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3. A Generalized FETI - DP Method for a Mortar
Discretization of Elliptic Problems

M. Dryja1, O. B. Widlund2

1. Introduction. In this paper, an iterative substructuring method with La-
grange multipliers is proposed for discrete problems arising from approximations of
elliptic problem in two dimensions on non-matching meshes. The problem is formu-
lated using a mortar technique. The algorithm belongs to the family of dual-primal
FETI (Finite Element Tearing and Interconnecting) methods which has been ana-
lyzed recently for discretization on matching meshes. In this method the unknowns at
the vertices of substructures are eliminated together with those of the interior nodal
points of these substructures. It is proved that the preconditioner proposed is almost
optimal; it is also well suited for parallel computations.

We will consider a dual-primal FETI (FETI-DP) method, see [5], [9], and [6], for
solving discrete problems arising from the approximation of the Dirichlet problem de-
fined on a union of substructures Ωi. Each substructure is the union of a number of
elements of a coarse, shape-regular triangulation and the number of these triangles,
which form such a substructure, is assumed to be uniformly bounded. The discretiza-
tion is obtained by a mortar method on nonmatching meshes across the interface Γ; see
[1], [2]. As in all other iterative substructuring methods, the unknowns corresponding
to the interior nodal points are eliminated; in this dual-primal FETI method those at
the vertices of Ωi are eliminated as well. The remaining Schur complement system is
solved by a FETI method; see Section 3 for details.

A full analysis of the convergence of several FETI-DP methods has been worked out
for finite element approximations on matching meshes; see [9] for the two-dimensional
case and [6] for three dimensions. This method, on nonmatching meshes and for the
mortar discretizations in the 2-D case, was analyzed in [4]. The preconditioner used
there is a standard one and the estimates are not optimal in the general case. In
this paper, our analysis is extended to the preconditioner suggested in [7] for match-
ing meshes. The results obtained for this method is better than those of [4]. The
superiority of this method is consistent with the numerical results reported on in [11].

The remainder of this paper is organized as follows. In Section 2 differential and
discrete problems are formulated while in Section 3 the dual-primal formulation is
introduced. Sections 4 is are devoted to the analysis of the proposed preconditioner.

2. Differential and discrete problems. We will consider the following elliptic
problem: find u∗ ∈ H1

0 (Ω) such that

a(u∗, v) = f(v), v ∈ H1
0 (Ω), (2.1)

where
a(u, v) =

∫
Ω

∇u · ∇vdx, f(v) =
∫

Ω

fv dx
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and Ω is a polygonal 2-D region which is a union of polygons Ωi, i = 1, . . . , N. These
subregions form a coarse partitioning of Ω with subdomains with diameters on the or-
der of H. In each Ωi, we introduce a quasi-uniform, but otherwise arbitrary, triangula-
tion of the subregion with a mesh parameter hi; generally the resulting triangulations
do not match across the edges of the Ωi.

Let
W (Ω) = W (Ω1) × · · · × W (ΩN ),

where W (Ωi) are the finite element spaces of piecewise linear, continuous functions
on the triangulation of Ωi and which vanish on ∂Ω and let the interface be defined by
Γ = (∪∂Ωi)\∂Ω. We choose mortar and nonmortar edges of Γ, and denote them by
γm(j) and δm(i). In the analysis of the proposed preconditioner, we need a uniform
bound on the ratios hγm(j)/hδm(i) where hγm(j) and hδm(i) are the mesh parameters
of γm(j) ⊂ ∂Ωj and δm(i) ⊂ ∂Ωi, (γm(j) = δm(i)), respectively. The problem (2.1)
is approximated in X(Ω), a subspace of W (Ω), of functions which satisfy the mortar
condition, see [1], [2],

b(u, ψ) ≡
N∑

i=1

∑
δm(i)⊂∂Ωi

∫
δm(i)

(ui − uj)ψds = 0, ψ ∈ M(Γ), (2.2)

where M(Γ) = ΠiΠδm(i)⊂∂Ωi
M(δm(i)) and M(δm(i)) is the standard mortar space

defined on δm(i), i.e., piecewise linear continuous functions which are constant on the
elements which intersect ∂δm(i). Additionally, we assume that the functions of X(Ω)
are continuous at the vertices of Ωi, i.e., they take the same values, see [2]. In (2.2)
ui ∈ W (Ωi) and uj ∈ W (Ωj) are the restrictions of u to δm(i) and γm(j), respectively.

