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5. The Indirect Approach To Domain Decomposition

I. Herrera1, R. Yates,2 M.A. Diaz3

1. Introduction. The main objective of DDM is, when a domain Ω and one of
its partitions are given, to obtain the solution of a boundary value problem defined
on it (the ’global problem’), by solving problems formulated on the subdomains of
the partition (the ’local problems’), exclusively. This objective can be achieved if
sufficient information about the global solution is known, on the internal boundary
(which separates the subdomains from each other and to be denoted by Σ), for defining
well-posed problems in each one of the subdomains of the partition. Herrera proposed
recently a general and unifying theory [15],[14], in which DDM are interpreted as
methods for gathering such information. According to it, one defines an information-
target on Σ, referred as the sought information [15], and the objective of DDM is
to obtain such information. There are two main procedures for gathering the sought
information, which yield two broad categories of DDM: direct methods and indirect
(or Trefftz-Herrera) methods. This paper belongs to a sequence of papers [15],[6],[5],
[4],[21], included in this Proceedings, in which an overview of Herrera’s unified theory
is given. In particular, the present paper is devoted to a systematic presentation of
indirect methods, and a companion paper deals with direct methods [6].

Herrera et al. [18],[9],[16], [10],[11],[17], [13] introduced indirect methods in numer-
ical analysis. They are based on the Herrera’s Algebraic Theory of boundary value
problems [9],[10],[8]. Numerical procedures such as Localized Adjoint Methods (LAM)
and Eulerian-Lagrangian LAM (ELLAM) are representative applications [17],[3]. A
large number of transport problems in several dimensions have been treated using
ELLAM [20]. Indirect Methods of domain decomposition stem from the following
observation: when the method of weighted residuals is applied, the information about
the exact solution that is contained in the approximate one is determined by the fam-
ily of test functions that is used, exclusively [9],[16],[10]. This opens the possibility
of constructing and applying a special kind of weighting functions, which have the
property of yielding the sought information at the internal boundary Σ, exclusively,
as it is done in Trefftz-Herrera Methods.

The construction of such weighting functions requires having available an instru-
ment of analysis of the information supplied by different test functions. The natural
framework for such analysis is given by Green’s formulas. However, the conventional
approach to this matter is not sufficiently informative for applications to domain de-
composition methods. Indeed, in the usual approach [19], one considers the Green’s
formula

∫
Ω

wLudx =
∫

Ω

uL∗wdx (1.1)
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mdiaz@tonatiuh.igeofcu.unam.mx



52 HERRERA, YATES, DIAZ

where Ω is a given region and, L and L∗ are a differential operator and its adjoint,
respectively. Then, given a family of functions

{
w1, ..., wN

}
, any approximate solu-

tion, û, obtained with the method of weighted residuals, and with such family of test
functions, fulfills

∫
Ω

wα (Lû − fΩ) dx =
∫

Ω

wα (Lû − Lu) dx =
∫

Ω

(û − u)L∗wαdx = 0 (1.2)

In this manner, the conclusion is reached that the error u− û is orthogonal to the
space spanned by the family of functions

{
L∗w1, ...,L∗wN

}
. However, this result is of

little use when dealing with domain decomposition methods. For them, it is necessary
to have a theory which is applicable to situations in which both trial and test functions
may be discontinuous simultaneously. This was done introducing a kind of Green’s
formulas (”Green-Herrera formulas”) especially developed for operators defined on
discontinuous fields (see [9],[16],[10]). They are based on the Herrera’s abstract al-
gebraic theory of boundary value problems, which possesses great generality; it was
presented in a preliminary form in [8] and, later, further developed [9],[16],[10] and
applied to the numerical treatment of differential equations [17],[12]. This kind of
Green’s formulas have been formulated in a special kind of function-spaces, in which
their elements have jump discontinuities across the internal boundary. In particular,
a special class of Sobolev spaces is constructed in this manner [2].

