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43. A Robin-Robin preconditioner for strongly heterogeneous
advection-diffusion problems

L. Gerardo Giorda1, P. Le Tallec2, F. Nataf3

1. Introduction. We consider an advection-diffusion problem with discontinuous vis-
cosity coefficients. We apply a substructuring technique and we extend to the resulting Schur
complement the Robin-Robin preconditioner used for problems with constant viscosity. In
Section 2 the algorithm is analyzed theorically by means of Fourier techniques, and we show
that its convergence rate is independent of the coefficients: this allows to treat large discon-
tinuities. Section 3 is dedicated to the variational generalization to an arbitrary number of
subdomains, while in Section 4 we give some numerical result in 3D.

1.1. Statement of the problem. Let Ω be bounded domain in R2. We consider
the following general advection-diffusion problem

−div (ν(x)∇u) +�b · ∇(u) + au = f in Ω
u = 0 on ∂ΩD

(1.1)

where �b is the convective field �b = (bx, by) while the constant a may arise from an Euler
implicit time discretization for the time dependent problem, and represent the inverse of the
time step, i.e. a = 1/∆t.

We assume the function ν(x) to be piecewise constant

ν(x) =

{
ν1 if x ∈ Ω1

ν2 if x ∈ Ω2

with ν1 < ν2, where Ω1 and Ω2 are two non overlapping subsets which cover Ω Ω1 ∪Ω2 = Ω.
Γ denotes the interface between the two subdomains, i.e. Γ = Ω1 ∩ Ω2, while Lj (j = 1, 2)
denotes the operator

Lj(w) := −νj∆w +�b · ∇w + aw

2. The Continuous Algorithm. We introduce, at the continuous level, the oper-
ator

Σ : H
1/2
00 (Γ) × L2(Ω) −→ H−1/2(Γ)

(uΓ, f) �−→
(
ν1

∂u1
∂n1

+ ν2
∂u2
∂n2

)
Γ

(2.1)

where uj (j = 1, 2) is the solution to problem

Lj(uj) = f in Ωj

uj = 0 on ∂ΩD ∩ ∂Ωj

uj = uΓ on Γ
(2.2)

It is evident that uΓ satisfies the Steklov-Poincaré equation

S(uΓ) = χ (2.3)

where S(.) := Σ(., 0) and χ := −Σ(0, f). We split the operator S = S1 + S2, with
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Sj : uΓ �→
(

νj
∂uj

∂nj
−

�b · �nj

2
uj

)
Γ

,

for j = 1, 2 (since �n1 = −�n2 and u1 = u2 = uΓ, the terms 1
2
�b · �nj uj cancel by summa-

tion). Following ([1]), ([2]) and ([8]), we propose as a preconditioner for the Steklov-Poincaré
equation at the continuous level a weighted sum of the inverses of the operators S1 and S2,

T = N1S−1
1 N1 + N2S−1

2 N2, (2.4)

with N1 = ν1
ν1+ν2

, N2 = ν2
ν1+ν2

, which is defined by

T : H−1/2(Γ) −→ H
1/2
00 (Γ)

g �−→ (N1 v1 + N2 v2)Γ
(2.5)

where vj (j = 1, 2) is the solution to

Lj(vj) = 0 in Ωj

vj = 0 on ∂ΩD ∩ ∂Ωj(
νj

∂vj

∂nj
−

�b·�nj

2
vj

)
Γ

= Nj g on Γ.
(2.6)

2.1. The vertical strip case - Uniform velocity. In this section we consider
the case where Ω = R2 is decomposed into the left (Ω1 = ] − ∞, 0[×R) and right (Ω2 =

]0, +∞[×R) half-planes, we assume the convective field to be uniform �b = (bx, by), with the
additional requirement on the solutions uj to be bounded as |x| → +∞. We express the
action of the operator S in terms of its Fourier transform in the y direction as

SuΓ = F−1
(
Ŝ(ξ)ûΓ(ξ)