3. A dual-primal formulation of the problem. We will use some of the
notations of [9], [6]. Let

K := diagN
j=1(K

(j)), (3.1)

where K(j) is the local stiffness matrix with respect to the standard basis functions
of W (Ωj). We eliminate the unknown variables corresponding to the interior nodal
points and the vertices of Ωi. A Schur complement S̃ results which is of the form:

S̃ := Krr −
(

Kri Krc

) (
Kii Kic

Kci Kcc

)−1 (
Kir

Kcr

)
. (3.2)

Here,

K̃ :=


Kii Kic Kir

Kci Kcc Kcr

Kri Krc Krr

 ,

where the rows correspond to the interior, vertex, and remaining (edge) nodal points,
respectively. It is obtained from K by reordering the unknowns and taking into account
that the functions of X(Ω) are continuous at the subdomain vertices.

Let
W (Γ) = W (∂Ω1) × · · · × W (∂ΩN )
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and let Wr(Γ) denote the space of functions defined at the edge nodal points and which
vanish at the vertices of Ωi, and let Wc(Γ) be the subspace of W (Γ) of functions that
are continuous at the vertices.

The dual-primal formulation of the mortar discretization of (2.1) is: find u∗
r ∈

Wr(Γ) such that

J(u∗
r) = min

vr ∈ Wr

Bvr = 0

J(vr), J(v) := 1/2〈S̃v, v〉 − 〈fr, v〉, (3.3)

where < , > means the scalar product in l2. B is defined by the mortar condition (2.2)
as follows: on δm(i) ⊂ ∂Ωi , δm(i) = γm(j), the matrix form of (2.2) is

Bδm(i)ui|δm(i)
− Bγm(j)uj|γm(j)

= 0. (3.4)

Here,
Bδm(i) = {(ψl, ϕp)L2(δm(i))

}, l, p = 1, ..., nm(i),

ϕp ∈ Wi(∂Ωi)|δm(i)
, ψl ∈ M(δm(i)) ,

Bγm(j) = {(ψl, ϕk)L2(δm(i))
}, l = 1, ..., nm(i), k = 1, ..., nm(j),

and ϕk ∈ Wj(∂Ωj)|γm(j)
;nm(i) and nm(j) are the number of interior nodal points of

δm(i) and γm(j), respectively. Condition (3.4) can be rewritten as

ui|δm(i)
− B−1

δm(i)
Bγm(j)uj|γm(j)

= 0, (3.5)

since the matrix Bδm(i) = BT
δm(i)

> 0. We note that Bγm(j) is generally a rectangular
matrix.

The matrix B is block-diagonal,

B = blockdiag{Dδm(i)} (3.6)

for i = 1,. . . ,N, and δm(i) ⊂ ∂Ωi where

Dδm(i)

(
ui|δm(i)

uj|γm(j)

)
≡ (I (−B−1

δm(i)
Bγm(j)))

(
ui|δm(i)

uj|γm(j)

)
. (3.7)

Introducing a space of Lagrange multipliers V := Im(B) to enforce the constraints
Bvr = 0, we obtain a saddle point formulation of (3.3),(

S̃ BT

B 0

)(
u∗

r

λ∗

)
=

(
f̃r

0

)
, (3.8)

where u∗
r ∈ Wr(Γ) and λ∗ ∈ V . We obtain the problem

Fλ∗ = d, (3.9)

where
F = BS̃−1BT , d = BS̃−1f̃r.
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We now define a preconditioner for F. Let

S(j) = K
(j)
bb − K

(j)
bi (K(j)

ii )−1K
(j)
ib , (3.10)

be the standard Schur complement of K(j) where K
(j)
ii and K

(j)
bb are the submatrices

of K(j) corresponding to the interior and boundary unknowns of Ω̄j , respectively. Let

S(j)
rr = K(j)

rr − K
(j)
ri (K(j)

ii )−1K
(j)
ir (3.11)

denote the Schur complement of K(j), without the rows and columns corresponding
to the vertices. It is the restriction of S(j) to the space of functions which vanish at
the vertices. Let

S := diagN
i=1(S

(i)), Srr := diagN
i=1(S

(i)
rr ).