2. Notation. Consider a region Ω, with boundary ∂Ω and a partition {Ω1, ...,ΩE}
of Ω. Let

Σ ≡
⋃
i�=j

(
Ω̄i ∩ Ω̄j

)
(2.1)

then Σ will be referred as the ’internal boundary’ and ∂Ω as the ’external (or outer)
boundary’. For each i = 1, ..., E, D1 (Ωi) and D2 (Ωi) will be two linear spaces of
functions defined on Ωi; then the spaces of trial (or base) and test (or weighting)
functions are defined to be

D̂1 (Ω) ≡ D1 (Ω1) ⊕ ... ⊕ D1 (ΩE) ; (2.2)

and

D̂2 (Ω) ≡ D2 (Ω1) ⊕ ... ⊕ D2 (ΩE) ; (2.3)

respectively. In what follows we write D̂1 and D̂2, instead of D̂1 (Ω) and D̂2 (Ω), in
order to simplify the notation. Functions belonging either to D̂1 and D̂2, are finite
sequences of functions belonging to each one of the sub-domains of the partition. It
will be assumed that for each i = 1, ..., E, and α = 1, 2, the traces on Σ of functions
belonging Dα (Ωi) exist, and the jump and average of test or weighting functions is
defined by

[u] ≡ u+ − u−; and u̇ ≡ (u+ + u−)/2; (2.4)
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where u+ and u− are the traces from one and the other side of Σ. Here, the unit
normal vector to Σ is chosen arbitrarily, but the convention is such that it points
towards the positive side of Σ. The special class of Sobolev spaces defined by

Ĥ
s (Ω) ≡ H

s (Ω1) ⊕ ... ⊕ H
s (ΩE) ; (2.5)

has special interest and was considered in [13].

3. Scope. It must be emphasized that the scope of the general theory presented
in this paper, Herrera’s unified theory of domain decomposition [15],[14], is quite
wide, since it is applicable to any linear partial differential equation or system of such
equations independently of its type. It handles problems with prescribed jumps on the
internal boundary, Σ, and discontinuous equation coefficients, although every kind of
equation has its own peculiarities. In particular, we would like to mention explicitly
the following:

1. A SINGLE EQUATION

(a) Elliptic

i. Second Order

ii. Higher-Order

A. Biharmonic

(b) Parabolic

i. Heat Equation

(c) Hyperbolic

i. Wave Equation

2. SYSTEMS OF EQUATIONS

(a) Stokes Problems

(b) Mixed Methods (Raviart-Thomas)

(c) Elasticity

The general form of the boundary value problem with prescribed jumps (BVPJ),
to be considered, is

Lu = LuΩ ≡ fΩ; in Ωi i = 1, ..., E (3.1)

Bju = Bju∂ ≡ gj ; on ∂Ω (3.2)

and

[Jku] = [JkuΣ] ≡ jk; on Σ (3.3)
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where the B′
js and J ′

ks are certain differential operators (the j′s and k′s run over
suitable finite ranges of natural numbers). Here, in addition, uΩ ≡

(
u1

Ω, ..., uE
Ω

)
,

u∂ and uΣ are given functions belonging to D̂1 (i.e., ’trial functions’ ), which fulfill
Eqs.(2.1), (2.2) and (2.3), respectively. Moreover, fΩ, gj and jk may be defined by
Eqs. (2.1) to (2.3).

In what follows, it will be assumed that the boundary conditions and jump condi-
tions of this BVPJ can be brought into the point-wise variational form:

B (u,w) = B (u∂ , w) ≡ g∂ (w) ; ∀w ∈ D̂2 (3.4)

and

J (u,w) = J (uΣ, w) ≡ jΣ (w) ; ∀w ∈ D̂2 (3.5)

where B (u,w) and J (u,w), are bilinear functions defined point-wise.

