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44. On a selective reuse of Krylov subspaces in
Newton-Krylov approaches for nonlinear elasticity

P. Gosselet1, C. Rey2

1. Introduction. We consider the resolution of large-scale nonlinear problems arising
from the finite-element discretization of geometrically non-linear structural analysis problems.
We use a classical Newton Raphson algorithm to handle the non-linearity which leads to the
resolution of a sequence of linear systems with non-invariant matrices and right hand sides.
The linear systems are solved using the FETI-2 algorithm. We show how the reuse, as a
coarse problem, of a pertinent selection of the information generated during the resolution
of previous linear systems, stored inside Krylov subspaces, leads to interesting acceleration
of the convergence of the current system.

Nonlinear problems are a category of problems arising from various applications in math-
ematics, physics or mechanics. Solving these problems very often leads to a succession of
linear problems the solution to which converges towards the solution to the considered prob-
lem. Within the framework of this study, all linear systems are solved using a conjugate
gradient algorithm. It is well known that this algorithm is based on the construction of the
so-called Krylov subspaces, on which depends its numerical efficiency and its convergence
behaviour.

The purpose of this paper is to accelerate the convergence of linear systems by reusing
information arising from previous resolution processes. Such an idea has already led to a
classical algorithm for invariant matrices [8] which has been successfully extended to the case
of non invariant matrices [6, 7]. We here propose, thanks to a spectral analysis of linear
systems, to select the most significant part of the information generated during conjugate
gradient iterations to accelerate the convergence via an augmented Krylov conjugate gradient
algorithm.

The remainder of this paper is organized as follows: section 2 addresses characteristic
properties of preconditioned conjugate gradient, section 3 exposes the acceleration strategies,
section 4 gives numerical assessments and section 5 concludes the paper.

2. Basic properties of preconditioned conjugate gradient. We consider
the linear system Ax = b solved with a M -preconditioned conjugate gradient (A and M are
N×N real symmetric positive definite matrices). We note xi the ith estimation to x = A−1b,
ri = b−Axi = A(x−xi) the associated residual and zi = M−1ri the preconditioned residual.
In order to concentrate the notations, we also note with capital letters matrices built from
set of vectors, e.g. Ri = (r0, . . . , ri−1). Given initialization x0, preconditioned conjugate
gradient iteration consists in searching

xi ∈ {x0} + Ki(M
−1A, z0) with ri ⊥ Ki(M

−1A, z0)
where Ki(M

−1A, z0) is the ith Krylov subspace
Ki(M

−1A, z0) = Span(z0, . . . , (M
−1A)i−1z0) = Range(Zi)

(2.1)

2.1. Augmented conjugate gradient. The augmentation consists in defining full-
ranked constraint matrix C and imposing CT ri = 0. It leads to the definition of a modified
Krylov subspaces K̃i(M

−1A, z0, C) [2]:

K̃i(M
−1A, z0, C) = Ki(M

−1A, z0) ⊕ Range(C)

xi ∈ {x0} + K̃i(M
−1A, z0, C) with ri ⊥ K̃i(M

−1A, z0, C)
(2.2)
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Ax = b with CT ri = 0 Iterations i = 0, . . . , s

PC = Id − C
(
CT AC

)−1
CT A zi = PCM−1ri (w0 = z0)

Initialization (x00 is arbitrary) wi = zi +
i−1∑
j=0

βj
i wj βj

i = − (zi, Awj)
wj , Awj

x0 = C
(
CT AC

)−1
CT b + PCx00 xi+1 = xi + αiwi αi =

(ri, zi)
(wi, Awi)

r0 = b − Ax0 ri+1 = ri − αiAwi

Property: RT
i Zi and WT

i AWi are diagonal

Figure 2.1: Augmented Preconditioned Conjugate Gradient

The augmented preconditioned conjugate gradient can be implemented with a projected
algorithm (fig. 2.1): initialization and projector PC ensure orthogonality conditions.

Remark 2.1 Although no optimality result holds anymore when matrix A is non-positive,
conjugate gradient still proves good convergence behaviour [5].