We can take a preconditioner M of F of the form

M = (BSrrB
T )−1, M−1 = BSrrB

T . (3.12)

This preconditioner, called the standard one, was analyzed in [4] for two cases.
In the first case there is Neumann-Dirichlet (N-D) ordering of substructures Ωi; a
Neumann substructure Ωi is one where all sides are chosen as mortars while for a
Dirichlet substructure all sides are nonmortars. In the second case, we do not have
such ordering. For this preconditioner a bound was established for the condition
number of FETI-DP method which is proportional to (1+ log(H/h))2 in the first case
while we need (1 + log(H/h))4 in the second case.

We will now design a preconditioner for FETI-DP method which is similar to
the one used in a FETI method on matching meshes in [7]. It is analyzed in the
general case and a bound is obtained for the condition number of this method that is
proportional to (1 + log(H/h))2 only.

Let us introduce a scaling in Dδm(i) , cf. (3.7), given by

D̃δm(i)

(
ui|δm(i)

uj|γm(j)

)
≡ {I (−α

(m)
ij B−1

δm(i)
Bγm(j))}

(
ui|δm(i)

uj|γm(j)

)
(3.13)

where α
(m)
ij = (hδm(i)/hγm(j)) and, cf. (3.6), let

B̃ = blockdiag(D̃δm(i)) (3.14)

for i = 1, . . . , N, and δm(i) ⊂ ∂Ωi. The preconditioner M̃ for F is of the form

M̃−1 = (BB̃T )−1B̃SrrB̃
T (B̃BT )−1. (3.15)

Remark We could also take

M̂−1 = diag(BBT )−1BSrrB
T diag(BBT )−1 (3.16)

This corresponds to the preconditioner introduced in [8] for a FETI method on match-
ing and nonmatching triangulations. To our knowledge, there is no full analysis of that
method.
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4. Convergence analysis. In this section we prove that the preconditioner M̃
is spectrally equivalent to F, except for a (1 + log(H/h))2 factor; see Theorem 1. We
follow the approach of [9], [6]. We first prove two auxiliary results.

Let us introduce the operator P = B̃T (BB̃T )−1B defined on Wr. We note that P
is a projection, P 2 = P .

Lemma 1 Let hδm(i) ∼ hγm(j) , δm(i) ⊂ ∂Ωi , i = 1,. . . , N be satisfied. Then for
wr ∈ Wr

|Pwr|2Srr
≤ C(1 + log(H/h))2|wr|2S̃ (4.1)

holds where the constant C is independent of H = maxiHi and h = minihi.
Proof Let w be the discrete harmonic extension of wr to the interior points and

to the vertices in the sense of < S̃u, u >. We have

|wr|2S̃ = |w|2S , w ∈ Wc. (4.2)

Using this fact, we estimate |Pwr|Srr
in terms of |w|2S . We construct IHw the function

which is linear on the edges and which takes the values of w at the vertices. Setting
u ≡ w − IHw and noting that BIHw = 0, we have

|Pwr|2Srr
= |Pu|2Srr

=
N∑

i=1

|Pu|2S(i) . (4.3)

We note that Pu = 0 at the vertices. Using that and setting v = (BB̃T )−1Bu, we
have

|Pwr|2S(i) = |B̃T v|2S(i) ≤ C{
∑

δm(i)⊂∂Ωi

|B̃T v|2Sδm(i)
+ (4.4)

∑
γm(i)⊂∂Ωi

|B̃T v|2Sγm(i)
},

where Sδm(i) and Sγm(i) are matrix representations of the H
1/2
00 - norm on δm(i) and

γm(i), respectively; see Lemma 2 below. From the structure of B̃, see (3.13) and (3.14),
it follows that

|B̃T v|2Sδm(i)
= |vi|2Sδm(i)

