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22. Unified Theory of Domain Decomposition Methods

I. Herrera1

1. Introduction. Domain Decomposition Methods (DDM) have been derived by Her-
rera using a unifying concept, which consists in viewing DDM as procedures for gathering
information at the internal boundary (Σ) of a partition, sufficient for defining well-posed
problems at each one of its subdomains. Two broad categories of Domain Decomposition
Methods are identified in this manner: ’direct’ and ’indirect (or Trefftz-Herrera)’ methods.
Direct methods are usually understood as procedures for putting together local solutions,
just as bricks, to build the global solution. However, for direct methods the point of view
adopted by the unified theory, here presented, is different: the local solutions are used, as
means for establishing compatibility relations that the global solution of the problem consid-
ered must fulfill. In Trefftz-Herrera methods, on the other hand, local solutions are used in
an indirect manner; as specialized test functions with the property of supplying information
on Σ, exclusively. Important features of Herrera’s unified theory are the use, throughout
it, of ”fully discontinuous functions” and the treatment of a general boundary value prob-
lem with prescribed jumps. The generality of the resulting theory is remarkable, because it
is applicable to any partial (or ordinary) differential equation or system of such equations,
which is linear, independently of its type and with possibly discontinuous coefficients. The
developments that have been carried out, thus far in this framework, have implications along
two broad lines: as tools for incorporating parallel processing in the modeling of continuous
systems and as an elegant and efficient way of formulating numerical methods from a domain
decomposition perspective. In addition, the theory supplies a systematic framework for the
application of fully discontinuous functions in the treatment of partial differential equations.

This paper is part of a sequence of papers, contained in these Proceedings, devoted to
present, and further advance, this unified theory of Domain Decomposition Methods (DDM)
and some developments associated with it. DDM have received much attention in recent
years2, mainly because they supply very effective means for incorporating parallel processing
in computational models of continuous systems. Another aspect that must be stressed is that
it is useful to analyze numerical methods for partial differential equations from a domain-
decomposition perspective, since the ideas related to domain decomposition are quite basic
for them. Indeed, developing numerical procedures as accurate as desired in small regions is
an easy task that can be performed by many numerical schemes and, once this has been done,
the remaining problem is essentially the same as that of Domain Decomposition Methods.
In this respect, it is useful to recall the main objective of DDM:

Given a domain Ω and one of its partitions (Fig. 1.1), to obtain the solution of a boundary
value problem defined on it (the ’global problem’), by solving problems formulated on the
subdomains of the partition (the ’local problems’), exclusively. In what follows the subdomains
of the partition will be denoted by Ωi(i = 1, ..., E) and the internal boundary, which separates
the subdomains from each other, will be Σ.

Herrera has proposed recently a unified theory of DDM [15],[14], in which most of the
known methods may be subsumed, supplying more general formulations of them and hinting
new procedures that should be investigated in the future. The sequence of papers mentioned
above, intends to present briefly such theory in its different aspects. The present paper
contains an exposition of the unified theory. Trefftz-Herrera Method is given in [20], while
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Figure 1.1: Partition of the domain Ω
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direct methods are described in [9]. Applications to elliptic equations are presented in [6],[22]
and [5] -second order equations are treated in [6] and the biharmonic equation in [5]-.

2. Some Unifying Concepts. Herrera’s theory is formulated in function spaces
whose elements are generally discontinuous, and the theory supplies systematic procedures for
applying discontinuous functions in the numerical treatment of partial differential equations.
Such function spaces have the following general form:

D̂ (Ω) ≡ D (Ω1) ⊕ ... ⊕ D (ΩE) ; (2.1)

If u ∈ D̂ (Ω), then u ≡ (u1, ..., uE) where ui ∈ D (Ωi), i = 1, ..., E. Generally, when
variational formulations are considered, as in the theory of indirect methods, two such spaces
are introduced; namely, the space of trial or base functions D̂1 (Ω) and the space of test or
weighting functions D̂2 (Ω). When D (Ωi), i = 1, ..., E, are Sobolev spaces, a special kind
of Sobolev space, Ĥ

s (Ω), is obtained: Ĥ
s (Ω) ≡ H

s (Ω1) ⊕ ... ⊕ H
s (ΩE). Of course, more

complicated combinations are possible.

