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23. Indirect Method of Collocation: 2nd Order Elliptic
Equations

M.A. Diaz1, I. Herrera2, R. Yates3

1. Introduction. These papers is part of a group of papers [7],[9],[4], [3],[10], included
in these Proceedings, devoted to present and illustrate the applications of Herrera’s Unified
Theory of Domain Decomposition Methods (DDM). As an example of the applications of
indirect -or Trefftz-Herrera- methods, in the present paper a new method of collocation -
Trefftz-Herrera collocation- is developed applicable to any elliptic equation of second order,
which is linear. The general problem considered is one with prescribed jumps for the function
and its first order derivatives; actually, the ’fluxes’, as its explained later in the sequel.
Differential operators with discontinuous coefficients are included.

The collocation method based on the use of Hermite cubic polynomials has a good number
of attractive features such as its high accuracy and the simplicity of its formulation [1],[2].
However, it suffers computationally from several drawbacks, such as a large number of degrees
of freedom associated with each node of the discretized mesh. Also, the global matrix of
the system of equations does not enjoy the property of being positive definite even when
the differential operator itself has this property. Up to now, collocation has been applied
by means of splines. However, a broader and more efficient formulation is obtained when
collocation is applied using fully discontinuous functions by means of the indirect (or Trefftz-
Herrera) domain decomposition methodology. In this paper Trefftz-Herrera indirect method,
in combination with orthogonal collocation, is applied to a general boundary value problem
with prescribed jumps to produce a family of ”indirect collocation methods (Trefftz-Herrera
collocation)”. In particular, when the differential equation (or system of such equations) is
positive definite the global matrix is also positive definite. Also, a dramatic reduction in the
number of degrees of freedom associated with each node is obtained. Indeed, in the standard
method of collocation that number is two in one dimension, four in two dimensions and eight
in three dimensions, while for some of the new algorithms they are only one in all space
dimensions. A final comment worth doing refers to the fact that the treatment of problems
with prescribed jumps is just as easy as that without them; as a matter of fact, the global
matrix is exactly the same for both problems.

2. Trefftz-Herrera Approach to Elliptic Equations (2nd Order) . The
general theory of Trefftz-Herrera DDM, presented in [9], is applied in this Section to elliptic
equations of second order. The boundary value problem with prescribed jumps (BVPJ) for
this case was given as an illustration in [9]; it is:

Lu ≡ −∇ · (a · ∇u) + ∇ · (bu) + cu = fΩ ≡ LuΩ, in Ωi, i = 1, ..., E (2.1)

subjected to the boundary conditions

u = u∂ ; on ∂Ω, (2.2)

and the jump conditions

[u] = [uΣ] ≡ j0
Σ and [a · ∇u] · n = [a · ∇uΣ] · n ≡ j1

Σ; on Σ, (2.3)
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The notation is the same as that introduced in [9] and [4]. In particular, uΩ ∈ D̂1, u∂ ∈ D̂1

and uΣ ∈ D̂1 are any functions which satisfy the differential equation, the external boundary
conditions and the jump conditions, respectively. and A partition of a domain Ω is being
considered and the internal boundary is denoted by Σ (see [9] for further details).

The general theory introduces the following bilinear functionals:

〈Pu, w〉 ≡
∫

Ω

wLudx; 〈Qw, u〉 ≡
∫

Ω

uL∗wdx (2.4)

〈Bu, w〉 ≡
∫

∂Ω

B(u, w)dx; 〈Cw, u〉 ≡
∫

∂Ω

C(w, u)dx (2.5)

〈Ju, w〉 ≡
∫

Σ

J (u, w)dx; 〈Kw, u〉 ≡
∫

Σ

K(w, u)dx (2.6)

〈SJu, w〉 ≡
∫

Σ

SJ(u, w)dx; 〈RJu, w〉 ≡
∫

Σ

RJ(u, w)dx (2.7)