(4.5)

and that
|B̃T v|2Sγm(i)

= |B̃T
jivj |2Sγm(i)

where, here and below, B̃ji = α
(m)
ji B−1

δm(j)
Bγm(i) ≡ α

(m)
ji Bji, γm(i) = δm(j), δm(j) ⊂

∂Ωj , and vi and vj are restrictions of v to Ω̄i and Ω̄j , respectively.
We now prove that

|B̃T
jivj |2Sγm(i)

≤ C|vj |2Sδm(j)
. (4.6)

We note that v = 0 at the cross points. We have

|B̃T
jivj |2Sγm(i)

= sup
ϕ

| < S
1/2
γm(i)B̃

T
jivj , ϕ >γm(i) |2

|ϕ|2γm(i)

=
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= sup
t

| < vj , B̃jit >δm(j) |2

|S−1/2
γm(i)t|2γm(i)

,

where < ·, · >γm(i) and < ·, · >δm(j) are �2−inner products. Hence,

|B̃T
jivj |2Sγm(i)

≤ |S1/2
δm(j)

vj |2δm(j)
sup

t

|S−1/2
δm(j)

B̃jit|2δm(j)

|S−1/2
γm(i)t|2γm(i)

. (4.7)

Let, here and below, πδm(j)(t, 0) correspond to Bjit for a piecewise linear, continuous
function, also denoted by t, and defined on γm(i) by a vector t with components that
vanish at the end of γm(i). Using Lemma 2, below, and the H−1/2-stability of πδm(j) ,
see [1], we get

|S−1/2
δm(j)

B̃jit|2δm(j)
≤ Ch−2

γm(i)
||πδm(j)(t, 0)||2H−1/2(δm(j))

≤

≤ Ch−2
γm(i)

‖ t ‖2
H−1/2(γm(i))

≤ C|S−1/2
γm(i)

t|2.

Here H−1/2 is the dual to H
1/2
00 . Using this bound in (4.7), we get

|B̃T
jivj |2Sγm(i)

≤ C|S1/2
δm(j)

vj |2δm(j)
,

which proves (4.6). Using (4.5) and (4.6) in (4.4), we have

|B̃T v|2S(i) ≤ C{
∑

δm(i)⊂∂Ωi

|vi|2Sδm(i)
+

∑
δm(j)

|vj |2Sδm(j)
}, (4.8)

where the second sum is taken over δm(j) ⊂ Ωj such that γm(i) = δm(j) with γm(i) ⊂
∂Ωi.

We now estimate the term |S1/2
δm(i)

vi|2 of (4.8) as follows. We have

|v|2Sδm(i)
≤ 2{|(BB̃T )−1Bu − 1

2
Bu|2Sδm(i)

+
1
4
|Bu|2Sδm(i)

}. (4.9)

We first estimate the second term. Using the structure of B, see (3.7), we have

|Bu|2Sδm(i)
≤ 2{|ui|2Sδm(i)

+ |Bijuj |2Sδm(i)
}, (4.10)

where δm(i) = γm(j), γm(j) ⊂ Ωj . We note that

|Bijuj |2Sδm(i)
≤ C ‖ πδm(i)(uj , 0) ‖2

H
1/2
00 (δm(i))

≤

≤ C|uj |2H1/2
00 (γm(j))

≤ C|uj |2Sγm(j)
.

Here we have used the H
1/2
00 - stability of πδm(i) , see [1]. Using this in (4.10), we have

|Bu|2Sδm(i)
≤ C

{
|ui|2Sδm(i)

+ |uj |2Sγm(j)

}
. (4.11)
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To estimate the first term of (4.9), we first use the fact that |(BB̃T )−1| ≤ 1 since
BB̃T = Iδm(i) + BijB̃

T
ij on δm(i); this follows from the structure of B. Here Iδm(i) is

the identity matrix of a dimension equal to the number of nodal points of δm(i). Using
that and Sδm(i) ≤ CIδm(i) , we have

|(BB̃T )−1Bu − 1
2
Bu|2Sδm(i)

≤ C|(BB̃T )−1(Bu − 1
2
(BB̃T )Bu)|2�2 (4.12)

≤ C|Bu − 1
2
BB̃T Bu|2�2 .

