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28. An optimized Schwarz method in the Jacobi-Davidson
method for eigenvalue problems

M. Genseberger1, G. L. G. Sleijpen2, and H. A. van der Vorst3

1. Introduction. The Jacobi-Davidson method [3] is an iterative method suitable for
the computation of solutions to large scale (generalized) eigenvalue problems. Most of the
computational work of the Jacobi-Davidson method arises from performing (approximate)
solves for the so-called correction equation. In order to relieve this amount of work and/or
the local memory requirements we propose a strategy based on domain decomposition.

The domain decomposition method is based on previous work for ordinary systems of
(definite) linear equations (§3). It requires specific knowledge of the underlying PDE’s. For
eigenvalue problems the situation is more complex as the correction equation is (highly)
indefinite. In this paper we describe and analyze the situation for the correction equation
(§4). Results of the analysis are of practical interest for more general cases like PDE’s with
variable coefficients, many subdomains in two directions and complex geometries (§5). The
proposed domain decomposition approach enables a massively parallel treatment of large
scale eigenvalue problems ([1, §4]).

2. The Jacobi-Davidson method. The Jacobi-Davidson method [3] projects the
original eigenvalue problem on a suitable search subspace. From the projected eigenvalue
problem approximate solutions to the original problem are computed. The search subspace
is expanded iteratively with the most important direction in the residual not already present.
Compared to other methods the Jacobi-Davidson method offers many advantages and flexi-
bility such as the exploitation of a good preconditioner.

For a standard eigenvalue problem Ax = λx each iteration step Jacobi-Davidson

• extracts an approximate solution (θ,u) ≈ (λ,x) from a search subspace

construct H ≡ V∗AV,

solve H s = θ s, and compute u = V s

where the columns of V form an orthonormal basis for the search subspace

• corrects the approximate eigenvector u

compute a correction t from the correction equation:

t ⊥ u, PBPt = r

where P ≡ I − uu∗
u∗u

, B ≡ A − θ I, and r ≡ −Bu

• expands the search subspace with the correction t

Vnew =
[
V | t⊥]

where t⊥ = α (I − VV∗) t such that ‖t⊥‖2 = 1

3. An optimized Schwarz method. For the domain decomposition technique we
adapt a locally optimized additive Schwarz method based on work by Tan & Borsboom [5, 4]
for linear systems which in its turn is a generalization of work by Tang [6]. We show the
main ingredients and discuss some details for ordinary linear systems. The situation for the
correction equation is described and analysed in §4.
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We describe the domain decomposition technique for the two subdomain case. It can be
generalized to more than two subdomains in a straightforward manner.

Let Ω be a domain over which some partial differential Lϕ = f is defined, together
with appropriate boundary conditions on ∂ Ω. In order to compute numerical solutions, Ω is
covered by a grid. The PDE is discretized accordingly, with unknowns defined on the grid
points.
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Figure 3.1: Decomposition in one (left picture) and two dimensions (right picture).

We decompose Ω in two nonoverlapping subdomains Ω1 and Ω2. The subdomains are
covered by subgrids such that no splitting of the original discretized operator has to be made
(see Figure 3.1). For that purpose additional grid points (the open bullets “◦” in Figure 3.1)
are introduced on the opposite side of the subgrids next to the internal interface between the
subdomains. Since this introduces extra unknowns on the additional grid points, we must
also provide extra equations that describe these extra unknowns. Furthermore, for the exact
solution of the discretized PDE we want the function values on these additional points of
one subgrid to be equal to the function values on the grid points of the other subgrid on the
same location. Now, the enhancement consists of providing the original system with extra
unknowns at the additional grid points and extra equations with precisely this property.

To do so, suppose we have ordered the discretized PDE in a linear system

By = d, (3.1)

with unique solution and the following structure:




B11 B1� B1r 0
B�1 B�� B�r 0
0 Br� Brr Br2

0 B2� B2r B22







y1

y�

yr

y2


 =




d1

d�

dr

d2


 .

Here the labels 1, 2, �, and r, respectively, refer to operations from/to and (un)knowns on
subdomain Ω1, Ω2, and left, right from the interface, respectively. Subvector y� (yr respec-
tively) contains those unknowns on the left (right) from the interface that are coupled by the
stencil both with unknowns in Ω1 (Ω2) and unknowns on the right (left) from the interface.
This explains the zeros in the expression for matrix B.

