
Fourteenth International Conference on Domain Decomposition Methods
Editors: Ismael Herrera , David E. Keyes, Olof B. Widlund, Robert Yates c©2003 DDM.org

24. Dual preconditioners for mortar discretization of elliptic
problems

M. Dryja1, W. Proskurowski2

1. Introduction. In this paper, we discuss a second order elliptic problem with dis-
continuous coefficients defined on a polygonal region Ω which is a union of two polygons, Ω1

and Ω2. The problem is discretized by the finite element method on non-matching triangu-
lation across Γ = Ω1 ∩ Ω2. The discrete problem is described using the mortar technique in
the space with constraints (the mortar condition) and in the space without constraints using
Lagrange multipliers, see [2] and [1].

The goal of this paper is to compare two preconditioners, dual Neumann-Dirichlet and
dual Neumann-Neumann (or FETI, see [5], [6], [7]) used for solving the discrete problem
formulated in the space without constraints using Lagrange multipliers. An analysis of con-
vergence of the discussed preconditioners is given. Such analysis to our knowledge has not
yet been previously established. The theory is supported by numerical experiments.

The paper is organized as follows. In Section 2, the differential and discrete problems
are formulated. In Section 3, a matrix form of discrete problems is given. The precondi-
tioners are described and analyzed in Sections 4, while some aspects of their implementation
are presented in Section 5. Finally, numerical results and comparisons of the considered
preconditioners are given in Section 6.

2. Mortar discrete problem. We consider the following differential problem:
Find u∗ ∈ H1

0 (Ω) such that

a(u∗, v) = f(v), v ∈ H1
0 (Ω), (2.1)

where
a(u, v) = (ρ(x)∇u,∇v)L2(Ω), f(v) = (f, v)L2(Ω).

We assume that Ω is a polygonal region. Let Ω be a union of two disjoint polygonal subregions
Ωi, i = 1, 2, of a diameter one. We additionally assume that ρ(x) ≥ ρ0 > 0 is a continuous
function in each Ωi and, for simplicity of presentation, that ρ(x) = ρi = constant on Ωi.

In each Ωi, a triangulation is introduced with triangular elements e
(k)
i and a parameter

hi = maxk h
(k)
i , where h

(k)
i is a diameter of e

(k)
i . The resulting triangulation of Ω is non-

matching across Γ = Ω1∩Ω2. We assume that the hi-triangulation in each Ωi is quasi-uniform,
see [3].

Let Xi(Ωi) be the finite element space of piecewise linear continuous functions defined
on the triangulation of Ωi and vanishing on ∂Ωi ∩ ∂Ω, and let

Xh(Ω) = X1(Ω1) × X2(Ω2).

Note that Xh �⊂ H1
0 (Ω); therefore it cannot be used for discretization of (2.1). To dis-

cretize (2.1) some weak continuity on Γ for v ∈ Xh is imposed and it is called a mortar
condition, see [2]. To describe the mortar condition we assume that ρ1 ≤ ρ2 and select a face
of Ω2, geometrically equal to Γ, as a mortar (master) and denote it by γ, while δ = Γ as a
face of Ω1 as non-mortar (slave). This choice is arbitrary in the case ρ1 = ρ2, however in
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our case, ρ1 ≤ ρ2 and it is important for the analysis of convergence to choose as the mortar
side the one where the coefficient is larger. In the analysis of the FETI method we need
that

hγ

hδ
be uniformly bounded, where hδ and hγ are the steps of triangulation on δ and γ,

respectively.
Let W1(δ) and W2(γ) be the restrictions of X1(Ω1) and X2(Ω2) to δ and γ, respectively.

Note that they are different because they are defined on different 1-D triangulations of Γ.
Let M(δ) be a space of piecewise linear continuous functions defined on the triangulation of
δ with constant values on elements which intersect ∂δ.