4. Trefftz-Herrera Approach to DDM. Let us recall a few basic points of
Herrera’s unified theory (see [15]). The information that one deals with, when formu-
lating and treating partial differential equations (i.e., the BVPJ), is classified in two
broad categories: ’data of the problem’ and ’complementary information’. In turn,
three classes of data can be distinguished: data in the interior of the subdomains
of the partition (given by the differential equation, which in the BVPJ is fulfilled
in the interior of the subdomains, exclusively), the data on the external boundary
(Bju, on ∂Ω) and the data on the internal boundary (namely, [Jku], on Σ). The
complementary information can be classified in a similar fashion: the values of the
sought solution in the interior of the subdomains (ui ∈ D (Ωi), for i = 1, ..., E); the
complementary information on the outer boundary (for example, the normal deriva-
tive in the case of Dirichlet problems for Laplace’s equation); and the complementary
information on the internal boundary Σ (for example, the average of the function and
the average of the normal derivative across the discontinuity for elliptic problems of
second order [5]). In the unified theory of DDM, a target of information, which is
contained in the complementary information on Σ, is defined; it is called ’the sought
information’. It is required that the sought information, when complemented with the
data of the problem, be sufficient for determining uniquely the solution of BVPJ in
each one of the subdomains of the partition.

In general, however, the sought information may satisfy this property and yet be
redundant, in the sense that if all of it is used simultaneously together with the data
of the problem, ill-posed problems are obtained. Consider for example, a Dirichlet
problem of an elliptic-type second order equation (see [5]), for which the jumps of the
function and of its normal derivative have been prescribed. If for such problem the
sought information is taken to be the average of the function -i.e., (u+ + u−) /2- and
the average of the normal derivative -i.e., 1

2∂ (u+ + u−) /∂n, on Σ-, then it may be
seen that it contains redundant information. Indeed, u+ = 1

2 (u+ + u−)+ 1
2 (u+ − u−),

u− = 1
2 (u+ + u−) − 1

2 (u+ − u−), and a similar relation holds for the normal deriva-
tives. Therefore, if the ’sought information’ and the ’data of the problem’ are used
simultaneously, one may derive not only the value of the BVPJ solution on the bound-
ary of each one of the subdomains, but also the normal derivative, at least in a non-void
section of those boundaries. As it is well known, this is an ill-posed problem, because
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Dirichlet problem is already well-posed in each one of the subdomains. Thus, the
sought information contains redundant information in this case.

Generally, in the numerical treatment of partial differential equations, efficiency
requires eliminating redundant information. Due to this fact, when the choice of the
sought information is such that there is a family of well-posed problems -one for each
subdomain of the partition- which uses all the sought information, together with all
the data of the BVPJ, such choice is said to be ’optimal’. Once the information-target
constituted by the sought information has been chosen, it is necessary to design a
procedure for gathering it. There are two main ways of proceeding to achieve this goal:
direct methods and indirect (or Trefftz-Herrera) methods. In the following Sections
the general framework for designing indirect procedures is constructed.

Firstly, Green-Herrera formulas, which were originally derived in 1985 [9],[16],[10]
will be presented. They are equations that relate the ’data of the problem’ with ’the
complementary information’. Then, a general variational principle of the usual kind,
in terms of the data of the problem, which applies to any BVPJ, is introduced. Using
Green-Herrera formula the variational formulation in terms of the data of the prob-
lem, is transformed into one in terms of the complementary information. Among the
complementary information the sought information is singled out and the conditions
that the test functions must satisfy in order to eliminate all the complementary infor-
mation, except the sought information, are identified. When the variational principle
in terms of the complementary information is applied, with weighting functions that
fulfill such conditions, a variational principle which characterizes the sought informa-
tion is derived. This principle provides a very general, although somewhat abstract,
basis of Trefftz-Herrera Method (this is given by Theorem 7.1 Eq. 7.4).