〈Sw, u〉 ≡
∫

Σ

S(w, u)dx; 〈Rw, u〉 ≡
∫

Σ

R(w, u)dx (2.8)

Where J (u, w) and K(w, u), are given by Eq. (5.4) of Ref. [9]:

J (u, w) ≡ −D([u], ẇ) · n and K(w, u) ≡ D(u̇, [w]) · n (2.9)

where
D (u, w) ≡ u (an · ∇w + bnw) − wan · ∇u (2.10)

has the property that
wLu − uL∗w ≡ ∇ · D (u, w) (2.11)

Here
L∗w ≡ −∇ · (a · ∇w) − b · ∇w + cw; (2.12)

Then, for the case considered in this Section, the bilinear functions occurring in the integrals
of Eqs. (2.4) to (2.8) are defined by [9]:

B (u, w) ≡ u (an · ∇w + bnw) · n, C (w, u) ≡ wan · ∇u (2.13)

J (u, w) ≡ ẇ [an · ∇u] − [u]
˙

(an · ∇w + bnw) (2.14)

K (w, u) ≡ u̇ [an · ∇w + bnw] − [w]
˙

(an · ∇u) (2.15)

SJ (u, w) ≡ ẇ [an · ∇u] , RJ (u, w) ≡ − [u]
˙

(an · ∇w + bnw) (2.16)

S (w, u) ≡ u̇ [an · ∇w + bnw] and R (w, u) ≡ − [w]
˙

(an · ∇u) (2.17)

Define Ñ1 ≡ NP ∩ NB ∩ NRJ and Ñ2 ≡ NQ ∩ NC ∩ NR, then a function v ∈ Ñ1 , if and
only if

Pv = 0, Bv = 0 and RJv = 0 (2.18)

and w ∈ Ñ2, if and only if

Qw = 0, Cw = 0 and Rw = 0 (2.19)

The result that is basic for deriving the kind of domain decomposition to be applied in the
present article, is given by the Theorem of Section 10 of Ref. [9]:
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Theorem 2.1 Assume E ⊂ Ñ2 is a system of weighting functions TH-complete for S∗ [9].
Let uP ∈ D̂1 be such that

PuP = PuΩ, BuP = Bu∂ and RJuP = RJuΣ (2.20)

Then there exists v ∈ Ñ1 such that

−〈S∗v, w〉 = 〈SJ (uP − uΣ) , w〉 , ∀w ∈ E ⊂ Ñ2 (2.21)

In addition, define û ∈ D̂1 by û ≡ uP +v . Then û ∈ D̂1 contains the sought information.
Even more, û ≡ u, where u is the solution of the BVPJ.

Observe that Eq.(2.21) can also be written as

−〈S∗v, w〉 = 〈SJuP , w〉 −
〈
j1, w

〉
, ∀w ∈ E ⊂ Ñ2 (2.22)

where
〈
j1, w

〉
≡

∫
Σ

wj1
Σdx.

3. Interpretation of the Algebraic Theory. According to the definitions given
in Section 2, a function v ∈ Ñ1 if and only if

Lv ≡ −∇ · (a · ∇uv) + ∇ · (bv) + cv = 0, v = 0, on ∂Ω and [v] = 0, on Σ (3.1)

In addition, a function w ∈ Ñ2, if and only if

L∗w ≡ −∇ · (a · ∇w) − b · ∇w + cw = 0, w = 0, on ∂Ω and [v] = 0, on Σ (3.2)

i.e., such functions satisfy the homogenous adjoint equation, are continuous and vanish on
the external boundary.