)
, uΓ ∈ H

1/2
00 (Γ)

where ξ is the Fourier variable and F−1 denotes the inverse Fourier transform. We consider,
for j = 1, 2, the problem

Lj(uj) = 0 in Ωj

uj = uΓ on Γ,
(2.7)

and we have to compute ŜûΓ. Performing a Fourier transform in the y direction on the
operators Lj , we get (

a + bx∂x − νj∂xx + ibyξ + νjξ
2) ûj(x, ξ) = 0, (2.8)

for j = 1, 2, where i2 = −1. For a given ξ, equation (2.8) is an ordinary differential equation
in x whose solutions have the form αj(ξ) exp{λ−

j (ξ)x} + βj(ξ) exp{λ+
j (ξ)x}, where

λ±
j (ξ) =

bx ±
√

b2
x + 4aνj + 4ν2

j ξ2 + 4ibyνjξ

2νj
, (2.9)

with Re(λ±
j ) � 0, as Re(z) indicates the real part of a complex number z. The solutions uj

(j = 1, 2) must be bounded at infinity, so α1(ξ) = β2(ξ) = 0, while the Dirichlet condition
on the interface provides β1(ξ) = α2(ξ) = ûΓ. Hence,

ŜûΓ =
1

2

(√
b2
x + 4aν1 + 4ν2

1ξ2 + 4ibyν1ξ +
√

b2
x + 4aν2 + 4ν2

2ξ2 + 4ibyν2ξ

)
ûΓ (2.10)

In a similar way we compute T̂ ĝ for g ∈ H−1/2(R), and we have (T̂ ◦ Ŝ)ûΓ = Φ(ξ)ûΓ, with

Φ(ξ) = N2
1 · [1 + z(ξ)] + N2

2 ·
[
1 +

z̄(ξ)

|z(ξ)|2
]

, (2.11)
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where we have set z(ξ) :=

√
b2x+4aν2+4ν2

2ξ2+4ibyν2ξ

b2x+4aν1+4ν2
1ξ2+4ibyν1ξ

. We have 1 < |z(ξ)| ≤ ν2/ν1, with |z(ξ)|
decreasing in (−∞, 0) and increasing in (0, +∞).

Theorem 2.1 (Main Result) In the case where the plane R2 is decomposed into the left
and right half planes, and the convective field is uniform, the reduction factor for the asso-
ciated GMRES algorithm can be bounded from above by a constant independent of the time
step ∆t, the convective field �b and the viscosity coefficients ν1 and ν2.

Proof. Let Φ(ξ) be the function defined in (2.11). The GMRES reduction factor is given,
for a positive real matrix A with symmetric part M , by

ρGMRES = 1 − (λmin(M))2

λmax(AT A)
.

Therefore, it is enough to show that

maxξ |Φ(ξ)|2
(minξ Re Φ(ξ))2

∈ O(1) (2.12)

independentely of a, bx, by, ν1 and ν2.
If by 
= 0, since Re z(ξ) ≥ 0, we have from (2.11)

ReΦ(ξ) ≥ N2
1 + N2

2 >
ν2
2

(ν1 + ν2)2
, (2.13)

for all ξ, as well as, focusing on |Φ(ξ)|2,

|Φ(ξ)|2 ≤
[
N2

1 + N2
2 + N2

1 · |z(ξ)| + N2
2

|z(ξ)|

]2

+

[
N2

1 · |z(ξ)| − N2
2

|z(ξ)|

]2

= Ψ(ξ) (2.14)

which is increasing in (−∞, 0) and decreasing in (0, +∞).
i) If bx 
= 0, we define η := 4a/b2

x and we have

Ψ(0) =

[
N2

1

(
1 +

√
1 + ην2

1 + ην1

)
+ N2

2

(
1 +

√
1 + ην1

1 + ην2

)]2

+

[
N2

1

√
1 + ην2

1 + ην1
− N2

2

√
1 + ην1

1 + ην2

]2

The right hand term is decreasing as a function of η. This provides

max
ξ

|Φ(ξ)|2 ≤ (2N2
1 + 2N2

2 )2 + (N2
1 − N2

2 )2 (2.15)