We say that u = (u1, u2) ∈ Xh(Ω) satisfies the mortar condition on δ(δ = γ = Γ) if∫
δ

(u1 − u2)ψds = 0, ψ ∈ M(δ). (2.2)

Note that (2.2) for a given u2 can be written as u1 = π(u2, T r u1) where π(u2, T r u1) :
L2(δ) → W1(δ) is defined by


∫

δ
π(u2, T r u1)ψds =

∫
δ
u2ψds, ψ ∈ M(δ),

T rπ(u2, T r u1) = Tr u1.
(2.3)

Here Tr v is a trace of v on ∂δ. In our case Tr u1 = 0.
Let V h(Ω) be a subspace of Xh(Ω) of functions which satisfy the mortar condition (2.2)

on δ. The discrete problem for (2.1) in V h is of the form:
Find u∗

h = (u∗
1h, u∗

2h) ∈ V h such that

2∑
i=1

ai(u
∗
ih, vih) = f(vh), vh = (v1h, v2h) ∈ V h, (2.4)

where ai(ui, vi) = ρi(∇ui,∇vi)L2(Ωi)
. This problem has a unique solution and its error

bound is known, see [2].
The discrete problem (2.4) can be rewritten as a saddle-point problem using Lagrange

multipliers as follows:
Let for u = (u1, u2) ∈ Xh(Ω) and ψ ∈ M(δ)

b(u, ψ) ≡
∫
δ

(u1 − u2)ψdx.

Find (u∗
h, λ∗

h) ∈ Xh(Ω) × M(δ) such that


a(u∗
h, vh) + b(vh, λ∗

h) = f(vh), vh ∈ Xh(Ω),

b(u∗
h, ψ) = 0, ψ ∈ M(δ).

(2.5)

It is easy to see that (2.5) is equivalent to (2.4), i.e. the solution u∗
h of (2.5) is the solution

of (2.4) and vice versa. Therefore the problem (2.5) has a unique solution. An analysis
of (2.5) can be done straightforwardly using the inf-sup condition, including the error bound,
see [1], [2].

3. Matrix form. In this section we derive the matrix form of the discrete prob-
lem (2.5).

To provide a matrix form of (2.5) we need a matrix formulation of the mortar condition,

i.e. the matrix form of b(·, ·). Using the nodal basis functions, ϕ
(1)
k ∈ W1(δ), ϕ

(2)
k ∈ W2(γ),

and ψl ∈ M(δ), one can rewrite the equation (2.2) as

Bδu1δ − Bγu2γ = 0, (3.1)
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where u1δ and u2γ are vectors that represent u1|δ ∈ W1(δ) and u2|γ ∈ W2(γ), respectively,
and

Bδ = {(ψl, ϕ
(1)
k )L2(δ)}, l, k = 1, . . . , nδ,

Bγ = {(ψl, ϕ
(2)
k )L2(γ)}, l = 1, . . . , nδ; k = 1, . . . , nγ .

Here nδ = dim(M(δ)) = dim(W1(δ)), nγ = dim(W2(γ)). Note that Bδ is a square tridiagonal
matrix nδ ×nδ, symmetric and positive definite, and cond(Bδ) ∼ 1, while Bγ is a rectangular
matrix nδ × nγ . Hence for (u, λ) ∈ Xh(Ω) × M(δ)

b(u, λ) = (Bδu1δ, λ)Rnδ − (Bγu2γ , λ)Rnδ ,

where here and below a vector representation of λ is also denoted by λ.

Thus (2.5) can be presented in the form




A
(1)
II A

(1)
Iδ 0 0 0

A
(1)
δI A

(1)
δδ 0 0 Bδ

0 0 A
(2)
II A

(2)
Iγ 0

0 0 A
(2)
γI A

(2)
γγ −BT

γ

0 Bδ 0 −Bγ 0







u
(1)
I

u
(1)
δ

u
(2)
I

u
(2)
γ

λδ


 =




F
(1)
I

F
(1)
δ

F
(2)
I

F
(2)
γ

0


 (3.2)

Here
{

u
(1)
I , u

(1)
δ

}T

and
{

u
(2)
I , u

(2)
γ

}T

correspond to the nodal values of u∗
1 and u∗

2 at the

interior nodal points of Ωi, δ and γ, denoted by Ωih, δh and γh, respectively, and λδ is a
vector representation of λ∗;

A
(1)
II =

{
a1(ϕ

(1)
k , ϕ

(1)
l )

}
xk, xl ∈ Ω1h,

A
(1)
Iδ =

{
a1(ϕ

(1)
k , ϕ

(1)
l )

}
xk ∈ Ω1h and xl ∈ δh,

A
(1)
δδ =

{
a1(ϕ

(1)
k , ϕ

(1)
l )

}
xk, xl ∈ δh;

A
(2)
II , A

(2)
Iγ and A

(2)
γγ are defined in a similar way. Note that (A

(1)
Iδ ) = (A

(1)
δI )T and (A

(2)
Iγ ) =

(A
(2)
γI )T . The matrix of (3.2) is invertible.