When S (w, u) is given by Eq.(2.17), the sought information is the average of the solution
of the BVPJ on Σ. Even more, the choice of the pair of decompositions {SJ , RJ} and {S, R},
is optimal [9], because the problem

(P − B − J) û = PuΩ − Bu∂ − JuΣ (3.3)

subjected to
S∗û = S∗uI (3.4)

is well posed and local. Indeed, Eq.(2.3) corresponds to the following system of equations

Lû ≡ −∇ · (a · ∇û) + ∇ · (bû) + cû = fΩ ≡ LuΩ, in Ωi, i = 1, ..., E (3.5)

subjected to the boundary conditions

û = u∂ ; on ∂Ω, (3.6)

and the jump conditions

[û] = [uΣ] ≡ j0
Σ; on Σ, (3.7)

In addition, Eq.(2.4) corresponds to the condition

˙̂u = u̇I ; on Σ, (3.8)

i.e., the average across Σ, of û, is prescribed. Therefore

û+ ≡ ˙̂u +
1

2
[u] = ˙̂uI +

1

2
j0
Σ and û− ≡ ˙̂u − 1

2
[u] = ˙̂uI − 1

2
j0
Σ (3.9)
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and it is seen that the system of equations (2.3) and (2.4), is equivalent to a family of
well-posed local problems defined in each on of the subdomains of the partition.

The Eqs.(2.20), fulfilled by uP ∈ D̂1, are

LuP ≡ −∇ · (a · ∇uP ) + ∇ · (buP ) + cuP = fΩ ≡ LuΩ, in Ωi, i = 1, ..., E (3.10)

subjected to the boundary conditions

uP = u∂ ; on ∂Ω, (3.11)

and the jump conditions

[uP ] = [uΣ] ≡ j0
Σ; on Σ, (3.12)

This is the same as Eq. (2.3); i.e., the system of Eqs.(2.5) to (2.7). However, Eq.(2.3) is
not imposed on uP and, therefore, it is not uniquely determined. However, uP is uniquely
determined if it’s average across Σ is specified. This can be chosen arbitrarily, except that it
must be compatible with the external boundary conditions of Eq. (2.11). It must be observed
that in a similar manner, elements of each one of the sets Ñ1 and Ñ2 are determined uniquely
by the traces on Σ. A convenient manner of constructing such functions is, therefore, to
specify their traces on Σ, and then solve each one of the well posed problems which in this
manner are defined in the subdomains of the partition, as will be done numerically in the
following Sections.

4. TH-Complete Systems of Test Functions. Discussions of TH-complete sys-
tems, in the context of the general theory, may be found in [6],[5]. Additional details in
connection with applications to second order elliptic problems may be found in [8]. In what
follows the traces on Σ, of the weighting functions, will be taken to be families of piecewise
polynomials defined on Σij (Fig. 4.1) . This kind of TH-complete families were first described
in [5]. According to that figure, Σij is the union of four intervals and using the numbering of
internal boundaries of Fig. 4.1, associated with each node (xi, yj), five classes of weighting
functions can be constructed [8]:
Class 0.- This is made of only one function, which is linear in each one of the four interior
boundaries between the rectangles of Fig. 4.2, and such that (xi, yj) = 1.
Class 1.- The restriction to interval ”1”, of Fig. 4.2 is a polynomial which vanishes at the
end points of interval ”1”. There is one such polynomial for each degree (G) greater than
one.
Classes 2 to 4, are defined replacing interval ”1” by the interval of the corresponding number
in the definition of Class 1 [5].

5. The Numerical Implementation. In the theory that was presented in previous
Sections, it is assumed that the exact local solutions are available. In numerical applications,
they have to be produced by means of numerical methods and are, therefore only approximate
solutions. Actually, the approximate nature of numerical solutions derived using TH-Domain
Decomposition (TH-DD), stems from two sources: one of them is due to the approximate
nature of the local solutions, which has just been mentioned, and the other one comes from
the fact that TH-complete systems for problems in several dimensions constitute infinite
families and in numerical implementations one can apply only finite sets of test functions. In
particular, with reference to the families of functions introduced in the previous Section, one
may construct algorithms in which only polynomials of degree less or equal to G, where G is
a given number, are kept in each one of the Classes ”1” to ”4”. In general, each choice of G
will give rise to a different kind of algorithm.