Remark 2.2 As M is definite positive, it can be factorized under Cholevsky’s form M =
LLT . Following [9] we prove that the M-preconditioned C-augmented conjugate gradient is
equivalent to a non-preconditioned Ĉ-augmented conjugate gradient Âx̂ = b̂ with :

Â = L−1AL−T x̂i = LT xi b̂ = L−1b Ĉ = LT C

ŵi = LT wi ẑi = LT zi r̂i = L−1ri βj
i = β̂j

i αi = α̂i
(2.3)

2.2. Ritz’s spectral analysis of symmetric system. Ritz’s values and vectors
(θj

i , ŷ
j
i )1�j�i defined in equation (2.4) are the eigenelements of the projection of matrix Â

onto K̃i(Â, r̂0, Ĉ), they converge (i → N) to eigenelements of matrix Â [5].

V̂i orthonormal basis of K̃i(Â, r̂0, Ĉ) Diagonalization Bi = QB
i ΘiQ

B
i

T

Bi = V̂ T
i ÂV̂i Rayleigh’s matrix Θi = Diag(θj

i )1�j�i

QB
i

T
QB

i = Id, Ŷi = V̂iQ
B
i

(2.4)

Ritz’s representation of conjugate gradient provides meaningful information. Especially,
the convergence of Ritz’s values is directly linked to the convergence of the conjugate gradient:

x̂ − x̂i = π(Â)(x̂ − x̂0) with π(ξ) =

i∏
j=1

θj
i − ξ

θj
i

(2.5)

3. Choice of optional constraints. The choice of matrix Ĉ is a very accurate
problem which requires a study of the governing factors of the convergence of the conjugate
gradient [11]. The condition number, which is proved to decrease [1] whatever the Ĉ matrix
may be, is not sufficient for a relevant analysis. In the remainder of the paper, we will call
”active” eigenelements that are excited by (i.e. non-orthogonal to) the initial residual and
”effective” active eigenelements that are not yet properly estimated by Ritz’s elements. Only
effective condition number influences the convergence rate: when an eigenvalue is sufficiently
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well approximated inside the Krylov subspace, the conjugate gradient acts as if it had been
suppressed from the resolution process. This explains the superconvergent behaviour of the
conjugate gradient: when highest eigenvalues are sufficiently well approximated by Ritz’s
values, the effective condition number is very low and the convergence rate very high. So a
good way to ensure a decrease of the effective condition number is to put active eigenvectors
of Â inside matrix Ĉ.

However, computing a priori active eigenvectors of a system is as expensive as solving it,
hence in this section we first show, inspiring from [9], how a posteriori computation can be
achieved costlessly when reusing information generated during the conjugate gradient process,
then we propose within the framework of multiple systems resolution to use approximation
of the eigenvectors of previous systems as constraints to accelerate the convergence of current
system.

3.1. Efficient computation of Ritz’s elements. Hessemberg matrix Hi arising
from Lanczos’ procedure is a specific tridiagonal Rayleigh matrix the coefficients of which
can be recovered from the coefficients of the conjugate gradient:

R̂i = (
r̂0

‖r̂0‖
, . . . , (−1)i−1 r̂i−1

‖r̂i−1‖
) orthonormal basis of K̃i(Â, r̂0, Ĉ)

Zi = (
z0

(z0, r0)
, . . . ,

(−1)i−1zi−1√
(zi−1, ri−1)

) M-orthonormal basis of Ki(M
−1A, z0, C)

Hi = R̂
T

i ÂR̂i = ZT
i AZi

Hi = Tridiag(ηj−1, δj , ηj) with ηj =

√
βj−1

j

αj
and δj =

1

αj
+

βj−2
j−1

αj−1

(3.1)

So a tridiagonal Rayleigh matrix can be computed without vector manipulation, and
a specific Lapack procedure can then be used to compute the eigenelements. To have an
action on the non-symmetric preconditioned problem, we define ”transported Ritz’s vectors”
Yi = L−T Ŷi = ZiQ

H
i , they verify the following orthonormalities:

Y T
i AYi = Θi and Y T

i MYi = Idi (3.2)

3.2. Selective reuse of Krylov subspaces. We focussed on the interest of reusing
eigenvectors (or at least good estimations) as constraints. Our strategies are based on the
simple equivalence Ĉ = (ŷj

i ) ⇔ C = (yj
i ) which means that a spectral action can be achieved

acting directly on the preconditioned problem.

