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27. A Non-Overlapping Optimized Schwarz Method which
Converges with Arbitrarily Weak Dependence on h

M.J. Gander1, G.H. Golub2

1. Introduction. Optimized Schwarz methods have been introduced in [11] to correct
the uneven convergence properties of the classical Schwarz method. In the classical Schwarz
method high frequency components converge very fast, whereas low frequency components are
only converging very slowly and hence slow down the performance of the overall method. This
can be corrected by replacing the Dirichlet transmission conditions in the classical Schwarz
method by Robin or higher order transmission conditions which approximate the classical
absorbing boundary conditions used to truncate infinite domains for numerical computations
on bounded domains. The new methods are called optimized Schwarz methods because the
new transmission conditions are obtained by optimizing their coefficients for the performance
of the method.

Using transmission conditions different from the Dirichlet ones is however not new. P.-L.
Lions proposed in [14] to use Robin transmission conditions to obtain a converging non-
overlapping variant of the Schwarz method, a result not possible with Dirichlet transmission
conditions. But it was in the context of a particular problem, namely the Helmholtz equa-
tion, where the importance of radiation conditions was first realized in the PhD thesis of
Deprés [5]. Several publications for the Helmholtz equation followed; in the context of con-
trol [1], for an overlapping variant in [2], and a first approach to optimize the transmission
conditions without overlap in [4]. An interesting variant of a Schwarz method using perfectly
matched layers can be found in [17]. Fully optimized transmission conditions were published
in [9, 12] for the non-overlapping variant of the Schwarz method and a first approach for
the overlapping case can be found in [11]. Very soon it was realized that approximations to
absorbing boundary conditions were very effective for other types of equations as well. For
the convection-diffusion equation, the first paper proposing optimized transmission condi-
tions for a non-overlapping variant of the Schwarz method is [3]. Around the same time, a
discrete version of such a Schwarz method was developed at the algebraic level in [16, 15],
but it proved to be difficult to optimize the free parameters. Second order optimized trans-
mission conditions for convection-diffusion were explored in [13] for the non-overlapping case
and for symmetric positive definite problems in [7] with the first asymptotic results of the
performance of those methods. Such transmission conditions are also crucial in the case of
evolution problems, as shown in [10], and for systems of equations, for the Euler equations,
see [6]. A complete survey for symmetric positive definite problems with all the asymptotic
performances for overlapping and non-overlapping variants, is in preparation [8].

We show in this paper that the transmission conditions in the optimized Schwarz methods
can be chosen such that the convergence rate of the method has an arbitrarily weak asymp-
totic dependence on the mesh parameter h, even if no overlap is used. This result is obtained
by choosing a sequence of transmission conditions which is applied cyclicly in the optimized
Schwarz iteration. Closed form expressions for the transmission conditions are derived which
give an asymptotic convergence rate ρ = 1 − O(h1/m) for m an arbitrary power of 2.

2. The Model Problem. We consider for this paper the self adjoint coercive model
problem

L(u) := (η − ∆)u = f, in Ω = R
2 (2.1)

and we assume that the solution u(x, y) stays bounded at infinity. We can pose an equivalent
problem on R

2 decomposed into two overlapping subdomains Ω1 = (−∞, L) × R, Ω2 =
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Figure 2.1: Decomposition for the model problem.

(0,∞) × R, L > 0, with boundaries ΓL at x = L and Γ0 at x = 0 as shown in Figure 2.1,
namely

(η − ∆)v = f in Ω1, (η − ∆)w = f in Ω2,
v = w on ΓL, w = v on Γ0.

(2.2)

Then the restriction of the solution u of the original problem to Ω1 coincides with the solution
v of the partitioned problem and the restriction of the solution u to Ω2 coincides with w of
the partitioned problem. If the overlap however becomes zero, L = 0, then the subdomain
problems do not necessarily coincide with the solution u of the original problem any more,
one has to introduce the additional condition that the derivatives need to match,

∂xw = ∂xv on Γ0 = ΓL.

To make the coupling more robust with respect to small overlap, we introduce the subdomain
coupling

(∂x + Sv)v = (∂x + Sv)w on ΓL, (∂x + Sw)w = (∂x + Sw)v on Γ0, (2.3)

where Sv and Sw are for the moment undetermined linear operators acting in the y direction.
Note that for example choosing Sv = −Sw = p for some constant p > 0 leads to subdomain
solutions v and w which coincide with the solution u of the original problem even if the overlap
is zero, L = 0, since then the conditions (∂x+p)v = (∂x+p)w and (∂x−p)w = (∂x−p)v on Γ0

imply both continuity of the subdomain solution and its derivative at x = 0. The subdomain
problems are then coupled by a Robin transmission condition, an idea introduced in [14].
The goal of optimized Schwarz methods is to determine good choices for the operators Sv

and Sw to obtain fast domain decomposition methods at a computational cost comparable
to the classical Schwarz method.

