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18. Balancing Neumann-Neumann for (In)Compressible
Linear Elasticity and (Generalized) Stokes — Parallel
Implementation

P. Goldfeld1

1. Introduction. In this paper, an extension of the Balancing Neumann-Neumann
method for a class of symmetric, indefinite problems is presented, with an emphasis on
implementational and algorithmic aspects; theoretical results on a bound for the condition
number of the relevant operator are also stated, without proof, and results of large-scale
numerical experiments are reported. For a development of the theory see [7], [4].

The Balancing Neumann-Neumann domain decomposition technique (see, e.g., Mandel
[5] or Mandel and Brezina [6]) has recently been extended to a class of saddle-point problems,
including the Stokes Equation (see Pavarino and Widlund [7]) and the mixed formulation of
linear elasticity (see Goldfeld, Pavarino and Widlund [3], [4]).

In this algorithm, after decomposing the original domain into nonoverlapping subdo-
mains, the interior velocity/displacement and all but the subdomain-wise constant pressure
unknowns are eliminated. A preconditioner for the resulting saddle-point Schur complement
problem is constructed based on the solution of a coarse problem, with one pressure and a
few velocity/displacement unknowns per subdomain, and on the solution of local problems
with mixed or natural boundary conditions. Local Dirichlet problems must also be solved
in order to compute the action of the Schur complement operator. The quality of this pre-
conditioner can be shown to be independent of the number of subdomains and to depend
only polylogarithmically on the size of the local problems, when the coefficients are constant.
Numerical experiments indicate that this is still the case when there are arbitrary jumps on
the coefficients.

This paper is organized as follows. In Section 2, we briefly describe the class of problems
considered and their mixed finite element discretizations. The substructuring process is ex-
plained in Section 3, where we also include some remarks on the practical implementation of
the Schur complement operator. In Section 4, the Balancing Neumann-Neumann precondi-
tioner is introduced. In Section 5, the theoretical results on the quality of the preconditioner
are stated and, finally, numerical experiments are reported in Section 6.

2. Problems and Discretizations. We consider the problems of linear elastic-
ity with a mixed formulation (compressible, incompressible or almost incompressible cases),
Stokes’ equations and generalized Stokes’ equations (with compressibility). All of them have
a variational formulation of the following form: For Ω ⊂ R

d, a polyhedral domain, given

f ∈
(
H−1(Ω)

)d
, g ∈

(
H1/2(∂Ω)

)d

and h ∈ L2(Ω), find (u, p) ∈
(
g̃ +

(
H1

0 (Ω)
)d

)
× L2(Ω)

satisfying




a(u,v) + b(v, p) = 〈f ,v〉 ∀v ∈
(
H1

0 (Ω)
)d

b(u, q) − c(p, q) = 〈h, q〉 ∀q ∈ L2(Ω)
u|∂Ω = g

. (2.1)

Here g̃ is any function in
(
H1(Ω)

)d
such that g̃|∂Ω = g. The choice of the bilinear forms a,

b and c depends upon the problem we are solving:
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a(u,v) b(v, q) c(p, q)

compressible elasticity 2µ

∫
Ω

ε(u) : ε(v) −
∫

Ω

q∇ · v 1

λ

∫
Ω

pq

incompressible elasticity 2µ

∫
Ω

ε(u) : ε(v) −
∫

Ω

q∇ · v 0

Stokes ν

∫
Ω

∇u : ∇v −
∫

Ω

q∇ · v 0

generalized Stokes ν

∫
Ω

∇u : ∇v −
∫

Ω

q∇ · v 1

λ

∫
Ω

pq

Here ε(u) : ε(v) =
1

4

d∑
i,j=1

(
∂ui

∂xj
+

∂uj

∂xi

) (
∂vi

∂xj
+

∂vj

∂xi

)
and ∇u : ∇v =

d∑
i,j=1

∂ui

∂xj

∂vi

∂xj
.

To fix ideas, we will focus, in the remainder of this paper, on the elasticity problem.
Therefore, u will be the displacement vector and the relevant coefficients will be the Lamé
parameters µ and λ.

A conforming mixed finite-element discretization of (2.1) yields a linear system of the
form

Ku = K

[
u
p

]
=

[
A BT

B −C

] [
u
p

]
= f =

[
f
h

]
.

We select an inf-sup stable pair of finite element spaces for pressure and displacement. As
will become evident in the next subsection, our method requires the pressure space to be
discontinuous, at least across the interface.

