD) then, to account for the fact that the linear
system can be both over determined and under determined. But SVD requires many more
arithmetic operations than a direct solve of the normal set of equations when M << N. In
practice, if v1

h − v3
h << u − v3

h and v2
h − v3

h << u − v3
h in some set of non zero measure

then there is no local convergence of our sequence of functions. We want to make sure that
these outlier points do not affect the quality of the least square solution at points where
convergence is achieved.

In practice, we work with grid functions solution of discretized PDE problem. In contrast
to classical RE, where all grid solutions are projected onto a common coarse grid, our solution
procedure consists of interpolating all data on a very fine grid denoted M0 via a high order
interpolant Ũi = Ii[Ui]. We want then to get our best fitted extrapolation formula on the fine
grid itself as follows.

Pα: Find α ∈ Λ(0, 1) ⊂ L∞ such that αŨ1 + (1− α)Ũ2 − U is minimum in L2(M
0).

The three-level extrapolation problem is analogous.
We have checked the numerical accuracy and sensitivity to perturbation of LSE on nu-

merical function examples that possess different type of asymptotic behavior and different
degree of smoothness. In all cases our least square extrapolation method seems to give im-
proved accuracy and robustness. In particular our least square extrapolation is definitively
an improvement on fixed order RE when the solution has a hybrid order of convergence that
is first order in some subset of the domain and second order elsewhere.

The extension to multidimensional problem with rectangular grid that are tensorial prod-
ucts of one-dimensional regular grids is straightforward. The generalization to body fitted
meshes generated by PDEs [6], is easy since the Fourier expansion technique is insensitive to
change of variables as long as they are smooth transformations. However generalisation to
FE approximation with unstructured grid will require obviously a different space of approx-
imation for the weight functions α and β.

4. Least Square Extrapolation for PDEs and Computational Algorithm.
The idea is now to use the PDE in the RE process to find an improved solution on the fine

grid.
Let us denote formally the linear PDE

L[u] = f, with u ∈ (Ea, || ||a) and f ∈ (Eb, || ||b),

and its numerical approximation,

Lh[U ] = fh, with U ∈ (Eh
a , || ||a) and fh ∈ (Eh

b , || ||b),
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parameterized by a mesh step h.
We suppose that we have a priori a stability estimate for these norms

||U ||a ≤ C hs (||fh||b), (4.1)

with s real not necessarily positive. We will look for consistant extrapolation formula that
minimize the residual.

Let us restrict for simplicity to a two-point boundary value problems in (0, 1). Our least
square extrapolation is now defined as follows:

Pα: Find α ∈ Λ(0, 1) ⊂ L∞ such that αLh[Ũ1] + (1 − α)Lh[Ũ2] − fh is minimum in
L2(M

0).

The three levels version is analogue. To focus on the practical use of this method, we
should make the following observations. It is essential that the interpolation operator gives a
smooth interpolant depending on the order of the differential operator. For conservation laws,
one may require that the interpolation operator satisfies the same conservation properties. For
chemical problems, one may require that the interpolant preserves the positivity of species.
For elliptic problems, it is convenient to postprocess the interpolated functions Ũ i, by few
steps of the relaxation scheme

V k+1 − V k

δt
= Lh[V k]− fh, V 0 = Ũ i,

with appropriate artificial time step δt. This will readily smooth out the interpolant.
Let Gi, i = 1..3, be three embedded grids that does not necessary match and their

companion grid solutions Ui. Let M0 be a regular grid that is finer than the grids Gi. The
solution process of Pα and/or P(α,β) can be decomposed into three consecutive steps.

• First, interpolation from Gi, i = 1..3 to M0. We choose interpolation tools that have
a number of arithmetic operations proportional to Card(M0), i.e. the number of grid
points of M0.

• Second, the evaluation of the residual on the fine grid M0, that has the same asymptotic
order of arithmetic operations.

• Third the solution of the linear least squares problem with M unknowns.

If we keep M of the same order as Card(M0)1/3, and use a standard direct solver for
symmetric system to solve the normal set of equations, the arithmetic complexity of the
overall procedure is still of order Card(M0), i.e., it is linear.

The application to nonlinear PDE problem is done via a Newton-like loop [7]. The
algorithm is coded in an independent program from the main code application.

We choose a Fourier expansion for each weight function α and β, that has M terms with
M ≈ Card(M0)1/3, to keep a linear cost for the complete procedure when the direct solution
of the normal set of equations is giving a good result. An SVD, if needed, will lead however
to more intense computation.

Let us now illustrate the numerical efficiency and robustness of our method with a 2D
Turning Point Problem:

ε ∆u + a(x, y)
∂u

∂x
= 0, x ∈ (0, π)2,

with Dirichlet boundary conditions of opposite signs at x = 0 and x = π, and homogeneous
Neumann at y = 0/π. We take

a(x, y) = x− (
π

2
+ 0.3(y − π

2
)).
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We have then a transition layer (TL) of ε order thickness centered on the curve a(x, y) = 0,
which is not parallel to the x or y axis.

The application code uses second order central FD of the diffusion term and first order
upwinding for the convection term with either direct sparse LU linear or GMRES solver.
There are no spurious oscillations because of the discrete maximum principle.

Figures 4.1 and 5.2 report on the accuracy of the two-level and three-level least squares
extrapolation versus RE assuming either first or second order convergence. The errors are
given in L∞ norm. The curve with hexagram signs gives an accurate estimation of the
discrete solution error between the exact grid solution on the fine grid M0 of size N × N ,
versus the exact continuous solution of the turning point problem. Let GI be square grids of
size Ni ×Ni.

The number of Fourier modes in the approximation of the weight α, β is 4 in each space
direction. We observe that for both cases ε = 0.1 and ε = 0.01 in Figure 4.1 and 5.2, R1
gives better results than R2. This is an indication of the fact that the transition layer is not
under-resolved. We observe in Figure 4.1 with ε = 0.1, and modest base grid sizes, namely,
N1 = 17, N2 = 23, N3 = 29, meaning that we have on average only one or two grid points
in the transition layer for the G3 solution, our least squares is as accurate as the fine grid
solution. This is still true when the Richardson extrapolation fails for N ≥ 70. The least
squares extrapolation also gives satisfactory results in Figure 5.2, where ε = 0.01, N1 =
39, N2 = 49, N3 = 59, but R1 predicts the grid solution on M0 with an error less than or
equal to the error with the exact continuous solution for N ≤ 110. In all cases LS2 is more
accurate than LS1, especially for large N values. In these experiments, LS1 and LS2 predict
the fine grid solution with an error less than the fine grid approximation of the exact solution
for N as large as 150: we gain therefore more than one order of convergence. Similar results
on the lid-driven cavity flow confirm the capabilities of our method [7].

5. Conclusions and Discussions. We have studied a new extrapolation method
for PDEs that is more robust and accurate than RE applied to numerical solutions with
inexact or varying convergence order. Our method provides a better tool to establish a
posteriori estimate than Richardson extrapolation when the convergence order of a CFD
code is space dependent. However there are still many open questions. To cite some but a
few, we still need to establish a criterion to relax the constraint on the accuracy of the coarse
grid data for efficient least squares extrapolation. Further, from the application point of view,
it might be interesting to test the robustness of our least squares extrapolation method to
elliptic problems with general geometry domains via fictitious domain technique.
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43. A Robin-Robin preconditioner for strongly heterogeneous
advection-diffusion problems

L. Gerardo Giorda1, P. Le Tallec2, F. Nataf3

1. Introduction. We consider an advection-diffusion problem with discontinuous vis-
cosity coefficients. We apply a substructuring technique and we extend to the resulting Schur
complement the Robin-Robin preconditioner used for problems with constant viscosity. In
Section 2 the algorithm is analyzed theorically by means of Fourier techniques, and we show
that its convergence rate is independent of the coefficients: this allows to treat large discon-
tinuities. Section 3 is dedicated to the variational generalization to an arbitrary number of
subdomains, while in Section 4 we give some numerical result in 3D.

1.1. Statement of the problem. Let Ω be bounded domain in R2. We consider
the following general advection-diffusion problem

−div (ν(x)∇u) +�b · ∇(u) + au = f in Ω
u = 0 on ∂ΩD

(1.1)

where �b is the convective field �b = (bx, by) while the constant a may arise from an Euler
implicit time discretization for the time dependent problem, and represent the inverse of the
time step, i.e. a = 1/∆t.

We assume the function ν(x) to be piecewise constant

ν(x) =

{
ν1 if x ∈ Ω1

ν2 if x ∈ Ω2

with ν1 < ν2, where Ω1 and Ω2 are two non overlapping subsets which cover Ω Ω1∪Ω2 = Ω.
Γ denotes the interface between the two subdomains, i.e. Γ = Ω1 ∩ Ω2, while Lj (j = 1, 2)
denotes the operator

Lj(w) := −νj∆w +�b · ∇w + aw

2. The Continuous Algorithm. We introduce, at the continuous level, the oper-
ator

Σ : H
1/2
00 (Γ)× L2(Ω) −→ H−1/2(Γ)

(uΓ, f) �−→
(
ν1

∂u1
∂n1

+ ν2
∂u2
∂n2

)
Γ

(2.1)

where uj (j = 1, 2) is the solution to problem

Lj(uj) = f in Ωj

uj = 0 on ∂ΩD ∩ ∂Ωj

uj = uΓ on Γ
(2.2)

It is evident that uΓ satisfies the Steklov-Poincaré equation

S(uΓ) = χ (2.3)

where S(.) := Σ(., 0) and χ := −Σ(0, f). We split the operator S = S1 + S2, with

1Dipartimento di Matematica, Università di Trento, gerardo@science.unitn.it
2École Polytechnique, patrick.letallec@polytechnique.fr
3CMAP - CNRS, UMR 7641, École Polytechnique, nataf@cmapx.polytechnique.fr
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Sj : uΓ �→
(

νj
∂uj

∂nj
−

�b · �nj

2
uj

)
Γ

,

for j = 1, 2 (since �n1 = −�n2 and u1 = u2 = uΓ, the terms 1
2
�b · �nj uj cancel by summa-

tion). Following ([1]), ([2]) and ([8]), we propose as a preconditioner for the Steklov-Poincaré
equation at the continuous level a weighted sum of the inverses of the operators S1 and S2,

T = N1S−1
1 N1 + N2S−1

2 N2, (2.4)

with N1 = ν1
ν1+ν2

, N2 = ν2
ν1+ν2

, which is defined by

T : H−1/2(Γ) −→ H
1/2
00 (Γ)

g �−→ (N1 v1 + N2 v2)Γ
(2.5)

where vj (j = 1, 2) is the solution to

Lj(vj) = 0 in Ωj

vj = 0 on ∂ΩD ∩ ∂Ωj(
νj

∂vj

∂nj
−

�b·�nj

2
vj

)
Γ

= Nj g on Γ.
(2.6)

2.1. The vertical strip case - Uniform velocity. In this section we consider
the case where Ω = R2 is decomposed into the left (Ω1 = ] −∞, 0[×R) and right (Ω2 =

]0, +∞[×R) half-planes, we assume the convective field to be uniform �b = (bx, by), with the
additional requirement on the solutions uj to be bounded as |x| → +∞. We express the
action of the operator S in terms of its Fourier transform in the y direction as

SuΓ = F−1
(
Ŝ(ξ)ûΓ(ξ)

)
, uΓ ∈ H

1/2
00 (Γ)

where ξ is the Fourier variable and F−1 denotes the inverse Fourier transform. We consider,
for j = 1, 2, the problem

Lj(uj) = 0 in Ωj

uj = uΓ on Γ,
(2.7)

and we have to compute ŜûΓ. Performing a Fourier transform in the y direction on the
operators Lj , we get (

a + bx∂x − νj∂xx + ibyξ + νjξ
2) ûj(x, ξ) = 0, (2.8)

for j = 1, 2, where i2 = −1. For a given ξ, equation (2.8) is an ordinary differential equation
in x whose solutions have the form αj(ξ) exp{λ−

j (ξ)x}+ βj(ξ) exp{λ+
j (ξ)x}, where

λ±
j (ξ) =

bx ±
√

b2
x + 4aνj + 4ν2

j ξ2 + 4ibyνjξ

2νj
, (2.9)

with Re(λ±
j ) � 0, as Re(z) indicates the real part of a complex number z. The solutions uj

(j = 1, 2) must be bounded at infinity, so α1(ξ) = β2(ξ) = 0, while the Dirichlet condition
on the interface provides β1(ξ) = α2(ξ) = ûΓ. Hence,

ŜûΓ =
1

2

(√
b2
x + 4aν1 + 4ν2

1ξ2 + 4ibyν1ξ +
√

b2
x + 4aν2 + 4ν2

2ξ2 + 4ibyν2ξ

)
ûΓ (2.10)

In a similar way we compute T̂ ĝ for g ∈ H−1/2(R), and we have (T̂ ◦ Ŝ)ûΓ = Φ(ξ)ûΓ, with

Φ(ξ) = N2
1 · [1 + z(ξ)] + N2

2 ·
[
1 +

z̄(ξ)

|z(ξ)|2
]

, (2.11)
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where we have set z(ξ) :=

√
b2x+4aν2+4ν2

2ξ2+4ibyν2ξ

b2x+4aν1+4ν2
1ξ2+4ibyν1ξ

. We have 1 < |z(ξ)| ≤ ν2/ν1, with |z(ξ)|
decreasing in (−∞, 0) and increasing in (0, +∞).

Theorem 2.1 (Main Result) In the case where the plane R2 is decomposed into the left
and right half planes, and the convective field is uniform, the reduction factor for the asso-
ciated GMRES algorithm can be bounded from above by a constant independent of the time
step ∆t, the convective field �b and the viscosity coefficients ν1 and ν2.

Proof. Let Φ(ξ) be the function defined in (2.11). The GMRES reduction factor is given,
for a positive real matrix A with symmetric part M , by

ρGMRES = 1− (λmin(M))2

λmax(AT A)
.

Therefore, it is enough to show that

maxξ |Φ(ξ)|2
(minξ Re Φ(ξ))2

∈ O(1) (2.12)

independentely of a, bx, by, ν1 and ν2.
If by �= 0, since Re z(ξ) ≥ 0, we have from (2.11)

ReΦ(ξ) ≥ N2
1 + N2

2 >
ν2
2

(ν1 + ν2)2
, (2.13)

for all ξ, as well as, focusing on |Φ(ξ)|2,

|Φ(ξ)|2 ≤
[
N2

1 + N2
2 + N2

1 · |z(ξ)|+ N2
2

|z(ξ)|

]2
+

[
N2

1 · |z(ξ)| − N2
2

|z(ξ)|

]2
= Ψ(ξ) (2.14)

which is increasing in (−∞, 0) and decreasing in (0, +∞).
i) If bx �= 0, we define η := 4a/b2

x and we have

Ψ(0) =

[
N2

1

(
1 +

√
1 + ην2

1 + ην1

)
+ N2

2

(
1 +

√
1 + ην1

1 + ην2

)]2
+

[
N2

1

√
1 + ην2

1 + ην1
−N2

2

√
1 + ην1

1 + ην2

]2
The right hand term is decreasing as a function of η. This provides

max
ξ
|Φ(ξ)|2 ≤ (2N2

1 + 2N2
2 )2 + (N2

1 −N2
2 )2 (2.15)

From (2.13) and (2.15), we get

maxξ |Φ(ξ)|2
(minξ Re Φ(ξ))2

≤ 5 + 6 ·
(

ν1

ν2

)2

+ 5 ·
(

ν1

ν2

)4

< 16. (2.16)

ii) If bx = 0 (flux parallel to the interface), |z(0)| =
√

ν2/ν1, and we have

max
ξ
|Φ(ξ)|2 ≤

[
N2

1

(
1 +

√
ν2

ν1

)
+ N2

2

(
1 +

√
ν1

ν2

)]2
+

[
N2

1

√
ν2

ν1
−N2

2

√
ν1

ν2

]2
(2.17)

From (2.13) and (2.17), we get

maxξ |Φ(ξ)|2
(minξ Re Φ(ξ))2

≤ 1 + 2
7∑

n=1

(
ν1

ν2

)n/2

+

(
ν1

ν2

)4

< 16. (2.18)
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If by = 0, the complex function Φ(ξ) reduces to a real one which is symmetric in ξ, decreasing
in [0, +∞) and satisfies Φ(ξ) ≥ 1 for all ξ. Therefore

maxξ |Φ(ξ)|2
(minξ ReΦ(ξ))2

=

[
maxξ Φ(ξ)

minξ Φ(ξ)

]2
≤
[
max

ξ
Φ(ξ)

]2
= [Φ(0)]2 .

i) if bx �= 0, we define η := 4a/b2
x, and we have

[Φ(0)]2 =

[
N2

1

(
1 +

√
1 + ην2

1 + ην1

)
+ N2

2

(
1 +

√
1 + ην1

1 + ην2

)]2
(2.19)

where the right hand side attains its maximum for η = 0. Hence[
maxξ Φ(ξ)

minξ Φ(ξ)

]2
<

[
2 · ν2

1

(ν1 + ν2)2
+ 2 · ν2

2

(ν1 + ν2)2

]2
< 4. (2.20)

ii) if bx = 0 (purely elliptic case) we simply have[
maxξ Φ(ξ)

minξ Φ(ξ)

]2
<

[
N2

1

(
1 +

√
ν2

ν1

)
+ N2

2

(
1 +

√
ν1

ν2

)]2
< 4. (2.21)

�

Remark 2.1 The argument above is based only on the assumption ν1 < ν2, and it can be
easily seen that a symmetric argument would give the same result as long as ν2 < ν1. In
a forthcoming paper ([6]), a more detailed proof of the main result will be given. More, it
appears that the condition number of the preconditioned system improves with the growth
of the ratio ν2/ν1.

3. Variational Generalization. We consider in Rd (with d = 2, 3) the domain
Ω =

⋃N
k=1 Ωk, with Ωj ∩ Ωk = ∅ for j �= k, in which we solve

−div (ν(x)∇u) +�b(x) · ∇(u) + a(x)u = f in Ω
u = 0 on ∂ΩD

(3.1)

with piecewise constant viscosity ν(x) = νk in Ωk(x). We restrict ourselves to well-posed

problems, and we assume�b ∈ W 1,∞(Ω) and there exists µ > 0 such that a−1/2div(�b) ≥ µ > 0.
We introduce the space H(Ω) =

{
v ∈ H1(Ω) : v|∂ΩD

= 0
}

, and the variational form of (3.1)

Find u ∈ H(Ω) : a(u, v) = L(v) ∀v ∈ H(Ω), (3.2)

with

a(u, v) =

∫
Ω

ν∇u∇v + (�b · ∇u)v + auv, L(v) =

∫
Ω

fv.

We define the local interfaces Γk := ∂Ωk \ ∂Ω and the global interface Γ = ∪kΓk, and we
introduce the local form

ak(u, v) =

∫
Ωk

{
νk∇u∇v + (�b · ∇u)v + auv

}
−
∫

Γk

1

2
�b · �nkuv

where the interface terms −
∫
Γk

1/2�b·�nkuv added locally cancel each other by summation, but
their presence guarantees nevertheless that the local bilinear form is positive on the space of
restrictions H(Ωk) =

{
vk = v|Ωk

, v ∈ H(Ω)
}
. Summing up on k, and letting Lk(v) :=

∫
Ωk

fv,

the variational problem (3.2) is equivalent to

Find u ∈ H(Ω) :
n∑

k=1

{ak(u, v)− Lk(v)} = 0 ∀v ∈ H(Ω). (3.3)
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3.1. Finite Element Approximation. In order to approximate problem (3.3)
with finite elements, we assume that the domain Ω is polygonal, and that the triangulations
respect the geometry of subdomain decomposition: the interfaces Γk will coincide with in-
terelement boundaries, and each subdomain can be obtained as the union of a given subset
of elements in the original triangulation.

In several cases of practical interest, problem (3.1) is advection-dominated and must be
stabilized. We will use Galerkin Least-Squares techniques (GALS), which consists in adding
to the original variational formulation the element residuals∫

Ti

δi(h)
(
−div (ν∇u) +�b · ∇(u) + au− f

)(
−div (ν∇v) +�b · ∇(v) + av

)
where Ti is an element of the triangulation, with a suitable choice of the local positive
stabilization parameter δi(h). The stabilized finite elements formulation then reads

Find uh ∈ Hh(Ω) :
n∑

k=1

{akh(uh, vh)− Lkh(vh)} = 0 ∀vh ∈ Hh(Ω), (3.4)

3.2. Substructuring. The variational structure of problems (3.3) and (3.4) allows
to reduce them to an interface problem by means of standard substructuring techniques.

Following ([2]), we introduce the space H
0(Ωk) =

{
vk ∈ H(Ω), vk = 0 in Ω \ Ωk

}
, the global

and local trace spaces V and Vk, the restriction operators Rk : H(Ω)→ H(Ωk) and R̄k : V →
Vk, the ak-harmonic extension Tr−1

k : Vk → H(Ωk), defined as

ak(Tr−1
k ūk, vk) = 0 ∀vk ∈ H

0(Ωk), Tr(Tr−1
k ūk)|Γk

= ūk, (3.5)

with its adjoint Tr−∗
k . The bilinear form ak is elliptic on H

0(Ωk) so problem (3.5) is well-
posed, and we can define the local Schur complement operator Sk : Vk → V

′
k as

〈Skūk, v̄k〉 = ak(Tr−1
k ūk, Tr−∗

k v̄k) ∀ūk, v̄k ∈ Vk

If we decompose the local degrees of freedom Uk of uk = Rku into internal (U0
k ) and interface

(Ūk) degrees of freedom, the matrix Ak associated to the bilinear form ak can be represented
as

Ak =

[
A0

k Bk

B̃T
k Āk

]
,

and we eliminate the local internal component U0
k as solution of a well-posed local problem,

to get

SkŪk =
(
Āk − B̃T

k (A0
k)−1Bk

)
Ūk.

The global Schur complement operator

S =

N∑
k=1

R̄T
k SkR̄k (3.6)

follows and we reduce problems (3.3) and (3.4) to the interface problem Sū = F in V, with
a right-hand side defined as 〈F, v̄〉 =

∑
k Lk(Tr−∗

k (R̄kv̄)), where vk is any function in H(Ωk)
such that vk = v̄ on Γk.
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ν1, ν2 ν1/ν2
�b = (±1, 0, 0) �b = (0, 1, 1) �b = (±1, 3, 5)

10−1, 10−5 104 10 11 17 15 17
10−2, 10−6 12 16 13 7 8
10−1, 10−6 105 10 11 17 15 17
10−6, 10−11 5 5 2 7 7
10−1, 10−7 106 10 11 17 15 17
103, 10−3 3 3 3 3 3
1, 10−7 107 6 7 9 11 11

Table 4.1: Number of iterations for the two-domain problem

3.3. Construction of the preconditioner. We extend the preconditioner T in-
troduced in the previous section to an arbitrary number of subdomains and we generalize
the ones proposed in ([2]) and ([8]). The interface operator (3.6) is preconditioned with a
weighted sum of inverses based on a partition of unity argument:

T =

N∑
k=1

DT
k (Sk)−1Dk, (3.7)

with
∑N

k=1 DkR̄k = IdΓ. For any Fk ∈ V
′
k the action of the operator (Sk)−1Fk is equal to

the trace on Γk of the solution wk of the local variational problem ak(wk, vk) = 〈Fk, T rkvk〉,
∀vk ∈ H(Ωk), wk ∈ H(Ωk), which is associated to the operator Lk = −div(νk∇w)+�b·∇w+aw

with Robin boundary condition on the interface νk
∂w
∂nk

− 1
2
�b · �nkw = Fk. In order to achieve

good parallelization, the weights Dk are defined on each interface degree of freedom ū(P )
(with P ∈ Γk) as

Dk ū(P ) = CP
νk∑

P∈Γj
νj

ū(P ),

where the constant CP is chosen to satisfy the partition of unity requirement, and depends
only on the number of subdomains to which the point P belongs.