4. Preconditioners for (2.5). In this section we define and analyze preconditioners
for problem (2.5). They will be defined for the Schur complement system with respect to
unknowns λδ, the Lagrange multipliers.

Let

A(1) =

(
A

(1)
II A

(1)
Iδ

A
(1)
δI A

(1)
δδ

)
, A(2) =

(
A

(2)
II A

(1)
Iγ

A
(2)
γI A

(2)
γγ

)
.

Their Schur complement matrices with respect to u
(1)
δ and u

(2)
γ , respectively, are of the form

S1 = A
(1)
δδ − A

(1)
δI

(
A

(1)
II

)−1

A
(1)
Iδ , S2 = A(2)

γγ − A
(2)
γI

(
A

(2)
II

)−1

A
(2)
Iγ . (4.1)

We consider system (3.2). We first eliminate the unknowns u
(1)
I and u

(2)
I . Using rows 1

and 3 of (3.2) and substituting the result in rows 2 and 4 of (3.2) we obtain


 S1 0 Bδ

0 S2 −BT
γ

Bδ −Bγ 0





 u

(1)
δ

u
(2)
γ

λδ


 =


 F

(1)
δ − (A

(1)
Iδ )T (A

(1)
II )−1F

(1)
I

F
(2)
γ − (A

(2)
Iγ )T (A

(2)
II )−1F

(2)
I

0


 , (4.2)

where S1 and S2 are given by (4.1).
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Then, we eliminate the unknowns u
(1)
δ and u

(2)
γ from this system. Using rows 1 and 2

of (4.2) and setting λ̂δ = Bδλδ, we obtain

SLλ̂δ = Fλ, (4.3)

where
SL = S−1

1 + B−1
δ BγS−1

2 BT
γ B−1

δ , (4.4)

and

Fλ = S−1
1 (F

(1)
δ − (A

(1)
Iδ )T (A

(1)
II )−1F

(1)
I ) − B−1

δ BγS−1
2 (F (2)

γ − (A
(2)
Iγ )T (A

(2)
II )−1F

(2)
I ).

The dual Schur complement matrix SL is symmetric and positive definite, nδ by nδ.
Our goal is to define preconditioners for (4.3) dual to the Neumann-Dirichlet one and

dual to the Neumann-Neumann one. The latter, for the matching triangulation, is called
FETI (the Finite Element Tearing and Interconnecting), see [5], [6], [7].

4.1. Neumann-Dirichlet (N-D) preconditioner. The Neumann-Dirichlet dual
preconditioner for SL is defined by S−1

1 .

Theorem 4.1 For any λ ∈ Rnδ and ρ1 ≤ ρ2 the following holds(
S−1

1 λ, λ
)

Rnδ
≤ (SLλ, λ)Rnδ ≤ C

(
S−1

1 λ, λ
)

Rnδ
(4.5)

where C is a positive constant independent of hi and ρi, i = 1, 2.

For the proof see [4].

4.2. FETI (N-N) preconditioner. We now discuss FETI method for solving (4.3).
This preconditioner is of the form

G =

(
ρ2

ρ1 + ρ2
S1 +

ρ1

ρ1 + ρ2
B−1

δ BγS2B
T
γ B−1

δ

)−1

. (4.6)

Theorem 4.2 Let
hγ

hδ
be uniformly bounded. For any λ ∈ Rnδ and ρ1 ≤ ρ2 holds

1

2
(Gλ, λ)Rnδ ≤ (SLλ, λ)Rnδ ≤ C(Gλ, λ)Rnδ (4.7)

where C is a positive constant independent of hi and ρi, i = 1, 2.

For the proof see [4].

5. Implementation aspects. In this section we discuss some implementation as-
pects of solving the Schur complement systems.