3. An Optimized Schwarz Method. We introduce a Schwarz relaxation to the
system coupled with the new conditions,

(η − ∆)vn = f, in Ω1,
(η − ∆)wn = f, in Ω2,

(∂x + Sv)vn = (∂x + Sv)wn−1 on ΓL,
(∂x + Sw)wn = (∂x + Sw)vn−1 on Γ0.

(3.1)

This iteration can be analyzed using Fourier analysis, see for example [11]. The convergence
rate of this algorithm is

ρ(k) =

√
η + k2 − σv(k)√
η + k2 + σv(k)

·
√

η + k2 + σw(k)√
η + k2 − σw(k)

e−2
√

η+k2L (3.2)
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where k is the Fourier variable in the y direction and σv and σw denote the symbols of
Sv and Sw. The optimal transmission operators Sv and Sw have thus the symbols σv =√

η + k2 and σw = −
√

η + k2 because then the convergence rate vanishes and hence the
algorithm converges in 2 steps, independent of the size of the overlap L. Unfortunately these
operators are non-local, they require the evaluation of a convolution and hence polynomial
approximations have been introduced for various types of partial differential equations, see
[3, 13, 4, 7, 10, 11, 9, 12]. The simplest approximation is to use a constant, which leads to
the Robin transmission conditions Sv = −Sw = p for some constant p > 0. The sign of p
is needed for well-posedness, but it also guarantees convergence of the algorithm, since then
the convergence rate becomes

ρ(k, p) =

(√
η + k2 − p√
η + k2 + p

e−
√

η+k2L

)2

which is less than one for all k < ∞, even if the overlap is zero, i.e. L = 0. To find the best
Robin parameter, one minimizes the convergence rate over all the frequencies relevant to a
given discretization, kmin < |k| < kmax, which leads to the min-max problem

min
p≥0

(
max

kmin<k<kmax
ρ(k, p)

)
.

The solution of this problem, with or without overlap, can be found in [8] and the convergence
rate depends mildly on the mesh parameter h; for L = 0 one finds ρ = 1 − O(

√
h) and for

L = O(h) the result is ρ = 1−O(h1/3). In the following section we will make the convergence
rate as weakly dependent on h as desired for the case L = 0.

4. Arbitrarily Weak Dependence on h. The idea is to use different parame-
ters pj for different steps of the iteration. Suppose we want to use m different values pj ,
j = 1, . . . , m in the Robin transmission condition. We then cycle through these different
parameters in the optimized Schwarz algorithm,

(η − ∆)vn = f, in Ω1,
(η − ∆)wn = f, in Ω2,

(∂x + pn mod m+1)vn = (∂x + pn mod m+1)wn−1 on ΓL,

(∂x − pn mod m+1)wn = (∂x − pn mod m+1)vn−1 on Γ0.

(4.1)

Performing again a Fourier analysis in y with the parameter k of this algorithm, we obtain
the convergence rate depending on p = (p1, p2, . . . , pm)

ρ(m,p, η, k) = e−2
√

η+k2L

(
m∏

j=1

(√
η + k2 − pj√
η + k2 + pj

)2) 1
m

.

To optimize the performance of this new algorithm, the parameters pj , j = 1, . . . , m in the
vector p have to be the solution of the min-max problem

min
p≥0

(
max

kmin<k<kmax
ρ(m,p, η, k)

)
.

This optimization problem has to be solved numerically in general, but for L = 0 and m = 2l

it has an elegant solution in closed form for the ADI method in [19].