We enhance the linear system (3.1) to

BC y∼ = d (3.2)
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which has the following structure:


B11 B1� B1r 0 0 0
B�1 B�� B�r 0 0 0
0 C�� C�r −C�� −C�r 0
0 −Cr� −Crr Cr� Crr 0
0 0 0 Br� Brr Br2

0 0 0 B2� B2r B22







y1

y�

ỹr

ỹ�

yr

y2




=




d1

d�

0
0
dr

d2




. (3.3)

Here ỹr (ỹ� respectively) contains the unknowns at the additional grid points (the open bullets
“◦” in Figure 3.1) of the subgrid for Ω1 (Ω2) on the right (left) of the interface. So, for the
exact solution of (3.2) we want that ỹ� = y� and ỹr = yr. The only requirement for the extra
equations in (3.3) that the submatrix

C ≡
[

C�� C�r

Cr� Crr

]
,

the interface coupling matrix, is nonsingular. For nonsingular C it can be proven ([5, Theorem
1]) that the solution of the enhanced system (3.2) is unique, ỹ� = y� and ỹr = yr as required,
and the restriction of this solution y∼ to y is the unique solution of the original system (3.1).

However, we want to perform solves on the subgrids only. For that purpose we split the
matrix of the enhanced system (3.2) as BC = M−N. Here M is the boxed part in (3.3) that
does not map elements from one subgrid to the other subgrid. Note that compared to M
the remainder N has a relatively small number of nonzero elements. (The rank of N equals
the dimension of C which corresponds to the amount of virtual overlap that we have created.
For a five point stencil in the two subdomain case the dimension of C is for instance 2ni,
where ni is the number of grid points along the interface.)

A simple iterative solution method for the splitting BC = M − N is the Richardson
iteration:

y∼
(i+1) = y∼

(i) + M−1
(
d − BC y∼

(i)
)

. (3.4)

Due to the splitting the iterates y∼
(i) of (3.3) are perturbed by errors. With M−1 BC =

I − M−1 N it can easily be verified that in each step these errors are amplified by the error
propagation matrix M−1 N. Now, the idea is to use the degrees of freedom that we have
created by the introduction of additional unknowns near the interface in order to damp the
error components. Before we can perform this tuning of the interface coupling matrix C,
we need to analyze the spectral properties of M−1 N for the specific underlying PDE. For
ordinary systems of linear equations originating from advection dominated problems this was
done in [5, 4]. In §4 we describe and analyze the situation for the correction equation.

Besides the tuning of the interface coupling matrix we can further speed up the process
for finding a solution of (3.3). The Richardson iteration uses only information from the last
iterate for the computation of a new one. The process can be accelerated by interpreting the
iterates as a Krylov subspace

Km

(
M−1 BC ,M−1 d

)
= span

(
M−1 d,M−1 BC M−1 d, . . . ,

(
M−1 BC

)m−1
M−1 d

)

and computing an approximate solution for (3.3) with respect to Km.
In fact, in this way the Krylov method computes a solution for the left preconditioned

equation

M−1 BC x∼ = M−1
(
d − BC y∼

(0)
)

, (3.5)

where y∼
(0) is some initial guess (y∼

(0) = 0 is convenient, but other good choices are possible

as well) and a solution for (3.2) is computed from (3.5) via y∼ = y∼
(0) + x∼.
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Note that right preconditioning is possible as well and has some nice additional properties.
As it is slightly more complicated, we don’t discuss it here but refer to [1, §3.2.4, §3.3.3].

4. The correction equation. In this section we describe and analyze the domain
decomposition technique for the correction equation.
First it is shown how the correction equation is enhanced and how the preconditioner is
incorporated. Then we pay attention to the spectrum of the error propagation matrix for
a model eigenvalue problem. With this knowledge in mind, a strategy is developed for the
tuning of the interface coupling matrix.

Similar to the enhancements (3.3) in 3, the following components of the correction equa-
tion have to be enhanced: the matrix B ≡ A−θ I to BC , the correction vector t to t∼, and the
vectors u and r to u and r, respectively. For the enhancement of the additional projection
P see [1, §3.3.2].

The preconditioner M for BC is constructed in the same way as in §3. In case of left
preconditioning with M we compute approximate solutions to the correction equation from

P′ M−1 BC P′ t∼ = P′ M−1 r with P′ ≡ I − M−1 uu∗

u∗ M−1 u
.