Setting z = Bu and noting that on δm(i)

(z − 1
2
BB̃T z)|δm(i)

=
1
2
(zi − BijB̃

T
ijzi),

we have
|z − 1

2
BB̃T z|2�2 =

1
4
|zi − BijB̃

T
ijzi|2�2 .

Let g ≡ B̃T
ijzi. We note that zi = π(zi, 0) on δm(i). Using that

|zi − Bijg|2�2 ≤ C

hδm(i)

‖ zi − πδm(i)(g, 0) ‖2
L2(δm(i))

= (4.13)

=
C

hδm(i)

‖ πδm(i)(zi − g, 0) ‖2
L2(δm(i))

≤

≤ C

hδm(i)

‖ zi − g ‖2
L2(δm(i))

,

in view of the L2 - stability of πδm(i)); see [1].
The question is now how to estimate the right hand side of (4.13). We do that as

follows. Let z̄i be a piecewise constant function on δm(i) with respect to the triangu-
lation on δm(i) and with values zi(xk) at xk ∈ δm(i)h, the set of nodal points on δm(i).
Using this, we get

1
hδm(i)

‖ zi − g ‖2
L2(δm(i))

≤ 2
hδm(i)

‖ z̄i − g ‖2
L2(δm(i))

+C|zi|2Sδm(i)
, (4.14)

since

‖ zi − z̄i ‖2
L2(δm(i))

≤ Chδm(i) ‖ zi ‖2

H
1/2
00 (δm(i))

≤ Chδm(i) |zi|2Sδm(i)
, (4.15)

in view of a known estimate and Lemma 2.
There remains to prove that

1
hδm(i)

‖ z̄i − g ‖2
L2(δm(i))

≤ C|z|2Sδm(i)
. (4.16)

We do this as follows. Let ḡγ be a piecewise constant function on γm(j) with respect
to the triangulation on γm(j) and with values g(xk) = (B̃T

ijzi)k at xk ∈ γm(j)h, the set
of nodal points on γm(j). We have,

1
hδm(i)

‖ z̄i − g ‖2
L2≤

2
hδm(i)

{‖ z̄i − ḡγ ‖2
L2 + ‖ g − ḡγ ‖2

L2}. (4.17)
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It is known that

‖ g − ḡγ ‖2
L2(γm(j))

≤ Chγm(j) ‖ g ‖2

H
1/2
00 (γm(j))

.

On the other hand,
‖ g ‖2

H
1/2
00 (γm(j))

≤ C|zi|2Sδm(i)
,

in view of (4.6). Hence,

1
hδm(i)

‖ g − ḡγ ‖2
L(δm(i))

≤ C
hγm(j)

hδm(i)

|zi|2Sδm(i)
≤ C|zi|2Sδm(i)

. (4.18)

We now estimate h−1
δm(i)

‖ z̄i − ḡγ ‖2
L2 of (4.17) as follows. We have

‖ z̄i − ḡγ ‖2
L2(δm(i))

= sup
ϕ

|(z̄i − ḡγ , ϕ)L2 |2
‖ ϕ ‖2

L2

. (4.19)

Let Qδϕ and Qγϕ be the L2 - projections on the spaces of piecewise constant functions
on the triangulations of δm(i) and γm(j), respectively. It is known that,

‖ zi − Qδzi ‖2
L2(δm(i))

≤ Chδm(i) |zi|2H1/2
00 (δm(i))

and
‖ zi − Qγzi ‖2

L2(γm(j))
≤ Chγm(j) |zi|2H1/2

00 (γm(j))
.