In addition, the theory deals with a very general boundary value problem, the Boundary
Value Problem with prescribed Jumps (the BVPJ), in which, in addition to boundary con-
ditions on the external boundary, ∂Ω, jumps are prescribed across the internal boundary Σ.
And it is also applicable when the coefficients of the differential operators are discontinuous
across Σ. The general BVPJ considered by the theory is type-independent and has the form

Lu = fΩ; in Ωi i = 1, ..., E (2.2)

Bju = g∂j ; on ∂Ω (2.3)

[Jku] = jΣk; on Σ (2.4)

Here L is a differential operator of any type; in particular it can be elliptic, hyperbolic
or parabolic. Furthermore, it can be vector-valued and therefore the theory includes systems
of equations and not just a single equation. The solution of the BVPJ will be denoted by
u ≡ (u1, ..., uE). In this setting, the objective of Domain Decomposition Methods is to find
ui ∈ D (Ωi), for i = 1, ..., E. The unified theory is based on the following unifying principle:

Domain Decomposition Methods are procedures for gathering information, on the internal
boundary Σ, sufficient for defining well-posed local problems in each one of the subdomains.
Then it is possible to reconstruct the solution in the interior of the subdomains, ui ∈ D (Ωi),
for i = 1, ..., E by solving local problems exclusively.

3. The Sought Information. The information that one deals with, when formu-
lating and treating partial differential equations (i.e., the BVPJ), is classified in two broad
categories: ’data of the problem’ and ’complementary information’. In turn, three classes of
data can be distinguished: data in the interior of the subdomains of the partition (given by
the differential equation, which in the BVPJ is fulfilled in the interior of the subdomains,
exclusively), the data on the external boundary (Bju, on ∂Ω) and the data on the
internal boundary (namely, [Jku], on Σ). The complementary information can be classi-
fied in a similar fashion: the values of the sought solution in the interior of the subdomains
(ui ∈ D (Ωi), for i = 1, ..., E); the complementary information on the outer boundary (for
example, the normal derivative in the case of Dirichlet problems for Laplace’s equation);
and the complementary information on the internal boundary Σ (for example, the average
of the function and the average of the normal derivative across the discontinuity for ellip-
tic problems of second order [6]). In the unified theory of DDM, a target of information,
which is contained in the complementary information on Σ, is defined; it is called ’the sought
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information’. It is required that the choice of the sought information fulfills the following
assumption:

when ’the sought information’ is complemented with the data of the problem, there is
sufficient information available for defining well-posed problems in each one of the subdomains
of the partition.

In general, however, the sought information may satisfy this property and yet be redundant,
in the sense that if all of it is used simultaneously together with the data of the problem,
ill-posed problems are obtained. Consider for example, a Dirichlet problem of an elliptic-
type second order equation (see [6]), for which the jumps of the function and of its normal
derivative have been prescribed. If for such problem the sought information is taken to be
the average of the function -i.e., (u+ + u−) /2-, and the average of the normal derivative
-i.e., 1

2
∂ (u+ + u−) /∂n, on Σ-, then it may be seen that it contains redundant information.

Indeed, u+ = 1
2

(u+ + u−) + 1
2

(u+ − u−), u− = 1
2

(u+ + u−) − 1
2

(u+ − u−), and a similar
relation holds for the normal derivatives. Therefore, if the ’sought information’ and the ’data
of the problem’ are used simultaneously, one may derive not only the value of the BVPJ solu-
tion on the boundary of each one of the subdomains, but also the normal derivative, at least
in a non-void section of those boundaries. As it is well known, this is an ill-posed problem,
because Dirichlet problem is already well-posed in each one of the subdomains. Thus, the
sought information contains redundant information in this case.

Generally, in the numerical treatment of partial differential equations, efficiency requires
eliminating redundant information. This fact motivates the following definition:

The sought information is ’optimal’ when there is a family of well-posed problems -one
for each subdomain of the partition- which uses all the sought information, together with the
data of the BVPJ.

