
Fourteenth International Conference on Domain Decomposition Methods
Editors: Ismael Herrera , David E. Keyes, Olof B. Widlund, Robert Yates c©2003 DDM.org

4. Direct Domain Decomposition using the Hierarchical
Matrix Technique

W. Hackbusch1

1. Introduction. In the time when the domain decomposition technique devel-
oped, direct solvers were quite common. We come back to direct methods; however,
the term “direct” has another meaning. The usual understanding of a direct method
is:

Given a matrix A and a vector b,
produce the solution x of Ax = b.

Here, we require a much more mighty procedure:

Given a matrix A and a vector b,

approximate the inverse A−1 and x =
(
A−1

)
∗ b.

The technique of hierarchical matrices allows to perform this step with an almost
optimal storage and operation cost Õ(n) for n×n matrices related to elliptic operators.
The symbol Õ(n) means the order O(n) up to a logarithmic factor, i.e., there is a
(small) number α such that

Õ(n) = O (n logα n) .

In Section 2, we describe the underlying problem of a non-overlapping domain
decomposition and the corresponding system of equations. It is interesting to remark
that

• rough (exterior and) interior boundaries are allowed, i.e., no smoothness condi-
tions on the subdomains or the interior boundary (skeleton) are necessary.

• inside of the subdomains, L∞-coefficients are allowed (i.e., jumping coefficients,
oscillatory coefficients, etc.). There is no need to place the skeleton along jump
lines. A proof concerning robustness against rough boundaries and non-smooth
coefficients is given in [1]. If, however, it happens that the coefficients are piece-
wise constant or analytic in the subdomains, a further improvement is possible
using a new technique of Khoromskij and Melenk [7] (see Subsection 3.2).

The two items mentioned above allow to create the subdomains independent of
smoothness considerations; instead we may use load balancing arguments.

Further advantages will be mentioned in the Section 3, where the direct solution
is explained.

The basic of the solution method are the hierarchical matrices which are already
described in several papers (cf. [4], [5]). An introduction is given in [2]. We give an
outline of the method in Section 4.

1Max-Planck-Institut Mathematik in den Naturwissenschaften, wh@mis.mpg.de

40 HACKBUSCH

Although the method of hierarchical matrices could be applied immediately to the
global problem, the domain decomposition helps to achieve a parallelisation of the
solution process. The details are discussed in Section 5.

We conclude this contribution in Section 6 with numerical example for the inversion
of finite element stiffness matrices. We take an example with extremely non-smooth
coefficients to support the remark above.

Figure 1.1: Domain decomposition with non-smooth interfaces

2. Non-Overlapping Domain Decomposition. Let the domain Ω be decom-
posed into p non-overlapping subdomains Ωi, i = 1, . . . , p (cf. Figure 1.1). The
skeleton Σ consists of the interior interfaces:

Σ :=
(⋃p

i=1
∂Ωi

)
\ ∂Ω.

For a simpler finite element realisation we may assume (in 2D) that Ωi are polygons.
Then Σ is a union of straight lines. In 3D, Σ may consist of flat faces. As mentioned
in the introduction, there is no need for Ωi to form a regular macro element. Later, we
will assume that all Ωi contain a comparable number of degrees of freedom to achieve
a load balance in the parallelisation process.

Let Ii be the index set of interior degrees of freedom in Ωi (the precise definition
of j ∈ Ii is that the corresponding basis function bj satisfies2 supp (bj) ⊂ Ωi). All
remaining indices are associated with the skeleton and its set is denoted by IΣ. Hence,
we arrive at the decomposition of the global index set I into

I = I1 ∪ · · · ∪ Ip ∪ IΣ (disjoint union).

As usual, the total dimension is denoted by

n := #I. (2.1)

2Note that by definition the support supp (bj) is always in Ω, also if the nodal point lies on ∂Ω.

DIRECT DOMAIN DECOMPOSITION USING H-MATRICES 41

The FE system Au = f has the structure

A11 O · · · O A1,Σ

O A22 · · · O A2,Σ

...
...

. . .
...

...
O O · · · App Ap,Σ

AΣ,1 AΣ,2 · · · AΣ,p AΣΣ

u1

u2

...
up

uΣ

 =

f1

f2

...
fp

fΣ

 (2.2)

when we order the unknowns in the sequence I1, . . . , Ip, IΣ.