In [1, §3.4.3] the spectrum of the error propagation matrix is analyzed for the eigenvalue
problem of an advection-diffusion operator with no cross terms and constant coefficients on
two subdomains. We summarize the main results here.
The interface between the two subdomains Ω1 and Ω is again in the y-direction. To facili-
tate the analysis, the discretized operator is written as a tensor product of one-dimensional
discretized advection diffusion operators Lx and Ly: Lx ⊗ I + I ⊗ Ly. It turns out that
the eigenvectors of the error propagation matrix show two typical types of behavior for the
correction equation. This is illustrated in Figure 4.1.

y x y x

Figure 4.1: Typical eigenvectors of the error propagation matrix for the correction
equation.

Parallel to the interface, all eigenvectors are coupled by eigenvectors of the one-dimensional
operator Ly in the y-direction. Because of this, for the subblocks C��, C�r, Cr� and Crr of the
interface coupling matrix C we can take any linear combination of powers of Ly, for instance
C�� = Crr = I and C�r = Cr� = α I + β Ly. Here we are free to choose values for α and
β, i.e. we can use these parameters for the minimization of the spectral radius of the error
propagation matrix.
Perpendicular to the interface, however, there are differences. Most of the eigenvectors of
the error propagation matrix show exponential behavior in the x-direction, the error grows
exponentially fast when moving towards the interface (the left picture in Figure 4.1). A small
number (this number depends on the location of the shift θ in the spectrum of matrix A)
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show harmonic behavior in the x-direction (the right picture in Figure 4.1), which has the
disadvantage of being global.

For the eigenvectors of the error propagation matrix with exponential behavior in the x-
direction we can estimate effective values for the interface coupling matrix C without specific
knowledge of the subdomain size. In §5 we will see that this is of interest for more practical
situations. For this reason we minimize the spectral radius of the error propagation matrix
only with respect to these eigenvectors. With deflation the remaining eigenvectors, those
with harmonic behavior in the x-direction, are controlled. We illustrate deflation by means
of an example.

4.1. Deflation. Now we show, by example, how deflation improves the condition of
the preconditioned correction equation. We consider θ equal to the 20th eigenvalue of the
Laplace operator on a domain [0, 1] × [0, 1]. The domain is covered by a 31 × 31 grid and
decomposed in two equal subdomains.
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Figure 4.2: The effect of deflation.

In Figure 4.2 the nonzero eigenvalues of the error propagation matrix are shown for this
situation.

Twelve eigenvectors of the error propagation matrix behave harmonic perpendicular to
the interface. As we do not include them for the optimization, we do not necessarily damp
these eigenvectors with the constructed interface coupling matrix as indicated by the twelve
rightmost ‘+’-s (no deflation) in Figure 4.2.
Two of these eigenvectors are connected to the y-component of the eigenvector that corre-
sponds to the 20th eigenvalue of the original eigenvalue problem: these eigenvectors can not
be controlled at all with the interface coupling matrix because the operator A is shifted by
this 20th eigenvalue and therefore singular in the direction of the corresponding eigenvec-
tor. In the correction equation the operator stays well-conditioned due to the projection
P that deflates precisely this direction. Since the error propagator originates from the en-
hanced operator in the correction equation, this projection is actually incorporated in the
error propagator and the ‘�’-s at positions 57 and 58 in Figure 4.2 show the positive effect.
The other eigenvectors with harmonic behavior perpendicular to the interface can be con-
trolled with information from the search subspace of Jacobi-Davidson itself: in practice one
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starts the computation with the largest eigenvalues and when arrived at 20th one, the 19
largest eigenvalues with corresponding eigenvectors are already computed and will be deflated
from the operator B. Deflation with these 19 already computed eigenvectors drastically re-
duces the absolute values, as the ‘◦’-s at the horizontal positions 51, . . . , 56 and 59, . . . , 62
show in Figure 4.2.

From this example we learned that deflation may help to cluster the part of the spectrum
that we can not control with the coupling parameters, and therefore improves the conditioning
of the preconditioned correction equation. The remaining part of the spectrum, that is the
eigenvalues that are in control (indicated by the dotted lines in Figure 4.2), can be damped
even more with a stronger optimized coupling.