Theorem 4.1 (Wachspress (1962)) If m = 2l then the optimal choice for the parameters
pj, j = 1, 2, . . . , m is given by

pj = α0,j , j = 1, 2, . . . , m (4.2)
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Figure 4.1: On the left dependence of |ρopt| on the frequency k when 1, 2, 4, 8 and
16 optimization parameters are used on a fixed range of frequencies, kmax = 100π,
and on the right dependence of 1 − ρmax on h as h goes to zero for 1, 2, 4, 8 and 16
optimization parameters.

where the α0,j are recursively defined using the forward recursion

x0 =
√

η + kmin , xi+1 =
√

xiyi

y0 =
√

η + kmax , yi+1 = xi+yi
2

i = 0, 1, . . . , l (4.3)

and the backward recursion

αl,1 =
√

xlyl,
αi,2j−1 = αi+1,j −

√
α2

i+1,j − xiyi

αi,2j = αi+1,j +
√

α2
i+1,j − xiyi

(4.4)

where i = l − 1, l − 2, . . . , 0 and j = 1, 2, . . . 2l−i−1 for each i. The convergence rate obtained
with these parameters is given by

max
kmin≤k≤kmax

|ρ(k, m)| =

(√
yl −

√
xl√

yl +
√

xl

) 1
m

. (4.5)

Proof. The proof uses the equioscillation property of the optimum similar to the case of the
Chebyshev polynomials and is due to Wachspress in [19]. An elegant version of the proof can
be found in Varga [18].
In Figure 4.1 we show how the optimal choice of an increasing number of parameters pj

affects the convergence rate of the optimized Schwarz method. From Figure 4.1 on the right
we see that the more optimization parameters we use, the weaker the dependence on h of the
convergence rate becomes. This indicates that we can define a sequence of non-overlapping
optimized Schwarz methods with an arbitrarily weak dependence of the convergence rate on
the mesh parameter h using m different constants in the Robin transmission conditions. To
prove this result, we first need the following

Lemma 4.1 For kmax = π/h the recursively defined xi and yi in equation (4.3) have for h
small the asymptotic expansion

xi = 2
2−i− 1

2i−1 (η + k2
min)

1
2i+1

(
π
h

)1− 1
2i + O(( 1

h
)
1− 5

2i )

yi = 1
2i

π
h

+ O(( 1
h
)
1− 1

2i−1 )
i = 0, 1, . . . (4.6)
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Proof. The proof is done by induction. For i = 0, we have

x0 =
√

η + k2
min, y0 =

√
η +

(π

h

)2

=
π

h
+ O(h).

Now we assume that (4.6) holds for i and compute for i + 1, using the recursive definition
(4.3) first for xi+1

xi+1 =
√

xiyi

=

√(
2
2−i− 1

2i−1 (η+k2
min)

1
2i+1

(
π
h

)1− 1
2i+O(( 1

h
)
1− 5

2i )
)(

1
2i

π
h

+O(( 1
h
)
1− 1

2i−1 )
)

=

√
2
2−2i− 1

2i−1 (η + k2
min)

1
2i+1

(
π
h

)2− 1
2i + O(( 1

h
)
2− 5

2i )

= 2
2−(i+1)− 1

2i (η + k2
min)

1
2i+2

(
π
h

)1− 1
2i+1

√
1 + O(h

1
2i−2 )

= 2
2−(i+1)− 1

2i (η + k2
min)

1
2i+2

(
π
h

)1− 1
2i+1 + O(( 1

h
)
1− 5

2i+1 )

and then for yi+1

yi+1 = xi+yi
2

=
2
2−i− 1

2i−1 (η+k2
min)

1
2i+1 ( π

h )
1− 1

2i +O(( 1
h

)
1− 5

2i )+ 1
2i

π
h

+O(( 1
h

)
1− 1

2i−1 )

2

= 1
2i+1

π
h

+ O(( 1
h
)
1− 1

2i )

which completes the induction.
The asymptotic convergence rates for small mesh parameter h are given in the following

Theorem 4.2 The non-overlapping optimized Schwarz method (4.1) with m = 2l optimally
chosen parameters pj, j = 1, 2, . . . , m in the Robin transmission conditions according to (4.2)
has for small mesh parameter h the asymptotic convergence rate

ρopt = 1 − 2
21− 1

m (η + k2
min)

1
4m

mπ
1

2m

h
1

2m + O(h
1
m ). (4.7)

Proof. We first need the asymptotic expansions of the square roots of xl and yl given in
Lemma 4.1,

√
xl = 2

1− l
2− 1

2l (η + k2
min)

1
2l+2

(
π
h

) 1
2− 1

2l+1 + O(( 1
h
)

1
2− 9

2l+1 ),
√

yl =
(

1
2

) l
2

√
π
h

+ O(( 1
h
)

1
2− 1

2l−1 ).