We now consider the resolution of a sequence of linear systems Akxk = bk (k � 1 stands
for the number of the linear system, matrices and right hand sides are non-invariant) with
augmented conjugate gradient. We propose two strategies based on the reuse of spectral
information.

The first strategy is a simple total reuse of Ritz’s vectors which is equivalent, since
Range(Yi) = Range(Wi) = Ki(M

−1A, z0, C), to a total reuse of Krylov subspaces: matrix
Ck is built concatenating all previous Krylov subspaces Ck = (W1, . . . , Wk−1) (C1 = 0). As
all the information is reused without selection, this strategy gives the best decrease of the
number of iterations of the conjugate gradient expectable from the reuse of Krylov subspaces.
Of course it quickly leads to huge Ck matrices and expensive computations to handle the

augmented algorithm. Note that when Ak is invariant (∀k, Ak = A), CkT
ACk is a diagonal

matrix and this algorithm is equivalent to a multiple right hand side conjugate gradient [8].

The second strategy aims at reducing the dimension of matrices Ck concentrating the
information stored inside Krylov subspaces into few vectors. It is managed through the
spectral analysis exposed above and the selection of Ritz’s vectors associated to converged
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Ritz’s values. The convergence of the values is estimated computing the values for the last
two iterations and comparing them.

for j � (i + 1), θj
i is converged if

∣∣∣∣∣
θj

i − θj−1
i−1

θj
i

∣∣∣∣∣ � ε (3.3)

4. Numerical assessment. We now assess the reuse of Krylov subspaces on the
computation of the buckling of a clamped-free beam (fig. 4.1). The beam is a composite
structure made up of Saint-Venant–Kirchoff materials, fibers are 1000 times stiffer than the
matrix. It is decomposed into 32 substructures. We use Newton Raphson’s algorithm [10] to
linearize the problem, the resolution is then conducted in 28 linear systems with non-invariant
matrices Kkuk = fk (k is the linear system number). The linear systems are solved with
FETI-2 method equipped with Dirichlet’s preconditioner and superlumped projector.

Figure 4.1: Buckling of the beam

4.1. Application of the reuse of Krylov subspaces to FETI-2. The Finite
Elements Tearing and Interconnecting (FETI) method was first introduced by Farhat and
Roux [4]. It consists in solving with a projected conjugate gradient the system arising from
dual domain decomposition method. FETI-2 [3] solves the same problem with augmented
conjugate gradient. Readers should refer to referenced papers for a complete description, we
only show here the specificity of our strategies applied to FETI-2 method (fig. 4.2). With
notations from [3], the system arising from the condensation writes:

(
FI −GI

−GT
I 0

) (
λ
α

)
=

(
d
−e

)
(4.1)

The first level projection P and initialization λ01 handle floating substructures, second level
projector PC and initialization λ02 handle the augmentation associated to matrix C. Note
that constraints have to be made compatible with the first level projector (PC)T ri = 0. In
the case of FETI algorithm, the augmentation possesses a mechanical interpretation: P T ri

represents the jump of the displacement field between substructures. Constraints matrix C
then ensures a weak continuity of the displacement field. Forming and factorizing the so-called
coarse problem matrix

(
(PC)T F (PC)

)
is a complex operation requiring all-to-all exchanges

between substructures, in a parallel processing context these operations are penalizing then
matrix C has to be chosen as small as possible.

We checked that for this class of problem Dirichlet’s preconditioner is positive for all the
systems. We also verified the imbrication of the kernel of local matrices ∀ (substructure s,

system k) Ker(K(s)k+1
) ⊂ Ker(K(s)k

) which implies that ∀k Range(Gk+1
I ) ⊂ Range(Gk

I ).