As usual in domain decomposition, we assume that besides A all submatrices Aii

are invertible, i.e., the subdomain problems are solvable.
In the case of a non-matching domain decomposition (mortar FEM), the elimina-

tion of all slave nodes by means of the mortar condition yields again the system (2.2),
where IΣ is the index set of all mortar nodes (cf. [3]).

3. Direct Solution Process.

3.1. Description of Single Steps. The system (2.2) can be reduced to the
Schur complement equation

SuΣ = gΣ, (3.1)

where

S := AΣΣ −
p∑

i=1

AΣ,iA
−1
ii Ai,Σ, (3.2)

gΣ := fΣ −
p∑

i=1

AΣ,iA
−1
ii fi. (3.3)

The remaining variables ui are the result of

ui := A−1
ii (fi − Ai,ΣuΣ) for i = 1, . . . , p. (3.4)

An obvious solution method which is usually not used because one is afraid of the
bad complexity up to O(n3) of standard solvers is the following:

Step 1a produce the inverse matrix A−1
ii ,

Step 1b form the products AΣ,i ∗
(
A−1

ii

)
and

(
AΣ,iA

−1
ii

)
∗ Ai,Σ,

Step 1c compute the vectors
(
AΣ,iA

−1
ii

)
∗ fi,

Step 2a form the sum S = AΣΣ −
∑p

i=1

(
AΣ,iA

−1
ii Ai,Σ

)
,

Step 2b compute the vector gΣ = fΣ −
∑p

i=1

(
AΣ,iA

−1
ii fi

)
,

Step 3a produce the inverse matrix S−1,

Step 3b compute the vector uΣ =
(
S−1

)
∗ gΣ,

Step 4 compute the vectors ui =
(
A−1

ii

)
∗ [fi − Ai,Σ ∗ uΣ] .

Terms in round brackets are already computed quantities. The necessary operations
are indicated by ◦−1, ∗, −,

∑
.

42 HACKBUSCH

In the sequel we follow the Steps 1-4 with the following modifications: Steps
1a,1b,2a,3a are performed only approximately up to an error ε. Usually3, one wants ε
to be similar to the discretisation error, i.e.,

ε = O(hκ) = O(n−β), (3.5)

where h is the step size (if there is a quasi-uniform one) and κ is the consistency order.
Then β = κ/d holds, where d is the spatial dimension:

Ω ⊂ R
d. (3.6)

In the non-uniform finite element case, one expects an discretisation error O(n−β) for
an appropriate triangulation. In that case ignore the middle term in (3.5).

Allowing approximation errors of order O(ε), the technique of hierarchical matrices
explained in the next section will be able to perform all Steps 1a-4 with storage
and computer time of order Õ(n). Hence, the costs are similar to usual iterative DD
methods. One of the advantages of the direct method is its robustness and the relative
easy implementation. To be precise: It is not so simple to implement the hierarchical
matrix method for the first time, but as soon as one has programmed this method, it
can be used without modification for different FE applications as well as for the Schur
equation SuΣ = gΣ with the (fully populated) matrix S.

Finally we remark that A−1 can be computed in Step 5:

A−1 =

. . .
... · · ·

...
· · · δijA

−1
ii + A−1

ii Ai,ΣS−1AΣ,jA
−1
jj · · · −A−1

ii Ai,ΣS−1

...
. . .

...
· · · −S−1AΣ,jA

−1
jj · · · S−1

 .

However, we should make use of the representation by

A−1 =

A−1
11 O O O

O
. . . O O

O O A−1
pp O

O O O O

 (3.7)

+

A−1
11 A1,Σ

...
A−1

pp Ap,Σ

−I

[
S−1AΣ,1A

−1
11 · · · S−1AΣ,pA

−1
pp −S−1

]
.

3.2. Improvement for Piecewise Smooth Coefficients. We mentioned that
the approach from above works also efficiently if the subproblems corresponding to the
FE matrices Aii involve non-smooth coefficients of the elliptic differential equation.
If, on the other hand, we know that the coefficients in one subdomain are constant (or

3If one performs only the Steps 1a,1b,2a and 3a to get a rough approximation of S−1 for the
purpose of preconditioning, ε may be of fixed order O(1), e.g., ε = 1/10.