To solve the dual Schur complement equation (4.3) we use the preconditioned conjugate
gradient (PCG) iterations. Here, we only need to describe the implementation of 1. the
multiplication of a vector by the dual Schur complement matrix SL ∈ Rnδ×nδ (defined
by (4.4)), and 2. solving a system with a. the Neumann-Dirichlet dual preconditioner
S1 (defined by (4.1)), and with b. the Neumann-Neumann dual preconditioner G (defined
by (4.6) ).

Let us recall that the iterations are carried out on the non-mortar side δ of the interface Γ
with the number of grid equal to nδ. The mortar condition (2.3) ensures the proper transfer
of information across the interface.

1. Compute rk = SLλk for any given λk ∈ Rnδ . The multiplication by SL reduces to
solving two independent problems:
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i) Compute rk
1 = S−1

1 λk, i.e. solve

S1r
k
1 = λk. (5.1)

This reduces to solving the Neumann problem on Ω1, and more precisely, the problem with
non-homogeneous Neumann boundary conditions on δ and homogeneous Dirichlet ones on
∂Ω1\δ, see (4.1) (

A
(1)
II A

(1)
Iδ

A
(1)
δI A

(1)
δδ

) (
r
(1)
I

rk
1

)
=

(
0

λk

)
, (5.2)

ii) Compute rk
2 = B−1

δ BγS−1
2 BT

γ B−1
δ λk. This step is similar to (5.2). The only difference

is that before solving the Neumann problem on Ω2 we need first to solve Bδz
(1)
δ = λk, then

to compute BT
γ z

(1)
δ ; and after solving the Neumann problem on Ω2 we need to perform these

operations in reversed order.
Finally, rk = rk

1 + rk
2 .

2a. Compute rk
1 = S1λ

k for any given λk ∈ Rnδ .
We first compute, see (4.1),

S1λ
k = A

(1)
δδ λk − A

(1)
δI

(
A

(1)
II

)−1

A
(1)
Iδ λk.

This reduces to solving the Dirichlet problem in Ω1 as follows

A
(1)
II v

(1)
I = A

(1)
Iδ λk (5.3)

and to computing rk
1 = A

(1)
δδ λk − A

(1)
δI v

(1)
I .

2b. Compute rk = G−1λk for any given λk ∈ Rnδ .
This step consists of solving two Dirichlet problems, one in Ω1, the other in Ω2 (with

the pre- and post- multiplications by B−1
δ Bγ and its transpose, respectively, as in 1.ii) ),

see (4.6) .

6. Numerical experiments. The test example for all our experiments is the weak
formulation, see (2.1), of

−div(ρ(x)∇u) = f(x1, x2) in Ω, (6.1)

with the Dirichlet boundary conditions on ∂Ω, where Ω is a union of two disjoint rectangular
subregions Ωi, i = 1, 2, of a diameter one, and ρ(x) = ρi is a positive constant in each Ωi.

The problem (6.1) is discretized by the finite element method on non–matching triangu-
lation across the interface Γ. The grids used in our experiments are: 1. double grids, where
the grid on one side of the interface Γ is twice the one on the other side of Γ, with every other
position of the nodes coinciding, 2. staggered grids, where the grid size, h on both sides of
Γ is the same but the nodes are staggered, with the distance of h

2
between the nearest two

nodes on the opposite sides of Γ, and 3. mixed grids, where the grid on one side of Γ is coarse
with the grid size 2h, while the grid on the other side of Γ is fine with the grid size h and
staggered by h

2
. The mixed grids may better represent general non-matching grids.

We select a face of Ω2 which coincides with the interface Γ as the mortar side, while
the face of Ω1 is the non–mortar one. We choose the following combinations of the diffusion
coefficients: 1. ρ1 = ρ2, 2. 1 = ρ1 < ρ2 = 1000, and 3. 1 = ρ2 < ρ1 = 1000 (the case not
covered by the theory).

To create a discrete driving function f(x1, x2) we generate a random discrete solution
u(x1, x2) and multiply it by the matrix (3.2).