5. Green-Herrera Formulas. To start, let L and L∗ be a differential operator
and its formal adjoint; then there exists a vector-valued bilinear function D, which
satisfies

wLu − uL∗w ≡ ∇ · D(u,w) (5.1)

It will also be assumed that there are bilinear functions B(u,w), C(w, u), J (u,w)
and K(w, u), the first two defined on ∂Ω and the last two on Σ, such that

D(u,w) · n = B(u,w) − C(w, u); on ∂Ω (5.2)

and

−[D(u,w) · n] = J (u,w) −K(w, u); on Σ (5.3)

Generally, the definitions of B and C depend on the kind of boundary conditions
and the ”smoothness criterion” of the specific problem considered [9],[16]. For the case
when the coefficients of the differential operators are continuous, Herrera has given
very general formulas for J and K [18]; they are:

J (u,w) = −D([u], ẇ) · n and K(w, u) = D(u̇, [w]) · n (5.4)

Applying the generalized divergence theorem [2], this implies the following Green-
Herrera formula [18]:
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∫
Ω

wLudx −
∫

∂Ω
B(u,w)dx −

∫
Σ
J (u,w)dx

=
∫
Ω

uL∗wdx −
∫

∂Ω
C∗(u,w)dx −

∫
Σ
K∗(u,w)dx

(5.5)

Introduce the following notation:

〈Pu,w〉 =
∫

Ω

wLudx; 〈Q∗u,w〉 =
∫

Ω

uL∗wdx (5.6)

〈Bu,w〉 =
∫

∂Ω

B(u,w)dx; 〈C∗u,w〉 =
∫

∂Ω

C∗(u,w)dx (5.7)

〈Ju,w〉 =
∫

Σ

J (u,w)dx; 〈K∗u,w〉 =
∫

Σ

K∗(u,w)dx (5.8)

With these definitions, each one of P, B, J, Q∗, C∗ and K∗, are real-valued
bilinear functionals defined on D̂1 × D̂2, and Eq.(5.5) can be written as

〈(P − B − J)u,w〉 ≡ 〈(Q∗ − C∗ − K∗)u,w〉; ∀(u,w) ∈ D̂1 × D̂2 (5.9)

or more briefly

P − B − J ≡ Q∗ − C∗ − K∗; (5.10)

6. Variational Formulations of the Problem with Prescribed Jumps. A
weak formulation of the BVPJ is

〈(P − B − J)u,w〉 ≡ 〈f − g − j, w〉; ∀w ∈ D̂2 (6.1)

where f , g and j ∈ D∗
2 . This equation is equivalent to

〈(Q∗ − C∗ − K∗)u,w〉 ≡ 〈f − g − j, w〉; ∀w ∈ D̂2 (6.2)

by virtue of Green-Herrera formula of Eq. (5.10). Necessary conditions for the exis-
tence of solution of this problem is that there exist uΩ ∈ D̂1, u∂ ∈ D̂1 and uΣ ∈ D̂1,
such that:

f ≡ PuΩ, g ≡ Bu∂ and j ≡ JuΣ (6.3)

Thus, it is assumed that such functions exist. From now on, the following notation
is adopted: u ∈ D̂1 will be a solution of the BVPJ, which is assumed to exist and
to be unique; therefore, u ∈ D̂1 fulfills Eq. (6.1). Observe that Eqs. (6.1) and (6.2)
supply two different but equivalent variational formulations of the BVPJ. The first one
will be referred as the ’variational formulation in terms of the data’, while the second
one will be referred as the ’variational formulation in terms of the complementary
information’ (this latter variational principle was introduced in [18] with the title
”variational formulation in terms of the sought information” but it is more convenient
to reserve such name for another formulation that will be introduced later).

Eqs. (6.1) and (6.2), can also be written as equalities between linear funtionals:

(P − B − J)u = f − g − j; (6.4)
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and

(Q∗ − C∗ − K∗)u = f − g − j; (6.5)

respectively.