DIRECT DOMAIN DECOMPOSITION USING H-MATRICES 43

analytic), one can exploit this fact by applying a more appropriate finite element dis-
cretisation. In [7] a so-called boundary concentrated finite element method is described
which allows to solve the local problem with a number of unknowns proportional to
area(∂Ωi)/hd−1. This number is usually smaller by a factor of h than the number of
degrees of freedom in a classical FEM, although the same resolution is obtained at the
boundary.

We do not discuss this modification in the subdomains in the following, i.e., we
consider a traditional FEM.

4. Hierarchical Matrices. It is to be remarked that the method of hierarchical
matrices does not apply to any matrix but only to those related to elliptic (pseudo-)
differential operators. In our application, Aii as well as their inverse matrices are
related to the local elliptic problem, while S is a nicely behaving pseudo-differential
operator composed from local Steklov operators. Nevertheless, the method is of black-
box character since its description does not depend on specific features of the involved
matrices. The success of this kind of approximation depends only on the ellipticity
properties.

In the following, we give an introduction into the definition and construction of
H-matrices. The interested reader will find more details in [4], [5] and [2].

4.1. The Main Ingredients. We have to introduce

1. the index set I and the geometric properties of its indices;
2. the cluster tree T (I);
3. the block-cluster tree T (I × I);
4. the admissibility criterion;
5. the (minimal admissible) partitioning of the matrix;
6. rank-k matrices;
7. the definition of an H-matrix;
8. the (approximations of the) operations A + B, A ∗ B, A−1;
9. the estimates for the storage and operation costs.

First, we give a preview of these topics. The cluster tree T (I) describes how the
whole index set can be partitioned into smaller pieces, which are needed, e.g., when
we want to define a subblock of a vector. The block-cluster tree T (I×I) does the same
for the matrix. Among the blocks contained in T (I × I) we can choose a collection of
disjoint blocks covering I × I. Then we get a partitioning of the matrix into various
blocks. An example is given in Fig. 4.1.

The choice of this partitioning P is the essential part. It should contain as few
blocks as possible to make the costs as low as possible. On the other hand, the
approximation error must be sufficiently small. For this purpose, all blocks have to
satisfy an admissibility condition. Then, filling all blocks (e.g., in Fig. 4.1) by matrices
of rank smaller or equal some k, we obtain an H-matrix from the class H(P, k). The
results of A + B, A ∗ B, A−1 for A,B ∈ H(P, k) will, in general, not be again in
H(P, k), but they can be approximated in this class by a cost of O(n).

4.2. The Index Set and the Geometrical Data. As input for the algorithm
we only need the description of the index set I (e.g., {1, . . . , n} or list of nodal points,
etc.) and a characteristic subset X(i) ⊂ R

d associated with i ∈ I. For a collocation

44 HACKBUSCH

Figure 4.1: Block partitioning P for the unit circle

method, this may be the nodal point, i.e., X(i) = {xi} . The appropriate choice for a
Galerkin method is

X(i) = supp (φi) , where φi is the FE-basis function associated with i ∈ I. (4.1)

4.3. The Cluster Tree T (I). Formally, the cluster tree T (I) has to satisfy

1. T (I) ⊆ P(I) (i.e., each node of T (I) is a subset of the index set I).

2. I is the root of T (I).

3. If τ ∈ T (I) is a leaf, then #τ = 1 (i.e., the leaves consist only one index, τ = {i}).

4. If τ ∈ T (I) is not a leaf, then it has exactly two sons and is their disjoint union.

All nodes of T (I) are called “clusters”. For each τ ∈ T (I), we denote the set of its
sons by S(τ) ⊂ T (I).

In practice, the condition #τ = 1 is replaced by #τ ≤ CT , e.g., with CT = 32. The
condition for a binary tree (“exactly two sons”) in Part 4 can easily be generalised,
although a binary tree is quite reasonable.

The sets X(i) introduced above can immediately be generalised to all clusters by

X(τ) =
⋃
i∈τ

X(i) ⊂ R
d for all τ ∈ T (I). (4.2)

Using the Euclidean metric in R
d, we define the diameter of a cluster and the distance

of a pair of clusters:

diam (τ) = sup {|x − y| : x, y ∈ X(τ)} for τ ∈ T (I),
dist (τ, σ) = inf {|x − y| : x ∈ X(τ), y ∈ X(σ)} for τ, σ ∈ T (I).