In this Section the following notations are used, H0
i (x) is the one dimensional Hermite

cubic polynomial with support in the interval (xi−1, xi+1), which takes the value 1 at node



INDIRECT METHOD OF COLLOCATION: 2nd ORDER ELLIPTIC ... 253

1

ij

2

ij

3

ij

4

ij

,
i j
x y

ij

ij1

2

3

4

Figure 4.1: Subregion Ωij associated with the node (xi, yj).
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Figure 4.2: Supports of five classes of weighting functions.

xi and zero at nodes xi−1 and xi+1; and its first derivative is zero at all nodes xi−1, xi and
xi+1. Similarly, H1

i (x) - is the one dimensional Hermite cubic polynomial with support in
the interval (xi−1, xi+1), which takes the value zero at nodes xi−1, xi and xi+1; and its first
derivative takes the value 1 at node xi and zero at the other nodes xi−1 and xi+1.

5.1. The Weighting Functions. In the numerical implementations reported in [8],
two families of test functions were constructed:

F ≡
{
w0

ij , w
1
ij , w

2
ij

}
and

�

F ≡
{

�
w

0

ij ,
�
w

1

ij ,
�
w

2

ij ,
�
w

3

ij ,
�
w

4

ij

}
(5.1)

Here, w0
ij ≡ �

w
0

ij is the unique function belonging to Class ”0”-i.e., piecewise linear on Σ-,

of Section 6, and
�
w

α

ij is a function of Class ”α”, for each α = 1, ..., 4, which fulfills, at interval

”α”, the boundary condition
�
w

α

ij (x, yj) = H1
i (x) , for α = 1, 3 , and

�
w

α

ij (xi, y) = H1
j (y) ,

for α = 2, 4 . In addition, one defines

w1
ij (x, y) ≡ �

w
1

ij (x, y) +
�
w

3

ij (x, y) and w2
ij (x, y) ≡ �

w
2

ij (x, y) +
�
w

4

ij (x, y) (5.2)

Observe that the supports of w1
ij and w2

ij are the whole rectangle Ωij . In addition, they
fulfill the local boundary conditions w1

ij (x, yj) = H1
i (x) at the interval xi−1 � x � xi+1

together with w2
ij (xi, y) = H1

j (y) at the interval yj−1 � y � yj+1.

In Ref. [8], the family
�

F was first constructed and the family F was then derived by

application of Eq.(4.2). The family
�

F was built by solving local boundary value problems
in each one of the subregions

{
Ω1

ij , Ω
2
ij , Ω

3
ij , Ω

4
ij

}
, separately. This was done introducing a

set of functions
{
B0

ij , B
1
ij , B

2
ij , B

3
ij , B

4
ij

}
, which satisfy the boundary conditions and adding

to it a linear combination of a family of functions
{
N1

ij , N
2
ij , N

3
ij , N

4
ij

}
which vanish on the
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boundary of each one of the subdomains
{
Ω1

ij , Ω
2
ij , Ω

3
ij , Ω

4
ij

}
, in order to fulfill the differential

equation.
This leads to

�
w

α

ij(x, y) = Bα
ij(x, y) +

4∑
β=1

Cαβ
ij Nβ

ij(x, y); α = 0, ..., 4 (5.3)

The coefficients Cαβ
ij are constant at each one of the subdomains

{
Ω1

ij , Ω
2
ij , Ω

3
ij , Ω

4
ij

}
, but

only piecewise constant in Ωij (Fig. 4.1). Therefore, each one of the functions
�
w