7. Variational Formulation of Trefftz-Herrera Method. A first step to de-
rive Trefftz-Herrera procedures is to use the variational formulation in terms of the
complementary information of Eq.(6.2) to establish conditions that a weighting func-
tion must fulfill in order to yield information on the internal boundary Σ, exclusively.
What is required is to eliminate the terms containing Q∗u and C∗u in that equation.
This is achieved if the test functions satisfy Qw = 0 and Cw = 0, simultaneously,
because 〈Q∗u,w〉 ≡ 〈Qw, u〉 and 〈C∗u,w〉 ≡ 〈Cw, u〉. Thus, in view of Eq. (6.2), one
has

−〈K∗u,w〉 = 〈f − g − j, w〉; ∀w ∈ NQ ∩ NC ⊂ D̂2 (7.1)

where NQ and NC are null subspaces of the operators Q and C respectively.
Observe that the left-hand side of Eq.(7.1) involves the complementary information

on Σ, exclusively, as desired. Generally, the complementary information on Σ, K∗u, is
sufficient to define well-posed problems in each one of the subdomains of the domain
decomposition, when the boundary data is added to it. However, it can be seen
through specific examples that the complementary information K∗u is more than
what is essential to achieve this goal and handling excessive information, in general,
requires carrying too many degrees of freedom in the computational process, which in
many cases is inconvenient. Thus, generally, to develop numerical methods of optimal
efficiency, it is better to eliminate part of such information.

The general procedure for carrying out such elimination consists in introducing
a ’weak decomposition’ {S,R} of the bilinear functional K (for a definition of weak
decomposition, see [10]). Then, S and R are bilinear functionals and fulfill

K ≡ S + R; (7.2)

Then ’the sought information’ is defined to be S∗u, where u ∈ D̂1 is the solution of
the BVPJ. In particular, a function ũ ∈ D̂1 is said to ’contain the sought information’
when S∗ũ=S∗u.

Let Ñ2 ⊂ D̂2 be defined by Ñ2 ≡ NQ ∩ NC ∩ NR. An auxiliary concept, quite
useful for formulating Trefftz-Herrera domain decomposition procedures, which was
originally introduced in 1980 [7], is the following (see [1]).

Definition 7.1.- A subset of weighting functions, E ⊂ Ñ2 ≡ NQ ∩ NC ∩ NR, is
said to be TH-complete for S∗, when for any û ∈ D̂1, one has:

〈S∗û, w〉 = 0,∀w ∈ E ⇒ S∗û = 0; (7.3)

Clearly, a necessary and sufficient condition for the existence of TH-complete sys-
tems, is that Ñ2 ≡ NQ ∩ NC ∩ NR be, itself, a TH-complete system.
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Theorem 7.1 Let E ⊂ Ñ2 be a system of TH-complete weighting functions for S∗,
and let u ∈ D̂1 be the solution of the BVPJ. Then, a necessary and sufficient condition
for û ∈ D̂1 to contain the sought information, is that

−〈S∗û, w〉 = 〈f − g − j, w〉 ; ∀w ∈ E (7.4)

Proof. If u ∈ D̂1 is the solution of the BVPJ, one has

−〈S∗u,w〉 = 〈f − g − j, w〉 ; ∀w ∈ E (7.5)

Hence

−〈S∗(û − u), w〉 = 0; ∀w ∈ E (7.6)

and, therefore, S∗û=S∗u.

Theorem 7.1, supplies a very General Formulation of Indirect Methods (or
Trefftz-Herrera Methods) of Domain Decomposition which can be applied to
any linear equation or system of such equations. When up ∈ D̂1 is a function satisfying
Pup = f and Bup = g then Eq.(7.4) can be replaced by

−〈S∗û, w〉 = −〈S∗up, w〉 + 〈J(up − uΣ), w〉 ; ∀w ∈ E (7.7)

In applications, Eq.(7.7) determines the average of the solution and/or its deriva-
tives on Σ.