From (2.13) and (2.15), we get

maxξ |Φ(ξ)|2
(minξ Re Φ(ξ))2

≤ 5 + 6 ·
(

ν1

ν2

)2

+ 5 ·
(

ν1

ν2

)4

< 16. (2.16)

ii) If bx = 0 (flux parallel to the interface), |z(0)| =
√

ν2/ν1, and we have

max
ξ

|Φ(ξ)|2 ≤
[
N2

1

(
1 +

√
ν2

ν1

)
+ N2

2

(
1 +

√
ν1

ν2

)]2

+

[
N2

1

√
ν2

ν1
− N2

2

√
ν1

ν2

]2

(2.17)

From (2.13) and (2.17), we get

maxξ |Φ(ξ)|2
(minξ Re Φ(ξ))2

≤ 1 + 2
7∑

n=1

(
ν1

ν2

)n/2

+

(
ν1

ν2

)4

< 16. (2.18)



414 GERARDO GIORDA, LE TALLEC, NATAF

If by = 0, the complex function Φ(ξ) reduces to a real one which is symmetric in ξ, decreasing
in [0, +∞) and satisfies Φ(ξ) ≥ 1 for all ξ. Therefore

maxξ |Φ(ξ)|2
(minξ ReΦ(ξ))2

=

[
maxξ Φ(ξ)

minξ Φ(ξ)

]2

≤
[
max

ξ
Φ(ξ)

]2

= [Φ(0)]2 .

i) if bx 
= 0, we define η := 4a/b2
x, and we have

[Φ(0)]2 =

[
N2

1

(
1 +

√
1 + ην2

1 + ην1

)
+ N2

2

(
1 +

√
1 + ην1

1 + ην2

)]2

(2.19)

where the right hand side attains its maximum for η = 0. Hence[
maxξ Φ(ξ)

minξ Φ(ξ)

]2

<

[
2 · ν2

1

(ν1 + ν2)2
+ 2 · ν2

2

(ν1 + ν2)2

]2

< 4. (2.20)

ii) if bx = 0 (purely elliptic case) we simply have[
maxξ Φ(ξ)

minξ Φ(ξ)

]2

<

[
N2

1

(
1 +

√
ν2

ν1

)
+ N2

2

(
1 +

√
ν1

ν2

)]2

< 4. (2.21)

�

Remark 2.1 The argument above is based only on the assumption ν1 < ν2, and it can be
easily seen that a symmetric argument would give the same result as long as ν2 < ν1. In
a forthcoming paper ([6]), a more detailed proof of the main result will be given. More, it
appears that the condition number of the preconditioned system improves with the growth
of the ratio ν2/ν1.

3. Variational Generalization. We consider in Rd (with d = 2, 3) the domain
Ω =

⋃N
k=1 Ωk, with Ωj ∩ Ωk = ∅ for j 
= k, in which we solve

−div (ν(x)∇u) +�b(x) · ∇(u) + a(x)u = f in Ω
u = 0 on ∂ΩD

(3.1)

with piecewise constant viscosity ν(x) = νk in Ωk(x). We restrict ourselves to well-posed

problems, and we assume�b ∈ W 1,∞(Ω) and there exists µ > 0 such that a−1/2div(�b) ≥ µ > 0.
We introduce the space H(Ω) =

{
v ∈ H1(Ω) : v|∂ΩD

= 0
}

, and the variational form of (3.1)

Find u ∈ H(Ω) : a(u, v) = L(v) ∀v ∈ H(Ω), (3.2)

with

a(u, v) =

∫
Ω

ν∇u∇v + (�b · ∇u)v + auv, L(v) =

∫
Ω

fv.