Using the projections, we have

(z̄i − ḡγ , ϕ)L2(δm(i)) = (z̄i, Qδϕ)L2(δm(i)) − (ḡγ , Qγϕ)L2(γm(j)). (4.20)

We note that

(ḡγ , Qγϕ)L2(γm(j)) = hγm(j)

∑
xk∈γm(j)h

gγ(xk)(Qγϕ)(xk) =

= α
(m)
ij hγm(j)(B

T
ijzi, Qγϕ)�2 =

= hδm(i)(zi, BijQγϕ)�2 = (z̄i, BijQγϕ)L2(δm(i)),

where BijQγϕ is a piecewise constant function with respect to the δm(i) triangulation.
Using this in (4.20), we have

(z̄i − ḡγ , ϕ)L2(δm(i)) = (z̄i, Qδϕ − BijQγϕ)L2(δm(i)).

Hence,

(z̄i − ḡγ , ϕ)L2(δm(i)) ≤ ‖ zi − z̄i ‖L2‖ Qδϕ − BijQγϕ ‖L2 + (4.21)

+ ‖ zi ‖H
1/2
00 (δm(i))

‖ Qδϕ − BijQγϕ ‖H−1/2(δm(i))
.

We note that BijQγϕ = πδm(i)(Qγϕ, 0). Using that, we have

‖ Qδϕ − BijQγϕ ‖H−1/2(δm(i))
≤‖ Qδϕ − ϕ ‖H−1/2(δm(i))

+
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‖ ϕ − πδm(i)(Qγϕ, 0) ‖H−1/2(δm(i))
+ ‖ πδm(i)(Qγϕ, 0) − πδm(i)(Qγϕ, 0) ‖H−1/2(δm(i))

.

Using known estimates for these terms, we get

‖ Qδϕ − BijQγϕ ‖2
H−1/2(δm(i))

≤ C(hδm(i) + hγm(j)) ‖ ϕ ‖2
L2(δm(i))

. (4.22)

It is easy to see that

‖ Qδϕ − BijQγϕ ‖2
L2(δm(i))

≤ C ‖ ϕ ‖2
L2(δm(i))

. (4.23)

Using the estimates (4.22), (4.23), and (4.15) in (4.21), we get

(z̄i − ḡγ , ϕ)L2(δm(i)) ≤ Chδm(i) ‖ zi ‖H
1/2
00 (δm(i))

‖ ϕ ‖L2(δm(i)) .

In turn, substituting this into (4.19), we have

‖ z̄i − ḡγ ‖2
L2(δm(i))

≤ Chδm(i) ‖ zi ‖2

H
1/2
00 (δm(i))

≤ Chδm(i) |zi|2Sδm(i)
.

Using this and (4.18) in (4.17) and the resulting inequality in (4.14), we get

1
hδm(i)

‖ zi − g ‖2
L2(δm(i))

≤ C|zi|2Sδm(i)
.

In turn, using this estimate in (4.13) and the resulting inequality in (4.12), we have

|(BB̃T )−1Bu − 1/2Bu|2Sδm(i)
≤ C|Bu|2Sδm(i)

≤ C{|ui|2Sδm(i)
+ |uj |2Sγm(j)

};

we have also used (4.11). Using this and again (4.11) in (4.9) and the resulting
inequality in (4.8), we get, cf. (4.4),

|Pwr|2S(i) ≤ C{
∑

δm(i)⊂∂Ωi

|ui|2Sδm(i)
+

∑
γm(i)=δm(j)

|uj |2Sγm(j)
}, (4.24)

where the second sum is taken over γm(i) ⊂ Ωi. It is known that for u = w − IHw we
have

|ui|2Sδm(i)
≤ C(1 + log(H/h))2|wi|2Si

Using this in (4.24) and summing the resulting inequality with respect i, we get (4.1),
in view of (4.2). The proof is complete.