8. Unified Approach to DDM: Abstract Formulation. The concepts and
notations of the previous Sections, can be used to give an abstract expression to the
unified formulation of Domain Decomposition Methods.

In this Section a pair of weak decomposition {SJ , RJ} and {S,R} of J and K,
respectively, will be considered. This assumption implies that [10]

J = SJ + RJ (8.1)

in addition to Eq. (7.2). Even more, under the above assumption a function û ∈ D̂1

fulfills Eq. (6.4), if and only if

(P − B − RJ) û = PuΩ − Bu∂ − RJuΣ (8.2)

and

SJ û = SJuΣ (8.3)

It has interest to consider the case when Eq. (8.3) can be replaced by the condition
that û contains the sought information; i.e., when Eq. (8.3) can be replaced by

S∗û = S∗u (8.4)

because this leads to a quite general formulation of DDM.
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Definition 8.1.- The pair of weak decompositions {SJ , RJ} and {S,R} of J and
K, respectively, is said to be optimal, when given any uΩ ∈ D̂1, u∂ ∈ D̂1, uΣ ∈ D̂1

and uI ∈ D̂1, the problem of finding û ∈ D̂1, such that

(P − B − RJ) û = PuΩ − Bu∂ − RJuΣ (8.5)

and

S∗û = S∗uI (8.6)

is local and well-posed.

Lemma 8.1 Assume û ∈ D̂1 is solution of the local problems defined by Eqs. (8.5)
and (8.6), for some uI ∈ D̂1, then the following assertions are equivalent

i).- uI contains the sought information,

ii).- Jû = Ju,

iii).- û is the solution of the BVPJ.

Proof. First, we show that ii) and iii) are equivalent. To this end, assuming ii)
observe that Eq. (8.5) together with ii) imply that û ∈ D̂1 is the solution of the
BVPJ. Conversely, if û ∈ D̂1 is solution of the BVPJ, then Jû = Ju. The equivalence
between i) and iii) is immediate. Indeed, assume iii) then S∗uI = S∗û = S∗u; i.e.,
uI contains the sought information. If i) holds, then

(P − B − RJ) û = (P − B − RJ) u (8.7)

together with
S∗û = S∗u (8.8)

and iii) follows from the uniqueness of solution of the local problems.

Definition 8.2 (Steklov-Poincaré Operator).- Given any v ∈ D̂1, define τ :
D1 → D∗

2 , by

τ (v) = Jv̂ (8.9)

where v̂ ∈ D̂1 is the solution of the local boundary value problems with uI = v .

Lemma 8.2 A function û ∈ D̂1, contains the sought information if and only if

τ (û) = Ju (8.10)

Proof. It is immediate in view of the previous Lemma.
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9. The Second Order Elliptic Equation. As an illustration, consider the
BVPJ for an elliptic operator of second order

Lu ≡ −∇ · (a · ∇u) + ∇ · (bu) + cu = fΩ; in Ω, (9.1)

subjected to the boundary conditions

u = u∂ ; on ∂Ω, (9.2)

and the jump conditions

[u] = [uΣ] ≡ j0
Σ and [a · ∇u] · n = [a · ∇uΣ] · n ≡ j1

Σ; on Σ, (9.3)

The numerical treatment of this problem, using both a Direct Method and a
Trefftz-Herrera Method, is explained in [6] and [5]. When the differential operator
is given as in Eq. (9.1), then,

wLu − uL∗w ≡ ∇ · D (u,w) (9.4)

where

D (u,w) ≡ u (an · ∇w + bnw) − wan · ∇u (9.5)

Define the following bilinear functionals:

B (u,w) ≡ u (an · ∇w + bnw) · n, C (w, u) ≡ wan · ∇u (9.6)

J (u,w) ≡ ẇ [an · ∇u] − [u] ˙(an · ∇w + bnw) (9.7)

K (w, u) ≡ u̇ [an · ∇w + bnw] − [w] ˙(an · ∇u) (9.8)

SJ (u,w) ≡ ẇ [an · ∇u] , RJ (u,w) ≡ − [u] ˙(an · ∇w + bnw) (9.9)

S (w, u) ≡ u̇ [an · ∇w + bnw] and R (w, u) ≡ − [w] ˙(an · ∇u) (9.10)

In addition, define the bilinear functionals SJ , RJ , S and R in a similar fashion to
Eqs. (5.6)-(5.8), by means of corresponding integrals.

