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42. Error Estimation, Multilevel Method and Robust
Extrapolation in the Numerical Solution of PDEs

M. Garbey 1, W.Shyy 2

1. Introduction and Motivation. Richardson extrapolation (RE) is a simple, el-
egant and general mathematical idea that works for numerical quadrature with the Romberg
method or ODE integrations that have smooth enough solution with the Bulirsch-Stoer
method. Its use in Computational Fluid Dynamics (CFD) raises the following questions
[3] [4] [5]:

- Does all mathematical hypotheses needed by RE are fulfilled by the numerical approx-
imation ?

- Are the (3D) meshes fine enough to satisfy accurately the a priori convergence estimates
that are only asymptotic relations in nature?

- What to do, if the order of convergence of a CFD code is space dependent and eventually
solution dependent?

- Can we afford three grid levels with a coarse grid solution that has a satisfactory level
of accuracy, to be used in RE?

Our objective is to use any PDE or CFD solvers, independent of their inner working algo-
rithm and procedures, provided that they can offer the information including the residual of
the numerical approximation, stability estimates, and varying grid resolutions and numerical
solutions, to accomplish the following goals:

- Automatic estimate of the order of convergence in space,

- Using three different grid solutions (not necessarily with uniformly increasing mesh
resolution), obtain a solution with improved accuracy

The extrapolation procedure is simple to implement and can be incorporated into any
computer code without requiring detailed knowledge of the source code. Its arithmetic cost
should be negligible compare to a direct computation of the fine grid solution. Finally the
procedure should overall enhance the accuracy and trust of a CFD application in the context
of code verification.

In this paper, we pursue the research presented in [2] as follows. We first summarize
basic properties of Richardson extrapolation method and evaluate its application to CFD.
Then we provide elementary approximation theory for least square extrapolation applied to
grid functions. Further, we generalise this technique to PDEs, and provide some numerical
results for a turning point problem. For a detailed version of this work with results on steady
incompressible Navier Stokes flows, we refer to [7].

2. Basic Properties of Richardson Extrapolation and Computational
Implications.

2.1. Asymptotic expansion for continuous function in a normed vector
space . Let E be a normed linear space, || || its norm, v ∈ E, p > 0, and h ∈ (0, h0).
ui ∈ E, i = 1..3 have the following asymptotic expansion,

ui = v + C(
h

2i−1
)p + δ,

with C positive constant independent of h, and ||δ|| = o(hp).
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For known p, RE formula,

vi
r =

2p ui+1 − ui

2p − 1
, i = 1, 2

provides improved convergence:
||v − vi

r|| = o(hp).

2.2. Numerical approximation for discrete functions defined on a mesh.
Let Ei be a family of normed linear space, associated with a mesh Mh/2i−1 . We suppose a

set of equations,

U i = v + Ci(
h

2i−1
)p + δi,

with Ci = (1+εi)C, and εi = o(1). δi is a model for the h independent numerical perturbation
induced by consistency errors and/or arithmetic error. The Richardson extrapolate

V 2
r =

2p U3 − U2

2p − 1
,

has then for error in E1,

v − V 2
r =

1

2p − 1
((δ2 − 2pδ3) + C (ε2 − ε3)(

h

2
)p).

The numerical perturbation is amplified by a factor 2p+1
2p−1

. For applications in (complex) CFD
calculation, the asymptotic order of convergence is not well established and one uses:

p ∼ log2

||u1 − u2||
||u2 − u3|| (2.1)

If one considers {ui} as a set of real numbers instead of a set of functions in (E, || ||),
combining three ordered approximations gives the so-called ∆2 Aitken formula,

v2
r ∼ u1u3 − (u2)2

u1 − 2u2 + u3
.