4. Numerical results in 3D. Problem (3.1) is discretized by means of GALS second
order finite elements on hexaedral decomposition. The interface problem is solved by a
GMRES algorithm preconditioned by the operator T , which stops when the residual is less
than 10−10. We consider Ω = [0, 1]3, the unit cube, as costituted of two different materials
with viscosity coefficients ν1 and ν2, we choose a = 1 and f ≡ 0 in the whole Ω, and we force
the solution to have a boundary layer by imposing u = 1 on the bottom face of the cube as
well as homogeneous Dirichlet conditions on the rest of the boundary ∂Ω. We consider large
jumps between the viscosity coefficients.

In Table 4.1 we report the number of iterations for a two-domain decomposition, where we
choose different convective fields: perpendicular to the interface (�b = �e1), parallel (�b = �e2+�e3)

and oblique (�b = �e1+3�e2+5�e3). The preconditioner appears a little sensitive to the direction
of the velocity but it is insensitive to the amplitude of the jumps in the viscosity coefficients.

In Table 4.2 we report the number of iterations for a eight domain decomposition. Each
coefficient νj (j = 1, 2) refers to four subdomains which mutual position is varied: in Test
1 the two half cubes of the previous test are decoupled into four smaller subdomains, the
configuration of Test 2 is given in Figure 4.1, while Test 3 is a black and white coloring where
each subdomain of one kind is surrounded by subdomains of the other one. The convective
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Figure 4.1: The subdomains Ω1 (left) and Ω2 (right) in Test 2.

ν1, ν2 ν1/ν2 Test 1 Test 2 Test 3
10−1, 10−5 104 33 33 34
10−1, 10−6 105 32 33 34
10−1, 10−7 106 32 33 34
103, 10−3 106 29 28 21
1, 10−7 107 29 31 29

Table 4.2: Number of iterations for the multidomain problem

field is �b = −2π(y−0.5)�e1 +2π(x−0.5)�e2 +sin(2π(x−0.5))�e3. The preconditioner is again
insensitive to the jumps and to the position of the subdomains.

A complete description of the tests will be given in ([6]).

5. Conclusions. The proposed preconditioner is a generalization of the Robin-Robin
one to advection-diffusion problems with discontinuous coefficients. Numerical tests in 3D
show, as we expected from the theoetical analysis of Section 2, that the preconditioner is
fairly insensitive to the jumps in the viscosity coefficients as well as to the convective field,
while it remains a little sensitive to the number of subdomains, but this seems unavoidable
for advection-dominated problems. However, our knowledge of the preconditioner is not
complete, and further work needs to be done: a convergence analysis in a more general
setting is not yet available, the introduction of a coarse space to reduce the sensitivity to
the number of subdomains should be analyzed and the algorithm should be tested on less
academical situations.
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44. On a selective reuse of Krylov subspaces in
Newton-Krylov approaches for nonlinear elasticity

P. Gosselet1, C. Rey2

1. Introduction. We consider the resolution of large-scale nonlinear problems arising
from the finite-element discretization of geometrically non-linear structural analysis problems.
We use a classical Newton Raphson algorithm to handle the non-linearity which leads to the
resolution of a sequence of linear systems with non-invariant matrices and right hand sides.
The linear systems are solved using the FETI-2 algorithm. We show how the reuse, as a
coarse problem, of a pertinent selection of the information generated during the resolution
of previous linear systems, stored inside Krylov subspaces, leads to interesting acceleration
of the convergence of the current system.

Nonlinear problems are a category of problems arising from various applications in math-
ematics, physics or mechanics. Solving these problems very often leads to a succession of
linear problems the solution to which converges towards the solution to the considered prob-
lem. Within the framework of this study, all linear systems are solved using a conjugate
gradient algorithm. It is well known that this algorithm is based on the construction of the
so-called Krylov subspaces, on which depends its numerical efficiency and its convergence
behaviour.

The purpose of this paper is to accelerate the convergence of linear systems by reusing
information arising from previous resolution processes. Such an idea has already led to a
classical algorithm for invariant matrices [8] which has been successfully extended to the case
of non invariant matrices [6, 7]. We here propose, thanks to a spectral analysis of linear
systems, to select the most significant part of the information generated during conjugate
gradient iterations to accelerate the convergence via an augmented Krylov conjugate gradient
algorithm.

The remainder of this paper is organized as follows: section 2 addresses characteristic
properties of preconditioned conjugate gradient, section 3 exposes the acceleration strategies,
section 4 gives numerical assessments and section 5 concludes the paper.

2. Basic properties of preconditioned conjugate gradient. We consider
the linear system Ax = b solved with a M -preconditioned conjugate gradient (A and M are
N×N real symmetric positive definite matrices). We note xi the ith estimation to x = A−1b,
ri = b−Axi = A(x−xi) the associated residual and zi = M−1ri the preconditioned residual.
In order to concentrate the notations, we also note with capital letters matrices built from
set of vectors, e.g. Ri = (r0, . . . , ri−1). Given initialization x0, preconditioned conjugate
gradient iteration consists in searching

xi ∈ {x0}+Ki(M
−1A, z0) with ri ⊥ Ki(M

−1A, z0)
where Ki(M

−1A, z0) is the ith Krylov subspace
Ki(M

−1A, z0) = Span(z0, . . . , (M
−1A)i−1z0) = Range(Zi)

(2.1)

2.1. Augmented conjugate gradient. The augmentation consists in defining full-
ranked constraint matrix C and imposing CT ri = 0. It leads to the definition of a modified
Krylov subspaces K̃i(M

−1A, z0, C) [2]:

K̃i(M
−1A, z0, C) = Ki(M

−1A, z0)⊕ Range(C)

xi ∈ {x0}+ K̃i(M
−1A, z0, C) with ri ⊥ K̃i(M

−1A, z0, C)
(2.2)

1Laboratoire de Modélisation et Mécanique des Structures, gosselet@ccr.jussieu.fr
2Laboratoire de Modélisation et Mécanique des Structures, rey@ccr.jussieu.fr
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Ax = b with CT ri = 0 Iterations i = 0, . . . , s

PC = Id− C
(
CT AC

)−1
CT A zi = PCM−1ri (w0 = z0)

Initialization (x00 is arbitrary) wi = zi +
i−1∑
j=0

βj
i wj βj

i = − (zi, Awj)
wj , Awj

x0 = C
(
CT AC

)−1
CT b + PCx00 xi+1 = xi + αiwi αi =

(ri, zi)
(wi, Awi)

r0 = b−Ax0 ri+1 = ri − αiAwi

Property: RT
i Zi and WT

i AWi are diagonal

Figure 2.1: Augmented Preconditioned Conjugate Gradient

The augmented preconditioned conjugate gradient can be implemented with a projected
algorithm (fig. 2.1): initialization and projector PC ensure orthogonality conditions.

Remark 2.1 Although no optimality result holds anymore when matrix A is non-positive,
conjugate gradient still proves good convergence behaviour [5].

Remark 2.2 As M is definite positive, it can be factorized under Cholevsky’s form M =
LLT . Following [9] we prove that the M-preconditioned C-augmented conjugate gradient is
equivalent to a non-preconditioned Ĉ-augmented conjugate gradient Âx̂ = b̂ with :

Â = L−1AL−T x̂i = LT xi b̂ = L−1b Ĉ = LT C

ŵi = LT wi ẑi = LT zi r̂i = L−1ri βj
i = β̂j

i αi = α̂i
(2.3)

2.2. Ritz’s spectral analysis of symmetric system. Ritz’s values and vectors
(θj

i , ŷ
j
i )1�j�i defined in equation (2.4) are the eigenelements of the projection of matrix Â

onto K̃i(Â, r̂0, Ĉ), they converge (i → N) to eigenelements of matrix Â [5].

V̂i orthonormal basis of K̃i(Â, r̂0, Ĉ) Diagonalization Bi = QB
i ΘiQ

B
i

T

Bi = V̂ T
i ÂV̂i Rayleigh’s matrix Θi = Diag(θj

i )1�j�i

QB
i

T
QB

i = Id, Ŷi = V̂iQ
B
i

(2.4)

Ritz’s representation of conjugate gradient provides meaningful information. Especially,
the convergence of Ritz’s values is directly linked to the convergence of the conjugate gradient:

x̂− x̂i = π(Â)(x̂− x̂0) with π(ξ) =

i∏
j=1

θj
i − ξ

θj
i

(2.5)

3. Choice of optional constraints. The choice of matrix Ĉ is a very accurate
problem which requires a study of the governing factors of the convergence of the conjugate
gradient [11]. The condition number, which is proved to decrease [1] whatever the Ĉ matrix
may be, is not sufficient for a relevant analysis. In the remainder of the paper, we will call
”active” eigenelements that are excited by (i.e. non-orthogonal to) the initial residual and
”effective” active eigenelements that are not yet properly estimated by Ritz’s elements. Only
effective condition number influences the convergence rate: when an eigenvalue is sufficiently
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well approximated inside the Krylov subspace, the conjugate gradient acts as if it had been
suppressed from the resolution process. This explains the superconvergent behaviour of the
conjugate gradient: when highest eigenvalues are sufficiently well approximated by Ritz’s
values, the effective condition number is very low and the convergence rate very high. So a
good way to ensure a decrease of the effective condition number is to put active eigenvectors
of Â inside matrix Ĉ.

However, computing a priori active eigenvectors of a system is as expensive as solving it,
hence in this section we first show, inspiring from [9], how a posteriori computation can be
achieved costlessly when reusing information generated during the conjugate gradient process,
then we propose within the framework of multiple systems resolution to use approximation
of the eigenvectors of previous systems as constraints to accelerate the convergence of current
system.

3.1. Efficient computation of Ritz’s elements. Hessemberg matrix Hi arising
from Lanczos’ procedure is a specific tridiagonal Rayleigh matrix the coefficients of which
can be recovered from the coefficients of the conjugate gradient:

R̂i = (
r̂0

‖r̂0‖
, . . . , (−1)i−1 r̂i−1

‖r̂i−1‖
) orthonormal basis of K̃i(Â, r̂0, Ĉ)

Zi = (
z0

(z0, r0)
, . . . ,

(−1)i−1zi−1√
(zi−1, ri−1)

) M-orthonormal basis of Ki(M
−1A, z0, C)

Hi = R̂
T

i ÂR̂i = ZT
i AZi

Hi = Tridiag(ηj−1, δj , ηj) with ηj =

√
βj−1

j

αj
and δj =

1

αj
+

βj−2
j−1

αj−1

(3.1)

So a tridiagonal Rayleigh matrix can be computed without vector manipulation, and
a specific Lapack procedure can then be used to compute the eigenelements. To have an
action on the non-symmetric preconditioned problem, we define ”transported Ritz’s vectors”
Yi = L−T Ŷi = ZiQ

H
i , they verify the following orthonormalities:

Y T
i AYi = Θi and Y T

i MYi = Idi (3.2)

3.2. Selective reuse of Krylov subspaces. We focussed on the interest of reusing
eigenvectors (or at least good estimations) as constraints. Our strategies are based on the
simple equivalence Ĉ = (ŷj

i ) ⇔ C = (yj
i ) which means that a spectral action can be achieved

acting directly on the preconditioned problem.

We now consider the resolution of a sequence of linear systems Akxk = bk (k � 1 stands
for the number of the linear system, matrices and right hand sides are non-invariant) with
augmented conjugate gradient. We propose two strategies based on the reuse of spectral
information.

The first strategy is a simple total reuse of Ritz’s vectors which is equivalent, since
Range(Yi) = Range(Wi) = Ki(M

−1A, z0, C), to a total reuse of Krylov subspaces: matrix
Ck is built concatenating all previous Krylov subspaces Ck = (W1, . . . , Wk−1) (C1 = 0). As
all the information is reused without selection, this strategy gives the best decrease of the
number of iterations of the conjugate gradient expectable from the reuse of Krylov subspaces.
Of course it quickly leads to huge Ck matrices and expensive computations to handle the

augmented algorithm. Note that when Ak is invariant (∀k, Ak = A), CkT
ACk is a diagonal

matrix and this algorithm is equivalent to a multiple right hand side conjugate gradient [8].

The second strategy aims at reducing the dimension of matrices Ck concentrating the
information stored inside Krylov subspaces into few vectors. It is managed through the
spectral analysis exposed above and the selection of Ritz’s vectors associated to converged



422 GOSSELET, REY

Ritz’s values. The convergence of the values is estimated computing the values for the last
two iterations and comparing them.

for j � (i + 1), θj
i is converged if

∣∣∣∣∣θ
j
i − θj−1

i−1

θj
i

∣∣∣∣∣ � ε (3.3)

4. Numerical assessment. We now assess the reuse of Krylov subspaces on the
computation of the buckling of a clamped-free beam (fig. 4.1). The beam is a composite
structure made up of Saint-Venant–Kirchoff materials, fibers are 1000 times stiffer than the
matrix. It is decomposed into 32 substructures. We use Newton Raphson’s algorithm [10] to
linearize the problem, the resolution is then conducted in 28 linear systems with non-invariant
matrices Kkuk = fk (k is the linear system number). The linear systems are solved with
FETI-2 method equipped with Dirichlet’s preconditioner and superlumped projector.

Figure 4.1: Buckling of the beam

4.1. Application of the reuse of Krylov subspaces to FETI-2. The Finite
Elements Tearing and Interconnecting (FETI) method was first introduced by Farhat and
Roux [4]. It consists in solving with a projected conjugate gradient the system arising from
dual domain decomposition method. FETI-2 [3] solves the same problem with augmented
conjugate gradient. Readers should refer to referenced papers for a complete description, we
only show here the specificity of our strategies applied to FETI-2 method (fig. 4.2). With
notations from [3], the system arising from the condensation writes:(

FI −GI

−GT
I 0

)(
λ
α

)
=

(
d
−e

)
(4.1)

The first level projection P and initialization λ01 handle floating substructures, second level
projector PC and initialization λ02 handle the augmentation associated to matrix C. Note
that constraints have to be made compatible with the first level projector (PC)T ri = 0. In
the case of FETI algorithm, the augmentation possesses a mechanical interpretation: P T ri

represents the jump of the displacement field between substructures. Constraints matrix C
then ensures a weak continuity of the displacement field. Forming and factorizing the so-called
coarse problem matrix

(
(PC)T F (PC)

)
is a complex operation requiring all-to-all exchanges

between substructures, in a parallel processing context these operations are penalizing then
matrix C has to be chosen as small as possible.

We checked that for this class of problem Dirichlet’s preconditioner is positive for all the
systems. We also verified the imbrication of the kernel of local matrices ∀ (substructure s,

system k) Ker(K(s)k+1
) ⊂ Ker(K(s)k

) which implies that ∀k Range(Gk+1
I ) ⊂ Range(Gk

I ).
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P = Id−QGI

(
GT

I QGI

)−1
GT

I

PC = Id− (PC)
(
(PC)T FI(PC)

)−1 (PC)T FI

Initialization (λ00 is arbitrary)
λ01 = QGI

(
GT

I QGI

)−1
e λ02 = (PC)

(
(PC)T FI(PC)

)−1 (PC)T d
λ0 = PC(Pλ00 + λ01) + λ02

r0 = d− FIλ0

Iterations i = 0, . . . , s

zi = PCPF̃−1
I PT ri

wi = zi +
i−1∑
j=0

βijwj (w0 = z0)

λi+1 = λi + αiwi βij = − (wj , FIzi)
(wj , FIwj)

ri+1 = ri − αiFIwi αi =
(wi, ri)

(wi, FIwi)

Figure 4.2: Two-level FETI algorithm

So all previous Krylov subspaces are built orthogonally to the Gk
I matrix, hence when us-

ing vectors from Krylov subspaces as constraints we already have P kCk = Ck. Then the
two projectors are decoupled which suppresses time consuming step of making constraints
admissible.

4.2. Performance results. The first point concerns the choice of the ε parameter
introduced in section 3.2 to determine whether Ritz’s values are converged or not. Exper-
iments (e.g. fig. 4.3) showed that the criterion is either very low (> 10−14) or very high
(> 10−8), value ε can then be chosen inside a wide range without modifying the selection,
typically we chose ε = 10−13.

Figures 4.4, 4.5 and 4.6 summarize the action of the reuse of Krylov subspaces through
the resolution of the linear systems. First figure 4.4 shows how effective the selection is: the
number of constraints is quickly divided by a factor 2. Figure 4.5 presents the evolution
of the number of iterations per linear system, the total reuse corresponds to the best result
expectable from the reuse of Krylov subspaces, the number of iterations is divided by a factor
10, which proves the interest of the information stored inside Krylov subspaces. The selective
reuse also proves interesting: with a two-time smaller constraints space, its performance
results are quite near the total reuse. Figure 4.6 shows the performance results in terms
of CPU time: the total reuse is already relevant, the selective reuse since its performance
results in terms of iterations are almost equivalent with a lower number of constraints leads
to impressive gain, it is 60% faster than the non accelerated method.

Figures 4.7 and 4.8 enable us to check the spectral action announced above, they rep-
resent the Ritz’s spectrum for 4 linear systems (the 1st, 5th, 10th and 28th). The selective
reuse filters the highest and the negative values, and suppresses part of mid-range values,
giving better spectral properties for the resolution. Figures 4.9 and 4.10 show how the res-
olution process is improved by the selective reuse: two actions are combined, first a better
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Figure 4.3: Convergence of Ritz’s values Figure 4.4: Action of Selective Reuse:
number of constraints

Figure 4.5: Action of Selective Reuse:
number of iterations

Figure 4.6: Action of Selective Reuse:
CPU time

initialization is found, second the superconvergence is achieved from the beginning of the
resolution.

5. Conclusion. In this paper we considered the resolution of a sequence of linear
systems arising from geometrically nonlinear structural analysis, with a FETI-2 method. We
proposed an algorithm to realize a spectral analysis of linear systems solved with a conjugate
gradient algorithm with positive preconditioner. We showed that the complete reuse of
former Krylov subspaces has already led to good performance results and that a selective
reuse of Ritz vectors associated to Ritz’s values giving good estimates of eigenvalues gave
even better computational performance (up to 60% CPU time gain). Next studies will focuss
on additional selection criteria for the Ritz vectors based on the activity of former vectors for
the resolution of current system, the aim is to be even more selective and to suppress vectors
containing information which is non-relevant for the current system.

We authors acknowledge support from the Centre Informatique National Enseignement
Superieur (CINES) for computational resources.
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45. Fast Solvers and Schwarz Preconditioners for Spectral
Nédélec Elements for a Model Problem in H(curl)

Bernhard Hientzsch1

1. Introduction. In this paper, we present fast solvers and overlapping additive
Schwarz methods for spectral Nédélec element discretizations for a model problem in H(curl).
Results of numerical experiments in two dimensions and arguments for a theoretical condition
number bound in two and three dimensions are presented. We first show the derivation of the
model problem in the implicit time discretization of one of the forms of Maxwell’s equation
and explain our discretization. We next present the main ideas of two fast direct solvers for
such discretizations. We define the overlapping Schwarz methods considered in this paper,
present numerical results in two dimensions and then, finally, explain the derivation of a
condition number estimate. The estimate obtained for element-wise overlap is quadratic in
the relative overlap and the number of colors. In our estimate for general overlap, we obtain
an additional factor of N , the degree of the polynomials inside each spectral element.

The model problem is: Find u ∈ H0(curl, Ω) such that for all v ∈ H0(curl, Ω)

a(u,v) := (αu,v) + (β curl u, curl v) = (f ,v) (1.1)

Here, Ω is a bounded, open, connected polyhedron in R
3 or polygon in R

2, H(curl, Ω) is
the space of vectors in (L2(Ω))2 or (L2(Ω))3 with curl in L2(Ω) or (L2(Ω))3, respectively;
H0(curl, Ω) is its subspace of vectors with vanishing tangential components on ∂Ω; f ∈
(L2(Ω))d for d = 2, 3, and (·, ·) denotes the inner product in L2(Ω) of functions or vector
fields. For simplicity, we will assume that α and β are piecewise constant.

2. The model problem, its discretization. The model problem is obtained in
several problems in mathematical physics, among them in the time-discretization of several
formulations of Maxwell’s equation [3, Chapter 3]. For instance, the second order evolution
equation for the electric field reads:

ε∂2
t E + σ∂tE + curl

(
1

µ
curl E

)
= ∂tji

If we use an implicit discretization in time, substituting finite differences for the time
derivatives and evaluating the terms without time derivatives at the time levels tk (k =
n + 1, n, · · · ), we obtain

αEn+1 + curl
(
β curl En+1) = fn

where fn is constructed from ji, Ek and curl Ek. For instance using leapfrog for the first
derivative, a central difference for the second derivative, and Backward Euler for the right
hand side, we obtain

α = ε +
σ

2
∆t β =

1

µ
∆t2 fn = ∆t2(∂tji)|t=tn+1 + 2εEn +

(σ

2
∆t− ε

)
En−1.

To use spectral elements, we use the variational form

(αEn+1,F) + (β curl En+1,curl F) = (fn,F)

1Courant Institute of Mathematical Sciences, 251 Mercer Street, New York, NY
10012, E-mail: hientzsc@cims.nyu.edu or Bernhard.Hientzsch@na-net.ornl.gov, Homepage:
http://www.math.nyu.edu/∼hientzsc. This work was supported in part by the U.S. Department
of Energy under Contract DE-FC02-01ER25482.
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and we also approximate the L2-inner products by Gauss-Lobatto-Legendre quadrature.
The problem is posed in H(curl) and the use of H1-conforming elements introduces

spurious eigenvalues and unphysical continuity conditions. There are approaches to regularize
the problem, so that H1-conforming elements can be used. But in general, for non-convex
domains, the solution is not in H1; so that complicated, weighted formulations have to be
used. Nédélec [5, 6] introduced H(curl)-conforming elements, with edge, face and interior
moments as degree of freedom; and Ben Belgacem and Bernardi [1] studied methods with
spectral element degrees of freedom for Maxwell’s evolution equations in a theoretical paper.
We will use spectral element type nodal degrees of freedom and enforce only the continuity
of the tangential components across element interfaces. For the quadrature, we use variable
order Gauss-Lobatto-Legendre formulae.

The discretization on one element results in a block tensor product matrix in both the
two-dimensional and three-dimensional case. For simplicity, we consider the two-dimensional
case, similar statements hold about the three-dimensional case. The system on one element
corresponding to (1.1) reads:

KEu = f̃ or

(
Mx

1 ⊗Ay Bx ⊗ Cy

Bx,T ⊗ Cy,T Ax ⊗My
2

)(
u1

u2

)
=

(
f̃1

f̃2

)
The M are mass matrices, the A are spectral discretizations of scaled Helmholtz operators,

B and C are coupling terms between the components involving derivatives and mass matrices.
If we subassemble such elements on a rectangular arrangement with matching polynomial

degrees enforcing only tangential continuity, we obtain a global matrix of the same structure,
allowing the same solvers as in the element case. For further discussion of the discretization
and subassembly procedures we refer to [3, Chapter 8].

The element-by-element (or rectangle-by-rectangle) computation of the matrix-vector
product Ku can be implemented by dense matrix-matrix multiplications of the factors of
the tensor products with the vector u laid out in matrix form. It can be implemented by
calls to a highly optimized BLAS 3 kernel, and will therefore run at close to peak performance
on modern computer architectures.

3. Fast direct solvers. First we treat the case in which we work on one element or
a rectangular arrangement of elements with matching polynomial degrees. We transform the
block tensor product matrix system on all components into a generalized Sylvester equation
for one of the components. Thus, in the two-dimensional case, we eliminate one of the
components, say u2, and obtain:

(Mx
1 ⊗Ay + CT ⊗DT )u1 = f̃1 + (FT ⊗GT )f̃2

with
FT = −Bx(Ax)−1 GT = Cy(My

2 )−1 CT = FT Cx DT = GT By

This generalized Sylvester matrix equation can be solved in several different ways. For
one, we could solve generalized eigenvalue problems for the matrix pairs (Mx

1 , CT ) and
(Ay, DT ) and use the eigenvector matrices to diagonalize all factors in the tensor products,
and the solution would reduce to a componentwise multiplication with a matrix of the same
size as u1. This is the so-called fast diagonalization method proposed by Lynch et al [4] and
used for instance by Tufo and Fischer [9] for the Navier-Stokes equations. There are also
Hessenberg and Schur reduction algorithms, see, e.g., Gardiner et al [2], that do not involve
the possibly unstable use of transformations to and from the eigenbasis. In our implementa-
tion, we used a fast diagonalization method that performs well on most of the examples; we
are in the process of testing the method of Gardiner et al.