Note that although this paper is written in the language of finite elements only, the
method here presented is equally suitable for spectral element discretizations (see [7], [3],
[4]).

3. Substructuring. The domain Ω is decomposed into N nonoverlapping subdo-
mains, {Ωi}i=1,2,...,N , the boundaries of which do not cut through any element. Denote by
Γh the set of nodes on the interface between subdomains, i.e., the nodes belonging to more
than one subdomain. As usual, K and f can be generated by subassembly:

K =
N∑

i=1

R(i)T
K(i)R(i) =

N∑
i=1

R(i)T

[
A(i) B(i)T

B(i) −C(i)

]
R(i), (3.1)

f =
N∑

i=1

R(i)T
[

f (i)

h(i)

]
,

where the restriction matrix R(i) is a matrix of zeros and ones which translates global indices
of the nodes into local numbering.

Assume that the basis for the pressure space can be split as follows:

• there are N coarse pressures, {ψ0,i}i=1,2,...,N , defined by ψ0,i = χΩi , where χΩi is the
characteristic function of the set Ωi. We also refer to these functions as the constant
or interface pressures;

• the remaining, interior pressures, {ψI,ji}ji∈Ji
, have zero average,

∫
Ω

ψI,ji = 0, and are
local, in the sense that supp (ψI,ji) ⊂ Ωi.
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After reordering unknowns and equations, the vectors u and f , and the stiffness matrix
K are expressed as

u =

[
uI

uΓ

]
=




uI

pI

uΓ

p0


 , f =

[
f I

fΓ

]
=




fI
hI

fΓ
h0


 ,

K =

[
KII KIΓ

KΓI KΓΓ

]
=




AII BT
II AIΓ 0

BII −CII BIΓ 0

AΓI BT
IΓ AΓΓ BT

0Γ

0 0 B0Γ −C00


 . (3.2)

The (1,1)-block KII is invertible, even when K is not (i.e., when the problem is incompressible
and therefore C is zero and the solution is only defined up to a constant pressure.) We can
eliminate the interior variables and define a Schur complement problem,

SuΓ = f̃Γ, (3.3)

where

S = KΓΓ − KΓIK−1
II KIΓ =

[
SΓ BT

0Γ

B0Γ −C00

]
and (3.4)

f̃Γ = fΓ − KΓIK−1
II f I ,

with

SΓ = AΓΓ −
[

AΓI BT
IΓ

] [
AII BT

II

BII −CII

]−1 [
AIΓ

BIΓ

]
. (3.5)

We note that KII is block-diagonal, which allows us to generate S by subassembly, by means
of restriction matrices R

(i)
Γ :

S =
N∑

i=1

R
(i)
Γ

T
S(i)R

(i)
Γ =

N∑
i=1

R
(i)
Γ

T
(
K

(i)
ΓΓ − K

(i)
ΓI K

(i)
II

−1
K

(i)
IΓ

)
R

(i)
Γ . (3.6)

We present a preconditioner for the operator S. Once the system SuΓ = f̃Γ is solved, the
computations required to obtain uI are completely local.

3.1. Implementing S. Before we describe the Neumann-Neumann preconditioner,
we discuss how to compute the action of the operator S on a given vector.

We have assumed that the basis functions for the pressure degrees of freedom can be
divided into two groups: zero-average functions and constant functions. We now show how
S can be implemented using a standard basis for the pressure, as long as the pressure space
admits a basis of that special form.

In our actual implementation we generate, instead of the stiffness matrix in (3.2), a
stiffness matrix K̃ using a standard nodal basis and introduce a Lagrange multiplier to
enforce the zero average of the pressure. Furthermore, we never assemble the entire matrix
K̃, but rather work with the local stiffness matrices K̃(i):

K̃ =

N∑
i=1

R̃(i)T
K̃(i)R̃(i), where K̃(i) =


 A(i) B̃(i)T

0

B̃(i) −C̃(i) w(i)

0 w(i)T
0


 . (3.7)
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Note that, since a different basis has been used, K̃(i), B̃(i), and C̃(i) are different from K(i),
B(i), and C(i) in equation (3.1). The entries of the vector w(i) are the integrals of the pressure
basis functions over Ω.

In each of the local matrices K̃(i), we eliminate the interior velocities, all the pressures
and the Lagrange multiplier. This corresponds to taking the Schur complement with respect
to the (2,2)-block in the following matrix, which is a reordering of (3.7):




A
(i)
II B̃

(i)
I

T
0 A

(i)
IΓ

B̃
(i)
I −C̃(i) w(i) B̃

(i)
Γ

0 w(i)T
0 0

A
(i)
ΓI B̃

(i)
Γ

T
0 A

(i)
ΓΓ


 .