We solve the problems using the preconditioned conjugate gradient (PCG) iterations
(see Section 5 for the implementation aspects). The iterations are terminated when the



262 DRYJA, PROSKUROWSKI

Table 6.1: Performance of the dual Neumann-Dirichlet (dual N-D, Q = S1SL) and
dual Neumann-Neumann (dual N-N, or FETI, Q = G−1SL) preconditioners for the
finest meshes on different grids. The number of iterations and the estimate of the
condition number are displayed.

precon- continuous ρ2 < ρ1 ρ1 < ρ2

grids ditioner nδ nγ no. iter. κ(Q) no. iter. κ(Q) no. iter. κ(Q)
double dual N-D 255 127 5 2.00 10 ∗ 2 1.001

127 255 4 1.34 6 1.85 2 1.001
dual N-N 255 127 11 9.97 23 ∗ 7 5.00

127 255 6 1.73 7 2.26 5 1.28
staggered dual N-D 256 255 8 1.93 115 997. 3 1.30

255 256 9 3.08 114 1176. 2 1.002
dual N-N 256 255 13 4.27 144 1003. 9 2.85

255 256 12 5.07 146 2957. 8 1.91
mixed dual N-D 256 127 7 2.28 16 ∗ 3 1.31

127 256 10 10.98 13 91.0 3 1.01
dual N-N 256 127 14 19.23 35 ∗ 12 9.98

127 256 15 22.21 18 181.7 8 2.96

norm of the residual has decreased 106 times in the norm generated by the inverse of the
preconditioner matrix.

To estimate the condition number of the PCG iteration matrix we compute the tridiagonal
matrix representing the restriction of the preconditioned Schur complement matrix to the
space spanned by the conjugate gradient residuals.

The preconditioners considered behave as predicted by the theory: for ρ1 ≤ ρ2 the con-
vergence is independent of the grid size, see Table 6.2. Table 6.1 presents performance of the
preconditioners for the finest meshes on different grids. The N-D and dual N-D precondition-
ers converge somewhat faster than the N-N and dual N-N (FETI) preconditioners. All four
preconditioners are robust for cases with the discontinuity ratio of 1000 across the interface,
see Table 6.1.

The differences in performance on different grids are qualitatively insignificant, thus in
Table 6.2 we present only one set of experiments. Comparison of the convergence rate for the
preconditioned and non-preconditioned iterations (on a chosen set of problems, see Table 6.2)
shows that the first remain constant independently of the grid size, while the latter depend
roughly proportional to the square root of the size of the iteration matrix3. From this one can
infer that cond(S) = O( 1

h
) and cond(SL) = O( 1

h
) even for problems with jump discontinuity

at the interface.
Additionally, we performed experiments with the grid ratio across the interface varying

in the range
hγ

hδ
= 2k, k = −5(1)5, i.e. from 1

32
to 32

1
(and different diffusion coefficients ρ, as

before). Performance for the dual N-D preconditioner was virtually independent of the grid

ratio, as was for the FETI preconditioner and
hγ

hδ
< 1. For

hγ

hδ
> 1 the condition number of

the FETI iteration matrix grows almost quadratically with the grid ratio while the number
of iterations increases only very slowly (and depends also on the grid size).

7. Conclusions. The preconditioners considered behave as predicted by the theory:
for ρ1 ≤ ρ2 the convergence is independent of the grid size and the jump of the discontinuity.
All preconditioners considered are very robust for cases with the discontinuity ratio of 1000

3the number of iterations for the non-preconditioned problems in the range nδ = 16 to 256 is
proportional to np

δ , where p = 0.5 ± 0.03 as computed using polyfit in the loglog scale.
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Table 6.2: Examples of the PCG iterations convergence for (2.5) with and without
preconditioners (for ρ1 < ρ2) as a function of grid sizes on the mixed grids. The
number of iterations and estimate of the condition number are displayed.

no precond. dual N-D precond. dual N-N precond.
nδ nγ no. iter. κ(Q) no. iter. κ(Q) no. iter. κ(Q)

16 7 12 14.35 4 1.30 9 9.88
32 15 18 27.06 4 1.30 12 9.96
64 31 24 52.39 4 1.31 12 9.97
128 63 33 102.9 3 1.31 12 9.98
256 127 44 203.8 3 1.31 12 9.98

7 16 7 6.29 3 1.01 7 2.81
15 32 11 12.95 3 1.01 8 2.96
31 64 17 25.68 3 1.01 8 2.96
63 128 23 51.29 3 1.01 8 2.96
127 256 33 102.7 3 1.01 8 2.96

across the interface. One should be cautious not to generalize conclusions drawn on such
limited two subdomain case. Nevertheless, the results are illuminating, and we intend to
extend the experimental evidence to more complex subdivisions.
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