Once Ax and My
2 have been factored and the eigenbases and associated transformations

have been found, the solution of the Sylvester matrix equation and the back-solve for u2
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Figure 3.1: Direct solution of (1.1) with α = 1, β = 1. Left: Fast diagonalization
solver and Schur interface solver on 5 × 5 elements of degree N × N , with an exact
and with a diagonal mass matrix. Right: Schur interface solver on a L-shaped domain
made from three spectral elements.

can be implemented by dense matrix-matrix multiplications and elementwise matrix-matrix
multiplication, both kernels from BLAS that are usually available in highly optimized form
for the common platforms and run at close to peak performance.

For the case that the above solver is not applicable because the domain is not a rect-
angle with appropriate polynomial degrees in the elements, we have implemented a direct
substructuring method as a direct solver. The local Schur complements can be formed by
solving local problems for each (tangential) degree of freedom on the element boundary. We
can subassemble the Schur complement and the right hand side for the Schur complement
system using the local Schur complements and local solves. The Schur complement system
for the tangential components on the interface is then solved, and interior values are found
by local (fast) interior solves.

The convergence for two examples is shown in figure 3.1. For further discussion of the
implementation, timings, and experiments, we refer to [3, Chapter 9].

4. Overlapping Schwarz methods. To define Schwarz preconditioners in the
standard abstract framework (see, e.g., [7]), we have to specify subspaces and solvers on
them. We start with a collection of subdomains Ωi that are either spectral elements them-
selves or rectangular arrangements thereof. Each subdomain is of size H, each spectral
element has uniform degree N in all components. (The analysis goes through for more com-
plicated settings, we chose this case here for simplicity and ease of presentation.) We also
define overlapping subregions Ω′

j,δ ⊂ Ω with an overlap of δ. These subregions can be con-
structed in several ways, e.g., by extending subdomains by a fixed overlap δ in all directions,
or by finding vertex centered subdomains that overlap by δ. Most of our early computa-
tions (and the numerical results that we show in this paper) were performed on 2× 2 vertex
centered assemblies of subdomains (taken as single spectral elements), but we will present
numerical results for other layouts of Ω′

j,δ and small overlap in a forthcoming paper.

The local spaces Vj are the linear span of the basis functions associated to Gauss-Lobatto-
Legendre points in Ω′

j,δ. In general, the support of functions in Vj will be larger than Ω′
j,δ,

but if one only considers the Gauss-Lobatto-Legendre grid, they vanish on grid points outside
Ω′

j,δ. On the local spaces we use exact solvers which corresponds to inversion of a submatrix
of K. In the 2 × 2 case the local solve corresponds to the solution of a standard tangential
value problem on 2 × 2 element patches. In any case, the local solve can be implemented
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Figure 5.1: One-level method, α = 1, β = 1. Left: Scaling with respect to M , the
number of subdomains of degree 10×10. Right: Scaling with respect to N , the degree
inside the 10× 10 spectral elements.

using the direct fast solvers introduced in the previous section.
The coarse space V0 is a low-order Nédélec spectral element space of uniform degree N0

defined on the coarse (subdomain level) mesh. We use the direct solvers of the last section as
exact solvers. In the standard way, the local and the coarse solve define local projections Ti

and T0 that can be used to implement different overlapping Schwarz methods. In this paper,
we only consider two additive operators: a one-level operator Tas1 and a two-level operator
Tas2, defined by

Tas1 =
∑
i≥1

Ti Tas2 = T0 + Tas1

5. Numerical results in two dimensions. We solve the model problem (1.1) with
α = 1, β = 1 on the unit square, decomposed into M ×M subdomains. These subdomains
are single spectral Nédélec elements of degree N × N in all components. The overlapping
subregions are patches of 2× 2 spectral elements centered around each interior vertex of the
spectral element mesh. (Therefore, δ = H.) We have implemented a conjugate gradient
method with the fast matrix-vector multiplication Ku by tensor products with the additive
Schwarz preconditioners defined by the fast local and coarse solves of section 3. We report
the number of iterations needed to decrease the norm of the residual by 10−6, and we also
show estimates for the condition number of the preconditioned operator obtained, using the
Lanczos connection, from the parameters computed in that conjugate gradient run.

In figure 5.1, we present results for the one-level operator Tas1. On the left, we work with
degree N = 10, and vary the number of subdomains M2. We see that the iteration numbers
grow approximately linearly in M , and that the condition number is growing superlinearly in
M . This behavior is to be expected from the absence of a coarse space; the one-level method
is not scalable with respect to M . Having fixed the number of subdomains M2 = 10 × 10,
increasing the polynomial degree N improves the condition number slightly, as seen on the
right, and the iteration numbers also stay bounded. The condition number stabilizes slightly
above 38.

In figure 5.2, we show the results for the two level method Tas2. On the left, we show
the scaling with M2 in the case of fixed N = 10. Both the iteration numbers and condition
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Figure 5.2: Two-level method, α = 1, β = 1, N0 = 3. Left: Scaling with respect to
M , the number of subdomains of degree 10 × 10. Right: Scaling with respect to N ,
the degree inside the 10× 10 spectral elements.

numbers are clearly bounded, the latter being below 5. On the right, we fix the number
of subdomains to be 10 × 10, and vary the polynomial degree N . The condition number
is clearly bounded, and less than 4.7 for N = 50. This example shows that the two-level
additive Schwarz preconditioner Tas2 is scalable with respect to M , and behaves uniformly
in N . The condition numbers (and also the iteration numbers) of the two-level method are
considerably smaller than those of the one-level method.

6. Condition number bound. We use the abstract Schwarz framework in which
we obtain an estimate of the condition number in terms of NC (number of colors), ω (norms
of local solvers), and C2

0 (splitting constant). For a general introduction to the abstract
Schwarz framework in the context of preconditioners for the h-version, see Smith et al [7,
chapter 5].

Since we use exact solvers, the parameter ω is equal to one. The largest eigenvalue is
bounded by the number of colors NC by a standard argument [7]. The smallest eigenvalue
is bounded from below by C−2

0 where∑
a(ui,ui) ≤ C2

0a(u,u) for u =
∑

ui and ui ∈ Vi

We will estimate the smallest eigenvalue by a variant of the arguments in Toselli [8]. To
complete the argument, we need to make explicit the N -dependence of the different bounds in
Toselli’s argument. The bounds were proven in the low-order case with a finite-dimensional
space argument which only allows fixed N . For varying N the dimension of the space is
related to N , and those arguments can not easily be extended to include the dependence on
N .

We will sketch the analysis briefly and refer for complete details to a forthcoming paper.
Our variant of Toselli’s analysis is expressed in the following theorem:

Theorem 6.1 (N-dependence of the condition number) Given a Nédélec interpolation
estimate on divergence-free functions from H(curl) with polynomial curl of the form:

||(I −ΠND,I
N )w||0 ≤ Chf1(N)||CURLw||0 (6.1)
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the L2-stability of the local splitting:

||ΠND,I
N (χiu)||0 ≤ Cf2(N)||χiu||0 (6.2)

the curl-stability of the local splitting:

||CURL
(
ΠND,I

N (χiu)
)
||0 ≤ Cf3(N)||CURL(χiu)||0 (6.3)

and the standard conditions on a partition of unity χi:

||χi||∞ ≤ C ||∇χi||∞ ≤ C

δ
(6.4)

then, the inverse of the smallest eigenvalue is bounded by

max

(
CNc

(
1 +

H

δ

)
, C

max(α, β)

min(α, β)
(1 + Ncf

2
2 (N)),

C
max(α, β)

min(α, β)

{
1 + Ncf

2
3 (N)

(
1 +

(
H + hf1(N)

δ

)2
)})

We will now discuss the different assumptions and estimates required and their proof.
The interpolation estimate (6.1) can be proven with f1(N) = 1 + C(ε)N−1+ε ≤ 1 +

C(ε). In two dimensions, f1(N) = C(ε)N−1+f(ε). A similar bound should also hold in three
dimensions, but is not yet proven.

We can reduce the L2-stability of the local splitting (6.2) for polynomial χi to the L2-
stability of the Nédélec interpolation operator between polynomial spaces. Then we need
to use χi that are polynomial interpolants of the standard piecewise linear ones. By the
definition of the Vi, χi needs to be zero on the Gauss-Lobatto-Legendre grid points outside
of Ω′

i,δ. We need to prove that they satisfy the conditions on the partition of unity (6.4). By
a general theorem, we would obtain bounds involving the Lebesgue constant for the Gauss-
Lobatto-Legendre interpolation, i.e., a logarithmic factor in N ; numerical experiments and
special arguments using the specific form of the Gauss-Lobatto-Legendre point values of the
partition of unity result in the same bounds as for the standard piecewise linear partition of
unity.

The L2-stability of the Nédélec interpolant (6.2) can be proven by identifying the Nédélec
interpolant as a componentwise tensor product operator having as factors discrete L2- and
modified H1-projections. The L2-projections are obviously stable, the modified H1-projections
have been proven, by a recent result of ours, to be stable for fixed differences in the degrees,
and linear in the square root of the difference in the degree otherwise. We also confirmed
the predicted behavior of the modified H1-projections in extensive numerical experiments.
Combining the results from the factors, we obtain a constant bound for f2(N) for χi of fixed
degree (for instance for element-wise overlap), and a bound f2(N) =

√
c1N + c2 for χi of

degree N (i.e., for general overlap).
The curl-stability of the Nédélec interpolant (6.3) of the local splitting can be reduced

to the L2-stability of the Raviart-Thomas interpolant by the commuting diagram property.
Therefore, for polynomial χi, it is enough to analyze the L2-stability of the Raviart-Thomas
interpolant between polynomial spaces of different degrees. One can identify the Raviart-
Thomas interpolant as a componentwise tensor product operator having as factors discrete
L2- and modified H1-projections. These factors are of the same form as for the Nédélec inter-
polant. Our recent results for the one-dimensional projections therefore imply, analogously
to the results of the previous paragraph, a constant bound for f3(N) for χi of fixed degree
and a bound f3(N) =

√
c3N + c4 for χi of degree N (i.e., for general overlap).

Combining the estimates with the above theorem, we obtain two corollaries:
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Corollary 6.1 (Element-wise overlap) In the case of element-wise overlap, the condition
number of Tas2 is bounded by

κ(Tas2) ≤ C(Nc + 1)
max(α, β)

min(α, β)

(
1 + Nc

(
1 +

(
H

δ

)2
))

Corollary 6.2 (General overlap) For general δ, an upper bound of the condition number
of Tas2 is given by

κ(Tas2) ≤ C(NC + 1)N
max(α, β)

min(α, β)

(
1 + NC

(
1 +

(
H

δ

)2
))

It is not known if the powers of H
δ

and NC in both corollaries and of N in the second
corollary are optimal, and it is not known if the estimates are sharp. We are performing a
numerical study of the extreme eigenvalues for minimal and for fixed overlap which should
give us some insight about sharpness and exponents.

For the limit cases α → 0 or β → 0, one can find improved bounds by alternative splittings
and proofs.
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46. A Dirichlet/Robin Iteration-by-Subdomain Domain
Decomposition Method Applied to Advection-Diffusion
Problems for Overlapping Subdomains

G. Houzeaux1, R. Codina2

1. Introduction. We present a domain decomposition (DD) method to solve scalar
advection-diffusion-reaction (ADR) equations which falls into the category of iteration-by-
subdomain DD methods.

Domain decomposition methods are usually divided into two families, namely overlap-
ping and non-overlapping methods. The former are based on the Schwarz method. At
the differential level, they use alternatively the solution on one subdomain to update the
Dirichlet data of the other. Contrary, non-overlapping DD methods use necessarily two dif-
ferent transmission conditions on the interface, in such a way that both the continuity of
the unknown and its first derivatives are achieved on the interface (for ADR equations). Let
us mention the Dirichlet/Neumann method introduced in [4, 8, 10]; the γ-Dirichlet/Robin
method [2]; the Robin/Robin method [6, 9, 7]; the coercive γ-Robin/Robin method [2]; the
Neumann/Neumann method [5, 3, 1], etc.

In the literature, all the mixed DD methods mentioned previously have been mainly
studied in the context of disjoint partitioning. However, there exists no particular reason for
restricting their application only to non-overlapping subdomains. This paper gives a possible
line of study for the generalization of the mixed method to overlapping subdomains. We
expect that the overlapping mixed DD methods will enjoy some properties of their disjoint
brothers as well as some properties of the classical Schwarz method, as for example the
dependence on the overlapping length.

Our motivation to study these types of methods has been to maintain the implementation
advantages of the Schwarz method when used together with a numerical approximation of the
problem. The possibility to have some overlapping simplifies enormously the discretization
of the subdomains. However, very often this overlapping needs to be very small in practice,
and thus the convergence rate of the Schwarz method becomes very small. Contrary to the
Schwarz method, the limit case of zero overlapping will be possible using the formulation
proposed herein. We have chosen to study an overlapping Dirichlet/Robin method, using the
coercive bilinear form presented in [2] in the context of the γ-D/R and γ-R/R methods. This
simplifies the analysis of the DD method as no assumption has to be made on the direction
of the flow and its amplitude on the interfaces of the overlapping subdomains.

We would like to stress that our approach is not to view domain decomposition as a pre-
conditioner for solving the linear systems of equations arising after the space discretization
of the differential equations. In our case, the domain is decomposed at the continuous level.
We are not concerned with the scaling properties with respect to the number of subdomains
of the iteration-by-subdomain strategy we propose. For our purposes, it is enough to an-
alyze two subdomains. More precisely, our final goal is to devise a Chimera type strategy
taking Dirichlet/Robin(Neumann) transmission conditions rather than the classical Dirich-
let/Dirichlet (Schwarz) approach. This paper must be understood as a theoretical basis for
such a formulation. We recall briefly the Chimera method, of which we give an example
in Figure 1.1. Firstly, independent meshes are generated for the background mesh and the
mesh around the cylinder. Secondly, the mesh around the cylinder is placed on the back-
ground mesh. Then, according to some criteria (order of interpolation, geometrical overlap
prescribed, etc.), we can impose in a simple way a Dirichlet condition on some nodes of the

1Universitat Politècnica de Catalunya - CIMNE, houzeaux@cimne.upc.es
2Universitat Politècnica de Catalunya - CIMNE, ramon.codina@upc.es
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Figure 1.1: Chimera method.

background located inside the cylinder subdomain (this task is called hole cutting). Doing
so, we form an apparent interface on the background subdomain to set up an iteration-by-
subdomain method. Note that a natural condition of Neumann or Robin type is in general
not possible as the apparent interface is irregular. Finally, by imposing a Dirichlet, Neumann
or Robin condition on the outer boundary of the cylinder subdomain we can define completely
an iteration-by-subdomain method to couple both subdomains. The Chimera method was
first thought as a tool to simplify the meshing of complicated geometry. It is also a powerfull
tool to treat subdomains in relative motion.

2. Problem statement. Let us consider the advection-diffusion-reaction problem of
finding u such that: {

Lu := −ε∆u +∇ · (au) + σu = f in Ω,
u = 0 on ∂Ω,

(2.1)

where Ω is a d-dimensional domain (d = 1, 2, 3) with boundary ∂Ω, ε is the diffusion constant
of the medium, f is the force term, a is the advection field (not necessarily solenoidal) and
σ is a source (reaction) term.

We denote by (·, ·) the inner product in L2(Ω), and by V := H1
0 (Ω) the space where u

will be sought. Likewise, we use the notation

〈·, ·〉ω := 〈·, ·〉Hs(ω)×H−s(ω), (2.2)

for the duality pairing between the space Hs(ω) and its topological dual H−s(ω), with s = 1
when ω is d-dimensional and with s = 1/2 when ω is (d− 1)-dimensional.

Let us consider our differential problem 2.1. We restrict ourselves to solutions in V . To
guarantee existence, we take f ∈ H−1(Ω) and a, σ,∇ · a ∈ L∞(Ω). Since∫

Ω

va · ∇u dΩ = −
∫

Ω

ua · ∇v dΩ−
∫

Ω

uv∇ · a dΩ ∀ u, v ∈ V, (2.3)

we transform the convective term into a skew symmetric operator, and we can enunciate our
problem as follows: find u ∈ V such that

a(u, v) = 〈f, v〉 ∀ v ∈ V, (2.4)

where the bilinear form is

a(w, v) := ε(∇w,∇v) +
1

2
(a · ∇w, v)− 1

2
(w, a · ∇v) + (σ0w, v), (2.5)

with σ0 = σ + 1
2
∇ · a.
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Figure 3.1: Examples of decomposition of a domain Ω into two overlapping subdomains
Ω1 and Ω2.

3. Overlapping Dirichlet/Robin method.

3.1. Domain partitioning and definitions. We perform a geometrical decom-
position of the original domain Ω into three disjoint and connected subdomains Ω3, Ω4 and
Ω5 such that

Ω = int
(
Ω3 ∪ Ω4 ∪ Ω5

)
. (3.1)

From this partition, we define Ω1 and Ω2 , as two overlapping subdomains:

Ω1 := int
(
Ω3 ∪ Ω4

)
, Ω2 := int

(
Ω5 ∪ Ω4

)
. (3.2)

Finally, we define Γa as the part of ∂Ω2 lying in Ω1, and Γb as the part of ∂Ω1 lying in Ω2.
The geometrical nomenclature is shown in Figure 3.1. Γb and Γa are the interfaces of the
domain decomposition method we now present. Ω4 is the overlap zone. In the following,
index i or j refers to a subdomain or an interface.

Let us introduce the following definitions:

(w, v)Ωi :=

∫
Ωi

wv dΩ, (3.3)

ai(w, v) := ε(∇w,∇v)Ωi +
1

2
(a · ∇w, v)Ωi −

1

2
(w, a · ∇v)Ωi + (σ0w, v)Ωi (3.4)

Vi := {v ∈ H1(Ωi) | v|∂Ω∩∂Ωi
= 0}, (3.5)

V 0
i := H1

0 (Ωi), (3.6)

where i can be any of the five subdomains introduced previously, i.e. i = 1, 2, 3, 4 or 5. Let
us define the linear and continuous trace operators Ta and Tb on Γa and Γb, respectively. We
explicitly define the trace space on Γa and Γb as Λa := {µa ∈ H1/2(Γa)} and Λb := {µb ∈
H1/2(Γb)}, respectively.

3.2. Variational formulation. We propose to solve the following problem: find
u1 ∈ V1 and u2 ∈ V2 such that

a1(u1, v1) = 〈f, v1〉Ω1 ∀ v1 ∈ V 0
1 ,

u1 = u2 on Γb,
a2(u2, v2) = 〈f, v2〉Ω2 ∀ v2 ∈ V 0

2 ,
a3(u1, E3µa) + a2(u2, E2µa) = 〈f, E3µa〉Ω3 + 〈f, E2µa〉Ω2 ∀ µa ∈ Λa,

(3.7)

where Ei denotes any possible extension operator from Λa to H1(Ωi), that is to say,

Ei : Λa −→ H1(Ωi), TaEiµa = µa ∀ µa ∈ Λa. (3.8)
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Equations 3.71 and 3.73 are the equations for the unknown in subdomains Ω1 and Ω2 re-
spectively. Equation 3.72 is the condition that ensures continuity of the primary variable
across Γb, and levels the solution in both subdomains. Finally, Eq. 3.74 is the equation for
the primary variable on the interface Γa.

Theorem 3.1 Problems 3.7 and 2.4 are equivalent.

The proof can be obtained as in the case of the Dirichlet/Neumann method applied to disjoint
subdomains. See for example [10].

3.3. Alternative formulation. We develop an alternative formulation for the do-
main decomposition method given by Eqs. 3.71−4.

Lemma 3.1 The solution of the domain decomposition problem satisfies

∂u1

∂n2
− 1

2
(a · n2)u1 =

∂u2

∂n2
− 1

2
(a · n2)u2 on Γa, (3.9)

where ∂(·)/∂n2 = n2 · ∇(·), n2 being the exterior normal to Ω2 on Γa.

In addition, we have the following result.

Theorem 3.2 System of Eqs. 3.71−4 can be reformulated as follows: find u1 ∈ V1 and
u2 ∈ V2 such that

a1(u1, v1) = 〈f, v1〉Ω1 ∀ v1 ∈ V 0
1 ,

u1 = u2 on Γb,

a2(u2, v
′
2) = 〈f, v′

2〉Ω2 + 〈ε∂u1

∂n2
− 1

2
(a · n2)u1, v

′
2〉Γa ∀ v′

2 ∈ V2.
(3.10)

The interpretation of the domain decomposition method now appears clearly. A Dirichlet
problem is solved in Ω1 using as Dirichlet data on the interface Γb the solution in Ω2, whereas
a mixed Dirichlet/Robin problem is solved in Ω2 using as Robin data on Γa the solution in
Ω1. This formulation justifies the name overlapping Dirichlet/Robin method to designate this
domain decomposition method.

Remark 3.1 The system of Eqs. 3.101−3 could have been derived directly from the following
DD problem applied at the differential level:

Lu1 = f in Ω1,
u1 = 0 on ∂Ω1 ∩ ∂Ω,
u1 = u2 on Γb,
Lu2 = f in Ω2,
u2 = 0 on ∂Ω2 ∩ ∂Ω,

ε
∂u2

∂n2
− 1

2
(a · n2)u2 = ε

∂u1

∂n2
− 1

2
(a · n2)u1 on Γa.

(3.11)

3.4. Interface equations. A convenient way to study DD methods is to derive
equations for the interface unknown(s). To do so, the problem is first rewritten into two
purely Dirichlet problems for which the Dirichlet data are the unknowns on the interfaces.
Starting form Eqs. 3.111−6, the problems to consider are:

Lw1 = f in Ω1,
w1 = 0 on ∂Ω1 ∩ ∂Ω,
w1 = λb on Γb,


Lw2 = f in Ω2,
w2 = 0 on ∂Ω2 ∩ ∂Ω,
w2 = λa on Γa.

(3.12)
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Now let us decompose w1 and w2 into L-homogeneous and Dirichlet-homogeneous parts,

w1 = u0
1 + u∗

1, w2 = u0
2 + u∗

2, (3.13)

where the L-homogeneous parts u0
1 and u0

2 are the solutions of
Lu0

1 = 0 in Ω1,
u0

1 = 0 on ∂Ω1 ∩ ∂Ω,
u0

1 = λb on Γb,


Lu0

2 = 0 in Ω2,
u0

2 = 0 on ∂Ω2 ∩ ∂Ω,
u0

2 = λa on Γa,
(3.14)

and the Dirichlet-homogeneous parts u∗
1 and u∗

2 are the solutions of{
Lu∗

i = f in Ωi,
u∗

i = 0 on ∂Ωi,
(3.15)

for i = 1, 2. We refer to u0
1 as the L-homogeneous extension of λb into Ω1, and we denote it

by L1λb. Similarly, we call u0
2 the L-homogeneous extension of λa into Ω2, and we denote it

by L2λa. In the case when L = −∆, L is the harmonic extension and is usually denoted by
H. The Dirichlet-homogeneous parts u∗

1 and u∗
2 are rewritten as G1f and G2f , respectively.

Comparing systems 3.12 with system 3.11, we have that wi = ui for i = 1, 2 if and only
if the following two conditions are satisfied: ε

∂w2

∂n2
− 1

2
(a · n2)w2 = ε

∂w1

∂n2
− 1

2
(a · n2)w1 on Γa,

w1 = w2 on Γb.
(3.16)

Using the previous definitions, conditions 3.16 can be rewritten as
ε
∂L2λa

∂n2
− 1

2
(a · n2)L2λa = ε

∂L1λb

∂n2
− 1

2
(a · n2)L1λb

+ε
∂G1f

∂n2
− 1

2
(a · n2)G1f − ε

∂G2f

∂n2
+

1

2
(a · n2)G2f on Γa,

λb = TbL2λa + TbG2f on Γb.