The practical construction of T (I) must take care that the clusters are as compact
as possible, i.e., diam (τ) should be as small as possible for a fixed number #τ of
indices. One possible construction is the recursive halving of bounding boxes as illus-
trated in Fig. 4.2. Note that this procedure applies to any irregular FE-triangulation
in any spatial dimension.

DIRECT DOMAIN DECOMPOSITION USING H-MATRICES 45

Figure 4.2: Dyadic clustering of the unit circle.

4.4. The Block-Cluster Tree T (I×I). The tree T (I×I) is completely defined
by means of T (I) when we use the following canonical choice. Let I × I belong to
T (I × I). For all τ × σ ∈ T (I × I) with τ and σ not being leaves, assign the sons
τ ′ × σ′ to T (I × I), where τ ′ ∈ S(τ) and σ′ ∈ S(σ). Again, we write S(τ × σ) for the
set of sons of τ × σ.

Remark 4.1 a) If T (I) is a binary tree (as described by condition 4 from above),
then T (I × I) is quad-tree.

b) All “blocks” or “block-clusters” b from T (I × I) have the product form b = τ ×σ
with τ, σ ∈ T (I). Indices i ∈ τ belong the rows of b, while j ∈ σ are column indices.

The set T (I × I) provides a rich choice of larger and smaller blocks, which we can
select to construct the partitioning of Subsection 4.6.

4.5. The Admissibility Condition. Let b = τ × σ be a block from T (I × I).
If τ or σ is a leaf in T (I) (i.e., #τ = 1 or #σ = 1), then also b is a leaf in T (I × I).
In this case, b is accepted as “admissible”. Otherwise, we recall diam and dist defined
via (4.2) and require an admissibility condition like

max (diam (τ) ,diam (σ)) ≥ 2η dist (τ, σ) , (4.3)

where, e.g., η may be chosen as 1
2 . Even the weaker requirement

min (diam (τ) ,diam (σ)) ≥ 2η dist (τ, σ)

makes sense. Conditions of this form are known from panel clustering or from matrix
compression in the case of wavelet bases.

It turns out that (4.3) is the appropriate condition to ensure that the rank-k
matrices introduced below will lead to the desired accuracy.

4.6. The Partitioning. A partitioning of I × I is a set P ⊂ T (I × I), so that
all elements (blocks) are disjoint and I × I = ∪b∈P b. The coarsest partitioning is
P = {I × I}, while the finest one consists of all leaves of T (I × I). In the first case
we consider the matrix as one block, in the latter case each entry forms a one-by-one
block.

We say that P is an admissible partitioning, if all b ∈ P are admissible. The
second of the trivial examples is such an admissible partitioning, since by definition

46 HACKBUSCH

one-by-one blocks are admissible. However, the second example leads to the standard
(costly) representation.

To obtain a representation which is as data-sparse as possible but still ensures the
desired accuracy, we choose the admissible partitioning with the minimal number of
blocks. The construction of this optimal P is as follows. Start with P := {I × I}.
Since I × I is definitely not admissible, we divide it into its sons s ∈ S(I × I) and
replace I × I by the sons: P := (P\ {I × I}) ∪ S(I × I). Similarly, we check for every
new b ∈ P, whether it is admissible. If not, P := (P\ {b}) ∪ S(b).

Under mild conditions, one proves that the construction of T (I) by means of
bounding boxes explained above, leads to #P = Õ(n).

4.7. Rk-Matrices. Except when #τ = 1 or #σ = 1, we represent all block
matrices as so-called Rk-matrices represented by 2k vectors aι ∈ R

τ , b�ι ∈ R
σ,

M =
∑k

ι�=1
aιb

�
ι

or in matrix form: M = AB� with A ∈ R
τ,k, B ∈ R

k,σ. Note that all matrices of rank
≤ k can be represented in this form. The storage equals k ∗ (#τ + #σ) .

4.8. H(P, k)-Matrices. For any partition P and all k ∈ N, we define

H(P, k) :=
{
A ∈ R

I×I : rank(A|b) ≤ k for all b ∈ P
}

as the set of hierarchical matrices for the partitioning P of I × I and the maximal
rank k. Here, A|b = (Aij)(i,j)∈b is the block matrix corresponding to b ∈ P. A|b is
represented as Rk-matrix.