We can show that the result of this static condensation is precisely S
(i)
Γ , the (1, 1)-block

of S(i) (see (3.4), (3.5), (3.6)). The remainder of the matrix S(i), namely the vector B
(i)
0Γ

T

and the scalar C
(i)
00 , can be computed by means of the formula:

[
A

(i)
ΓΓ B

(i)
0Γ

T

B
(i)
0Γ C

(i)
00

]
=

[
I

e(i)T

] [
A

(i)
ΓΓ B̃

(i)
Γ

T

B̃
(i)
Γ −C̃(i)

] [
I e(i)

]
.

Here the matrix at the right side of the equation is a submatrix of (3.7) and the entries of the
vector e(i) are the coefficients that express the constant pressure on subdomain Ωi in terms
of the regular basis functions:

ñp∑
k=1

(
e(i)

)
k

ψ̃k = χΩi ,

where
{

ψ̃k

}
k=1,...,ñp

is the basis for the pressure space.

4. Preconditioner. The Balancing Neumann-Neumann preconditioner is of the form:

Q = Q0 + (I − Q0S) Qloc (I − SQ0) ,

where Q0 is the coarse-level part of the preconditioner and Qloc the local-level part.

4.1. Local Level. The local part of the preconditioner basically involves the solution
of local problems with natural or mixed boundary conditions (for floating and non-floating
subdomains, respectively). Qloc is defined by

Qloc =
N∑

i=1

R
(i)
Γ

T

[
D(i)−1

0
0 0

]
S(i)†

[
D(i)−1

0
0 0

]
R

(i)
Γ .

The dagger (†) above indicates a pseudo-inverse, since S(i) is singular on a floating subdomain
(the nullspace being constant velocities for Stokes’ equation and rigid-body displacements for

elasticity). The matrices D(i)−1
are diagonal and determine a partition of unity on Γ. A

proper choice of this partition is necessary for the method to be insensitive to jumps in the
coefficients: (

D(i)−1
)

jj
=

µγ
i∑

xj∈∂Ωk

µγ
k

, γ ≥ 1

2
.
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In computing the action of Qloc, it is useful to remember that

[
I 0

]
S(i)†

[
I
0

]
=

[
0 0 I

]

 A

(i)
II B̃

(i)
I

T
A

(i)
IΓ

B̃
(i)
I −C̃(i) B̃

(i)
Γ

T

A
(i)
ΓI B̃

(i)
Γ A

(i)
ΓΓ




† 
 0

0
I


 .

Note that the matrix in the right side of the equation is a submatrix of (3.7). The coarse
step preceding the local step ensures that the right-hand sides are consistent and in this
case a good approximation for the pseudo-inverse can be obtained by perturbing the original
system, replacing the original A(i) by A(i) + εI or A(i) + εM (i), where M (i) is the local mass
matrix for the displacement variables and ε is a small positive constant.

4.2. Coarse Level. The application of the coarse term Q0 amounts to the solution
of a coarse, global problem:

Q0 = RT
0 (R0SRT

0 )†R0,

where

R0 =

[
LT 0
0 I

]
.

The columns of the matrix RT
0 span the coarse space: the identity block corresponds to

the coarse pressures, one per subdomain; the displacement coarse space is determined by the
columns of the matrix L. In order to ensure solvability of the local problems with natural
boundary conditions, L must contain the traces of the elements of a basis of the nullspace of

A(i) scaled by D(i)−1
for all i corresponding to the floating subdomains (cf. subsection 4.1).

These scaled rigid-body displacements can also be added for non-floating subdomains, as
long as care is taken to avoid linearly dependence; this can be accomplished by dropping the
contribution of one non-floating subdomain.

In order to obtain an inf-sup stable coarse space, we need to enrich L further. Two
alternatives are: adding the traces of either the coarse bi/tri-linear functions (the space QH

1 )
or the quadratic coarse edge/face bubble functions for the normal directions.

Remark We can show that QS is positive-definite on range (I − Q0S). If an initial
guess is chosen such that the initial error is in range (I − Q0S), then the error on every step
of a Krylov method will also be restricted to range (I − Q0S), since Q0S is a projection.
The importance of this observation is that it allow us to use the preconditioned conjugate
gradient method as our iterative solver, even though our original operator is indefinite.