(3.17)

Let us clean up this system by introducing some definitions. In the first equation, we recognize
the Steklov-Poincaré operator S2 associated to subdomain Ω2, defined as

S2 : H1/2(Γa) −→ H−1/2(Γa), (3.18)

S2λa := ε
∂L2λa

∂n2
− 1

2
(a · n2)L2λa (evaluated on Γa). (3.19)

Note that L2λa = λa on Γa. We define S̃b, a Steklov-Poincaré-like operator acting on Γb, as

S̃b : H1/2(Γb) −→ H−1/2(Γa), (3.20)

S̃bλb := −ε
∂L1λb

∂n2
+

1

2
(a · n2)L1λb (evaluated on Γa). (3.21)

We also define T̃b, the trace on Γb of the L-extension of λa into Ω2:

T̃b : H1/2(Γa) −→ H1/2(Γb), (3.22)

T̃bλa := TbL2λa. (3.23)

Finally, χ and χ′ are defined as follows

χ = ε
∂G1f

∂n2
− 1

2
(a · n2)G1f − ε

∂G2f

∂n2
+

1

2
(a · n2)G2f, (3.24)

χ′ = TbG2f, (3.25)
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where we have χ ∈ H−1/2(Γa) and χ′ ∈ H1/2(Γb). Owing to the previous definitions, the
system of two equations for the interface unknowns reads{

S2λa = −S̃bλb + χ in H−1/2(Γa),

λb = T̃bλa + χ′ in H1/2(Γb).
(3.26)

Let us introduce now the operator

S̃1 : H1/2(Γa) −→ H−1/2(Γa), (3.27)

S̃1λa := S̃bT̃bλa, (3.28)

and define S as

S = S̃1 + S2. (3.29)

After substituting λb given by Eq. 3.262 into Eq. 3.261, we finally obtain the following system
of equations for the interface unknowns{

Sλa = χ− S̃bχ
′ in H−1/2(Γa),

λb = T̃bλa + χ′ in H1/2(Γb).
(3.30)

Once λa and λb are obtained, we can solve the two Dirichlet problems 3.14 to obtain the
L-homogeneous parts u0

1 and u0
2. The Dirichlet-homogeneous parts u∗

1 and u∗
2 are obtained

by solving Eqs. 3.15 for i = 1, 2. Hence, the solutions u1 and u2 are calculated by adding up
their respective L and Dirichlet-homogeneous contributions.

Let us go back to system 3.30. We can show that S2 is both continuous (with constant
MS2) and coercive (with constant NS2) and S̃1 is continuous (with constant MS1) and non-
negative. As a result we have the following theorem:

Theorem 3.3 The operator S defined in 3.29 is invertible and system 3.30 has a unique
solution {λa, λb}.

The solutions of our interface problem can be written as{
λa = S−1(χ− S̃bχ

′) in H1/2(Γa),

λb = T̃bS
−1(χ− S̃bχ

′) + χ′ in H1/2(Γb),
(3.31)

4. Iterative scheme.

4.1. Relaxed sequential algorithm. In this section, we derive an iterative proce-
dure to solve the domain decomposition problem 3.7. The sequential version of the iterative
overlapping D/R algorithm is defined solving first the Dirichlet problem, and then the Robin
problem. Now we investigate the interface iterates produced by this relaxed iterative proce-
dure. We enable relaxation of relaxation parameter θ > 0 of one of the transmission condition
at the same time. The Dirichlet-relaxed iterative scheme, denoted Dθ/R, is given for any
k ≥ 0 by {

S2λ
k+1
a = −S̃bλ

k
b + χ,

λk+1
b = θ(T̃bλ

k+1
a + χ′) + (1− θ)λk

b .
(4.1)

In terms of the interface unknowns, the Robin-relaxed iterative scheme, denoted D/Rθ,
produces the following iterates for any k ≥ 0:{

S2λ
k+1
a = θ(−S̃bλ

k
b + χ) + (1− θ)S2λ

k
a,

λk+1
b = T̃bλ

k+1
a + χ′.

(4.2)
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Let us rewrite the Dirichlet and Robin-relaxed schemes as Richardson procedures. It can
be shown that S2 is invertible. We can therefore reformulate the system for the interface
unknowns 3.26 as follows: {

Qaλa = χa,
Qbλb = χb,

(4.3)

where we have defined Qa, Qb, χa and χb by

Qa = Ia + S−1
2 S̃bT̃b, Qb = Ib + T̃bS

−1
2 S̃b, (4.4)

χa = S−1
2 χ− S−1

2 S̃bχ
′, χb = T̃bS

−1
2 χ + χ′. (4.5)

and where Ia is the identity on H1/2(Γa) and Ib is the identity on H1/2(Γb). By solving
the Dirichlet-relaxed and Robin-relaxed systems for λk+1

a and λk+1
b , we can show that both

schemes lead to the same following iterates for any k ≥ 1:{
λk+1

a = θ(χa −Qaλk
a) + λk

a,

λk+1
b = θ(χb −Qbλ

k
b ) + λk

b .
(4.6)

We recognize here two stationary Richardson procedures for solving Eqs. 4.31 and 4.32. We
note that the Richardson procedure for solving λa is similar to that produced by the classical
Dirichlet/Neumann method.

4.2. Convergence. This section studies the convergence of the DD algorithm, given
by Eqs. 4.11−2 for the Dθ/R method and Eqs. 4.21−2 for the D/Rθ method. The result we
can prove is:

Theorem 4.1 Assume that ε is large enough so that

κ∗ := 2NS2 − 2‖a‖∞,ΓaC2
2

MS̃1
+ MS2

NS2

> 0, (4.7)

where NS2 , MS̃1
and MS2 are the coercivity constant of S2, and the continuity constants of

S̃1 and S2, respectively. Then, there exists θmax such that for any given λ0
a ∈ Λa and λ0

b ∈ Λb

and for all θ ∈ (0, θmax), the sequences {λk
a} and {λk

b} given by 4.6 converge in Λa and Λb,
respectively. The upper bound of the relaxation parameter θmax can be estimated by

θmax =
κ∗N2

S2

MS2(MS̃1
+ MS2)

2
(4.8)

More precisely, convergence is linear.

Remark 4.1 This result carries over to the discrete variational problems provided the sta-
bility and continuity properties of the continuous case are inherited. In particular, the rate
of convergence will be independent of the number of degrees of freedom.
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47. Boundary Point Method in the Dynamic and Static
Problems of Mathematical Physics

S. Kanaun, V. M. Romero1

1. Introduction. Boundary element method (BEM) is widely used for the numerical
solution of integral equations of mathematical physics [1]. For the use of the BEM, the
surface of the region should be divided into a finite number of subareas and the unknown
functions are approximated by standard (as a rule polynomial) functions in every subarea.
After applying the method of moments or the collocation method, the problem is reduced to
the solution of a finite system of linear algebraic equations. The components of the matrix of
this system are integrals over the subareas (boundary elements) of the surface. In many cases
these integrals are singular and the complexity of their calculations depends on the type of
approximating functions. In a standard BEM, a great portion of the computer time is spent
in calculating these integrals. A non trivial auxiliary problem is dividing an arbitrary surface
into a set of boundary elements.

In this work a new numerical method is used for the solution of boundary integral equa-
tions of some static and dynamic problems of mathematical physics. In this method actual
distributions of unknown functions on the surface of the region is approximated by Gaussian
functions located on the planes tangent to the boundary surface at some homogeneous set
of surface nodes. The idea to use these functions for the solution of a wide class of integral
equations of mathematical physics belongs to V. Maz’ya. The theory of approximation by
Gaussian functions was developed in the works of V. Maz’ya [5] and V. Maz’ya and G. Shmidt
[6].

In the method developed bellow we will use the following result of the mentioned authors.
Let u(x) be a scalar function in d-dimensional space Rd. If u(x) and its first derivative are
bounded, u(x) may be approximated by the following series

u(x) ≈ uh(x) =
∑

m∈Zd

umϕ(x− hm), ϕ(x) =
1

(πD)d/2
exp

(
− |x|

2

Dh2

)
. (1.1)

Here m ∈ Zd is a d-dimensional vector with integer components, hm are the coordinates
of the nodes of this approximation and h is the distance between the neighboring nodes,
um = u(hm) is the value of the function u(x) at node x = hm, D is a non-dimensional
parameter. It is demonstrated in [2,3] that the following estimation holds

|u(x)− uh(x)| ≤ ch ‖%u‖+ |u(x)|R(D), R(D) = O(exp(−π2D)). (1.2)

Here ||∇u|| is the norm in the space of continuous functions, c = O(1). If h is sufficiently
small the error of the approximation (1.1) may be made negligible by the appropriate choosing
of the parameter D (D = O(1)). The properties of this approximation were studied in detail
in [5, 6].

The use of these functions for the solution of the integral equations of mathematical
physics has two main advantages. First, the action of the integral operators of the problems
on these functions in many cases is a combination of few standard functions. The latter may
be simply tabulated, kept in the computer memory and then used for the solution of any
similar problem for regions of arbitrary geometry. As a result, the time for the calculation of
the matrix of the linear system obtained after the discretization of the problem, is essentially
reduced in comparison with a standard BEM. It is also important that only the coordinates

1Instituto Tecnológico y de Estudios Superiores de Monterrey, Campus Estado de México,
kanaoun@campus.cem.itesm.mx, vromero@campus.cem.itesm.mx
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of the surface nodes and the surface orientations at the nodes are necessary for the surface
description in the present method. The method was called by V. Maz’ya the Boundary Point
Method (BPM) and in the latter the boundary points (nodes) play the role of boundary
elements of the conventional BEM. Note that the problem of covering an arbitrary smooth
surface by a homogeneous set of nodes is simpler than the detailed description of the geometry
of all the boundary elements that is necessary for the application of any traditional BEM to
the solution of surface integral equations.

Here we develope the method for the solution of 2D problems of elasticity and for 3D
electromagnetic wave diffraction problems. The numerical results are compared with exact
solutions existent in the literature.

2. Integral equations of the second boundary value problem of elastic-
ity. Let an elastic body occupy region V in 3D or 2D-space with closed boundary S. The
material of the body is homogeneous with elastic moduli tensor C (Cijkl). The stress tensor
in the body can be presented in the form

σij(x) =

∫
S

Sijkl(x− x′)nk(x′)bl(x
′)dS′. (2.1)

Here x(x1, x2, x3) is a point of the medium with Cartesian coordinates x1, x2, x3, summa-
tion with respect to repeated indexes is implied. The kernel of integral operators in Eq.(2.1)
has form

Sijpq(x) = −Cijkl %k %mGls(x)Cmspq − Cijpqδ(x), (2.2)

where Gls(x) is the Green function of the infinite medium with elastic moduli C. Tensor
σ(x) in Eq.(2.1) satisfies the system of equations of continuum mechanics: ∇ · σ(x) = 0,
ε(e)(x)= C−1·σ(x), Rot ε(e)(x) = 0, % = ei∂/∂xi is the vector gradient, ei (i = 1, 2, 3) are
unit vectors of the axes xi. A dot (·) is the scalar product, δ(x) is Dirac’s delta-function.
Thus, tensor σ(x) in Eq.(2.1) gives us the solution of the second boundary value problem of
elasticity if it satisfies the boundary conditions at the surface of the body

σ(x) · n(x)|S = f(x), (2.3)

where f(x) is the vector of surface forces.

The integral equation for vector b(x) in Eq.(2.1) follows from the boundary condition
(2.3) and takes the form ∫

S

Tij(x, x′) · bj(x
′)dS′ = fi(x), (2.4)

Tij(x, x′) = nk(x)Skijl(x− x′)nl(x).

The kernel of the integral operators in Eq.(2.4) has a high singularity and should be
understood in the sense of some regularizations.

3. Numerical solution in 2D-case. Let us consider the plane problem of elasticity
for homogeneous and isotropic elastic body. The body occupies a closed region Ω in 2D-space
with the bourder Γ. The solution of this problem may be found in the form similar to Eq.(2.1)

σij(x) =

∫
Γ

Sijkl(x− x′)nk(x′)bl(x
′)δ(Γ

′
)dx′. (3.1)

Here δ(Γ) is delta-function concentrated on the contour Γ, integration in this formula is
spread over 2D-space. For the numerical solution of Eq.(2.3) let us chose a set of nodes x(i)

on boundary Γ of the body with equal distances h between neigboring nodes.
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Figure 3.1: The local and global coordinate systems

Then let us change the potential (3.1) concentrated on Γ for the sum of potentials concen-
trated on the tangent lines γi at every node i (see Fig.(3.1)). Thus, density nk(x)bl(x)δ(Γ)
of the potential in Eq.(3.1) is approximated by the equation

nk(x)bl(x)δ(Γ) =
∑

i

n
(i)
k b

(i)
l ϕi(x)γi(x), ϕi(x) =

1√
πD

exp

(
−|x− x(i)|2

Dh2

)
. (3.2)

Here n(i) is the external normal vector to Γ at the node x(i), γi(x) is delta function
concentrated in the tangent line γi to Γ in the node x(i), h is the distance between neighboring
nodes, D = 2. The vectors b(i) in every node should be found from the solution of the problem
and are the main unknowns of the method. If we substitute Eq.(3.2) into Eq.(3.1) the latter
is converted into the sum of potentials concentrated in the tangent lines γi

σij(x) =

∫
Γ

Sijkl(x− x′)nk(x′)bl(x
′)δ(Γ

′
)dx′ ≈

∑
i

I
(i)
ij (x) · b(i)

j ,

I
(i)
ijl (x) =

∫
γi

Sijkl(x− x′)nk(x′)ϕs(x′)γi(x′)dx′. (3.3)

Let us introduce the local coordinate systems (s, z) connected with the nodes; (s(i) ,n(i))
are the unit vectors of axis s directed along tangent line γi and of axis z directed along
normal to Γ at the node x(i) (Fig.(3.1)). In this basis vector b(i) in Eq.(3.1) has the form

b(i) = b(i)
s s(i) + b(i)

n n(i). (3.4)

After substituting Eq.(3.2) into Eq.(3.3) and calculating the integrals we go to the fol-
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lowing expression of the tensor I(i) in the local basis of the i-th node (see [4] for details)

I(i)(s, z) = −4µ0κ0

[
J11(s, z)t

(i)
11 + J12(s, z)t

(i)
12 + J21(s, z)t

(i)
21 + J22(s, z)t

(i)
22

]
,

J11(s, z) =
h

4p2
sign(ζ) [2sign(η)j1(|ζ|, |η|)− ηj2(|ζ|, |η|)] ,

J12(s, z) =
h

4p2
[j3(|ζ|, |η|)− |η|j4(|ζ|, |η|)] ,

J21(s, z) =
h

4p2
ηj2(|ζ|, |η|), J22(x, y) =

h

4p2
[j3(|ζ|, |η|) + |η|j4(|ζ|, |η|)] ,

t
(i)
11 = s(i)⊗s(i)⊗s(i), t

(i)
22 = n(i)⊗n(i)⊗n(i)

t
(i)
12 = s(i)⊗s(i)⊗n(i)+s(i)⊗n(i)⊗s(i)+n(i)⊗s(i)⊗s(i),

t
(i)
21 = s(i)⊗n(i)⊗n(i)+n(i)⊗s(i)⊗n(i)+n(i)⊗n(i)⊗s(i).

Here p2 = (h2D)/4, ζ = s/p, η = z/p, κ0 = (λ0 + µ0)/((λ0 + 2µ0), λ0, µ0 are Lamé
parameters of the material.

The four functions ji(ζ, η) in these equations are connected with function Erf(ξ) (the
error function) by the equations

j1(ζ, η) + ij3(ζ, η) = iF1

(
η + iζ

2

)
, j2(ζ, η) + ij4(ζ, η) = iF2

(
η + iζ

2

)
, (3.5)

F1(z) =
1

2π

[
1−

√
πz exp(z2) (1− Erf(z))

]
,

F2(z) =
1

2π

[
−z +

√
π

2
(1 + 2z2) exp(z2) (1− Erf(z))

]
. (3.6)

The system of linear algebraic equations for the components (b
(i)
s , b

(i)
n ) of the vectors b(i)

in the local bases can be obtained from the boundary conditions (2.3) that will be satisfied
in all the nodes (the collocation method). Let us introduce vector X of the unknowns that

is connected with the components b
(m)
s , b

(m)
n by the relations

X = ‖Xj‖ , j = 1, 2, 3, ..., 2M,

X2m−1 = b(m)
s , X2m = b(m)

n , m = 1, 2, 3, ..., M (3.7)

Here M is the total number of nodes. The vector-column F defines the forces that act in
the nodes

F = ‖Fj‖ , j = 1, 2, 3, ..., 2M,

F2m−1 = − f
(m)
s

4µ0κ0
, F2m = − f

(m)
n

4µ0κ0
, m = 1, 2, 3, ..., M. (3.8)

Here f
(m)
s , f

(m)
n are the values of the forces applied at the nodes that are known from

the boundary conditions.
The equation for the vector X follows from the boundary conditions at the nodes and

takes the form
2N∑
j=1

BijXj = Fi, j = 1, 2, 3, ..., 2M. (3.9)

Here the components of the matrix B = ‖Bij‖ are defined in [3] and expressed via the
standard functions j1, ..., j4 defined in Eqs.(3.5, 3.6). The computer time of calculation of
these functions is very small.
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Figure 3.2: Distribution of stresses in a disk subjected with two concentrated forces.

Let us consider a numerical example. An elastic disk of unit radius, R = 1, subjected
by two concentrated forces applied along its diameter. The distributions of normal stress
σ(x1, x2) in various intersections orthogonal to the direction of the force application are
presented in Fig.3.2. Solid lines are exact solutions; dashed lines correspond to 60 nodes
homogeneously distributed along the boundary. It is seen that the error of the numerical
solution is essential only in a small vicinity of the points of application of the forces.

4. The integral equation of the problem of electromagnetic wave diffrac-
tion on a perfectly conducting screen. Let a monochromatic electromagnetic wave
of frequency ω propagate through a homogeneous and isotropic medium, and Ω be a smooth,
perfectly conducting surface embedded in this medium. The electric field E(x) in the medium
with such a surface may be presented in the form

E(x) = E0(x) + Es(x), Es(x) = −i
4πc

k0

∫
Ω

K(x− x′) · J(x′)dΩ′,

K(x) = %⊗%g(x) + k2
0g(x)1. (4.1)

Here 1 is the second-rank unit tensor, c is the wave velocity, k0 = ω/c. E0(x) is an
incident field that is assumed to be a plane monochromatic wave: E0(x) = e exp(−ik0 · x),
k0 = k0m, |m| = 1, k0 is the wave vector, and e is the polarization vector of this wave. The
kernel K(x) of the integral operator in Eq.(4.1) is the second derivative of Green function
g(x) of Helmholtz’s operator, and in the 3D-case g(x) takes the form g(x) = (e−ik0r)/(4πr),
r = |x|.

The density J(x) of the potential in Eq.(4.1) is the surface current generated on Ω by
incident field E0(x). Vector J(x) belongs to Ω and satisfies the integral equation

i
4πc

k0

∫
Ω

U(x, x′) · J(x′)dΩ′ = θ(x) ·E0(x), θ(x) = 1− n(x)⊗ n(x), x ∈ Ω. (4.2)

U(x, x′) = θ(x) ·K(x− x′) · θ(x′).

The integral on the left hand side of Eq.(4.2) has a strong singularity and should be
understood in terms of some regularization (see [3]).

5. Numerical solution of the diffraction problems. Integral equation (4.2)
may be presented in the form

i
4πc

k0

∫
U(x, x′) · J(x′)Ω(x′)dx′ = θ(x) ·E0(x), x ∈ Ω, (5.1)
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where Ω(x) is delta-function concentrated on the surface Ω and integration in this equation is
spread over 3D-space. Let us cover the scattering surface by a set of nodes x(i) (i = 1, 2, ..., M)
with approximately the same distances between neighboring nodes, and ωi be the tangent
plane to Ω at the i-th node. For the application of the BPM the actual current distribution
on Ω is changed for the following sum

J(x)Ω(x) ≈
∑

i

J(i)ϕi(x)ωi(x), ϕi(x) =
1

πD
exp

(
−|x− x(i)|

Dh2

)
. (5.2)

Here ωi(x) is delta-function concentrated in the plane ωi and J(i) is the vector of this
plane. The approximation of the scattered field Es(x) in Eq.(4.1) takes the form

Es(x) = −i
4πc

k0

∫
K(x− x′) · J(x′)Ω(x′)dx′ ≈ −i4πc

∑
i

I(i)(x) · J(i), (5.3)

I(i)(x) =
1

k0

∫
K(x− x′)ϕi(x

′)ωi(x
′)dx′. (5.4)

Let us introduce a local Cartesian basis
(
e
(i)
1 , e

(i)
2 , e

(i)
3

)
with the origin at the i-th node

(the unit vector e
(i)
3 coincides with the normal n(i) to ωi at point x(i)). In this local coordinate

system the scalar product I(i)(x) ·J(i) in Eq.(5.3) in the local basis of the i-th node takes the
form

I(i)(x) · J(i) =
4

Dκ0
[F1(κ0, η, ζ)1 + 2F2(κ0, η, ζ)µ⊗ µ+

+2 sign(ζ)F3(κ0, η, ζ)n⊗ µ] · J(i), n = e
(i)
3 , κ0 = k0h1,

η =
1

h1

(
x2

1 + x2
2

)1/2
, ζ =

x3

h1
, µ =

x1e
(i)
1 + x2e

(i)
2

h1η
, h1 =

D1/2

2
h.

Here the three functions Fi(κ0, η, ζ) are the following one dimensional integrals

F1(κ0, η, ζ) =
1

8π

∫ ∞

0

[
(2κ2

0 − κ2)J0(κη)−

−κ2J2(κη)
]
exp
[
−k2 − |ζ|β(κ, κ0)

] κdκ

β(κ, κ0)
,

F2(κ0, η, ζ) =
1

8π

∫ ∞

0

J2(κη) exp
[
−k2 − |ζ|β(κ, κ0)

] κ3dκ

β(κ, κ0)
,

F3(κ0, η, ζ) =
1

8π

∫ ∞

0

J1(κη) exp
[
−k2 − |ζ|β(κ, κ0)

]
κ2dκ, (5.5)

where β(κ, κ0) =
√

κ2 − κ2
0 if κ > κ0, and β(κ, κ0) = i

√
κ2

0 − κ2 if κ < κ0; Jn(z) is the

Bessel function of order n. For small values of the arguments η, ζ (ρ =
(
η2 + ζ2

)1/2 ≤ 10)
these integrals may be simply tabulated and kept in the computer memory. For ρ > 10 these
integrals have simple asymptotic expressions presented in [2].

Using approximation (5.3) one can reduce the integral equation (5.1) to the system of
linear algebraic equations which unknowns are the components of the vector J in the local
bases connected with the nodes. This linear system may be written in the canonical form

BX = F, (5.6)
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Figure 5.1: Error of the numerical solution for a sphere.

were the elements of the square matrix B of dimension (2M × 2M) are defined via standard
functions F1, F2, F3 in Eq.(5.5) and the components of vectors X and F are

Xi = J
(i)
1 , i ≤ M ; Xi = J

(i−M)
2 , i > M ;

Fi = E0
1(x(i)), i ≤ M ; Fi = E0

2(x(i−M)), i > M.

Here M is the total number of nodes. B in Eq.(5.6) is a dense matrix with maximal
terms concentrated near the main diagonal. For a homogeneous distribution of the nodes on
Ω matrix B is symmetric with the same elements in the main diagonal.

Let us consider a spherical surface Ω of unit radius (a = 1) when an analytical solution
of the problem may be constructed. For the application of the BPM, a homogeneous set of
nodes on Ω was generated by the algorithm described in [2]. In Fig.5.1 the dependences of
relative error ∆ of the numerical solutions on the number of surface nodes M are presented
for k0a = 1; 5; 8.

∆ =

∫
Ω
(|J∗| − |J|)2dΩ∫

Ω
|J|2dΩ

. (5.7)

Here J∗ is a numerical solution of Eq.(5.6), J is an exact current distribution.