5. Applications. With the results from the analysis for the two subdomain case with
constant coefficients in §4 we can accurately estimate optimal interface coupling matrices C
for more than two subdomains, variable coefficients, and complicated geometries.

As an illustration we give two numerical examples, for specific details we refer to [1].
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Figure 5.1: Eigenvalues of the error propagation matrix of the correction equation for
an operator with a large jump.

5.1. Variable coefficients. In this example we illustrate the effectiveness of the
determination of interface coupling matrices C for eigenvalue problems with variable coeffi-
cients.

Consider the following operator with a large jump:

L ≡ ∂

∂x
[c(y)

∂

∂x
] +

∂

∂y
[c(y)

∂

∂y
] with c(y) =




1 for 0 ≤ y < 0.25
1000 for 0.25 ≤ y < 0.75

1 for 0.75 ≤ y ≤ 1

defined on [0, 2]×[0, 1]. We focus on the largest eigenvalue of this operator, the corresponding
eigenvector is the most smooth one among all eigenvectors. The domain is decomposed into
two equal subdomains with physical sizes [0, 1] × [0, 1] and [1, 2] × [0, 1], and covered by a
31 × 31 grid.

Based on a local optimization strategy [1, §4.3], which uses results of the constant coef-
ficients case, we determined appropriate values for the interface coupling matrix. Figure 5.1
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shows the eigenvalues of the corresponding error propagation matrix. It shows the effective-
ness of C: smaller eigenvalues result in faster damping of the errors.

For the optimization three values of le are considered. This le marks the subdivision in
harmonic and exponential behavior perpendicular to the interface of the eigenvectors of the
error propagation matrix. For constant coefficients we were able to determine the precise,
fixed value of le. For variable coefficients the value of le varies.

If we concentrate on the eigenvalues at the horizontal positions 4, 5, . . . , 59 in Figure 5.1,
then we see that, compared to the local optimization with le (the ‘�’-s), these eigenvalues
are closer to zero for the local optimization with le +1 (the ‘∗’-s). So, for variable coefficients,
the outcome of this experiment indicates that the value of le should not be chosen too sharp.

From the figure it can be concluded that, except for a couple of outliers at the horizon-
tal positions 1, 2, 3, 60, 61, and 62 (which can be controlled by deflation and/or the Krylov
acceleration), the local optimization strategy yields an effective interface coupling matrix C.

5.2. More than two subdomains. For this example, we start with an eigenvalue
problem that is defined on two square subdomains of equal size. The subdomains are covered
by a 63 × 63 subgrid. The number of subdomains is increased by pasting a new subdomain
of the same size. So we model a channel that becomes larger each time. With Jacobi-
Davidson we compute an approximate solution of the eigenpair that corresponds to the
largest eigenvector of the two-dimensional Laplace operator. Each step of Jacobi-Davidson
we use 4 steps of the Krylov method GMRES [2] preconditioned with the preconditioner
based on domain decomposition. Given a number of subdomains (first row in Table 5.1) we
compare the total number of Jacobi-Davidson steps that are needed such that the �2-norm
of the residual r of the approximate eigenvalue is less than 10−9 for three kinds of coupling:
Neumann-Dirichlet coupling (“ad hoc” choice for C: Neumann boundary condition on the
left: C�� = I, C�r = −I and Dirichlet boundary condition on the right: Cr� = Crr = I),
simple optimized coupling (C�� = Crr = I and C�r = Cr� = α I), and stronger optimized
coupling (“finetuning” of C: C�� = Crr = I + γLy and C�r = Cr� = α I + β Ly). For
the simple and stronger optimized coupling we estimate optimal values for C by doing as if
the decomposition is in two subdomains only. With the results from the analysis in §3 we
determine optimal values for C for the two subdomain case. Because only the eigenvectors
of the error propagation matrix that damp exponentionally when moving away from the
interface are taken into account for the optimization, these values for C are also fairly good
when the number of subdomains is larger than two.

number of subdomains 2 3 4 5 6
Neumann-Dirichlet coupling 5 9 19 21 22
simple optimized coupling 6 8 9 10 12

stronger optimized coupling 5 6 8 9 10

Table 5.1: Overall Jacobi-Davidson process on more subdomains for three different
types of coupling.

From the table it can be concluded that a finer tuning of C pays off in the overall Jacobi-
Davidson process. Note that for ease of presentation we used the Laplace operator here,
experiments with more general advection-diffusion operators showed similar results.
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