We define the local interfaces Γk := ∂Ωk \ ∂Ω and the global interface Γ = ∪kΓk, and we
introduce the local form

ak(u, v) =

∫
Ωk

{
νk∇u∇v + (�b · ∇u)v + auv

}
−

∫
Γk

1

2
�b · �nkuv

where the interface terms −
∫
Γk

1/2�b·�nkuv added locally cancel each other by summation, but
their presence guarantees nevertheless that the local bilinear form is positive on the space of
restrictions H(Ωk) =

{
vk = v|Ωk

, v ∈ H(Ω)
}
. Summing up on k, and letting Lk(v) :=

∫
Ωk

fv,

the variational problem (3.2) is equivalent to

Find u ∈ H(Ω) :
n∑

k=1

{ak(u, v) − Lk(v)} = 0 ∀v ∈ H(Ω). (3.3)



ROBIN-ROBIN FOR HETEROGENEOUS ADVECTION-DIFFUSION 415

3.1. Finite Element Approximation. In order to approximate problem (3.3)
with finite elements, we assume that the domain Ω is polygonal, and that the triangulations
respect the geometry of subdomain decomposition: the interfaces Γk will coincide with in-
terelement boundaries, and each subdomain can be obtained as the union of a given subset
of elements in the original triangulation.

In several cases of practical interest, problem (3.1) is advection-dominated and must be
stabilized. We will use Galerkin Least-Squares techniques (GALS), which consists in adding
to the original variational formulation the element residuals

∫
Ti

δi(h)
(
−div (ν∇u) +�b · ∇(u) + au − f

) (
−div (ν∇v) +�b · ∇(v) + av

)

where Ti is an element of the triangulation, with a suitable choice of the local positive
stabilization parameter δi(h). The stabilized finite elements formulation then reads

Find uh ∈ Hh(Ω) :
n∑

k=1

{akh(uh, vh) − Lkh(vh)} = 0 ∀vh ∈ Hh(Ω), (3.4)

3.2. Substructuring. The variational structure of problems (3.3) and (3.4) allows
to reduce them to an interface problem by means of standard substructuring techniques.

Following ([2]), we introduce the space H
0(Ωk) =

{
vk ∈ H(Ω), vk = 0 in Ω \ Ωk

}
, the global

and local trace spaces V and Vk, the restriction operators Rk : H(Ω) → H(Ωk) and R̄k : V →
Vk, the ak-harmonic extension Tr−1

k : Vk → H(Ωk), defined as

ak(Tr−1
k ūk, vk) = 0 ∀vk ∈ H

0(Ωk), Tr(Tr−1
k ūk)|Γk

= ūk, (3.5)

with its adjoint Tr−∗
k . The bilinear form ak is elliptic on H

0(Ωk) so problem (3.5) is well-
posed, and we can define the local Schur complement operator Sk : Vk → V

′
k as

〈Skūk, v̄k〉 = ak(Tr−1
k ūk, Tr−∗

k v̄k) ∀ūk, v̄k ∈ Vk

If we decompose the local degrees of freedom Uk of uk = Rku into internal (U0
k ) and interface

(Ūk) degrees of freedom, the matrix Ak associated to the bilinear form ak can be represented
as

Ak =

[
A0

k Bk

B̃T
k Āk

]
,

and we eliminate the local internal component U0
k as solution of a well-posed local problem,

to get

SkŪk =
(
Āk − B̃T

k (A0
k)−1Bk

)
Ūk.

The global Schur complement operator

S =

N∑
k=1

R̄T
k SkR̄k (3.6)

follows and we reduce problems (3.3) and (3.4) to the interface problem Sū = F in V, with
a right-hand side defined as 〈F, v̄〉 =

∑
k Lk(Tr−∗

k (R̄kv̄)), where vk is any function in H(Ωk)
such that vk = v̄ on Γk.
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ν1, ν2 ν1/ν2
�b = (±1, 0, 0) �b = (0, 1, 1) �b = (±1, 3, 5)

10−1, 10−5 104 10 11 17 15 17
10−2, 10−6 12 16 13 7 8
10−1, 10−6 105 10 11 17 15 17
10−6, 10−11 5 5 2 7 7
10−1, 10−7 106 10 11 17 15 17
103, 10−3 3 3 3 3 3
1, 10−7 107 6 7 9 11 11