SELECTIVE REUSE OF KRYLOV SUBSPACES 423

P = Id − QGI

(
GT

I QGI

)−1
GT

I

PC = Id − (PC)
(
(PC)T FI(PC)

)−1 (PC)T FI

Initialization (λ00 is arbitrary)
λ01 = QGI

(
GT

I QGI

)−1
e λ02 = (PC)

(
(PC)T FI(PC)

)−1 (PC)T d
λ0 = PC(Pλ00 + λ01) + λ02

r0 = d − FIλ0

Iterations i = 0, . . . , s

zi = PCPF̃−1
I PT ri

wi = zi +
i−1∑
j=0

βijwj (w0 = z0)

λi+1 = λi + αiwi βij = − (wj , FIzi)
(wj , FIwj)

ri+1 = ri − αiFIwi αi =
(wi, ri)

(wi, FIwi)

Figure 4.2: Two-level FETI algorithm

So all previous Krylov subspaces are built orthogonally to the Gk
I matrix, hence when us-

ing vectors from Krylov subspaces as constraints we already have P kCk = Ck. Then the
two projectors are decoupled which suppresses time consuming step of making constraints
admissible.

4.2. Performance results. The first point concerns the choice of the ε parameter
introduced in section 3.2 to determine whether Ritz’s values are converged or not. Exper-
iments (e.g. fig. 4.3) showed that the criterion is either very low (> 10−14) or very high
(> 10−8), value ε can then be chosen inside a wide range without modifying the selection,
typically we chose ε = 10−13.

Figures 4.4, 4.5 and 4.6 summarize the action of the reuse of Krylov subspaces through
the resolution of the linear systems. First figure 4.4 shows how effective the selection is: the
number of constraints is quickly divided by a factor 2. Figure 4.5 presents the evolution
of the number of iterations per linear system, the total reuse corresponds to the best result
expectable from the reuse of Krylov subspaces, the number of iterations is divided by a factor
10, which proves the interest of the information stored inside Krylov subspaces. The selective
reuse also proves interesting: with a two-time smaller constraints space, its performance
results are quite near the total reuse. Figure 4.6 shows the performance results in terms
of CPU time: the total reuse is already relevant, the selective reuse since its performance
results in terms of iterations are almost equivalent with a lower number of constraints leads
to impressive gain, it is 60% faster than the non accelerated method.

Figures 4.7 and 4.8 enable us to check the spectral action announced above, they rep-
resent the Ritz’s spectrum for 4 linear systems (the 1st, 5th, 10th and 28th). The selective
reuse filters the highest and the negative values, and suppresses part of mid-range values,
giving better spectral properties for the resolution. Figures 4.9 and 4.10 show how the res-
olution process is improved by the selective reuse: two actions are combined, first a better
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Figure 4.3: Convergence of Ritz’s values Figure 4.4: Action of Selective Reuse:
number of constraints

Figure 4.5: Action of Selective Reuse:
number of iterations

Figure 4.6: Action of Selective Reuse:
CPU time

initialization is found, second the superconvergence is achieved from the beginning of the
resolution.

5. Conclusion. In this paper we considered the resolution of a sequence of linear
systems arising from geometrically nonlinear structural analysis, with a FETI-2 method. We
proposed an algorithm to realize a spectral analysis of linear systems solved with a conjugate
gradient algorithm with positive preconditioner. We showed that the complete reuse of
former Krylov subspaces has already led to good performance results and that a selective
reuse of Ritz vectors associated to Ritz’s values giving good estimates of eigenvalues gave
even better computational performance (up to 60% CPU time gain). Next studies will focuss
on additional selection criteria for the Ritz vectors based on the activity of former vectors for
the resolution of current system, the aim is to be even more selective and to suppress vectors
containing information which is non-relevant for the current system.

We authors acknowledge support from the Centre Informatique National Enseignement
Superieur (CINES) for computational resources.
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