There are generalisations i) where the integer k is replaced by a function k : P → N

(variable rank) and ii) where the condition rank(A|b) ≤ k is replaced by the stronger
requirement that A|b belongs to a tensor space Vτ ⊗Vσ with min (dimVτ ,dim Vσ) = k
(see [6]).

4.9. H-Matrix Operations. The simplest operation is the matrix-vector oper-
ation (A, x) �→ A ∗ x. Obviously, subblocks of x must be multiplied by A|b and the
partial results are summed up. Since A|b are Rk-matrices, A|b ∗x|σ needs only simple
scalar products. The overall cost is Õ(n).

The addition of two H(P, k)-matrices can be performed blockwise and yields a
result in H(P, 2k). Truncating all blocks to rank ≤ k (e.g., by means of SVD) gives
the approximate result in H(P, k) with a cost of Õ(n).

The approximative multiplication of two matrices can be performed recursively
exploiting the hierarchical structure of the partitioning P (see [2]). The costs are
again Õ(n).

The block Gauss elimination (of a 2×2 block matrix) allows to reduce the inversion
of the whole matrix to the inversion of the first block and Schur complement together
with additions and multiplications. This yields a recursive algorithm for computing
the inverse matrix approximately with cost Õ(n).

5. Parallelisation.

DIRECT DOMAIN DECOMPOSITION USING H-MATRICES 47

5.1. First Approach. We recall the disjoint splitting of I into the subsets
I1, . . . , Ip, IΣ. For the purpose of load balance we assume that p processors are available
and that the cardinalities #Ii (i = 1, . . . , p) are of similar size, i.e.,

#Ii ∼
n

p
(i = 1, . . . , p) . (5.1)

The computations in Steps 1a-4 of Section 3 contain three different phases:

Phase I Steps 1a-c
Phase II Steps 2a-3b
Phase III Step 4

Obviously, Phases I and III contain completely independent tasks for each i = 1, . . . , p.
Hence, assuming p processors, these phases are parallelisable without any communi-
cation. The work cost for each processor is Õ(#Ii) = Õ(n

p) according to (5.1).
The summation

∑p
i=1 in Steps 2a,b needs log2 (p) steps4 to collect and add the

terms. The computations of the Steps 3a,b are performed on one processor, i.e., no
parallelisation is used in Phase II. The cost of Phase II amounts to Õ(#IΣ).

In Phase III, uΣ has to be copied to each processor. Then Step 4 can be performed
with a cost of Õ(#Ii) = Õ(n

p).
Similarly, the data can be distributed so that all p processors in Phase I,III need

Õ(#Ii) storage, while the one processor of Phase II requires a storage of Õ(#IΣ).
We may add a Phase IV, where Step 5 (computation of A−1) is performed.

For this purpose, the quantities A−1
ii Ai,Σ, S−1

(
AΣ,iA

−1
ii

)
from (3.7) are still to be

computed, while AΣ,iA
−1
ii are already known from Step 1b.

In total, the whole computation of the phases I-III leads to a cost of Õ(n
p)+Õ(#IΣ).

We next assume that subdomains related to Ii are determined such there surface is
of minimal order, i.e., the set IΣ,i = {j ∈ IΣ : j neighboured to some k ∈ Ii} has a

cardinality of O
(
(#Ii)

(d−1)/d
)

= O
(
(n

p)(d−1)/d
)

. Hence,

O(#IΣ) = O

(
p

(
n

p

)(d−1)/d
)

= O
(
p1/dn(d−1)/d

)
, (5.2)

where d is the spatial dimension. Under the assumption (5.2), the work equals
W = Õ

(
n
p + p1/dn(d−1)/d

)
. If n is fixed, the optimal number of processors is p =

O
(
n1/(d+1)

)
and leads to W = Õ

(
nd/(d+1)

)
. If, alternatively, the number p of pro-

cessors is given, the right scaling of n yields n = O
(
pd+1

)
.

We summarise in

Remark 5.1 A parallel treatment in the Phases I and III with p = O(n1/(d+1)) pro-
cessors leads to a work W = Õ(nd/(d+1)). The distributed memory requirements are
also Õ(nd/(d+1)). A possible Phase IV requires a work and local storage of the same
size.

4We remark that the log2 (p) factor can be ignored because of our definition of Õ(·).