But this formula has generally no rigorous basis in the corresponding space of approximation.
From the numerical point of view,

p = log2 ||(1 − γ(p))
U1 − U2 − (δ1 − δ2)

U2 − U3 − (δ2 − δ3)
||,

where γ(p) ∼ κ(2pε1 − (2p + 1)ε2 + ε3), and κ = (2p − 1)−1.
In practice,

p ≈ log2 ||
U1 − U2

U2 − U3
||, in (E1, || ||)

The second order error term ε2 on u2 (respt ε1 on u1) has therefore 2p + 1 (respt 2p)
more impact on p calculation error than the second order error term ε3 on u3. Further, the
“pointwise” extrapolation

v2
r =

U1U3 − (U2)2

U1 − 2U2 + U3
, ∀x ∈ M1

that is routinely used in CFD is very sensitive to numerical perturbation.
The convergence order approximation and RE presented so far is a common tool for

solution quality assessement in CFD. In our experience [5] [7], we have observed, for example,
that for two different codes for the steady state, 2-D laminar incompressible lid-driven square
cavity flow with the Reynolds number (Re) in the range of 20 to 1000 and squared regular
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meshes using either ω − ψ formulation and FD approximation or v − p formulation and FV
approximation with centered cells, RE can improve the order of accuracy, but not consistently.
If the quality of the grid solution is poor then RE may provide worse approximations.

Further, the theoretical bases of classical RE formula presented here, are not satisfied
when the convergence order of the solution process is space dependent and solution dependent,
which is rather common in CFD. We propose in this paper a method that seems to be more
robust than RE, and that further can be used as a framework for aposteri estimates.

3. Least Square Extrapolation for Numerical Functions. Let E = L2(0, 1),
u ∈ E. Let v1

h and v2
h be two approximations of u in E:

v1
h, v2

h → u in E as h → 0.

A consistent linear extrapolation formula formally written

αv1
h + (1 − α)v2

h = u.

In p order RE the α function is a constant. We adopt here a more general point of view
than RE. We formulate the following problem as a Least Square Extrapolation (LSE):

Pα: Find α ∈ Λ(0, 1) ⊂ L∞ such that αv1
h + (1 − α)v2

h − u is minimum in L2(0, 1).

If 1/(v1
h − v2

h) is in L∞(0, 1), we get an explicit solution for this problem. If v1
h − v2

h

vanishes, we can approximate then vi
h by a wi

h function in L2(0, 1) such that

wi
h − ui

h = O(hq), q >> p, and 1/(w1
h − w2

h) ∈ L∞(0, 1).

where p is the expected order of convergence of vh as h → 0. We get then

α =
u − w2

h

w1
h − w2

h

, and α ∈ L2(0, 1).

We have easily
Lemma 1: If αM − α = 0(M−1) as M → ∞ and v1

h − v2
h = 0(hp) then

u = αv1
h + (1 − α)v2

h + O(hp) × O(M−1).

In the present work, we set Λ(0, 1) to be the space of α functions

α = α0 + α1 cos(xπ) + Σj=1..Mαj sin((j − 1)xπ).

with αj , j = 0..M reals. We can then show using [1]
Lemma 2: Let α be in L2(0, 1). Let xj = j

N
be a regular discretization of (0, 1). Let M be

an integer such that M << N. There is a unique trigonometric polynomial

αM = α0 + α1 cos(xπ) + Σj=1..Mαj sin((j − 1)xπ)

that minimizes the discrete L2 norm

Σj=0..N (α(xj) − αM (xj))
2.

αM converges to α in L2(0, 1) as M → ∞ while the ratio M
N

stays constant and less than
one. If α ∈ C1(0, 1), the convergence αM → v is pointwise and of order M−1 in (0,1) and
M−2 away from the end points.

We have now a solution to the approximation problem Pα or its modified analog if we
have possibly to modify locally the vi

h function at neighborhood of points where v1
h − v2

h

cancels.
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From Lemma 1 and Lemma 2, we have

Theorem: if u, vi
h,∈ C1(0, 1), i = 1, 2 , if 1

v1
h
−v2

h
∈ L∞(0, 1) and v2

h − v1
h = 0(hp) then

αv1
h + (1 − α)v2

h is an 0(M−1) × 0(hp) approximation of u.

Special care must be done if v1
h − v2

h << u − v2
h, in some set of non zero measure ΩS .

These outliers points should not affect globally the least square extrapolation as long
as we impose that α be a bounded function independently of h. Further, a more robust
approximation procedure consists to use three levels of grid solution as follows:

Pα,β: Find α, β ∈ Λ(0, 1) such that αv1
h +βv2

h +(1−α−β)v3
h −u is minimum in L2(0, 1).