6. Conclusion. The use of Gaussian approximating functions proposed in [5, 6] for
the solution of boundary integral equations has two main advantages: the simplicity of prepa-
ration of the initial data (the coordinates of surface nodes and surface orientations at the
nodes), and a short time for the construction of the matrix of the linear system obtained after
the discretization of the problem. The accuracy of the method depends on the density of
surface nodes. The method may be applied to a wide class of the problems of mathematical
physics that are reduced to surface pseudo-differential equations. In particular, the problems
of electrostatics, static elasticity and elasto-plasticity, the problems of elastic wave diffraction
on inclusions and cracks [3], etc., may be successfully solved with the help of the developed
version of BPM.
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48. V –cycle Multigrid Convergence for Cell Centered Finite
Difference Method, 3-D case.

D. Y. Kwak1

1. Introduction. In this paper, we study a multigrid algorithm for cell centered finite
difference method for elliptic problems in three dimensions.

Cell centered finite difference methods are very popular among engineering circle working
on various fluid computations such as oil reservoir simulation, underground water flow, or
steady Euler equations, etc. It seems mainly due to the conservation property and simplicity
of the scheme. On the other hand, as a solution process of the corresponding linear system,
multigrid methods have been known fast for many class of problems[1],[7], [9],[4], [5],[2]. The
performance of multigrid algorithms for two dimensional cell-centered finite difference method
have been investigated in [10],[6] and W–cycle convergence has been analyzed in [3]. Recently
V –cycle convergence has been shown with certain weighted prolongation operator[8]. This
paper is a continuation of [8] dealing with three dimensional aspect of multigrid algorithm
for cell-centered finite difference methods.

One of the main ingredient of multigrid algorithms in the nonstandard discretization is
the design of prolongation operators between two consecutive levels, since for the cell centered
finite difference case, the natural injection increases the energy norm even in two dimensional
problems as shown in [3, 8]. Hence we consider a certain weighted prolongation and show its
energy norm is bounded by one. Another natural operator is trilinear based operator. In this
case, we also show the energy norm is less than equal to 1. Finally, we consider prolongation
with different weight. This is motivated by the geometric configuration: when a box element
is subdivided by 8 subboxes, one of the subbox shares three faces with its mother box, while it
shares just one face with three neighboring box, thus the weights {3, 1, 1, 1}. In this last case,
one can only show the energy norm is bounded by

√
10/9, but the multigrid performance

is better than any other operator(either as an iterative solver or as a preconditioner). The
rest of the paper is organized as follows. In section 2, we derive cell-centered FDM for a
model 3-dimensional problem through the use of Raviart-Thomas-Nedelec element for the
mixed formulation. In section 3, we describe the multigrid algorithm and some convergence
theory. In section 4, we consider various prolongation operators together with their energy
norm estimates. Finally in section 5, we present numerical experiments.

2. Derivation of Cell Centered FDM from RTN. Consider a model problem

−∇ · K∇p = f in Ω
p = 0 on ∂Ω

(2.1)

where Ω is a unit cube, K is a diagonal tensor whose entries are piecewise smooth. Let
h := hk = 2−k for some positive integer k. Assuming the domain has been subdivided
by axis parallel planes into small cubes of equal size h with index (i, j, l), we consider the
Raviart-Thomas-Nedelec (RTN) mixed finite element space. Let

�Vh = {uh = (a1 + a2x, b1 + b2y, c1 + c2z) on each element } ∩H(div Ω) (2.2)

Lh = {ph : piecewise constant on each element}. (2.3)

The RTN mixed method is to find (uh, ph) ∈ �Vh ×Mh such that

(K−1uh,v)− (divv, ph) = 0, v ∈ �Vh (2.4)

(divuh, q) = (f, q), q ∈ Lh. (2.5)

1Korea Advanced Institute of Science and Technology, Taejon, Korea, 305-701, Partially supported
by Korea Science and Engineering Foundation. dykwak@math.kaist.ac.kr
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Let v be a test function in �Vh whose only nonzero component, the x component, is one at a
vertex i + 1/2 and zero at all others. One uses the trapezoidal rule to evaluate first integral.
Then we get

u1
i+1/2,j,lFac = h2(pi,j,l − pi+1,j,l), (2.6)

where

Fac =
h

2

[∫ j+ 1
2

j− 1
2

∫ l+ 1
2

l− 1
2

K−1
L (xi+ 1

2
, y, z)dydz +

∫ j+ 1
2

j− 1
2

∫ l+ 1
2

l− 1
2

K−1
R (xi+ 1

2
, y, z)dydz

]
.

Similarly we integrate along y-directional and z-directional volumes using y, z directional
test functions to get difference equations along the y and z axes. The second equation of
mixed formulations reads:

h2(u1
i+ 1

2 ,j,l − u1
i− 1

2 ,j,l + u2
i,j+ 1

2 ,l − u2
i,j− 1

2 ,l + u3
i,j,l+ 1

2
− u3

i,j,l− 1
2
) = h3fi,j,l, (2.7)

where we assumed f is piecewise constant for simplicity. By substituting the expressions for
u1

i+1/2,j,l etc, if we denote the integral of K−1
L simply as K−1

L , we have

2

[
−pi−1,j,l − pi+1,j,l − pi,j−1,l + 6pi,j,l − pi,j+1,l − pi,j,l−1 − pi,j,l+1

K−1
L +K−1

R

]
= fi,j,lh

2. (2.8)

When K = 1 the stencil for interior is(without h-factor) −1,−1,−1, 6,−1,−1,−1 while on
the boundary face −1,−1,−1, 7,−1,−1, 0 and on the boundary edge 0,−1,−1, 8,−1,−1, 0
and on the corner −1,−1,−1, 9, 0, 0, 0. This is the cell-centered finite difference method.
If we denote by Mk the space of functions which are piecewise constant on each cell, the
problem can be viewed as seeking a solution x ∈ Mk satisfying an algebraic equation of the
form

Akx = b, (2.9)

where x is identified as the vector representation of ph.

2.1. Multgrid Method. Now we describe a V –cycle multigrid algorithm (with one
smoothing Rk, e.g, Gauss-Seidel) for solving (2.9) for k = J . First consider the sequence of
spaces

M1, · · · , MJ .

One can view this sequence of space nested with obvious injection. But as we shall see other
types of operator to be considered in this paper work better for multigrid.

ALGORITHM. If k = 1, set B1b = A−1
1 b. Otherwise define Bk recursively as follows:

1. Pre-smooth

x1
k := Rkb.

2. Set

q = Bk−1P
0
k−1(b−Akx1

k).

3. Correct

x2
k := x1

k + Ikq.

4. Post-smooth

Bkb := x2 + Rt
k(b−Akx2

k).
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For the convergence analysis, we need two conditions to verify: One is the so-called
regularity and approximation property: There exist constants α ∈ (0, 1] and Cα such that,
for all k = 1, · · · , J ,

Ak((I − IkPk−1)u, u) ≤ C2
α

(
‖Aku‖2

λk

)α

Ak(u, u)1−α, ∀u ∈ Mk. (2.10)

Here, λk is the largest eigenvalue of Ak, and Pk−1 is the elliptic projection defined by

Ak−1(Pk−1u, v) = Ak(u, Ik
k−1v), ∀u ∈ Vk, v ∈ Mk−1. (2.11)

The next is

Ak(Ikv, Ikv) ≤ CIAk−1(v, v), ∀v ∈ Vk−1. (2.12)

With these verified one can prove the following result[5].

Theorem 2.1 We have
1. If CI ≤ 1, then V –cycle multigrid algorithm satisfies

0 ≤ Ak(Eku, u) ≤ δkAk(u, u), ∀u ∈ Mk, (2.13)

where Ek = I −BkAk and δk = Ck
Ck+1

.
2. If CI ≤ 1 + Chk, then Bk is a good preconditioner in the sense that

η0Ak(u, u) ≤ Ak(BkAku, u) ≤ η1Ak(u, u), ∀u ∈ Mk, (2.14)

where η1 is independent of k and η0 ≤ 1− δk.

3. Energy norm estimate of various prolongations. For all the prolongation
operators to be considered below, this regularity and approximation property holds(see [8]
for details). Hence we concentrate (2.12) only. To make things easier we summarize 2-D
result briefly first and extend it to 3-D. Referring to figure 2.1, we shall use the notation (i, j)
to denote a coarse grid cell center, while we use (I1, J1) etc, to denote the fine grid center
obtained by halving the coarse cell. We define the prolongation operator Ik : Mk−1 → Mk

as follows: With any positive number w let

(Ikv)I−1,J−1 =
1

w
((w − 2)vi,j + vi−1,j + vi,j−1) (3.1)

(Ikv)I−1,J =
1

w
((w − 2)vi,j + vi,j+1 + vi−1,j) (3.2)

(Ikv)I,J−1 =
1

w
((w − 2)vi,j + vi+1,j + vi,j−1) (3.3)

(Ikv)I,J =
1

w
((w − 2)vi,j + vi,j+1 + vi+1,j) (3.4)

One can show that in this case (2.12) holds with CI = (2(w−2)2+8)/w2 whose minimum
is obtained when w = 4. Thus we have weight {1/2, 1/4, 1/4}. Hence the analysis in [8] can
be carried out to show that symmetric V –cycle with one smoothing yields a convergence
factor δ < 1. For 3D, the situation is different. The weight has to be changed to get suitable
operator. We use similar notations as in 2-D. Fix a box element (i, j, l) in k − 1 level and
divided it by 8 axi-parallel subboxes, denoted by (I, J, L), (I1, J, L), (I, J1, L), (I1, J1, L) and
(I, J, L1), (I1, J, L1), (I, J1, L1), (I1, J1, L1), etc. It is natural to define Ikv on each subbox
as a linear combination of values of v on (i, j, l) and its adjacent boxes. Referring to figure
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Figure 3.1: Numbering of (i, j) element and its subdivision
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Figure 3.2: A box element and its subdivision

2.1 and 2.2, let uU
I,J,L, uU

I1,J,L, etc., denote Ikv on the upper part of the box (i, j, l), and let
uL

I,J,L, uL
I1,J,L etc., denote its lower part. We define

uU
I1,J1,L =

1

w
((w − 3)vi,j,l + vi−1,j,l + vi,j−1,l + vi,j,l+1) (3.5)

uU
I1,J,L =

1

w
((w − 3)vi,j,l + vi,j+1,l + vi−1,j,l + vi,j,l+1) (3.6)

uU
I,J1,L =

1

w
((w − 3)vi,j,l + vi+1,j,l + vi,j−1,l + vi,j,l+1) (3.7)

uU
I,J,L =

1

w
((w − 3)vi,j,l + vi,j+1,l + vi+1,j,l + vi,j,l+1) (3.8)

and uL are defined similarly with l + 1 replaced by l − 1.

This choice of weight reflects that the prolongation operator must have a certain approx-
imation property, i.e, ‖Ikv− v‖ ≤ Ch‖v‖1,h for all piecewise constant functions. Here ‖ · ‖1,h

denotes the discrete energy norm Ak(v, v)1/2. By considering the differences between two
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cell centers, it is easy to see that for v ∈ Mk−1,

(Ak−1v, v)k−1 = −hk−1

∑
i,j,l

vi,j,l

[
(vi,j,l+1 − vi,j,l) + (vi,j,l−1 − vi,j,l)

+(vi,j+1,l − vi,j,l) + (vi,j−1,l − vi,j,l)

+(vi+1,j,l − vi,j,l) + (vi−1,j,l − vi,j,l)
]

= hk−1

∑
i,j,l

(vi,j,l − vi−1,j,l)
2 + (vi,j,l − vi,j−1,l)

2 + (vi,j,l − vi,j,l−1)
2.

Let u = Ikv. Then

(Aku, u)k = hk

∑
i,j,l

(D2
i + D2

j + D2
l ), (3.9)

where Di, Dj and Dl are the differences along the x, y, z directions respectively, i.e,

Di = (ui,j,l − ui−1,j,l), Dj = (ui,j,l − ui,j−1,l), Dl = (ui,j,l − ui,j,l−1).

First fix L and consider square differences along the x direction of the upper part of
subdivisions. Across e1, the square is (uI1,J1,L − uI2,J1,L)2. Similarly, across e2, the square
difference is (uI1,J2,L−uI2,J2,L)2. If we let Ei denote the contribution from edge ei, then we
see that, ignoring the 1

w2 factor,

E1 =
[
(w − 3)vi,j,l + vi−1,j,l + vi,j−1,l + vi,j,l+1

−((w − 3)vi−1,j,l + vi,j,l + vi−1,j−1,l + vi−1,j,l+1)
]2

=
[
(w − 4)(vi,j,l − vi−1,j,l) + (vi,j−1,l − vi−1,j−1,l) + (vi,j,l+1 − vi−1,j,l+1)

]2
≤ (w − 2)[(w − 4)(vi,j,l − vi−1,j,l)

2 + (vi,j−1,l − vi−1,j−1,l)
2

+(vi,j,l+1 − vi−1,j,l+1)
2]

where general Cauchy-Schwarz inequality

(
∑

wiαi)
2 ≤ (

∑
wi)(

∑
wiα

2
i )

has been used. Similarly, the contributions from edges e2, · · · , e8 are estimated.

E2 ≤ (w − 2)[(w − 4)(vi,j,l − vi−1,j,l)
2 + (vi,j+1,l − vi−1,j+1,l)

2

+(vi,j,l+1 − vi−1,j,l+1)
2]

E3 =
[
(w − 3)vi,j,l + vi+1,j,l + vi,j−1,l + vi,j,l+1

−((w − 3)vi,j,l + vi−1,j,l + vi,j−1,l + vi,j,l+1)
]2

≤ 2(vi+1,j,l − vi,j,l)
2 + 2(vi,j,l − vi−1,j,l)

2

E4 ≤ 2(vi+1,j,l − vi,j,l)
2 + 2(vi,j,l − vi−1,j,l)

2.

The contribution E5, E6 are obtained from E1, E2 by interchanging the role of i, j. Thus

E5 ≤ (w − 2)[(w − 4)(vi,j,l − vi,j−1,l)
2 + (vi−1,j,l − vi−1,j−1,l)

2

+(vi,j,l+1 − vi,j−1,l+1)
2]

E6 ≤ (w − 2)[(w − 4)(vi,j,l − vi,j−1,l)
2 + (vi+1,j,l − vi+1,j−1,l)

2

+(vi,j,l+1 − vi,j−1,l+1)
2]
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Also, E7, E8 are obtained from E3, E4 by interchanging the role of i, j. Thus

E7 ≤ 2(vi,j+1,l − vi,j,l)
2 + 2(vi,j,l − vi,j−1,l)

2 (3.10)

E8 ≤ 2(vi,j+1,l − vi,j,l)
2 + 2(vi,j,l − vi,j−1,l)

2. (3.11)

Now let us count the terms of the form (vi,j,l−vi−1,j,l)
2. From E1, we see that the coefficient

is (w − 2)(w − 4), while E1 contributes w − 2 to the neighboring boxes (l + 1 and j − 1)
respectively. Thus the same amount come from those boxes. All together, the contribution to
(vi,j,l−vi−1,j,l)

2 is (w−2)(w−4)+2(w−2) = (w−2)2. By the same reasoning the contributions
from e2, e3 and e4 are (w − 2)2, 4, and 4. The lower part of the subdivision has the same
form except l + 1 is replaced by l − 1. Thus the sum of the coefficient for (vi,j,l − vi−1,j,l)

2

is 2 2(w−2)2+8

w2 . The same reasoning shows that the coefficients for (vi,j+1,l − vi,j,l)
2 and

(vi,j,l+1 − vi,j,l)
2 are shown to be the same. It is an elementary calculus to see 2 2(w−2)2+8

w2

has minimum 2 when w = 4. Considering hk factor in Ak form, we have proved (2.12) with
CI = 1. Thus we obtain {1, 1, 1, 1} as a good choice for weight.

3.1. Trilinear case. The prolongation is defined as (with w = 64)

uI1,J1,L =
3

w
(9vi,j,l + 3vi−1,j,l + 3vi,j−1,l + vi−1,j−1,l) (3.12)

+
1

w
(9vi,j,l+1 + 3vi−1,j,l+1 + 3vi,j−1,l+1 + vi−1,j−1,l+1) (3.13)

where other terms are similarly defined. By the same argument as above, we can show (2.12)
holds with CI = 1 for trilinear prolongation also. Hence the V -cycle convergence theory
follows.

3.2. Different weight. Finally consider weight {3, 1, 1, 1}. We can follow the same
line of argument but we could only show CI ≤ 10/9. However, the numerical result shows
this one performs best. This phenomenon is subject to further investigation.

4. Numerical experiment. We set K = 1 and compare all three prolongation with
natural injection whose weight can be viewed as {1, 0, 0, 0}. All three weighted operators
perform well and the reduction factor seems to be independent of the number of levels. We
note that the weight {3, 1, 1, 1} works best. As a reference, we give numerical estimate on
the size of prolongation operators in Table 5.

hJ λmin λmax K δ

1/8 0.734 1.283 1.749 0.279

1/16 0.702 1.475 2.102 0.467

1/32 0.684 1.678 2.452 0.666

1/64 0.673 1.880 2.794 0.863

Table 1. Natural injection {1, 0, 0, 0}

hJ λmin λmax K δ

1/8 0.615 0.999 1.626 0.378

1/16 0.581 0.999 1.721 0.410

1/32 0.556 0.999 1.797 0.432

1/64 0.536 0.999 1.864 0.450

Table 2. Weight {1, 1, 1, 1}
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hJ λmin λmax K δ

1/8 0.684 0.999 1.460 0.308

1/16 0.661 0.999 1.514 0.326

1/32 0.644 0.999 1.553 0.333

1/64 0.634 0.999 1.578 0.336

Table 3. {3, 1, 1, 1}

hJ λmin λmax K δ

1/8 0.641 0.999 1.560 0.353

1/16 0.616 0.999 1.624 0.374

1/32 0.599 0.999 1.669 0.383

1/64 0.589 0.999 1.698 0.389

Table 4. Trilinear

{1, 0, 0, 0} {1, 1, 1, 1} {3, 1, 1, 1} Trilinear

2 0.59 0.67 0.49

2 0.65 0.78 0.60

2 0.69 0.84 0.66

2 0.71 0.86 0.69

Table 5. Estimate of energy of Ik

Concluding remarks: We proved V -cycle multigrid convergence for the cell-centered
FDM for 3-dimensional problem for two kinds of weighted prolongation operators. A third
weight, {3, 1, 1, 1}, works slightly better even though the energy norm seems larger than
the other two. Thus, we guess that an operator with smaller energy norm (although they
guarantee convergence) does not always work better.
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49. Asynchronous domain decomposition methods for
solving continuous casting problem

E. Laitinen1, A. Lapin2, J. Pieskä3

1. Introduction. The general idea of the Schwarz alternating methods is to solve
the boundary value problem restricted to each subdomain, using as the boundary conditions
the function values of the approximative solution of the neighboring subdomains. One of the
advantages of the additive Schwarz is that the solutions in the subdomains can be handled by
the different processors of a parallel computer. However, due to the mutual waits among the
processors when a synchronous method is applied, it leads to a substantial loss of computing
time. To exploit the asynchronous parallel computing capacity of a multiprocessor system, we
propose and study theoretically and numerically the asynchronous algorithms [1] for solving
nonlinear finite-dimensional problem.

2. Continuous casting problem. A continuous casting problem can be stated
mathematically as follows. Let Ω = {0 < x1 < Lx1 , 0 < x2 < Lx2} be the rectangular domain
with the boundary Γ = ∂Ω consisting of two parts: Γ1 = {x ∈ ∂Ω : x2 = 0 ∨ x2 = Lx2} and
Γ2 = {x ∈ ∂Ω\Γ1}. We assume that the domain Ω ⊂ R

2 is occupied by a thermodynamically
homogeneous and isotropic steel. We denote by H(x, t) the enthalpy related to the unit mass
and by u(x, t) the temperature for (x, t) ∈ Ω×]0, T [. We have a constitutive law

H = H(u) = ρ

∫ u

0

c(Θ)dΘ + ρL(1− fs(u)) in Ω×]0, T [,

where ρ is density, c(u) is specific heat, L is latent heat and fs(u) is solid fraction. For
a steel casting process the graph H(u) is an increasing function R → R, involving nearly
vertical segments, which correspond to a phase transition states, namely, for u ∈ [TL, TS]
where 0 < TL < TS are melting and solidification temperatures. When a copper casting
problem is studied, the graph H(u) has a vertical segment for u = TL = TS. We denote by
H(u), u ∈ R, a maximal monotone, generally multivalued, graph.

We also suppose, that the graph H(u) is uniformly monotone: there exists a positive
constant α such that

(γ1 − γ2, u1 − u2) ≥ α(u1 − u2, u1 − u2)∀u1, u2∀γi ∈ H(ui). (2.1)

Now a continuous casting process can be described by a boundary-value problem, formally
written in the following pointwise form: find u(x, t) and γ(x, t) such that

(P)



∂γ

∂t
+ v

∂γ

∂x2
−∆u = 0 for x ∈ Ω, t > 0,

u = z(x1, t) for x ∈ Γ1, t > 0,
∂u

∂n
+ au + b|u|3u = g, a ≥ 0, b ≥ 0, for x ∈ Γ2, t > 0,

γ = H0(x) for x ∈ Ω̄, t = 0,
γ(x, t) ∈ H(u(x, t)) for x ∈ Ω, t > 0.

Below we suppose, that the boundary temperature z(x1, t) at any point of Γ1 and for all
t ≥ 0 does not coincide with the phase transition temperature TL = TS, in other words, the
enthalpy function H has a single values at all these points. This corresponds to the physical

1University of Oulu, erkki.laitinen@oulu.fi
2Kazan State University, alapin@ksu.ru
3University of Oulu, jpieska@cc.oulu.fi
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meaning of the problem, because the incoming material (points x ∈ Γ1 : x2 = 0) is in liquid
state, while the outcoming material (points x ∈ Γ1 : x2 = Lx2) is in solid state. The existence
and uniqueness of a weak solution for problem (P) are proved in [6].

We approximate problem (P) by an implicit in time finite difference scheme and by a
semi-implicit finite difference scheme, using for the approximation in the space variables a
finite element method with the quadrature rules.

Let Th be a triangulation of Ω in the rectangular elements δ of dimensions h1×h2 and Vh =
{uh(x) ∈ H1(Ω) : uh(x) ∈ Q1 for all δ ∈ Th}, where Q1 is the space of bilinear functions.
By Πhv(x) we denote the Vh-interpolant of a continuous function v(x), i.e. Πhv(x) ∈ Vh and
coincides with v(x) in the mesh nodes – vertices of all δ ∈ Th. We also use an interpolation
operator Ph, which is defined as follows: for any continuous function v(x) the function Phv(x)
is piecewise linear in x1, piecewise constant in x2 and on δ = [x1, x1 + h1] × [x2, x2 + h2] it
coincides with v(x) at (x1, x2 + h2) and (x1 + h1, x2 + h2).

Let further V 0
h = {uh(x) ∈ Vh : uh(x) = 0 for all x ∈ Γ1}, V z

h = {uh(x) ∈ Vh : uh(x) =
zh for all x ∈ Γ1}. Here zh is the bilinear interpolation of z on the boundary Γ1. For any
continuous function v(x) we define the quadrature formulas:

Sδ(v) =

∫
δ

Πhvdx, SΩ(v) =
∑
δ∈Th

Sδv,

S∂δ(v) =

∫
∂δ

Πhvdx, SΓ2(v) =
∑

∂δ∈Th∩Γ̄2

S∂δ(v);

Eδ(v) =

∫
δ

Phvdx, EΩ(v) =
∑
δ∈Th

Eδ(v).

Let also ωτ = {tk = kτ, 0 ≤ k ≤ M, Mτ = T} be a uniform mesh in time on the segment
[0, T ] and ∂t̄γ = 1

τ
(γ(x, t) − γ(x, t − τ)). Then the implicit in time finite difference scheme

with up-wind approximation of the convective term v∂γ/∂x2 can be written as follows: for
all t ∈ ωτ , t > 0, find uh ∈ V z

h and γh ∈ Vh such that
SΩ(∂t̄γhηh) + EΩ(v(t)

∂γh

∂x2
ηh) + SΩ(∇uh∇ηh)

+SΓ2((auh + b|uh|3uh)ηh) = SΓ2(gηh) for all ηh ∈ V 0
h ,

γh(x, t) ∈ H(uh(x, t)) for all mesh nodes x.