48 HACKBUSCH

5.2. Multiple DD Levels in Phase I. In the previous subsection it was as-
sumed that the Steps 1a-c are performed by means of the H-matrix arithmetic. An
alternative is to compute A−1

ii in Step 1a again by a DD approach using a further
subdivision of Ii into Ii,j (j = 1, . . . , qi) and Ii,Σ. Due to the representation (3.7), the
matrix multiplication in Step 1b can be parallel in qi processors. The vector operation
in Step 1c needs O(pi) communications to add up all partial results. The work needed
to perform Steps 1a-c for a particular i is given by Remark 5.1: Under the natural
assumptions from above about the subdivision into Ii,1, . . . , Ii,qi

, Ii,Σ and assuming
qi = O((#Ii)

1/(d+1)), the work for Phase I is reduced to Õ((#Ii)
d/(d+1)) (instead of

Õ(#Ii)).
Assume (5.1) and qi = q = O((n

p)1/(d+1)) for all i, the total work is W =

Õ
(
(n

p)
d

d+1 + p1/dn
d−1

d

)
, which is minimal for p = n

1
d+1+d2 , when W = Õ(n

d2

d+1+d2).

Remark 5.2 a) The parallel two-level DD approach as described above reduces the

work and storage to Õ(n
d2

d+1+d2), where P = pq = O(n
d+1

d+1+d2) processors are used.
These exponents are 4

7 and 3
7 in the case of d = 2. Note that three different kinds of

parallelism appear: i) there are P = pq problems to be solved in parallel for the index
sets Ii,j (i = 1, . . . , p and j = 1, . . . , q) , ii) p tasks on Ii,Σ, iii) 1 task on IΣ.

b) There is an obvious generalisation to an L-level DD approach. The exponents

for the three-level case are W = Õ(n
d3

(d+1)(1+d2)), P = O(n
d+1+d2

(d+1)(1+d2)). The numbers
for d = 2 and L = 3 are W = Õ(n

8
15) and P = O(n

7
15). For general L, W = Õ(nωL)

and P = O(n1−ωL), where the exponents ωL converges to lim ωL = d−1
d , i.e.,

W → Õ(n
d−1

d), P → O(n
1
d).

5.3. DD in Phase II. In the previous subsection, we have improved the per-
formance in Phase I, while Phase II (Steps 2a-3b) remains unparallelised. The only
side effect was that the number p of subdomains (of the first level) could be chosen
smaller so that #IΣ was decreasing.

Now we also parallelise Phase II, but it turns out that this approach is equivalent
with the approach in Subsection 5.2. Consider a non-overlapping domain decompo-
sition of Ω by Ωi, i = 1, . . . , p, which is organised in a hierarchical way, i.e., there is
a coarser decomposition Ω̂k, k = 1, . . . ,K, so that Ω̂k ⊃

⋃
i∈Jk

Ωi for disjoint subsets
satisfying

⋃K
k=1 Jk = {1, . . . , p}.

Ω1 Ω2

Ω3 Ω4

Ω5 Ω6

Ω7 Ω8

Ω9 Ω10

Ω11 Ω12

Ω13 Ω14

Ω15 Ω16

Coarse DD (double lines) and fine DD (single lines)

In the picture above, the first coarse subset is Ω̂1 corresponding to the fine subsets
Ωi for i ∈ J1 = {1, . . . , 4}. The skeleton Σ̂ of the coarse domain decomposition (double
lines in the picture) is a subset of the skeleton Σ of the fine domain decomposition:

DIRECT DOMAIN DECOMPOSITION USING H-MATRICES 49

Σ̂ ⊂ Σ. The set Σ\Σ̂ consists of non-connected parts Σk ⊂ Ω̂k, k = 1, . . . , K. The
Schur complement system corresponding to Σ has again the structure of system (2.2),
where now the sets I1, . . . , Ip, IΣ correspond to Σ1, . . . ,Σp, Σ̂. Hence, the methods from
Subsection 5.1 apply again. The multiple application can be done as in Subsection
5.2.

Remark 5.3 The Schur complement system for the skeleton Σ̂ from above can (iden-
tically) obtained in three different ways: a) eliminate directly all interior nodes in
Ω̂k, k = 1, . . . ,K; b) follow Subsection 5.2 and eliminate the interior nodes in Ω̂k

by means of the secondary domain decomposition by Ωi, i ∈ Jk; c) compute first the
Schur complement system for the finer skeleton Σ and eliminate the nodes from Σk,
k = 1, . . . ,K. The approaches b) and c) differ only in the ordering of the unknowns.