Existence of the solution (α, β) is established if one can partition (0, 1) into two over-
lapping subset Ω1

⋃
Ω2 = (0, 1) of nonzero measure intersection, such that 1/(v1

h − v3
h) is in

L∞(Ω1) and 1/(v2
h − v3

h) is in L∞(Ω2). But uniqueness is no longer guaranteed. We can use
a Singular Value Decomposition method (SVD) then, to account for the fact that the linear
system can be both over determined and under determined. But SVD requires many more
arithmetic operations than a direct solve of the normal set of equations when M << N. In
practice, if v1

h − v3
h << u − v3

h and v2
h − v3

h << u − v3
h in some set of non zero measure

then there is no local convergence of our sequence of functions. We want to make sure that
these outlier points do not affect the quality of the least square solution at points where
convergence is achieved.

In practice, we work with grid functions solution of discretized PDE problem. In contrast
to classical RE, where all grid solutions are projected onto a common coarse grid, our solution
procedure consists of interpolating all data on a very fine grid denoted M0 via a high order
interpolant Ũi = Ii[Ui]. We want then to get our best fitted extrapolation formula on the fine
grid itself as follows.

Pα: Find α ∈ Λ(0, 1) ⊂ L∞ such that αŨ1 + (1 − α)Ũ2 − U is minimum in L2(M
0).

The three-level extrapolation problem is analogous.
We have checked the numerical accuracy and sensitivity to perturbation of LSE on nu-

merical function examples that possess different type of asymptotic behavior and different
degree of smoothness. In all cases our least square extrapolation method seems to give im-
proved accuracy and robustness. In particular our least square extrapolation is definitively
an improvement on fixed order RE when the solution has a hybrid order of convergence that
is first order in some subset of the domain and second order elsewhere.

The extension to multidimensional problem with rectangular grid that are tensorial prod-
ucts of one-dimensional regular grids is straightforward. The generalization to body fitted
meshes generated by PDEs [6], is easy since the Fourier expansion technique is insensitive to
change of variables as long as they are smooth transformations. However generalisation to
FE approximation with unstructured grid will require obviously a different space of approx-
imation for the weight functions α and β.

4. Least Square Extrapolation for PDEs and Computational Algorithm.
The idea is now to use the PDE in the RE process to find an improved solution on the fine

grid.
Let us denote formally the linear PDE

L[u] = f, with u ∈ (Ea, || ||a) and f ∈ (Eb, || ||b),

and its numerical approximation,

Lh[U ] = fh, with U ∈ (Eh
a , || ||a) and fh ∈ (Eh

b , || ||b),
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parameterized by a mesh step h.
We suppose that we have a priori a stability estimate for these norms

||U ||a ≤ C hs (||fh||b), (4.1)

with s real not necessarily positive. We will look for consistant extrapolation formula that
minimize the residual.

Let us restrict for simplicity to a two-point boundary value problems in (0, 1). Our least
square extrapolation is now defined as follows:

Pα: Find α ∈ Λ(0, 1) ⊂ L∞ such that αLh[Ũ1] + (1 − α)Lh[Ũ2] − fh is minimum in
L2(M

0).

The three levels version is analogue. To focus on the practical use of this method, we
should make the following observations. It is essential that the interpolation operator gives a
smooth interpolant depending on the order of the differential operator. For conservation laws,
one may require that the interpolation operator satisfies the same conservation properties. For
chemical problems, one may require that the interpolant preserves the positivity of species.
For elliptic problems, it is convenient to postprocess the interpolated functions Ũ i, by few
steps of the relaxation scheme

V k+1 − V k

δt
= Lh[V k] − fh, V 0 = Ũ i,

with appropriate artificial time step δt. This will readily smooth out the interpolant.
Let Gi, i = 1..3, be three embedded grids that does not necessary match and their

companion grid solutions Ui. Let M0 be a regular grid that is finer than the grids Gi. The
solution process of Pα and/or P(α,β) can be decomposed into three consecutive steps.