Analysis of existing methods reveals that there are some for which the sought information
is optimal and others for which this is not the case. In general, except for the simple case of
first order equations, methods for which the sought information is optimal are overlapping.

4. Direct and Indirect Methods. There are two main procedures for gathering
the sought information on Σ: ’direct’ and ’indirect (or Trefftz-Herrera)’ methods. Both
of them derive the sought information, on Σ, from compatibility conditions that the global
solution of the BVPJ must satisfy locally and the local solutions are applied precisely for
deriving such compatibility conditions. The global system of equations, for the sought infor-
mation, is constructed in this manner. Trefftz-Herrera methods were introduced in numerical
analysis by Herrera et al. [10], [16], [11], [4], [17], [12], [13] and [19], and its distinguishing
feature is the use of specialized test functions which have the property of yielding any desired
information on Σ. The guidelines for the construction of such weighting functions is supplied
by a special kind of Green’s formulas (Green-Herrera formulas), formulated in spaces of fully
discontinuous functions [10],[16],[17], which permit analyzing the information on Σ, contained
in approximate solutions. Using Green-Herrera formulas it has been possible to give a very
general formulation of Indirect Methods in terms of a variational principle possessing great
generality. This is Eqs. (7.4),(7.7) of reference [20](see also [19]), which corresponds to an In-
vited Plenary Talk of this Conference that was devoted to a full description of Trefftz-Herrera
Methods and is contained in these Proceedings.

Conventional descriptions of Direct Methods present them as procedures for assembling,
just as bricks, local solutions in order to build the global one. When these methods are
formulated using the unified theory approach, direct methods derive the sought information,
on Σ, from compatibility conditions that the global solution of the BVPJ must satisfy locally
[9] and the local solutions are applied precisely for deriving such compatibility conditions. An
important difference between direct and Trefftz-Herrera methods is that in the latter local
solutions of equations formulated in terms of the adjoint differential operator are used, while
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in the former such equations are formulated in terms of the original differential operator.
To finish this Section some general remarks are in order. In the methods of the unified

theory the only information that is obtained when solving the global problem refers to in-
formation on the internal boundary Σ and no information at all is obtained in the interior
of the subdomains. If such information is desired, it can be derived solving the well-posed
local problems that are obtained in the manner explained before. When the unified theory is
applied as a discretization procedure, the process described above for deriving the solution
in the interior of the subdomains of the partition, which can be carried out by any numerical
method, is referred as ’optimal interpolation’. This is in agreement with, and supplements,
the nomenclature that has been used in some past work, in which the specialized test func-
tions that supply information at the internal boundary exclusively, are referred as optimal
test functions [3].

5. General Conclusions. An elegant framework for Domain Decomposition Meth-
ods, which is quite general and simple, has been presented. The generality of the methodolo-
gies must be stressed, since they are applicable to any linear differential equation, or system
of such equations and to problems with prescribed jumps and with discontinuous coefficients.
In addition, the theory supplies systematic procedures for applying discontinuous functions
in the numerical treatment of partial differential equations. Even more, its applicability is
type-independent. Thus, it is not only applicable to elliptic equations, but also to hyperbolic
and parabolic ones.

Thus far, DDM have been mainly applied as a tool for parallelizing numerical models
of continuous systems [21]. However, Herrera’s Unified Theory permits developing wide
classes of numerical methods with many attractive features [19]. In addition, we claim that
this theory subsumes most of the existing methods of domain decomposition. Using its
framework Schwarz and Steklov-Poincaré methods were incorporated in this framework in [18]
and [19], respectively, while Mixed Methods were derived in [17]. The theory also implies wide
generalizations of the Projection Decomposition Method [1]. We suspect that the capacity
of using fully discontinuous functions systematically -and the foundations of such capacity
is one of the contributions of the theory- permits eliminating Lagrange multipliers in many
instances and that it also has a bearing on partitions of unity and its applications. This,
however, remains to be shown. Other subjects that should be investigated in the future are
the implications of the unified theory on Mortar [2] and FETI methods [7],[8].
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