6. Numerical Example. Since the critical question is the ability to compute
the approximate inverse of a FE matrix, we give numerical results for this step. Fur-
thermore, we choose an example with jumping coefficients.

Consider the differential equation

−div (σ(x)∇u(x)) = f(x) in Ω = [0, 1]2,
u = 0 on Γ = ∂Ω,

where the function σ : R
2 → R>0 defined on Ω has values depicted in the following

figure:

σ=1

σ=100

σ=0.01

σ(x, y) =

0.01 |x + y − 1| < 0.05 or
(0.1 ≤ ‖(x, y)‖ < 0.2)
and (|x − y| ≥ 0.05)

100 |x − y| < 0.05 or
(0.3 ≤ ‖(x, y)‖ < 0.4)
and (|x + y − 1| ≥ 0.05)

1 otherwise

We introduce a regular finite element discretisation which leads to the sparse n × n
matrix, where n ∈ {322, 642, 1282, 2562}. The inversion algorithm applied to A yields
the approximation A−1

H . The relative error ‖A−1 −A−1
H ‖2/‖A−1‖2 is ≤ ‖I −A−1

H A‖2.
The later values are given in

50 HACKBUSCH

n = degree of freedom
k 322 642 1282 2562

1 3.5+1 1.1+2 3.1+2 9.5+2
2 2.4-0 1.7+1 1.3+2 4.3+2
3 6.0-1 3.9-0 1.3+1 5.4+1
4 9.4-2 1.0-0 3.4-0 1.0+1
5 2.6-2 2.8-1 7.6-1 6.6-0
6 1.1-3 7.7-2 2.8-1 1.3-0
7 3.9-5 2.1-2 4.8-2 2.3-1
8 9.6-6 1.3-3 1.6-2 4.2-2
9 7.8-6 4.5-4 3.4-3 6.2-3
10 7.0-7 2.9-4 9.7-4 2.5-3
15 5.1-12 7.9-9 8.3-7 1.6-6
20 5.9-12 2.5-11 4.5-9 6.3-9

Due to the multiplication by A, these values increase with n like ‖I − A−1
H A‖2 ≈

n
10 ∗ 0.26k, confirming the exponential convergence with respect to the rank k. Note
that equal approximation errors are obtained when k is chosen proportional to log n.

Quite similar numbers as above are obtained in the case of a differential equa-
tion with smooth coefficient σ. This underlines that the smoothness or regularity of
the boundary value problem does not deteriorate the approximation by H-matrices.
Tests with irregular triangulations in more complicated domains give again similar
approximations.

Further examples can be seen in [1].

Acknowledgment. The numerical tests from the previous section are produced by
Dr. L. Grasedyck (Leipzig).

REFERENCES

[1] M. Bebendorf and W. Hackbusch. Existence of H-matrix approximants to the inverse FE-matrix
of elliptic operators with L∞-coefficients. Technical Report 21, Max-Planck-Institut für
Mathematik in den Naturwissenschaften, Leipzig, 2002.

[2] S. Börm, L. Grasedyck, and W. Hackbusch. Introduction to hierarchical matrices with applica-
tions. Technical Report 18, Max-Planck-Institut für Mathematik in den Naturwissenschaften,
Leipzig, 2002.

[3] D. Braess, M. Dryja, and W. Hackbusch. Grid transfer for nonconforming FE-discretisations
with application to non-matching grids. Computing, 63:1–25, 1999.

[4] W. Hackbusch. A sparse matrix arithmetic based on H-matrices. Part I: Introduction to H-
matrices. Computing, 62:89–108, 1999.

[5] W. Hackbusch and B. Khoromskij. A sparse H-matrix arithmetic. Part II: Application to multi-
dimensional problems. Computing, 64:21–47, 2000.

[6] W. Hackbusch, B. Khoromskij, and S. A. Sauter. On H2-matrices. In H.-J. Bungartz, R. H. W.
Hoppe, and C. Zenger, editors, Lectures on Applied Mathematics, pages 9–29. Springer-Verlag
Berlin, 2000.

[7] B. Khoromskij and J. M. Melenk. Boundary concentrated finite element methods. Technical
Report 45, Max-Planck-Institut für Mathematik in den Naturwissenschaften, 2001.