Then Green-Herrera formula of Eq. (5.10) holds. Even more, Eqs. (7.2) and
(8.1) are fulfilled and the pair {SJ , RJ} and {S,R} constitute an optimal pair of weak
decompositions, because the local problems are well posed. Indeed, Eq.(8.2) is the
BVPJ of Eqs.(9.1) to (9.3) except that the jump condition associated with this latter
equation has been omitted. However, the jump of the function, of Eq.(9.2), is indeed
prescribed. This problem has many solutions. However, with the above definition of
S, the sought information is the average of the function on the internal boundary Σ.
When this information is complemented with the jump of the function, which is the
data given by Eq.(9.2), the values of the function on both sides of Σ are determined
by the identities
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u+ ≡ u̇ + 1/2 [u] and u− ≡ u̇ − 1/2 [u] (9.11)

This information together with the boundary conditions in the external boundary per-
mits establishing well-posed problems in each one of the subdomains of the partition.

10. Optimal Interpolation. The Indirect Method yields information on the
internal boundary Σ, exclusively. To extend that information into the interior of the
subdomains of the partition, it is necessary to solve the local problems [5],[21]. The
following results will be useful in applications, to carry out such step.

Let Ñ1 ⊂ D̂1 be defined by Ñ1 ≡ NP ∩ NB ∩ NRJ
.

Theorem 10.1 Let uP ∈ D̂1 be such that

PuP = PuΩ, BuP = Bu∂ and RJuP = RJuΣ. (10.1)

Then there exists v ∈ Ñ1 such that

−〈S∗v, w〉 = 〈SJ (uP − uΣ) , w〉 ; ∀w ∈ Ñ2 (10.2)

In addition, define û ∈ D̂1 by û ≡ uP + v. Then û ∈ D̂1 contains the sought informa-
tion. Even more, û ≡ u, where u is the solution of the BVPJ.

Proof. Take u ∈ D̂1 as in the Theorem, then this function contains the sought infor-
mation and, in view of Eq. (10.1), Eq. (10.2) can be applied, with û ≡ u. Define
v ≡ u − uP , then

−〈S∗v, w〉 = 〈J (uP − uΣ) , w〉 = 〈SJ (uP − uΣ) , w〉 ; ∀w ∈ Ñ2 (10.3)

because RJ (uP − uΣ) = 0. However, from Eq. (10.1), it follows that v ∈ Ñ1 ≡
NP ∩ NB ∩ NRJ

. When ũ ∈ D̂1 is defined as in the Theorem, then it fulfills

(P − B − RJ) (û − u) = 0 and S∗(û − u) = 0 (10.4)

Therefore, û − u = 0, since the problem of Eqs. (10.4), is well-posed.

The Symmetric Case: In this case D̂1 = D̂2 ≡ D̂, P = Q, B = C, J = K, S ≡
SJ and R ≡ RJ . Then Ñ ≡ Ñ2 ≡ NQ∩NC∩NR = NP∩NB∩NRJ

≡ Ñ1. If it is further
assumed that the bilinear functional −〈S∗u,w〉 is symmetric and positive definite
∀u,w ∈ Ñ , it can be shown that the quadratic functional −〈S∗ũ, ũ〉 − 2 〈f − g − j, ũ〉
attains its minimum over Ñ , at ũ ∈ Ñ , if and only if ũ ∈ Ñ contains the sought
information.
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