5. Theoretical Bound. A theoretical bound for the condition number of the pre-
conditioned operator QS restricted to the appropriate subspace to which the iterates are
confined is proved in [7], [4], for the constant coefficient case:

κ ≤ C

(
1 + log

(
H

h

))2

.

We note that κ does not depend on the number of subdomains and depends only poly-
logarithmically on the size of the subdomain problems. The constant C depends, in the
incompressible or quasi-incompressible cases, on the inf-sup constants of the original and
coarse spaces. This is the reason why we enrich the displacement coarse space to achieve
inf-sup stability.
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Figure 6.1: material properties of a heterogeneous problem.
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6. Numerical Experiments. Our algorithm has been implemented in C, using the
PETSc library (see [1], [2]). Parallel numerical experiments were run on the Linux cluster
Chiba City at Argonne National Laboratory (with 256 Dual Pentium III processors with
512MB of local RAM). We report on results for compressible/almost-incompressible elasticity
only, although similar results have been obtained for incompressible elasticity, Stokes and
generalized Stokes equations.

We consider an elasticity problem defined on a square heterogeneous domain, which is
composed of an arrangement of three different materials in the pattern depicted in figure
6.1. Note that the material r is almost incompressible, with a Poisson ratio close to 0.5.
The problem is discretized with Q2 − Q0 finite elements and the domain Ω divided into√

N ×
√

N square subdomains, each of them composed of a single material. The saddle
point Schur complement (3.3) is solved iteratively by PCG with our balancing Neumann-
Neumann preconditioner and the coarse space V0 = {scaled rigid body motions} + QH

1 . The
initial guess is a random vector modified so that the initial error is in the range of (I −Q0S),
the right hand side is a random, uniformly distributed vector, and the stopping criterion is
‖rk‖2/‖r0‖2 ≤ 10−6, where rk is the residual at the k−th iterate.

In the lower half of Table 6.1, we show the results for increasing mesh sizes, always with
64 subdomains. The condition number and the iteration count grow weakly as we increase
the size of the local problems, as can also be observed in the left part of Figure 6.2.

The last two columns of this table display CPU-times for these runs. The last column
gives the total time for the code to run, while the column labeled “fact.” gives the time spent
on LU factorizations; there are three of them: two local, namely Dirichlet and Neumann
subdomain-level problems, and one global coarse problem. We note that the cost of the
factorizations grows rapidly and dominates the cost of the computation. The upper part of
Table 6.1 shows results for an increasing number of subdomains of fixed size (about 58,000
degrees of freedom). The corresponding graph, on the right in Figure 6.2, shows an almost
horizontal tail, indicating independence of the condition number and the iteration count on
the number of subdomains. This is numerical evidence that our result in section 5 remains
valid in the case of discontinuous coefficients. The fact that the factorization time remains
constant for the entire range of problem sizes tested (from 16 to 169 subdomains) indicates
that the cost associated with the factorization of the coarse problem is still tiny compared
with that of the local problems. One can expect this scenario to change if the number of
subdomains increases significantly.
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Table 6.1: results for elasticity problem in heterogeneous medium with Q2 −Q0 finite
elements and V0 = (scaled rigid-body motions)+

(
QH

1

)2. The iterative method is PCG
and the termination criterion is ‖rfinal‖ ≤ 10−6 ‖r0‖. The initial guess and right-hand
side are randomly generated. The ordering of the displacement variables is determined
by quasi-minimal degree.

fixed H/h, local problem with 80 × 80 elements (58,242 dof)
grid size # subd. dof iter. cond. time (sec.)
(# elem.) (×106) fact. other
320 × 320 4 × 4 0.92 12 5.14 258.0 63.4
480 × 480 6 × 6 2.08 13 5.12 253.7 63.7
640 × 640 8 × 8 3.69 14 5.13 260.8 84.5
800 × 800 10 × 10 5.77 14 5.06 262.8 93.9

1040 × 1040 13 × 13 9.74 14 4.87 261.2 102.7
fixed number of subdomains N = 8 × 8
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(# elem.) (×103) (×106) fact. other
160 × 160 3.8 0.23 12 4.00 1.4 16.7
320 × 320 14.7 0.92 13 4.57 18.2 22.7
480 × 480 32.9 2.08 14 4.91 84.2 42.1
640 × 640 58.2 3.69 14 5.13 260.8 84.5

Figure 6.2: results for elasticity problem in heterogeneous medium with Q2−Q0 finite
elements: PCG iteration count and condition number of QS vs. local size H/h (left)
and number of subdomains N (right), from Table 6.1.
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