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6. Applications of Domain Decomposition and Partition of
Unity Methods in Physics and Geometry

M. Holst!

1. Introduction. In this article we consider a class of adaptive multilevel do-
main decomposition-like algorithms, built from a combination of adaptive multilevel
finite element, domain decomposition, and partition of unity methods. These algo-
rithms have several interesting features such as very low communication requirements,
and they inherit a simple and elegant approximation theory framework from partition
of unity methods. They are also very easy to use with highly complex sequential
adaptive finite element packages, requiring little or no modification of the underly-
ing sequential finite element software. The parallel algorithm can be implemented
as a simple loop which starts off a sequential local adaptive solve on a collection of
processors simultaneously.

We first review the Partition of Unity Method (PUM) of Babuska and Melenk in
Section 2, and outline the PUM approximation theory framework. In Section 3, we
describe a variant we refer to here as the Parallel Partition of Unity Method (PPUM),
which is a combination of the Partition of Unity Method with the parallel adaptive
algorithm from [4]. We then derive two global error estimates for PPUM, by exploiting
the PUM analysis framework it inherits, and by employing some recent local estimates
of Xu and Zhou [22]. We then discuss a duality-based variant of PPUM in Section 4
which is more appropriate for certain applications, and we derive a suitable variant
of the PPUM approximation theory framework. Our implementation of PPUM-type
algorithms using the FETK and MC software packages is described in Section 5. We
then present a short numerical example in Section 6 involving the Einstein constraints
arising in gravitational wave models.

2. The Partition of Unity Method (PUM) of Babuska and Melenk. We
first briefly review the partition of unity method (PUM) of Babuska and Melenk [1].
Let Q C R be an open set and let {€2;} be an open cover of {2 with a bounded local
overlap property: For all x € ), there exists a constant M such that

sup{ i |z €Q; } <M. (2.1)

A Lipschitz partition of unity {¢;} subordinate to the cover {€;} satisfies the following
five conditions:

Ygi) = 1, veeq (2.2)

¢ € CHMQ) Vi, (k>0), (2.3)

supp ¢;  C €, Vi, (2.4)

[pillL~@) < Cwx, Vi, (2.5)
Ca .

ey < . .

[VoillL=@) < Gam(L) Vi (2.6)
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Several explicit constructions of partitions of unity satisfying (2.2)—(2.6) exist. The
simplest construction in the case of a polygon Q C R? employs global C° piecewise
linear finite element basis functions defined on a simplex mesh subdivision S of Q2. The
{§;} are first built by first constructing a disjoint partitioning {Q9} of S using e.g.
spectral or inertial bisection [4]. Each of the disjoint 25 are extended to define €; by
considering all boundary vertices of (27; all simplices of neighboring €17, j # 4 which
are contained in the boundary vertex 1-rings of €27 are added to €2 to form ;. This
procedure produces the smallest overlap for the {£2;}, such that the properties (2.2)—
(2.5) are satisfied by the resulting {¢;} built from the nodal C° piecewise linear finite
element basis functions. Property (2.6) is also satisfied, but C¢ will depend on the
diameter of the overlap simplices. More sophisticated constructions with superior
properties are possible; see e.g. [8, 19].

The partition of unity method (PUM) builds an approximation g, = >, ¢;v;
where the v; are taken from the local approximation spaces:

V,cCHQnQ) c H{(QNQ,), Vi, (k>0). (2.7)
The following simple lemma makes possible several useful results.

Lemma 2.1 Let w,w; € H'(Q) with supp w; C QN Q;. Then

Do lwlg,) < Mlwlig, k=01

A

sziH?{k(Q) > MZHwi”%I’C(QﬂQi)’ k=01

Proof. The proof follows from (2.1) and (2.2)—(2.6); see [1]. [ ]
The basic approximation properties of PUM following from 2.1 are as follows.