α

ij(x, y) has
different expressions at each one of the rectangles

{
Ω1

ij , Ω
2
ij , Ω

3
ij , Ω

4
ij

}
. The same applies to

the functions
{
B0

ij , B
1
ij , B

2
ij , B

3
ij , B

4
ij

}
. The coefficients were obtained solving the system of

collocation equations at four Gaussian points

4∑
β=1

Cαβ
ij L∗Nβ

ij(x
p, yp) = L∗Bα

ij(x
p, yp); p = 1, ..., 4 (5.4)

5.2. Optimal Interpolation. According to the Theorem of Section 2, the approx-
imate solution û ∈ D̂1 is given by

û = ûP + v (5.5)

The function fulfills Eqs.(2.9) to (2.11). As mentioned in Section 2, for its construction
one can choose the average of this function arbitrarily, but compatible with the external
boundary conditions of Eq.(2.11), and then solve the boundary value problems which are
defined, when this specification is joined to the System of Eqs. (2.10) to (2.12), and Eq.(2.9)
is also applied. These problems may be solved by any numerical method but in [8], orthogonal
collocation was used and similar manner to that explained in the last Sub-Section.

The system of base functions used for building v ∈ D̂1 can be constructed in a similar
manner. It is based on the fact that v ⊂ Ñ1. So those functions must fulfill the system of
equations (2.1); i.e., the homogenous differential equation, and they be continuous and vanish
on the external boundary. It is advantageous in many instances, to choose the traces on Σ of
such base functions to be the same as those of the weighting functions, as was explained in
the Sub-Section 5.1. In that case, Eq.(4.3) can also be applied for the construction the base
functions, but to determine the coefficients Cαβ

ij one has to replace in Eq.(4.4), the adjoint
differential operator L∗ by the differential operator L, itself.

5.3. The Algorithms. To obtain the system of equations satisfied by the values of
v on Σ (the values of v on both sides of Σ are the same since it is continuous), one has to
apply Eq.(2.22). This is

−
∫

Σ

v [an · ∇w]dx =

∫
Σ

w [an · ∇uP ]dx −
∫

Σ

wj1
Σdx (5.6)

This form is simpler than that presented in [8], where additional details can be found.
In [8], two algorithms were developed. In Algorithm 1, both base and test functions

are piecewise linear on Σ, while both of them are piecewise cubic on Σ in Algorithm 2.

6. Conclusions. This article illustrates the applications of Trefftz-Herrera methods
to the derivation of new discretization procedures. In particular, in Trefftz-Herrera method,
the order of approximation that is used in the internal boundary is independent of that used
in the interior of the elements of the partition. Using this fact a non-standard method of
collocation on Hermite cubics is presented which possesses many advantages over standard
methods. Two algorithms are discussed, one in which the interpolation on Σ is piecewise
linear and another in which it is piecewise cubic. Quadratic interpolation is also possible
but was not discussed here. In this manner, a dramatic reduction in the number of degrees
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of freedom associated with each node is obtained: in the standard method of collocation
that number is two in one dimension, four in two dimensions and eight in three dimensions,
while for some of the new algorithms they are only one in all space dimensions -this is due
to the relaxation in the continuity conditions required by indirect methods-. Also, the global
matrix is symmetric and positive definite when so is the differential operator, while in the
standard method of collocation, using Hermite cubics, this does not happen. In addition, it
must be mentioned that the boundary value problem with prescribed jumps at the internal
boundaries can be treated as easily as the smooth problem -i.e., that with zero jumps-, because
the solution matrix and the order of precision is the same for both problems. It must be
observed also that, when the indirect method is applied, the error of the approximate solution
stems from two sources: the approximate nature of the test functions, and the fact that TH-
complete systems of test functions -which are infinite for problems in several dimensions- are
approximated by finite families of such functions. In particular, when Hermite cubics are
used to approximate the local solutions, in the problems treated in this paper, the error is
O

(
h4

)
, if the test functions are piece-wise cubic on Σ, and it is O

(
h2

)
when the test functions

are only piece-wise linear, on that interior boundary. Finally, the construction of the test
functions is quite suitable to be computed in parallel.
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