(2.2)

When constructing the semi-implicit mesh scheme the term
(

∂
∂t

+ v(t) ∂
∂x2

)
γ is approx-

imate by using the characteristics of the first order differential operator (similar to [2], [3]).

Namely, if (x1, x2, t) is the mesh point on the time level t we choose x̃2 = x2 −
∫ t

t−τ

v(ξ)dξ

and approximate this term by:

(
∂

∂t
+ v(t)

∂

∂x2

)
γ ≈ 1

τ
(γ(x1, x2, t)− γ(x1, x̃2, t− τ)) . We

denote γ̃(x, t− τ) = γ(x1, x̃2, t− τ). If x̃2 < 0 then we put γ̃(x, t− τ) = γ(x1, 0, t− τ). Note,
that γ(x1, 0, t− τ) = H(z(x1, t− τ)) with single values H(z(x1, t− τ)) of H at these points,
as it was mentioned above. In what follows we use the notation dt̄γ = 1

τ
(γ(x, t)− γ̃(x, t− τ))

for the difference quotient in each mesh point on time level t.
Now, the semi-implicit finite difference scheme for problem (P) is: for all t ∈ ωτ , t >

0, find uh ∈ V z
h and γh ∈ Vh such that

SΩ(dt̄γhηh) + SΩ(∇uh∇ηh) + SΓ2((auh + b|uh|3uh)ηh)
= SΓ2(gηh) for all ηh ∈ V 0

h ,
γh(x, t) ∈ H(uh(x, t)) for all mesh nodes x.

(2.3)
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Let N0 = card V 0
h and u ∈ R

N0 be the vector of nodal values for uh ∈ V 0
h . We use

the writing uh ⇔ u for this bijection. We define N0 × N0 matrices A and B and nonlinear
operator C by the following relations: for all V 0

h ' uh ⇔ u ∈ R
N0 and V 0

h ' ηh ⇔ η ∈ R
N0

(Au, η) = SΩ(∇uh∇ηh) + SΓ2(auhηh),

(Bu, η) = SΩ(
1

τ
uhηh) + EΩ(v(t)

∂uh

∂x2
ηh),

(Cu, η) = SΓ2(b|uh|3uhηh).

Further we define a vector f : (f, η) = SΓ2(gηh)+SΩ(
1

τ
γ(uh(x, t−τ))ηh). Let now z̃h(x) ∈ Vh

be the function which is equal to zh on Γ̄1 and 0 for all nodes in Ω ∪ Γ2, then f0 is defined
by the equality:

(f0, η) = SΩ(∇z̃h,∇ηh) + EΩ(v(t)
∂Πh(H(z̃h))

∂x2
ηh) for all ηh ∈ V 0

h .

(Here we use again the fact, that the graph H(u) is single-valued for u = z̃h(x), when x is a
mesh point). Finally we get F = f − f0.

In these notations the algebraic form for the implicit mesh scheme (2.2) at fixed time
level is:

Au + Bγ + Cu = F, γ ∈ H(u). (2.4)

If we set (Bu, η) = SΩ( 1
τ
uhηh) and (f, η) = SΓ2(gηh)+SΩ( 1

τ
γ̃hηh), then the semi-implicit

mesh scheme (2.3) has also the algebraic form (2.5).

Au + Bγ + Cu = F, γ ∈ H(u). (2.5)

The matrices A, and B and the operators C, and H have the following properties:

A and B are M −matrices, (2.6)

A is weakly diagonally dominant in columns:

N0∑
j �=i

|aji|/aii ≤ 1∀i; (2.7)

B is strictly diagonally dominant in columns:

N0∑
j �=i

|bji|/bii ≤ β < 1∀i; (2.8)

(in fact, for the semi-implicit scheme matrix B is diagonal); the operators γ and C have the
diagonal forms:

γ(u) = (γ(u1), γ(u2), ..., γ(uN0))
t, Cu = (c1(u1), c2(u2), ..., cN (uN0))

t, (2.9)

where ci are continuous non-decreasing functions and γ(.) is maximal monotone and uniformly

monotone graph (see (2.1)). Note, that β =
τ

τ + h2
for the case of the implicit finite difference

scheme, while β = 0 for the semi-implicit scheme.
Below we use the following notations: u � 0 ⇔ ui ≥ 0 ∀i, A � 0 ⇔ aij ≥ 0 ∀i, j.

There exist a subsolution (u, γ):

Au + Bγ + Cu ≤ F, γ ∈ H(u), (2.10)

and a supersolution (ū, γ̄):

Aū + Bγ̄ + Cū ≥ F, γ̄ ∈ H(ū) (2.11)

for form (2.4). Under above assumptions, the following theorem can be proved [4], [5], .

Theorem 2.1 The implicit mesh scheme (2.2) and the semi-implicit mesh scheme (2.3) have
unique solutions.
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3. Asynchronous algorithms. In this section we present the asynchronous addi-
tive Schwarz alternating algorithms.

Algorithm 1 (ASM1)

1. Divide the domain Ω into p overlapping subdomains and construct approximative sub-
problems in these subdomains.

2. Solve simultaneously the subproblems in the slave processors.

3. When the local stopping criterion in a slave processor is reached, send information
about this to the master processor and keep calculating further.

4. When all slaves have finished the calculations, send the subsolutions to the master
processor for updating the information for all slave processors.

5. If the accuracy is reached, then STOP, else goto 2.

Algorithm 2 (ASM2)

1. Divide the domain Ω into p overlapping subdomains and construct approximative sub-
problems in these subdomains.

2. Solve simultaneously the subproblems in the slave processors.

3. When the local stopping criterion in a slave processor is reached, send subsolution to
the master processor and check if there is a new information from the neighboring sub-
domains. If yes, then update it and restart the calculations, otherwise keep calculating
further.

4. When all slaves have finished the calculations, send the subsolutions to the master
processor for updating the information for all slave processors.

5. If the accuracy is reached, then STOP, else goto 2.

In Algorithm 1 we do not use the newest available information. This slows convergence.
Although it is much faster to just send a signal to the master that the processor is ready
than send the whole subsolution.

In Algorithm 2 we send the subsolution to the master whenever there is an improvement.
This increase the total calculation time. On the other hand we use the newest available
information which decreases the calculation time.

Intuitively if there is a large load imbalance, i.e. if some processors have substantially
more work than others, one can expect the asynchronous versions to converge faster than the
synchronous one. It is also expected that ASM2 would be faster than ASM1.

4. Iterative methods. In this section we study the convergence of asynchronous
iterative methods. For simplicity but without loss of generality we suppose that the domain
Ω is decomposed into two overlapping subdomains Ω1 and Ω2, consisting of the elements of a
triangulation Th. We arrange the nodes of the mesh as follows. First, we enumerate the nodes
lying in the non-overlapping part of the first subdomain, namely x ∈ (Ω̄1 \ Γ̄1) \ Ω1 ∩ Ω2,
then the nodes in the overlapping zone x ∈ Ω1 ∩ Ω2 \ Γ̄1 and at last the nodes in the non-
overlappping part of the second subdomain. A vector u ∈ R

N0 , u ⇔ uh(x), takes the form
u = (u11, u12, u22)

t with the subvectors uij corresponding to enumeration of the nodes.
This decomposition implies also the partitioning of the matrices and nonlinear operators:

A = (Aij)
3
ij=1, B = (Bij)

3
ij=1, C = diag(C1, C2, C3). Note, that Aij � 0, Bij � 0 for i �= j

and the blocks A13, A31, B13, B31 are equal to zero.
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We use also the following notations:

A1
0 =

(
A11 A12

A21 A22

)
, B1

0 =

(
B11 B12

B21 B22

)
, A1

1 = diag(0, A23), B1
1 = diag(0, B23);

A2
0 =

(
A22 A23

A32 A33

)
, B2

0 =

(
B22 B23

B32 B33

)
, A2

1 = diag(A21, 0), B2
1 = diag(B21, 0);

C1 = diag(C1, C2), C2 = diag(C2, C3).

Let further u1 = (u11, u12)
t, u2 = (u12, u22)

t and similar for all other vectors.

Then ASAM has the form (4.1), (4.2):{
A1

0v
k+1
1 + B1

0ηk+1
1 + C1vk+1

1 = F1 −A1
1u

k
2 −B1

1γk
2 ; ηk+1

1 ∈ H(vk+1
1 ),

A2
0w

k+1
2 + B2

0ξk+1
2 + C2wk+1

2 = F2 −A2
1u

k
1 −B2

1γk
1 ; ξk+1

2 ∈ H(wk+1
2 ),

(4.1)

{
uk+1

11 = vk+1
11 , uk+1

22 = wk+1
22 , uk+1

12 = αvk+1
12 + (1− α)wk+1

12 ,

γk+1
11 = ηk+1

11 , γk+1
22 = ξk+1

22 , γk+1
12 = αηk+1

12 + (1− α)ξk+1
12 ,

(4.2)

with an initial guess (u0, γ0) and α ∈ (0, 1).

Let now every subproblem in (4.1) be solved by using a finite number of iterations of an
inner iterative algorithm. Then we derive a two-stage additive Schwarz alternating method.

Let for i = 1, 2 Ai
0 = Mi + Ni, B

i
0 = Ki + Li be regular splittings of A and B with

diag(Ai
0) ⊆ Mi, diag(Bi

0) ⊆ Ki and Ni � 0, Li � 0. Starting from the initial guess z1,0 =
uk

1, z2,0 = uk
2, ε1,0 = γk

1 , ε2,0 = γk
2 , we solve the subproblems in (4.1) by the iterative

methods: {
M1z1,i + K1ε1,i + C1z1,i = ϕk

1 −N1z1,i−1 − L1ε1,i−1,
ε1,i ∈ H(z1,i), i = 1, . . . , p1,

(4.3)

{
M2z2,i + K2ε2,i + C2z2,i = ϕk

2 −N1z2,i−1 − L1ε2,i−1,
ε2,i ∈ H(z2,i), i = 1, . . . , p2,

(4.4)

set vk+1
1 ≡ z1,p1 , ηk+1

1 ≡ ε1,p1 ; wk+1
2 ≡ z2,p2 , ξk+1

2 ≡ ε2,p2 and then update the outer
iterations using formulas (4.2).

Here ϕk
1 = F1 − A1

1u
k
2 − B1

1γk
2 , ϕk

2 = F2 − A2
1u

k
1 − B2

1γk
1 for method ASM1, when we

calculate all subproblems by using inner iterative methods until we reach the desired accuracy
in all subproblems and after that send the calculated vk+1

1 , wk+1
2 , ηk+1

1 , ξk+1
2 to the master

processor to update the outer iterations to using formulas (4.2). On the other hand, for
method ASM2 the formulas for ϕk

i are changed to ϕk
1 = F1 − A1

1w
k+1
2 − B1

1ξk+1
2 or to ϕk

2 =
F2 −A2

1v
k+1
1 −B2

1ηk+1
1 , depending on which of subproblems was solved faster.

Theorem 4.1 Iterative method (4.3)– (4.4), (4.2) with an initial guess (u0, γ0) ∈ 〈(u, γ), (ū, γ̄)〉
converges with geometric rate of convergence:

||A0(uk+1 − u) + B0(γk+1 − γ)||1 ≤ q||A0(uk − u) + B0(γk − γ)||1, (4.5)

with q =
cAB + αβ

cAB + α
< 1, cAB = max

1≤i≤N0

aii

bii
. Here ||v||1 =

N0∑
i=1

|vi| and cAB =
2τ(1 + h2

2/h2
1)

h2(τ + h2)

for the implicit scheme, while cAB =
2τ(1 + h2

2/h2
1)

h2
2

for the semi-implicit scheme. The pa-

rameter α is from equation (2.1) and β from (2.8).
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5. Numerical results. To validate theoretical results the following numerical exam-
ple was considered. Let Ω =]0, 1[×]0, 1[ with the boundary Γ divided in two parts such that
ΓD = {x ∈ ∂Ω : x2 = 0 ∨ x2 = 1} and ΓN = Γ \ ΓD, moreover let T = 1. Let us consider the
case where the phase change temperature uSL = 1 and the latent heat L = 1 and the density
ρ = 1. Let the velocity be v(t) = 1

5
. Our numerical example is

∂H

∂t
−∆K + v(t)

∂H

∂x2
= f(x; t) on Ω,

u(x1, x2; t) = (x1 − 1
2
)2 + (x2 − 1

2
)2 − 1

2
e−4t + 5

4
on ΓD,

∂u

∂n
= 1 on ΓN,

u(x1, x2; 0) = (x1 − 1
2
)2 + (x2 − 1

2
)2 + 1

2
on Ω,

where the Kirchoff’s temperature K(u) and the enthalpy H(u) are according to their defini-
tions

K(u) =

{
u if u < uSL,
2u− 1 if u ≥ uSL,

and H(u) =


2u if u < uSL,
[2uSL, 2uSL + ρL] if u = uSL,
6u− 4uSL + ρL if u > uSL.

Furthermore the known right-hand side is

f(x; t) =

{
4e−4t + 1

5
(4x2 − 2)− 4 if u < uSL,

12e−4t + 1
5
(12x2 − 6)− 8 if u ≥ uSL.

The stopping criterion of the outer iterations was the value of the L2−norm of residual
‖r‖L2 = ‖Au+Bγ +δ−f‖L2 ≤ 10−3. We use through all the calculations the decomposition
presented on the figure 5.1. The subdomain Ω1 is roughly twice as big as other subdomains.

5.1. Implicit scheme. In our first test case we changed the number of grid points
both in time and in space. We solved the problem by using the implicit scheme (2.2). The
results can be seen in table 5.1. The over is the number of grid lines in the overlapping
area. The inner iterations was performed till all of the processors have reached the desired
accuracy ‖r‖L2 ≤ 10−3. Due to this the number of inner iterations can be different for
different processors. The synchronous Schwarz alternating method is denoted by (SASM)

Grid over ASM1 ASM1 ASM2 ASM2 SASM SASM
iterations T[s] iterations T[s] iterations T[s]

65× 65× 128 4 17 14.8 8 11.4 16 16.0
129× 129× 256 8 16 92.1 11 73.0 11 146
257× 257× 512 16 19 1184 17 1120 9 2776

Table 5.1: The number of outer iterations and calculation times in seconds for different
grids for 4 processors; Implicit scheme.

5.2. Semi-Implicit scheme. We solve the same problem as for the implicit scheme
to compare these methods against each other. The results can be seen in table 5.2.

6. Conclusions. Two mesh schemes with two different kind of discretizations for the
convection term were considered, an implicit and a semi-implicit scheme. A model problem
was solved by using both asynchronous methods ASM1 and ASM2. It can be seen from
tables 5.1 and 5.2 that ASM2 takes fewer outer iterations than ASM1 and is thus the faster
of the these two methods.
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Figure 5.1: The decomposition used in model continuous casting problem.
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Grid over ASM1 ASM1 ASM2 ASM2 SASM SASM
iterations T[s] iterations T[s] iterations T[s]

65× 65× 128 4 17 12.2 13 10.6 16 15.8
129× 129× 256 8 16 84.5 14 65.9 11 128
257× 257× 512 16 19 1171 17 1056 9 2528

Table 5.2: The number of outer iterations and calculation times in seconds for different
grids for 4 processors: Semi-Implicit scheme.

Numerical results confirm the theoretical results. Our numerical results show that the
calculation times of the asynchronous methods ASM1 and ASM2 are smaller than for the
synchronous method SASM. In our opinion, ASM1 and ASM2 are faster for this kind of de-
composition. We could also gain some advantage with asynchronous methods if the processors
differ from each other.
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50. A domain decomposition algorithm for nonlinear interface
problem

T. Sassi1

1. Introduction. In this paper, we are interested in the numerical solution of a
nonlinear elliptic problem by a nonoverlapping domain decomposition technique. The model
problem under consideration takes the standard form

For a given f ∈ L2(Ω), find u ∈ V such that∑
i

{∫
Ωi

∇u · ∇v dx +

∫
Ωi

(u3
i − f)v dx

}
= 0 , ∀ v ∈ V , (1.1)

where V is the usual Sobolev space

V =
{
v ∈ H1(Ω) , v = 0 on ∂ΩD

}
,

defined over a given domain Ω = ∪N
i=1Ωi of R

2.
In any case, even if Ω is partitioned into nonoverlapping subdomains Ωi (see Figure 4.1), the
nonlinear problem (1.1) is not reduced to independent subproblems set on each subdomain
Ωi because elements of the space V are constrained to be continuous across the different
interfaces ∂Ωi ∩ ∂Ωj . Most nonoverlapping domain decomposition techniques handle this
constraint by a standard Newton’s algorithm in which all linearized subproblems are solved
by iterative substructuring methods (see [4], [5]).

The purpose of this paper is to propose and study another numerical strategy well adapted
to nonlinear problems. The resulting discrete problem of (1.1) is reduced to an interface
problem via a nonlinear Steklov-Poincaré operator [8]. Modified Newton iterations are used
to treat the nonlinear aspect of the interface problem. We extend the results obtained
in [7] to the case of multidomain decomposition. We prove that this algorithm converges
independently of the discretization step h. Numerical results are given to illustrate the
efficiency of this approach. Moreover, the proposed algorithm is compared to the so called
Newton conjugate gradient algorithm introduced in [4].

2. A generalized nonlinear interface problem. We begin with some notation
used hereafter. Let us introduce the boundaries (see Figure 4.1)

∂Ω = ΓD ∪ ΓN , external Dirichlet and Neumann boundaries,

∂ΩDi = ΓD ∩ ∂Ωi , local Dirichlet boundary,

Γi = ∂Ωi \ ∂Ω, local interface,

Γ = ∪iΓi, global interface,

with ΓD �= {∅}. The global interface Γ is made of Nf faces Γij separating the domain Ωi

from the domain Ωj . In this decomposition, we neglect corners. This is ligitimate if there are
no corners (partition in strip) or if the interfaces are discretized by mortar elements which
define discrete traces on faces and not on corners [9].
On this geometry, we introduce the spaces

Vi =
{
v ∈ H1(Ωi) , v = 0 on ∂ΩDi

}
, V 0

i =
{
v ∈ H1(Ωi) , v = 0 on ∂ΩDi ∪ Γi

}
.

In a domain decomposition framework, the variational problem (1.1) is reduced to an interface
problem whose unknown is the trace ϕ of u on the interface Γ. Indeed, if we knew ϕ on Γ

1Institut National des Sciences Appliquées de Lyon, sassi@insa-lyon.fr
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and if we restrict ourselves to the test functions v in spaces V 0
i , then we observe that ui is

the solution of the following variational problem
∫

Ωi

(∇ui · ∇vi + u3
i )v dx =

∫
Ωi

fiv dx , ∀ v ∈ V 0
i ,

ui − ϕ ∈ V 0
i .

(2.1)

Introducing the Lagrange multiplier of the constraint vi ∈ V 0
i , ( 2.1) can be written as

∫
Ωi

(∇ui · ∇vi + u3
i v) dx =

∫
Γi

λiv ds +

∫
Ωi

fiv dx , ∀ v ∈ Vi ,

ui = ϕ on Γi, λi ∈ H−1/2(Γi) .
(2.2)

To each ϕ ∈ TrV (Tr is the operator mapping functions in V to their traces on Γ), we can
then associate these multipliers λi(ϕ, f), the corresponding map being the so-called Steklov-
Poincaré operator. Then, by addition, the correct value of ϕ is the solution of the following
interface problem. ∑

i

∫
Γi

λi(ϕ, f)ds = 0, ∀v ∈ V. (2.3)

We want to approximate problem (2.3) with a mortar finite element method (see [3]). For
this purpose, for each face Γij , we introduce an approximation space Wijh. We then define
the trace space Wh and the local interface scalar product < ·, · >Γi :

Wh =
∏

ij=1,Nf

Wijh, < v, w >Γi=
∑
ij�i

∫
Γi

vwds.

We denote by Trih the discrete trace operator defined from Vih into Wh and which to a given
vih ∈ Vih associates its L2 projection Trihvih onto Wh. With this notation, the definition of
the global approximation space Vh is

Vh = {vh = (vih)i ∈
∏

i

Vih , s.t. Trihvih = Trjhvjh , ∀ i < j} .

The generalisation to the discrete level of problem (2.3) is then immediate. Let ϕ ∈ Wh, be
given, for 1 ≤ i ≤ N , find uih(ϕ, f) ∈ Vih, λih ∈ Wh|Γi solution to∫

Ωi

∇uih(ϕ, f)∇vih + u3
ih(ϕ, f)vih dx = < λih, T rvih >Γi +

∫
Ωi

fvih dx, (2.4)

< Truih(ϕ, f)− ϕ)qh >Γi = 0 , ∀ qh ∈ Mh ; ∀ vih ∈ Vih, (2.5)

where Mh is the approximation space of H−1/2(Γ) (see [2] for the definition of Mh). The
discrete Steklov-Poincaré operator (see [7]) which to ϕ associates λih the generalized normal
derivative of uih(ϕ, f) on Γi is defined as follows:

Sih : Wh|Γi −→ Mh|Γi ,

T rihuih(ϕ, f) �→ λih ,

where (uih(ϕ, f), λih) is the solution of (2.4)-(2.5).

Theorem 2.1 Assume h ≤ h0, if ϕ ∈ Wh is a solution of the following interface problem

N∑
i=1

< Sihϕ, Trvih >Γi = 0, ∀ vh ∈ Vh, (2.6)

then Problem (1.1) and the interface Problem (2.6) are equivalent.
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Proof. For the proof, the reader is referred to [7] when Ω is decomposed into two nonover-
lapping subdomains. The extension to the case of multidomain is straightforward.
Let us notice that Sih is a C1 mapping from the Banach space (Wh|Γi ; ‖·‖ 1

2 ;Γ) with values

in the Banach space (Mh|Γi ; ‖ · ‖− 1
2 ;Γ), with DSih(ϕ, f) ∈ L(Wh|Γi ; Mh|Γi) defined by:

DSih(ϕ, f)ψ = µih where (vih, µih) ∈ Vih ×Mh|Γi verifies
∫

Ωi

∇vih∇ηih + 3u2
ih(ϕ, f)vihηih dx =< µih, T rηih >Γi , ∀ηih ∈ Vih,

< Trvih − ψ, qh >Γi = 0, ∀qh ∈ Mh.
(2.7)

Here (uih(ϕ, f), λih) is solution to Problem (2.4)-(2.5). Please remark that DSih(0, 0) is the
classical discrete Steklov-Poincaré operator (see [1]) and that

DS−1
ih (0, 0) : Mh|Γi −→ Wh|Γi ,

µih �→ Trihvih ,

where vih verifies the first equation of (2.7) with uih = 0.

3. A modified Newton algorithm for interface problem. The solution al-
gorithm that we propose for solving (2.6) is a Modified Newton method, with preconditioner
M . It writes

• for ϕ0 ∈ Wh given and ϕn known, define ϕn+1 as the solution of

• ϕn+1 = ϕn − ρMSϕn

where

M =
∑

i

(αi Id|Γ) S−1
ih (0, 0) (αi Id|Γ)t and Sh =

( N∑
i=1

Sihϕn
)
.