Lemma 2 Let hδm(i) ∼ hγm(j) . Then for u ∈ W (δm(i)), which vanishes at the ends
of δm(i) the following hold:

C0 < Sδm(i)u, u >�2≤‖ u ‖2
H1/2(δm(i))

≤ C1 < Sδm(i)u, u >�2 . (4.25)

and

C2h
2
δm(i)

< S−1
δm(i)

u, u >≤‖ u ‖2
H−1/2(δm(i))

≤ C3h
2
δm(i)

< S−1
δm(i)

u, u > (4.26)

where Ci are positive constants independent of hδm(i) .
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Proof The proof of (4.25) can be found for example in [3]. The proof of (4.26)
follows from Proposition 7.5 in [10].
Cororally (see the proof of Lemma 1 in [4])

|Bijt|2S−1
δm(i)

≤ C|t|2
S−1

γm(j)
. (4.27)

Proof Let πδm(i)(t, 0) correspond to Bijt on δm(i) where t is a piecewise linear
continuous function, also denoted by t, and defined by the vector t. Using (4.26), we
have

h2
δm(i)

|Bijt|2S−1
δm(i)

≤ C ‖ πδm(i)(t, 0) ‖2
H−1/2(δm(i))

. (4.28)

We show below that

‖ πδm(i)(t, 0) ‖2
H−1/2(δm(i))

≤ C(1 +
hδm(i)

hγm(j)

) ‖ t ‖2
H−1/2(γm(j))

. (4.29)

Using this in (4.28), that hδm(i) ∼ hγm(j) , and (4.26), we get (4.27).
There remains to prove (4.29). We have

‖ πδm(i)(t, 0) ‖H−1/2(δm(i))
≤ ‖ t ‖H−1/2(δm(i))

(4.30)

+ ‖ πδm(i)(t, 0) − t ‖H−1/2(δm(i))

and

‖ πδm(i)(t, 0) − t ‖H−1/2(δm(i))
= (4.31)

= max
g

(πδm(i)(t, 0) − t, g − Qδm(i)g)L2(δm(i))

‖ g ‖
H

1/2
00 (δm(i))

.

Here Qδm(i) is the L2 orthogonal projection onto the mortar space M(δm(i)). Using a
known estimate for g −Qδm(i)g, the L2 - stability of πδm(i) , and an inverse inequality,
we get

‖ πδm(i)(t, 0) − t ‖H−1/2(δm(i))
≤ C

(hδm(i)

hγm(i)

)1/2 ‖ t ‖H−1/2(δm(i))
.

Using this bound in (4.30), we get (4.29). The proof is complete.
We now in the position to formulate and prove the main result.

Theorem 1 Let the assumptions of Lemma 1 be satisfied. Then for λ ∈ V =
Im(B)

< M̃λ, λ >≤< Fλ, λ >≤ C(1 + log(H/h))2 < M̃λ, λ > (4.32)

holds, where C is independent of h and H.
Proof The right hand side of (4.32): We have, cf. [9],

< Fλ, λ >= max
wr∈Wr

| < λ,Bwr > |2
|wr|2S̃

.

Using Lemma 1, we get

< Fλ, λ >≤ C(1 + log(H/h))2 max
wr

| < λ,Bwr > |2
|Pwr|2Srr

,
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where P = B̃T (BB̃T )−1B. In turn, by straightforward manipulations, see also (3.15),
we have

< Fλ, λ >≤ C(1 + log(H/h))2 max
wr

| < λ,Bwr > |2

< (BB̃T )−1B̃SrrB̃T (BB̃T )−1Bwr, Bwr >
=

= C(1 + log(H/h))2 max
wr

| < M̃1/2λ, M̃−1/2Bwr > |2

< M̃−1/2Bwr, M̃−1/2Bwr >
=

= C(1 + log(H/h))2 < M̃λ, λ >

This proves the right hand side of (4.32).
The left hand side of (4.32): We have, cf. [9],

< Fλ, λ >=‖ S̃−1/2BT λ ‖2= max
v

| < λ,Bv > |2

‖ S̃1/2v ‖2
.

Taking v ∈ range (P) and using that v = Pv, and (4.2), we get

< Fλ, λ >≥ max
v

< λ,Bv >

< Pv, Pv >Srr

.

Setting µ = Bv and using the definition of P, we have

< Fλ, λ >≥ max
µ

| < λ, µ > |2

< M̃−1µ, µ >
=

= max
µ

| < M̃1/2λ, M̃−1/2µ > |2

< M̃−1/2µ, M̃−1/2µ
=< M̃λ, λ > .

This proves the left-hand side of (4.32). The proof of Theorem 1 is complete.
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