• First, interpolation from Gi, i = 1..3 to M0. We choose interpolation tools that have
a number of arithmetic operations proportional to Card(M0), i.e. the number of grid
points of M0.

• Second, the evaluation of the residual on the fine grid M0, that has the same asymptotic
order of arithmetic operations.

• Third the solution of the linear least squares problem with M unknowns.

If we keep M of the same order as Card(M0)1/3, and use a standard direct solver for
symmetric system to solve the normal set of equations, the arithmetic complexity of the
overall procedure is still of order Card(M0), i.e., it is linear.

The application to nonlinear PDE problem is done via a Newton-like loop [7]. The
algorithm is coded in an independent program from the main code application.

We choose a Fourier expansion for each weight function α and β, that has M terms with
M ≈ Card(M0)1/3, to keep a linear cost for the complete procedure when the direct solution
of the normal set of equations is giving a good result. An SVD, if needed, will lead however
to more intense computation.

Let us now illustrate the numerical efficiency and robustness of our method with a 2D
Turning Point Problem:

ε ∆u + a(x, y)
∂u

∂x
= 0, x ∈ (0, π)2,

with Dirichlet boundary conditions of opposite signs at x = 0 and x = π, and homogeneous
Neumann at y = 0/π. We take

a(x, y) = x − (
π

2
+ 0.3(y − π

2
)).
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We have then a transition layer (TL) of ε order thickness centered on the curve a(x, y) = 0,
which is not parallel to the x or y axis.

The application code uses second order central FD of the diffusion term and first order
upwinding for the convection term with either direct sparse LU linear or GMRES solver.
There are no spurious oscillations because of the discrete maximum principle.

Figures 4.1 and 5.2 report on the accuracy of the two-level and three-level least squares
extrapolation versus RE assuming either first or second order convergence. The errors are
given in L∞ norm. The curve with hexagram signs gives an accurate estimation of the
discrete solution error between the exact grid solution on the fine grid M0 of size N × N ,
versus the exact continuous solution of the turning point problem. Let GI be square grids of
size Ni × Ni.

The number of Fourier modes in the approximation of the weight α, β is 4 in each space
direction. We observe that for both cases ε = 0.1 and ε = 0.01 in Figure 4.1 and 5.2, R1
gives better results than R2. This is an indication of the fact that the transition layer is not
under-resolved. We observe in Figure 4.1 with ε = 0.1, and modest base grid sizes, namely,
N1 = 17, N2 = 23, N3 = 29, meaning that we have on average only one or two grid points
in the transition layer for the G3 solution, our least squares is as accurate as the fine grid
solution. This is still true when the Richardson extrapolation fails for N ≥ 70. The least
squares extrapolation also gives satisfactory results in Figure 5.2, where ε = 0.01, N1 =
39, N2 = 49, N3 = 59, but R1 predicts the grid solution on M0 with an error less than or
equal to the error with the exact continuous solution for N ≤ 110. In all cases LS2 is more
accurate than LS1, especially for large N values. In these experiments, LS1 and LS2 predict
the fine grid solution with an error less than the fine grid approximation of the exact solution
for N as large as 150: we gain therefore more than one order of convergence. Similar results
on the lid-driven cavity flow confirm the capabilities of our method [7].

5. Conclusions and Discussions. We have studied a new extrapolation method
for PDEs that is more robust and accurate than RE applied to numerical solutions with
inexact or varying convergence order. Our method provides a better tool to establish a
posteriori estimate than Richardson extrapolation when the convergence order of a CFD
code is space dependent. However there are still many open questions. To cite some but a
few, we still need to establish a criterion to relax the constraint on the accuracy of the coarse
grid data for efficient least squares extrapolation. Further, from the application point of view,
it might be interesting to test the robustness of our least squares extrapolation method to
elliptic problems with general geometry domains via fictitious domain technique.
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Figure 5.1: x axis is for the number of grid points N in each space direction for the
fine grid M0. y axis gives in log10 scale the errors in maximum norm. Labels of curves
are as follows: ’o’ for G1 solution, ’x’ for G2 solution, ’*’ for G3 solution, � for R2, ’v’
for R1, square for LS1, � for LS2.
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Figure 5.2: Same labels as in Figure 5.1.