Above, αi defined face by face and such that{
αl|Γij = 0 if l �= i and l �= j,
(αi + αj)|Γij = 1,

and ρ is a positive parameter which will be specified later.
Modified Newton iterations can be rephrased in a parallel way as follows:

• Let ϕn be given on Γ. Then on each subdomain solve in parallel (2.4)-(2.5), with
ϕ = ϕn in order to compute

Li = Sihϕn, and set L(ϕn) =
∑

i

Li. (3.1)

• On each subdomain, compute Trihvhi where vih is the solution of∫
Ωi

∇vih∇ηihdx =< L(ϕn), αiTrηih >Γi , ∀ ηih ∈ Vih. (3.2)

• set ϕn+1 = ϕn − ρ
N∑

i=1

αiTrihvih. (3.3)

Please remark that the linear preconditioner in the above algorithm (3.1)-(3.3) is determined
for the nonlinear interface problem obtained after elimination of interior unknowns. Another
approach, the so called Newton Preconditioned Conjugate Gradient method, is to use the
Newton algorithm on the global problem (1.1) in which all linearized subproblems are solved
by a domain decomposition solver based on a Preconditioned Conjugate Gradient algorithm
on the interface Γ (see [4]). Concerning the Modified Newton algorithm the main result of
this section is:
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Theorem 3.1 For all h ≤ h0, let ϕ be the solution to Problem (2.6). There exists a neigh-
borhood V(ϕ) ⊂ Wh and a parameter 0 < ρ independent of h such that for all ϕ0 ∈ V(ϕ)
Modified Newton iterations (3.1)-(3.3) converge towards ϕ.

The proof of Theorem 3.1 is classical. Define the iteration mapping Gρ : Wh → Wh which to
ψ associates ψ− ρ

2
MSψ. We want to show that for a certain norm on the finite dimensional

space Wh, the mapping Gρ is locally a contraction. The key property to be established is
that the eigenvalues of the derivative of Gρ are non negative, thus it will be possible to choose
ρ such that Gρ is a contracting mapping. Now, let us give some intermediate results useful
for the proof of Theorem 3.1.

Lemma 3.1 The trace operators Trih are linear uniformly with respect to h, surjective and
continuous from Vih into Wh|Γi . For all ψ ∈ Wh|Γi , there exists at least an element Tr−1

ih ψ in

Vih and a constant C > 0 independent of h verifying: Trih

(
Tr−1

ih ψ
)

= ψ and ‖Tr−1
ih ψ‖Vi ≤

C‖ψ‖ 1
2 ,Γ.

Our motivation now is to define a discrete scalar product on Wh such that the operator MS
is positive. So let us set

V 0
ih = {vih ∈ Vih; Trihvih = 0}

and define for all ψ ∈ Wh the function θih(ψ) ∈ Vih solution to{ ∫
Ωi
∇θhi(ψ)∇φhi dx = 0 ∀φhi ∈ V 0

ih

Trihθih(ψ) = ψ on Γi.
(3.4)

We then define the discrete scalar products (·, ·)h on Wh ⊂ H
1
2 (Γ) by:

(ψ, ϕ)h =
∑

i

∫
Ωi

∇θih(ψ)∇Tr−1
ih ϕ dx =

∑
i

∫
Ωi

∇θih(ψ)∇θih(ϕ) dx , (3.5)

since Tr−1
ih ϕ− θih(ψ) ∈ V 0

ih.

Lemma 3.2 The discrete scalar products (·, ·)h are uniformly with respect to h equivalent to

the standard scalar product of H
1
2 (Γ) in Wh.

For the proof, of Lemma 3.1 and Lemma 3.2, the reader is referred to [6].

Lemma 3.3 There exists β > 0 independent of h such that ∀ϕ ∈ Wh we have

(M DSh(ϕ, f)ψ, ψ)h ≥ β ∀ ψ ∈ Wh,

with

DSh(ϕ, f) =
∑

i

DSih(ϕ, f).

Proof. Let µih ∈ Mh|Γi and µ ∈ Mh be defined by µih = DSih(ϕ, f)ψ, µ = DSh(ϕ, f)ψ
respectively, and let wih ∈ Xih be solution to∫

Ωi

∇wih∇ηih dx =< µ, Trihηih >Γi ∀ηih ∈ Vih. (3.6)
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We have

(M DSh(ϕ, f)ψ, ψ)h =
N∑

i=1

∫
Ωi

∇θih(ψ)∇Tr−1
ih (Mµ) dx

=
N∑

i=1

∫
Ωi

∇θih(ψ)∇Tr−1
ih

(∑
j

αjTrjhwjh

)
dx

=

N∑
i=1

< µih, T rθih(ψ) >Γi

Finally, Problem (2.7) provides

(M DSh(ϕ, f)ψ, ψ)hi =

N∑
i=1

∫
Ωi

∇vih∇θih(ψ) + 3u2
ih(ϕ, f)vihθih(ψ) dx. (3.7)

From the identity

N∑
i=1

∫
Ωi

∇
(
vih − θih(ψ)

)
∇ηih + 3u2

ih(ϕ, f)vihηih dx = 0 , ∀ηih ∈ V 0
ih, (3.8)

written with ηih = vih − θih(ψ) ∈ V 0
ih we get∑N

i=1

∫
Ωi
∇vih∇θih(ψ) + 3u2

ih(ϕ, f)vihθih(ψ) dx =∑N
i=1

∫
Ωi
|∇vih|2 + |∇θih(ψ)|2 −∇vih∇θih(ψ) + 3u2

ih(ϕ, f)v2
ih dx.

(3.9)

The identity 0 ≤ 1
2
a2 + 1

2
b2 + 1

2
(a− b)2 = a2 + b2−ab implies that the right hand side of (3.9)

is bounded from below by
∑N

i=1

∫
Ωi
|∇θih(ψ)|2 dx. From Lemma 3.1 we have the desired

estimate. Lemma 3.3 is proved.

Proof. of Theorem 3.1 We show that DGρthe derivative of Gρ is bounded by a constant
less than one in a neighborhood of ϕ. It is well known that for an 0 < δ given, there exists a
norm ||| · ||| on Wh such that for the induced norm for the operators we have |||DGρ(ϕ)||| ≤
σ
(
DGρ(ϕ)

)
+ δ, where σ denotes the spectral radius. Lemma 3.2 and Lemma 3.3 imply that

M DSh(ϕ, f) has positive eigenvalues in Wh uniformly bounded from below with respect to
h. Thus we have

k = σ
(
I − ρM DSh(ϕ, f)

)
= 1− ρσ

(
M DSh(ϕ, f)

)
.

The stability of DSih(ϕ, f) and DS−1
ih (0, 0) provides the existence of 0 < ρ independent of h

such that k < 1. Then a classical Banach fixed point theorem applies and thus Theorem 3.1
is proved.

4. Numerical results. In this section we describe some numerical results obtained
with the Preconditioned Modefied Newton (PMN) algorithm (3.1)-(3.3). This resulst are
done for various mesh sizes and various numbers of subdomains in the case of nonmatching
grids. the corresponding physical problem is the nonlinear elliptic problem −∆u + u3 =
f in Ω = (0, 1)× (0, 1) where the source term f is a Gaussian function centred at the point
(1,1) and the Dirichlet boundary conditions are prescribed on the side x2 = 0 (see Figure 4.1
).
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Figure 4.1: Decomposition in 2 and 4 subdomains

Remark 4.1 The modified Newton algorithm requires on each subdomain the successive solu-
tion of a Dirichlet and of a Neumann problem (preconditioner). In the abscence of a Dirichlet
boundary conditions on ∂Ωi \ Γ, the Neumann problem is not well-posed. In such situations,
we replace in the factorization of the finite-element matrix of problem (3.2), all the singular
pivots by an averaged strictly positive pivot.

First we present some numerical results obtained with the PMN algorithm (3.1)-(3.3) in two-
domains case with a fixed value of the relaxation parameter ρ . For the optimal value of
the relaxation parameter ρ, the results could be different. Next, the obtained results with
Newton Preconditioned Conjugate Gradient (Newton-PCG) algorithm for the same test case
are given.

In Table 1 the number of iterations necessary for Modified Newton iterations to converge
(with a level of precision of 10−6), and the values of parameter ρ are reported as functions
of degrees of freedom. Please remark that the number of iterations for reaching convergence
with a constant ρ are independent of h.

d.o.f in Ω1 ∪ Ω2 ρ number of iter.

102 0.16 32

354 0.155 34

1314 0.16 34

Table 1: evolution of ρ and the number of iterations of Modified Newton algorithm

d.o.f in Ω1 ∪ Ω2 Newton iter. PCG iter. on Γ total nb. of iter.

102 6 6 36

354 6 6 36

1314 7 6 42

Table 2: evolution of the number of iterations of Newton-PCG algorithm.

Table 2 shows that the Newton-PCG algorithm converges (with a level of precision of
10−6 for the Newton algorithm and for the PCG algorithm) at a rate which is independent
of the mesh size h.
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Modified Newton algorithm is proved to converge independently of the discretization step,
which is confirmed by our numerical tests. Moreover, the potential parallelism offered by this
algorithm is easy to exploit on the contrary of the Newton-PCG. Nevertheless, its practical
implementation still faces the problem of the optimal choice of the parameter ρ.

We have tested the dependency over h in the case where Ω is decomposed into four
geometrically identical subdomains (see Figure 4.1). There is a slight dependence on h due
to the presence of cross points in our decomposition (see Table 3).

step nb. of iter. ρ

h 64 0.15

h/2 68 0.14

Table 3: Test over the mesh size h (p=4)
Here, we study the convergence rate of the PMN algorithm (3.1)-(3.3) with respect to the

number of subdomains p. We consider the case where the domain Ω has been decomposed
into two and four subdomains (see Figure 4.1 ). The number of degrees of freedom in Ω varies
with p because each interface node is treated in our approach as two independent nodes.

p number of iter. d.o.f in Ω

2 34 1314

4 60 1350

Table 4: Test over the number of subdomains p.
In terms of iteration count, Table 4 and show that the smaller the number of subdmains the
faster the PMN convergence. Indeed, the diameter d of each subdomain has a direct influence
on the condition number of our operator.

5. Conclusion. A Modified Newton method for a domain decomposed nonlinear el-
liptic problem has been introduced and studied. For a small number of subdomains and very
fine grids, this approach leads to efficient numerical algorithm even in the case of nonmatch-
ing grids. Indeed with the choice of adequate preconditioners such as the one introduced in
§3, the method is proved to converge independently of the discretization step, which is con-
firmed by our numerical tests. Nevertheless, the Preconditioned Modified Newton algorithm
does not scale well with the diameter of the subdomains. The addition of an unstructured
coarse grid solver when using decompositions with a large number of subdomains is actually
under consideration.
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51. Singular Function Enhanced Mortar Finite Element

Xuemin Tu1, Marcus Sarkis 2

1. Introduction. We are interested in solving the following elliptic variational prob-
lem: Find u∗ ∈ H1(Ω), such that{

a(u∗, v) = f(v) ∀v ∈ H1
0 (Ω)

u∗ = u∗
0 on ∂Ω

, (1.1)

where

a(u∗, v) =

∫
Ω

∇u∗ · ∇v dx and f(v) =

∫
Ω

fv dx.

We assume the function f ∈ L2(Ω). We also assume the function u∗
0 has an extension H2(Ω),

which we denote also by u∗
0. We let the domain Ω to be the L-shaped domain in 2 with

vertices V1 = {0, 0}, V2 = {1, 0}, V3 = {1, 1}, V4 = {−1, 1}, V5 = {−1,−1}, and V6 = {0,−1}.
It is well-known that the solution u∗ of (1.1) does not necessarily belong to H2(Ω) due to
the nonconvexity of the domain Ω at the corner V1, and therefore, standard finite element
discretizations do not give second order accurate schemes. Theoretical and numerical work
on corner singularity are very well-known and several different approaches were proposed
[4, 2, 5, 6, 7, 8, 9, 10]; see the references therein. The main goal of the paper is to design and
analyze optimal accurate finite element discretizations based on mortar techniques [1, 11]
and singular functions [8, 7]. The proposed methods are variation of the methods described
in Chapter 8 of [10] where a smoothed cut-off singular function is added to the space of finite
elements. There, a smoothed cut-off function is applied to make the singular function to
satisfy the zero Dirichlet boundary condition. Here, instead, we use mortar finite element
techniques on the boundary of ∂Ω to force, in a weak sense, the boundary condition. As a
result, accurate and general schemes can be obtained for which they do not rely on costly
numerical integrations and linear solvers.

2. Notations. We next introduce some notations and tools.

2.1. Triangulation. Let T h(Ω) be a standard finite element triangulation of Ω. We
assume the triangulation T h(Ω) to be shape regular and quasi-uniform with grid size of
O(h). Let V h(Ω), also denoted by V h, be the space of continuous piecewise linear functions
on T h(Ω); note that we have not assumed the functions of V h to vanish on ∂Ω.

2.2. Singular Functions and Regularity Results. We note that the solution u∗

of (1.1) does not necessarily belong to H2(Ω) even if f and u∗
0 are very smooth. For instance,

consider the primal singular function defined by ψ+(r, θ) = r
2
3 sin( 2

3
θ). The function ψ+

is smooth everywhere in Ω except near the non-convex corner V1. It is easy to check that
ψ+ ∈ H5/6−ε(Ω) if, and only if, ε is positive and −�ψ+ ≡ 0 on Ω. We note that ψ+ vanishes
on the intervals [V1, V2] and [V6, V1], plus it is smooth on the remaining boundary of ∂Ω.

Another function that will play an important role in our studies here is the dual singular

function ψ− defined as ψ−(r, θ) = r−
2
3 sin( 2

3
θ). We note that −∆ψ− ≡ 0 and ψ− vanishes

on the intervals [V1, V2] and [V6, V1], and it is easy to check that ψ− ∈ H1/3−ε if, and only if,
ε is positive.

1Graduate Student of the Mathematical Sciences Department, Worcester Polytechnic Institute,
100 Institute Rd, Worcester, MA 01619

2Instituto de Matemática Pura e Aplicada, Est. Dona Castorina, 110, Rio de Janeiro, RJ, CEP
22420-320, Brazil, sarkis@impa.edu
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It is well-known [8, 7] that the solution of (1.1) has a unique representation

u∗ = wu∗ + λu∗ψ+, (2.1)

where wu∗ ∈ H2(Ω) and λu∗ ∈ , and the following regularity estimates hold:

‖wu∗‖H2(Ω) ≤ C
(
‖f + ∆u∗

0‖L2(Ω) + ‖u∗
0‖H2(Ω)

)
, (2.2)

and

|λu∗ | ≤ C‖f‖L2(Ω). (2.3)

2.3. Mortar Functions on the Boundary. The boundary of our domain is
given by ∂Ω =

⋃6
m=1 Dm, where the open segments Dm are given by the intervals D1 =

(V1, V2), D2 = (V2, V3), D3 = (V3, V4), D4 = (V4, V5), D5 = (V5, V6), and D6 = (V6, V1).
For each interval Dm, the triangulation Th(Dm) is inherited from the triangulation Th(Ω).
Let us denote the space Wh(Dm) as the trace of Vh to Dm; i.e.

Wh(Dm) = {v ∈ C(Dm) : v = w(Dm), w ∈ Vh}.

We also denote the space W 0
h (Dm) as the functions of Wh(Dm) which vanish at the two end

points of Dm. Thus, W 0
h (Dm) = Wh(Dm) ∩H1

0 (Dm). The number of degrees of freedom of
W 0

h (Dm) are the number of interior nodes of Th(Dm) which are equal aslo the number of
degrees of freedom of the Lagrange multiplier spaces Mh(Dm). In this paper, in the numerical
experiments, we adopt the dual biorthogonal functions introduced in [11]. We note that the
theory presented here also holds for the old mortars [1]. For each edge Dm, the mortar
projection operator Πm : C(Dm) −→ Wh(Dm) is defined by

v −Πmv ∈ C0(Dm), and

∫
Dm

(v −Πmv)µmds = 0, ∀µm ∈ Mh(Dm). (2.4)

It can be shown [1, 11] that

‖v −Πmv‖
H

1/2
00 (Dm)

≤ Ch‖v‖H3/2(Dm), ∀v ∈ H3/2(Dm), (2.5)

and

inf
µm∈Mh(Dm)

‖v − µm‖(H1/2(Dm))′ ≤ Ch‖v‖H1/2(Dm), ∀v ∈ H1/2(Dm). (2.6)

3. Singular Function Enhanced Mortar Finite Element. We define the
discrete global space V +

h as follows:

V +
h = {v = w + λψ+ : w ∈ Vh, λ ∈ , and Πmv = 0, m = 1, · · · , 6}.

Functions of the space V +
h vanish at the vertices Vk, k = 1, · · · , 6 and satisfy zero Dirichlet

boundary condition (in the weak discrete sense) on the intervals Dm. It is easy to see that
the degrees of freedom of the space V +

h are the λ and the nodal values of w at the interior
nodes of Th(Ω); the values of w on the Dm are obtained via w = −λΠmψ+.

We next introduce the new finite element formulation using the primal singular function
ψ+ and mortar techniques in order to obtain an approximation for u∗. We then introduce
two second order accurate approximations for the stress intensive factor (SIF) λu∗ based on
the dual singular function ψ−.
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3.1. Finite Element Formulation. Let us define u0 ∈ Vh as u0 = Πmu∗
0 on Dm,

m = 1, · · · , 6, and zero nodal values at the interior nodes of Th(Ω). We define the singular
function enhanced mortar finite element method as follows:

Find u = wu + λuψ+ such that u− u0 ∈ V +
h and

a(u, v) = f(v), ∀v ∈ V +
h . (3.1)

We prove later in this paper that u is a second order approximation to u∗. We note
however that the λu and wu separately are not second order approximations of λu∗ and wu∗ ,
respectively. So, in the next subsections, we introduce two algorithms for obtaining second
order approximations for the stress intensive factor (SIF) λu∗ .

3.2. Extraction of SIF through a Smoothed Cut-off Function. Define
f = −�u∗ and f− = −�s−, where s− = ρψ−. Here, the smoothed cut-off function ρ(r) is
defined in the polar coordinate system as

ρ(r) =


1 0 ≤ r ≤ 1

4

−192r5 + 480r4 − 440r3 + 180r2 − 135
4

r + 27
8

1
4
≤ r ≤ 3

4

0 3
4
≤ r

.

It is easy to check that the function ρ has two continuous derivatives. By applying Green’s
formula twice [9], we obtain

λu∗ =

∫
Ω
(fs− − f−u∗) +

∫
∂Ω

s−∂ns− − u∗
0∂ns−

π
,

and by using that s− vanishes on ∂Ω we have

λu∗ =

∫
Ω
(fs− − f−u∗)−

∫
∂Ω

s−u∗
0∂ns−

π
. (3.2)

The discrete stress intensity factor is obtained as follows. We first solve (3.1) to obtain
u = wu + λuψ+, and then we plug this u as u∗ in (3.2) to define the discrete stress intensity
factor as

λh
u =

∫
Ω
(fs− − f−u)−

∫
∂Ω

u∗
0∂ns−

π
. (3.3)

3.3. Extraction of SIF without a Smoothed Cut-off Function. Similarly,
we can use the same approach above for ψ− as s−. Using −�ψ− ≡ 0, we obtain

λu∗ =

∫
Ω

fψ− −
∫

∂Ω
(u∗

0∂nψ− − ψ−∂nu∗)
π

. (3.4)

We note that we do not know the value of ∂nu∗ and therefore, the formula (3.4) is not
applicable for defining the discrete stress intensity factor. We remark that an approximation
of ∂nu∗ can be obtained via the saddle point formulation [11] of (3.1) but unfortunately we
cannot prove that this approximation is of second order. We next introduce a new method
that does not require the knowledge of ∂nu∗.

We modify ψ− to ψ̃−, where ψ̃− vanishes on the whole ∂Ω, ψ̃− and ψ− have the same
singular behavior in a neighbourhood of the origin, and −∆ψ̃− ≡ 0. This is done as follows.
We first solve δψ− ∈ H1(Ω) such that{

a(δψ−, v) = 0 ∀v ∈ H1
0 (Ω)

δψ− = ψ− on ∂Ω.
. (3.5)
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Then, we define ψ̃− = ψ− − δψ−. We note that ψ− has a H2 extension to Ω and therefore,
the solution of (3.5) is in the form of δψ− = wδψ− + λδψ−ψ+, where wδψ− ∈ H2(Ω). Hence,

the singular behavior of ψ̃− near the origin is the same as of ψ−, and we obtain

λu∗ =

∫
Ω

fψ̃− −
∫

∂Ω
u∗

0∂nψ̃−

π
.

In the case the boundary value u∗
0 vanishes on ∂Ω, we have

λu∗ =

∫
Ω

fψ̃−

π
. (3.6)

We note that we do not know ψ̃− and therefore, a numerical approximation for ψ̃− must be
obtained. We first define δψ−

0 ∈ Vh as δψ−
0 = Πmψ− on the Dm and zero nodal values at the

interior nodes of Th(Ω). We solve δψ−
h − δψ−

0 ∈ V +
h such that

a(δψ−
h , v) = 0, ∀v ∈ V +

h .

We let ψ̃−
h = ψ− − δψ−

h , and define the discrete stress intensity factor by

λ̂h
u =

∫
Ω

fψ̃−
h

π
=

∫
Ω

fψ− − fδψ−
h

π
. (3.7)

We remark that λ̂h
u can be obtained without computing the discrete solution u and can be

used only if u∗
0 vanishes on ∂Ω.

4. Analysis. In this section we analyze the proposed methods. We will prove opti-
mality accuracy errors of the discrete solution u on the L2 and H1 norms. We also show that
the two proposed discrete stress intensive factor formulas given by (3.3) and (3.7) are both
second order approximations for λu∗ .

4.1. Uniform ellipticity. We note that v ∈ V +
h implies that v vanishes on D1 and

D6. Therefore, using a standard Poincaré inequality, we have:

Lemma 4.1 There exists a constant C that does not depend on h and v such that

‖v‖H1(Ω) ≤ C|v|H1(Ω), ∀v ∈ V +
h . (4.1)

4.2. Energy Discrete Error. We note that proposed discretization (3.1) is non-
conforming since the space V +

h is not included in H1
0 (Ω); functions in V +

h vanishes on Dm,
m = 2, · · · 5 only in a weak sense. To establish H1 apriori error estimate, we use the Cea’s
lemma (the second Strang lemma) for non-conforming discretization [3]. We obtain

‖u∗ − u‖H1(Ω) ≤ inf
v∈u0+V +

h

‖u∗ − v‖H1(Ω) + sup
z∈V +

h

|a(u∗, z)− f(z)|
‖z‖H1(Ω)

=

inf
v∈u0+V +

h

‖u∗ − v‖H1(Ω) + sup
z∈V +

h

|
∫

∂Ω
z∂nu∗ds|

‖z‖H1(Ω)

. (4.2)

The first term of (4.2) is the best aproximation error and the second term is the
consistency error.
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4.2.1. Best Approximation Error. We next establish that the best approxima-
tion error in the energy norm is of optimal order.

Lemma 4.2 The best approximation error is of order h,

inf
v∈u0+V +

h

‖u∗ − v‖H1(Ω) ≤ Ch
(
‖f + ∆u∗

0‖L2(Ω) + ‖u∗
0‖H2(Ω)

)
. (4.3)

Proof. Let ṽ be defined as
ṽ = Ih(u∗ − λu∗ψ+) + λu∗ψ+,

where Ih is the standard pointwise interpolator on Vh. Note that the interpolation is well
defined since the function wu∗ = u∗ − λu∗ψ+ belongs to H2(Ω) and therefore, wu∗ is a
continuous function. The function ṽ−u∗ belongs to H1

0 (Dm) and does not satisfy the mortar
condition. We next modify ṽ to v to make u∗ − v to satisfy the mortar condition (2.4). This
is done by v = ṽ +

∑6
m=1HmΠm(u∗ − ṽ), where the operator Hm denote the Vh-discrete

harmonic extension function with boundary values given on Dm and zero on ∂Ω\Dm. In
addition, it is easy to check that v ∈ u0 + V +

h . We have

‖u∗ − v‖H1(Ω) = ‖wu∗ − Ihwu∗‖H1(Ω) + ‖
6∑

m=1

HmQm(u∗ − ṽ)‖H1(Ω). (4.4)

For the first term of (4.4), we use a standard approximation result on pointwise interpolation
and (2.2) to obtain

‖wu∗ − Ihwu∗‖H1(Ω) ≤ Ch‖wu∗‖H2(Ω) ≤ Ch
(
‖f + ∆u∗

0‖L2(Ω) + ‖u∗
0‖H2(Ω)

)
.