Table 4.1: Number of iterations for the two-domain problem

3.3. Construction of the preconditioner. We extend the preconditioner T in-
troduced in the previous section to an arbitrary number of subdomains and we generalize
the ones proposed in ([2]) and ([8]). The interface operator (3.6) is preconditioned with a
weighted sum of inverses based on a partition of unity argument:

T =

N∑
k=1

DT
k (Sk)−1Dk, (3.7)

with
∑N

k=1 DkR̄k = IdΓ. For any Fk ∈ V
′
k the action of the operator (Sk)−1Fk is equal to

the trace on Γk of the solution wk of the local variational problem ak(wk, vk) = 〈Fk, T rkvk〉,
∀vk ∈ H(Ωk), wk ∈ H(Ωk), which is associated to the operator Lk = −div(νk∇w)+�b·∇w+aw

with Robin boundary condition on the interface νk
∂w
∂nk

− 1
2
�b · �nkw = Fk. In order to achieve

good parallelization, the weights Dk are defined on each interface degree of freedom ū(P )
(with P ∈ Γk) as

Dk ū(P ) = CP
νk∑

P∈Γj
νj

ū(P ),

where the constant CP is chosen to satisfy the partition of unity requirement, and depends
only on the number of subdomains to which the point P belongs.

4. Numerical results in 3D. Problem (3.1) is discretized by means of GALS second
order finite elements on hexaedral decomposition. The interface problem is solved by a
GMRES algorithm preconditioned by the operator T , which stops when the residual is less
than 10−10. We consider Ω = [0, 1]3, the unit cube, as costituted of two different materials
with viscosity coefficients ν1 and ν2, we choose a = 1 and f ≡ 0 in the whole Ω, and we force
the solution to have a boundary layer by imposing u = 1 on the bottom face of the cube as
well as homogeneous Dirichlet conditions on the rest of the boundary ∂Ω. We consider large
jumps between the viscosity coefficients.

In Table 4.1 we report the number of iterations for a two-domain decomposition, where we
choose different convective fields: perpendicular to the interface (�b = �e1), parallel (�b = �e2+�e3)

and oblique (�b = �e1+3�e2+5�e3). The preconditioner appears a little sensitive to the direction
of the velocity but it is insensitive to the amplitude of the jumps in the viscosity coefficients.

In Table 4.2 we report the number of iterations for a eight domain decomposition. Each
coefficient νj (j = 1, 2) refers to four subdomains which mutual position is varied: in Test
1 the two half cubes of the previous test are decoupled into four smaller subdomains, the
configuration of Test 2 is given in Figure 4.1, while Test 3 is a black and white coloring where
each subdomain of one kind is surrounded by subdomains of the other one. The convective
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O 
X 

Y 

Z 

Figure 4.1: The subdomains Ω1 (left) and Ω2 (right) in Test 2.

ν1, ν2 ν1/ν2 Test 1 Test 2 Test 3
10−1, 10−5 104 33 33 34
10−1, 10−6 105 32 33 34
10−1, 10−7 106 32 33 34
103, 10−3 106 29 28 21
1, 10−7 107 29 31 29

Table 4.2: Number of iterations for the multidomain problem

field is �b = −2π(y−0.5)�e1 +2π(x−0.5)�e2 +sin(2π(x−0.5))�e3. The preconditioner is again
insensitive to the jumps and to the position of the subdomains.

A complete description of the tests will be given in ([6]).

5. Conclusions. The proposed preconditioner is a generalization of the Robin-Robin
one to advection-diffusion problems with discontinuous coefficients. Numerical tests in 3D
show, as we expected from the theoetical analysis of Section 2, that the preconditioner is
fairly insensitive to the jumps in the viscosity coefficients as well as to the convective field,
while it remains a little sensitive to the number of subdomains, but this seems unavoidable
for advection-dominated problems. However, our knowledge of the preconditioner is not
complete, and further work needs to be done: a convergence analysis in a more general
setting is not yet available, the introduction of a coarse space to reduce the sensitivity to
the number of subdomains should be analyzed and the algorithm should be tested on less
academical situations.
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