Inserting these expansions into the expression for the optimized convergence rate (4.5) of
Theorem 4.1 we obtain

ρopt =
(√

yl−√
xl√

yl+
√

xl

) 1
m

=

(
1−2

1− 1
2l (η+k2

min)
1

2l+2 ( h
π )

1
2l+1 +O(h

1
2l−1 )

1+2
1− 1

2l (η+k2
min)

1
2l+2 ( h

π )
1

2l+1 +O(h
1

2l−1 )

) 1
m

=

(
1−2

2
1− 1

2l (η+k2
min)

1
2l+2

π
1

2l+1
h

1
2l+1 +O(h

1
2l )

) 1
m

=1−2
2
1− 1

2l (η+k2
min)

1
2l+2

mπ
1

2l+1
h

1
2l+1 +O(h

1
2l )

and the result follows by noting that m = 2l.
Hence increasing m we can achieve an as weak dependence of the convergence rate on the
mesh parameter h as we like. The numerical experiments in the next section show that this
result also holds for the discretized algorithm.
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5. Numerical Experiments. We perform all our computations on a bounded do-
main for the model problem

L(u) := (η − ∆)u = f, in Ω = [0, 1]2

with homogeneous Dirichlet boundary conditions. We decompose the domain into two non-
overlapping subdomains Ω1 = [0, 1

2
] × [0, 1] and Ω2 = [ 1

2
, 1] × [0, 1] and apply the optimized

non-overlapping Schwarz method for various values of the parameter m. We simulate directly
the error equations, i.e. f = 0, and we show the results for η = 1. To solve the subdomain
problems, we use the standard five point finite difference discretization with uniform mesh
spacing h in both the x and y directions. We start the iteration with a random initial guess
so that it contains all the frequencies on the given mesh and we iterate until the relative
residual is smaller than 1e − 6. Table 5.1 shows the number of iterations required as one
refines the mesh parameter h. There are two important things to notice: first one can

Schwarz as a solver Schwarz as a preconditioner
h m = 1 m = 2 m = 4 m = 1 m = 2 m = 4

1/50 24 6 3 10 5 3
1/100 34 8 3 12 6 3
1/200 48 10 4 14 6 3
1/400 68 12 4 17 7 4
1/800 95 14 4 20 8 4

Table 5.1: Dependence on h and m of the number of iterations when the optimized
Schwarz method is used as a solver or as a preconditioner for a Krylov method.

see that the dependence of the number of iterations gets weaker as m becomes larger, as
predicted by the analysis. Second for small m, using Krylov acceleration leads to significant
improvement in the performance, whereas for bigger m, the improvement is almost negligible,
Schwarz by itself is already such a good solver that Krylov acceleration is not needed. This
is a property also observed for multi-grid methods applied to this problem. To see the
dependence of the convergence rate on h more clearly, we plotted in Figure 5.1 the number
of iterations together with the asymptotic rates expected from our analysis. One can see
that the asymptotic analysis predicts very well the numerically observed results. One even
gains almost the additional square-root from the Krylov method when Schwarz is used as a
preconditioner.

Finally we emphasize that the number of iterations given in Table 5.1 is the number of
times we cycled through all parameter values. In the current implementation therefore the
cost of one iteration with m = 4 is four times the cost of one iteration with m = 1. But
note that not each iteration of the Schwarz method needs the same resolution now, since it
only needs to be effective in the frequency range around the corresponding pj . The values
of pj for m = 4 with h = 1/400 are for example p1 = 4.78, p2 = 25.85, p3 = 160.26 and
p4 = 866.71. Hence the solve with p1 in the transmission condition can be done on a very
coarse grid, the one with p2 on quite a coarse grid, the one with p3 on an intermediate grid
and only the solve with p4 needs to be on a fine grid. In addition we do not need to solve
exactly; it is only required to reduce the error in the corresponding frequency range, using
a relaxation iteration, which leads to an algorithm with natural inner and outer iterations.
Doing this, the cost for arbitrary m will be only a constant times the cost for m = 1 and
hence the number of iterations we gave become the relevant ones to compare. Furthermore
in that case, the factor 1/m in the asymptotic convergence rate (4.7) disappears because
now the relevant quantities to compare are ρm

opt and hence one can obtain a convergence rate
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Figure 5.1: Asymptotic behavior of the optimized Schwarz method, on the left used
as an iterative solver and on the right as a preconditioner.

independent of h by choosing the number m like the logarithm of 1/h as h is refined. Such an
algorithm then has the key properties of multigrid, but is naturally parallel like the Schwarz
algorithm.
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