For the second term of (4.4), we use properties of discrete harmonic extensions and H
1/2
00 -

norm, and the approximation result (2.5) to obtain

‖
6∑

m=1

HmΠm(u∗ − ṽ)‖H1(Ω) ≤ C
6∑

m=1

‖HmΠm(u∗ − ṽ)‖H1(Ω)

≤ C
6∑

m=1

‖Πm(u∗ − ṽ)‖
H

1/2
00 (Dm)

≤ C
6∑

m=1

‖u∗ − ṽ‖
H

1/2
00 (Dm)

≤ Ch‖u∗
0‖H3/2(Dm) ≤ Ch‖u∗

0‖H2(Ω).

4.2.2. Consistency Error. We next establish that the consistency error is of opti-
mal order.

Lemma 4.3 The consistency error is of order h

sup
z∈V +

h

|
∫

∂Ω
∂nu∗zds|

‖z‖H1(Ω)

≤ Ch
(
‖f‖L2(Ω) + ‖f + ∆u∗

0‖L2(Ω)

)
. (4.5)

Proof. We remark that z ∈ V +
h implies that z vanishes on D1 and D6. Therefore,∫

∂Ω

z∂nu∗ds =
5∑

m=2

∫
Dm

z∂nu∗ds.
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By the definition of V +
h , we have

∫
Dm

zµmds = 0, µm ∈ Mh(Dm). Thus,

5∑
m=2

∫
Dm

z∂nu∗ds =
5∑

m=2

∫
Dm

z(∂nu∗ − µm)ds, ∀µm ∈ Mh(Dm),

and using duality arguments we obtain

5∑
m=2

|
∫

Dm

z∂nu∗ds| ≤ C‖z‖H1/2(Dm) inf
µm∈Mh(Dm)

‖∂nu∗ − µm‖(H1/2)
′
(Dm).

Let us denote Ω1/4 = Ω ∩ {r2 = x2 + y2 ≤ 1/16}, and Ωc
1/4 = Ω\Ω1/4. Since ψ+ ∈

H2(Ωc
1/4), we have u∗ ∈ H2(Ωc

1/4), and therefore we can use a trace theorem to obtain

∂nu∗ ∈ H1/2(Dm), m = 2, · · · , 5. We then use approximation property (2.6), a trace result,
and the regularity estimates (2.2) and (2.3) to obtain

inf
µm∈Mh(Dm)

‖∂nu∗ − µm‖(H1/2)
′
(Dm) ≤ Ch‖∂nu∗‖H1/2(Dm) ≤ Ch‖u∗‖H2(Ωc

1/4)

≤ Ch(|λu∗ |‖ψ+‖H2(Ωc
1/4) + ‖wu∗‖H2(Ω)) ≤ Ch

(
‖f + ∆u∗

0‖L2(Ω) + ‖u∗
0‖H2(Ω)

)
.

We finally use that ‖z‖H1/2(Dm) ≤ C‖z‖H1(Ω) to obtain (4.5).

4.3. Error in the L2-norm. We also obtain an optimal error estimates in L2(Ω)-
norm for the problem (1.1).

Lemma 4.4 The L2 discrete error is of order h2

‖u∗ − u‖L2(Ω) ≤ Ch2 (‖f + ∆u∗
0‖L2(Ω) + ‖u∗

0‖H2(Ω)

)
. (4.6)

Proof. The proof follows easily from an Aubin-Nitche trick argument and by the fact that
the enhanced space V +

h is used both as the solution space as well as the test function space
for (3.1).

4.4. Stress Intensive Factor Error. The apriori error estimate for stress intensive
factor errors |λu∗ − λh

u| with λh
u defined on (3.3), and |λu∗ − λ̂h

u| with λ̂h
u defined on (3.7) for

the case u∗
0 ≡ 0, will follow easily from the L2-error estimates.

Lemma 4.5 If f ∈ L2(Ω), then the recovering formula (3.3) gives h2 accuracy

|λu∗ − λu| ≤ Ch2 (‖f + ∆u∗
0‖L2(Ω) + ‖u∗

0‖H2(Ω)

)
.

Proof. We subtract (3.3) from (3.2) and we obtain

|λu∗ − λu| = |
∫
Ω

f−(u− u∗)
π

| ≤ ‖f−‖L2(Ω)‖u− u∗‖L2(Ω).

The lemma follows from the Lemma 4.4 and the smoothing properties of the smoothed cut-off
function ρ.

Using similar arguments we obtain:

Lemma 4.6 If f ∈ L2(Ω) and u∗
0 ≡ 0, then the recovering formula (3.7) gives h2 accuracy

|λu∗ − λh
u∗ | ≤ Ch2‖f‖L2(Ω).
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Table 5.1: Results with f = −"s+ −"s+
2 + 6x(y2 − y4) + (x− x3)(12y2 − 2)

k λk − 1 σk 1− λ̂k σ̂k ek
2 εk

2 ek
1 εk

1

2 2.967e-1 – 2.698e-3 – 7.512e-2 – 9.032e-1 –
3 9.457e-2 1.6497 6.914e-4 1.9642 2.415e-2 1.6380 5.027e-1 0.8454
4 2.651e-2 1.8349 1.673e-4 2.0474 6.805e-3 1.8275 2.673e-1 0.9115
5 6.862e-3 1.9497 4.083e-5 2.0152 1.764e-3 1.9475 1.361e-1 0.9736
6 1.730e-3 1.9873 1.006e-5 2.0216 4.454e-4 1.9858 6.839e-2 0.9928
7 4.341e-4 1.9952 2.550e-6 1.9832 1.116e-4 1.9958 3.424e-2 0.9980
8 1.085e-5 1.9996 6.290e-7 2.0154 2.794e-5 1.9991 1.713e-2 0.9994

5. Numerical Experiments. An advantage of the proposed methods is in the con-
struction of the stiffness matrix of (3.1). Its construction requires few work on numerical
integrations since we do integrations by parts on a(ψ+, ϕi) or a(ψ+, ψ+). Here the function
ϕi stands for a nodal basis function of Vh. The only integrations that cannot be done exact
are on Dm, m = 2, · · · , 5. There, the singular function is very smooth and therefore easy in
in numerical integrations.

In the set of experiments, we solve the discrete Poisson equation (3.1) with f = −�s+−
�s+

2 +6x(y2−y4)+(x−x3)(12y2−2). Hence, the exact solution is u = s++s+
2 +(x−x3)(y2−

y4). Here, s+ = ρ(r)ψ+ and s+
2 = ρ(r)ψ+

2 , where ψ+
2 is the next singular function associated

to the problem (1.1); i.e. ψ+
2 = r4/3 sin(4/3θ). The integer k is the level of refinement of

the mesh; k = 0 is a mesh with 2 triangles per quadrant. The L2 norm (H1 semi-norm)
discretization error on the kth level mesh is given by ek

2 = ‖u−u∗‖L2(Ω) (ek
1 = |u−u∗|H1(Ω)).

The discrete stress intensity factor are given by λk = λh
u and λ̂k = λ̂h

u. In our example,
λu∗ = 1. We also measure the rate of convergences for the four discrete errors given by

σk = log2(
|λk−1 − 1|
|λk − 1| ), σ̂k = log2(

|λ̂k−1 − 1|
|λ̂k − 1|

) εk
2 = log2(

ek−1
2

ek
2

), and εk
1 = log2(

ek−1
1

ek
1

).

The numerical experiments confirm the theory showing optimality of the proposed algo-
rithms and show that the recovering formula (3.7) is very accurate.
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52. A domain decomposition strategy for the numerical
simulation of contaminant transport in pipe networks

V.G. Tzatchkov1, A.A. Aldama2, F.I. Arreguin3

1. Introduction. In this paper, a very efficient domain decomposition strategy is
proposed for the numerical simulation of advective-dispersive-reactive (ADR) processes in
pipe networks. The problem is modeled by applying the ADR equation in each pipe, as well
as boundary conditions at each of the network nodes. In order to numerically solve the ADR
equation, each pipe is discretized by means of a finite difference scheme. The presence of the
dispersion term, and the inclusion of the boundary conditions at each network node, often
produces large, unsymmetric and unstructured systems of linear equations. These systems of
equations must be solved at each time step considered in the simulation, leading to significant
computational costs. The proposed domain decomposition technique is based on the use of
numerically computed Green functions and nodal mass balance considerations. Thus, the
large system of equations that represents the discretized network is decomposed exactly in
three easy-to-solve tridiagonal systems that represent the ADR processes for each pipe, and
one low order system for the concentration at the pipe junctions. In each pipe the sought
solution is represented by the superposition of three numerically obtained auxiliary solutions:
a homogeneous (zero boundary conditions) solution, and two Green function solutions (one
for each reach end) multiplied by the unknown values of the constituent concentration at the
two reach ends. To obtain the Green functions corresponding to each reach end, a unit value
for the concentration is imposed at one boundary and a value of zero at the other, and the
resulting tridiagonal system is numerically solved. The fluxes at each of the pipe ends are
expressed in terms of the values of the concentration there. Henceforth, continuity balance
relations are used to construct a system of linear equations for the values of the unknown
quantities at the network nodes. The method is applicable to any type of network, branched
or looped.

Computer-based mathematical models able to predict the time history and the spatial
distribution of constituents in water distribution networks are useful in network design and
operation. Such models can be used to analyze water quality degradation problems, to assess
alternative operational and control strategies for improving and maintaining water quality, to
design water-quality-sampling programs, to optimize disinfection processes and to evaluate
water quality aspects of distribution network improvement projects. Several authors have
proposed models of this type that consider advection and reaction and neglect dispersion [4],
[3]; and several computer programs that implement such models are available [7], [3]. Field
observations conducted in distribution networks [8], [3], have shown that the advection-
reaction model predictions are in good agreement with the observed concentrations in pipes
with medium and high flow velocities, but fail in dead-end pipes where low velocities prevail.

While relatively simple Lagrangian tracking explicit-type numerical algorithms are used
in the network advection-reaction models, more complicated numerical solutions have to be
applied when dispersion is to be considered. The numerical solution for advection-dispersion-
reaction in networks poses three main problems:

a) Boundary conditions at the nodes common to several domains have to be formulated
and considered in the numerical solution.

b) The direct application of the numerical schemes produces large non-banded, unsym-
metric and unstructured systems of equations to be solved, especially when the network is

1Mexican Institute of Water Technology, velitchk@tlaloc.imta.mx
2Mexican Institute of Water Technology, aaldama@tlaloc.imta.mx
3Mexican Institute of Water Technology, farreguin@sgt.cna.gob.mx
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large.

c) The computational difficulties increase when advection dominates over dispersion.
Sharp concentration gradients are expected in this case, and a very fine discretization would
be needed if Eulerian methods are to be applied, which makes them impractical. Because
of the small values of the dispersion coefficient, contaminant transport in water distribution
networks falls exactly in this category of advection-dominated problems.

In this paper a numerical solution for the advection-dispersion-reaction equation in pipe
networks is presented with special emphasis on the domain decomposition strategy used
to efficiently solve the resulting finite difference equations. More information about the
rest of the solution procedure can be found in [2], [10], [10], [12] and [11]. An Eulerian-
Lagrangian numerical scheme is applied. The solution is applicable to advection-dominated
and dispersion-dominated transport and is stable for a broad range of flow velocities that can
be met in real distribution networks. The model is applied to simulate the variation of fluoride
and chlorine concentration in a real distribution network and its predictions are compared to
field observations and to the EPANET computer program that considers advection-reaction
only.

2. Problem statement. The non-steady advection-dispersion-reaction process in a
pipe flowing full is described by the following partial differential equation:

∂C

∂t
+ u

∂C

∂x
= D

∂2C

∂x2
−KC (2.1)

where C = constituent concentration; u = cross-sectional average flow velocity; D =
dispersion coefficient; K = first order decay constant; x= distance along pipe; and t = time.

The following boundary conditions hold at the network nodes:

a) At some nodes, as constituent sources, the concentration C is given as a prescribed
function of time.

b) Mixing at the network nodes. Two or more pipes, each of them with different flow
and constituent concentration, may convey inflow to a node. Water is mixed at the node and
a new concentration is obtained, then water leaves the node with that concentration to the
outflowing pipes and to the consumption abstracted. A complete and instantaneous mixing
is usually assumed in the network models.

c) Mass conservation at the network nodes. The well-known differential equation 2.1, is
obtained by applying the mass conservation principle to an elementary pipe segment with a
length dx in a time period dt, such that dx = u.dt. The same derivation can be generalized
to the case of a junction where several pipes meet. Given that the flow velocity uj in each
pipe j is different, the segment length of each pipe considered in the elementary node volume
will be different in order to handle the balance of the incoming and outcoming quantities in
the same period of time dt, so that dxj = uj .dt. The following nodal equivalent of equation
2.1 is thus obtained:

m∑
j=1

(
dxj

2
Aj

)
∂C

∂t
=

m∑
j=1

(
AjDj

∂C

∂x
+ QjC −KjAjC

dxj

2

)
− qjC (2.2)

where m = number of pipes connected to the node; Aj= cross sectional area of pipe j;
Qj = flow rate in pipe j; Dj= dispersion coefficient of pipe j; Kj= first order decay constant
of pipe j; and qi= flow rate abstracted at the node. For the case where two pipes of equal
characteristics meet at the node and qi=0, the equation 2.2 reduces to the equation 2.1 if
dxj and dt tend to be infinitesimally small.

d) Mass balance at the storage tanks connected to the network:
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Figure 3.1: Discretization in a pipe

3. Numerical solution. In order to numerically solve eqn 2.1 for each pipe with the
given boundary conditions at the network nodes, a two-stage Eulerian-Lagrangian solution
is employed [2]. The space-time domain (x, t) of each pipe is discretized in a rectangular grid
with time step ∆tq and gridsize ∆x. The interior points are numbered from 1 to N , and
the two pipe ends are called rear node, R, and front node, F (Figure 3.1). For each time
segment considered in the numerical solution, the values of C for the points on the time level
tn are known and the values of C for the points on the time level tn+1 are to be computed.
The differential equation 2.1 is split in two parts, an advective part and a dispersive part,
and numerically solved in each time step in two stages.

3.1. Lagrangian stage. In the first (Lagrangian) stage the advective (or advective-
reactive) part of the equationn 2.1, i.e.,

Ca − Cn

∆tq
= −

(
u

∂C

∂x

)
(3.1)

is solved for each pipe. The backward method of characteristics is used [5]. The points of
the level tn+1 are projected backwards in time on the characteristic lines that pass through
them until the characteristic lines cross the time level tn. For the point i shown in Figure
3.1, for example, the projected point is A. Because of the pure advection nature of eqn 3.1,
the value of C for point i at time tn+1 will be the same as that for point A, and can be found
by interpolation between the known values for the time level tn. The solution obtained is
denoted by Ca.

This procedure is used to compute Ca for points 1 to F within each pipe. To compute Ca

for the point R (the rear end of the pipe), the mass balance of the inflowing pipes connected
to the same point (which is a network node) is considered assuming complete mixing. Thus
the concentration at a network node i, Ci, is computed as:

Ca
i =

∑
(QCa

F )∑
Qout + qi

(3.2)

where qi = flow rate abstracted at the node; Qout = flow rate in a pipe outflowing to
the node; Ca = concentration computed in the advection stage; (QCa

F ) = flow rate in an
inflowing pipe multiplied by the value of Ca for the front pipe end, F . To simulate the effect
of a tank connected to the network, the concentration inside the tank is computed assuming
complete mixing of the inflowing mass and considering bulk water decay.

3.2. Eulerian stage. The dispersion term is considered at this stage by numerically
solving the differential equation:
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Cn+1 − Ca

∆tq
=

(
uD

∂2C

∂x2

)n+1

(3.3)

using the values of Ca calculated in the Lagrangian stage as initial conditions. Several
well established numerical methods exist for the solution of eqn 3.3 in a single domain. Little
attention has been given nevertheless to the application of these methods to interconnected
domains such as pipeline networks. The direct application of a finite difference approximation
to eqn 3.3 in a network of pipes produces a non banded system of linear equations, not
amenable for an efficient numerical solution. This problem is aggravated when the network
is large. Additionally, the condition given by eqn 2.2 has to be met. The application
of known numerical solutions to problems in networks addresses these two difficulties with
some ad hoc and particular procedure, due to the lack of a general approach. To overcome
these difficulties, [1] proposed an approach for the consideration of the boundary conditions
and for an efficient numerical solution of boundary value problems in networks, called the
numerical Green’s function technique. This technique is applied here in order to obtain an
efficient numerical solution.

By definition, a Green’s function is a one parameter P function that obeys the given
differential equation, having the value of 1 at point P and value zero at the boundaries. It
is common to denote a Green’s function as G(ξ, P ) where ξ is the running coordinate and P
is the point of application of the unit load. The reader is referred to [9] or [6] for a formal
definition and theory of the Green’s functions.

Using Green’s functions, the sought solution of eqn 2.2 inside each network pipe, can be
expressed as

C(ξ) = H(ξ) + G(ξ, R)CR + G(ξ, F )CF (3.4)

where CR and CF is the (still unknown) concentration at the two pipe ends R and F
respectively, H(ξ) is a function that obeys eqn 3.4 with CR=0 and CF =0 (the so called
homogenous solution), G(ξ, R) = G(ξ, 0) is the rear end Green’s function and G(ξ, F ) =
G(ξ, L) is the front end Green’s function. C(ξ), given by by eqn 3.4, is the sought solution
of eqn 3.3 because each of the functions H(ξ), G(ξ, R) and G(ξ, F ) obeys eqn 3.3 (the sum
of any number of particular solutions of a linear differential equation is also a solution), and
their sum satisfies the boundary conditions at the pipe ends. The first term on the right
hand side of eqn 3.4 accounts for the initial conditions, and the other two for the boundary
conditions.

H(ξ), G(ξ, R) and G(ξ, F ) are easy to obtain numerically in each pipe. Expression 3.4 is
then substituted in the balance condition at the network nodes (such as eqn 2.2) resulting
in a system of equations for the values of C at the network nodes. After obtaining the values
of C at the network nodes from the solution of this system, the values of C at the interior
points are computed by eqn 3.4. This way the large system of equations produced by the
finite difference scheme is decomposed into three easy-to-solve systems for each pipe and one
(much smaller) system for the concentration at the pipe junctions.

The finite difference approximation for equation 3.3 for the interior points of a pipe can
be written in the following form:

−λ

2
Cn+1

j−1 + (1 + λ)Cn+1
j − λ

2
Cn+1

j+1 = bj , j = 1, . . . , N (3.5)

where

λ =
D∆tq

∆x2
; bj = λ

2
Ca

j−1 + (λ− 1)Ca
j + λ

2
Ca

j+1 (3.6)
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Expression 3.5 represents a system of N equations with N + 2 unknowns, that are the
values of C at the points 1 to N, R and F . This system cannot be solved directly (separately)
for each pipe because the number of unknowns is larger than the number of equations.
Instead, the following procedure is used:

First, C is set to zero on the two pipe ends and the system of equations is solved numer-
ically. The resulting solution vector represents the homogeneous solution H(ξ) for the pipe
and accounts for initial conditions. Then C is set to 1 on the rear reach end, C is set to
zero on the front end, all bj in eqn 3.5 are set to zero, and the system of equations is solved
numerically. This way the rear end Green’s function G(ξ, R) is obtained. After that C is
set to zero the rear reach end, C is set to 1 on the front end, all bj in 3.5 are set to zero,
and once again the system of equations is solved to obtain the front end Green’s functions
G(ξ, F ). Since 3.5 with bj=0 is invariant under changing the order of the equations, the last
two functions are symmetric, i.e., G(ξ, R) = G(L − ξ, R), where L = pipe length; so the
system needs to be solved only for one of them. Thus the desired solution for C is expressed
as a superposition of the homogeneous solution and the two Green’s functions multiplied by
the still unknown values of CR and CF at the pipe ends, according to eqn 3.4, i.e.,

Ci = CHi + GRiCR + GFiCF i = 1, . . . , N (3.7)

where hj = homogeneous solution for the point j; GRj = the rear pipe end Green’s
function; GFj = front pipe end Green’s function; N = number of points inside the pipe, and
CR and CF =unknown values of the desired solution for the rear and front pipe ends.

At each network node i, a unique and continuous value (the same for the ends of the
pipes that join at that node) for C is supposed, say Ci. To obtain this value for the network
nodes (and thus the values of CR and CF at the pipe ends) the equation 2.2 is used. The
term

∑m
j=1 QjC−qjC in this equation is considered in the Lagrangian stage, so the equation

can be written in finite difference form as:

(
m∑

j=1

dxj

2
Aj

)
Cn+1

i − Ca
i

∆tq
=

m∑
j=1

[
AjDj

2∆xj

(
Cn+1

1,j − Cn+1
i + Ca

1,j − Ca
i

)
− dxj

2
KjAjC

a
i

]
(3.8)

where i denotes the network node; and 1, j denotes the discretization point of the pipe
nearest to the network node i (which can be 1 or N depending on the numbering direction
within the pipe). The value of Cn+1

1,j in this equation is still unknown for each pipe j and can
be expressed by eqn 3.7 thus involving the unknown values of C at the two pipe ends (which
are two network nodes). Equation 3.8, written for each network node i in turn, provides a
system of linear equations for the values of C at the network nodes. Once the system of
equations is solved, the values of C for the intermediate points along the pipe are computed
using eqn 3.7.

This way the homogeneous solution and the two numerical Green’s functions in each pipe
are computed from tri-diagonal systems of linear equations. The same matrix is used in
each of them. The two Green’s functions are symmetric, so only one of them needs to be
computed. The matrix of the system of equations for the network nodes is symmetric and
sparse, and reflects the structure of the network itself: for each network node there is a row
in the matrix whose non zero elements correspond to the diagonal and to the nodes to which
the current node is connected. Efficient sparse matrix algorithms can be applied to store and
to solve systems of equations with this type of matrix. Thus the large non banded systems of
equations that would otherwise produce the direct application of the finite difference scheme
for the network, is decomposed in three easy-to-solve systems for each network reach and a
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Figure 4.1: Node-link representation of the Brushy Plain-Cherry Hill networks

much smaller sparse system for the network nodes, and the solution can be computed more
efficiently, especially for large networks.

4. Comparison with known models and field measurements. A public do-
main computer program for simulating the network hydraulics and contaminant transport
in water distribution networks, called EPANET was developed by the US Environmental
Protection Agency (EPA) [7]. The program uses an advection-reaction contaminant trans-
port model. The proposed advection-dispersion-reaction model was applied to simulate the
fluoride and chlorine transport in the Cherry Hill Brushy Plains service area network, for
which a series of field measurements was carried out by the EPA in order to compare the
observed concentration with the predictions of the EPANET model [8]. Figure 4.1 shows the
node-link representation of the network and the sampling points where fluoride and chlorine
concentration was measured.

The predictions of the EPANET model compare fairly well with the field measurements
of fluoride concentration for sampling points 3, 6, 11, 19 and 25; but for sampling points
10, 28 and 34 the model fails to represent correctly the trend of concentration evolution, as
can be seen in the corresponding graphics presented by [8]. Figure 4.2 shows the results for
sampling point 10 with a D = 0.20 m2/s in pipes 8 and 10. It is seen that the proposed
advection-diffusion model represents more realistically the concentration evolution thanks to
the inclusion of dispersion.

5. Summary and conclusions. An Eulerian-Lagrangian numerical solution for
the non-steady advection-dispersion-reaction constituent transport in water distribution net-
works is proposed. The solution employs the numerical Green’s function technique to effi-
ciently solve the system of linear equations produced by the numerical scheme in the Eulerian
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Figure 4.2: Concentration evolution obtained by the proposed model (IMTARED),
the EPANET model and field measurements

stage. As a result of the application of this technique the large system of equations produced
by the numerical scheme is decomposed in three tri-diagonal systems for each pipe and a
smaller system of equations for the concentration at the network nodes. The numerical solu-
tion is applied to a real water distribution network for which results of simulations with the
EPANET model and field observations are available. In the network pipes with medium and
high flow velocities the two models give similar results. In pipes with low flow velocities the
measured concentration evolution is represented better by the proposed model than by the
EPANET model, due to the inclusion of dispersion.
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