Theorem 2.1 (Babuska and Melenk [1]) If the local spaces V; have the following
approximation properties:

lu —villL2(an0,y < eo(d), Vi,
[V(u—=vi)llrzone,) < eali), Vi,

then the following a priori global error estimates hold:

1/2
Hu_uap||L2(Q) < VMCy <Z€3(1)> )

i

1/2

IV~ o) a2y < VM (Z_ () e%<z'>+c§oe%<z'>>

diam(

Proof. This follows from Lemma 2.1 by taking v — uap = >, ¢i(u — v;) and then by
using w; = ¢;(u — v;) in Lemma 2.1. [ |
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Consider now the following linear elliptic problem:

-V - (aVu) = finQ,

u = 0 on 09, (2.8)

where a;; € Wh(Q), f € L*(Q), ai;&& > ag > 0, V& # 0, where Q C R? is a
convex polyhedral domain. A weak formulation is:

Find u € Hj(Q) such that (F(u),v) =0, Yo € Hy(Q), (2.9)
where
(F(u),v) = /QaVu -Vou dx —/va dx.
A general Galerkin approximation is the solution to the subspace problem:
Find ugp, € V C Hy(Q) s.t. (F(ugp),v) =0, Yo € V C H (). (2.10)

With PUM, the subspace V for the Galerkin approximation is taken to be the globally
coupled PUM space (cf. [8]):

V:{v|vzz¢ivi, viGW}CHl(Q),

If error estimates are available for the quality of the local solutions produced in the
local spaces, then the PUM approximation theory framework given in Theorem 2.1
guarantees a global solution quality.

3. A Parallel Partition of Unity Method (PPUM). A new approach to the
use of parallel computers with adaptive finite element methods was presented recently
in [4]. The following variant of the algorithm in [4] is described in [9], which we refer to
as the Parallel Partition of Unity Method (or PPUM). This variant replaces the final
global smoothing iteration in [4] with a reconstruction based on Babuska and Melenk’s
original Partition of Unity Method [1], which provides some additional approximation
theory structure.

Algorithm (PPUM - Parallel Partition of Unity Method [4, 9])

1. Discretize and solve the problem using a global coarse mesh.

2. Compute a posteriori error estimates using the coarse solution, and decompose
the mesh to achieve equal error using weighted spectral or inertial bisection.

3. Give the entire mesh to a collection of processors, where each processor will
perform a completely independent multilevel adaptive solve, restricting local
refinement to only an assigned portion of the domain. The portion of the
domain assigned to each processor coincides with one of the domains produced
by spectral bisection with some overlap (produced by conformity algorithms, or
by explicitly enforcing substantial overlap). When a processor has reached an
error tolerance locally, computation stops on that processor.

4. Combine the independently produced solutions using a partition of unity sub-
ordinate to the overlapping subdomains.
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While the PPUM algorithm seems to ignore the global coupling of the elliptic
problem, recent results on local error estimation [22], as well as some not-so-recent
results on interior estimates [17], support this as provably good in some sense. The
principle idea underlying the results in [17, 22] is that while elliptic problems are glob-
ally coupled, this global coupling is essentially a “low-frequency” coupling, and can be
handled on the initial mesh which is much coarser than that required for approxima-
tion accuracy considerations. This idea has been exploited, for example, in [21, 22],
and is why the construction of a coarse problem in overlapping domain decomposition
methods is the key to obtaining convergence rates which are independent of the num-
ber of subdomains (c.f. [20]). An example showing the types of local refinements that
occur within each subdomain is depicted in Figure 3.1.

Figure 3.1: Example showing the types of local refinements created by PPUM.

To illustrate how PPUM can produce a quality global solution, we will give a global
error estimate for PPUM solutions. This analysis can also be found in [9]. We can
view PPUM as building a PUM approximation u,, = ) . ¢;v; where the v; are taken
from the local spaces:

V,=XxVicckQnQ) c HH(QnQ), Vi, (k>0), (3.1)
where X is the characteristic function for 2;, and where
VIicckQ)c HY(Q), Vi, (k>0). (3.2)

In PPUM, the global spaces V7 in (3.1)—(3.2) are built from locally enriching an initial
coarse global space Vj by locally adapting the finite element mesh on which Vj is built.
(This is in contrast to classical overlapping Schwarz methods where local spaces are
often built through enrichment of V by locally adapting the mesh on which Vj is
built, and then removing the portions of the mesh exterior to the adapted region.)
The PUM space V is then

V = {v|vz¢ivi, 'UiGV;}
{v | v:Z@Xivig:Z@vf, S e } C HY(Q).
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In contrast to the approach in PUM where one seeks a global Galerkin solution
in the PUM space as in (2.10), the PPUM algorithm described here and in [9] builds
a global approximation u,, to the solution to (2.9) from decoupled local Galerkin

solutions:
Upp = Z piui = Z piu, (3.3)
where each uf satisfies:
Find u! € V¥ such that (F(uY),vy) =0, WVof € V7. (3.4)

We have the following global error estimate for the approximation w,, in (3.3) built
from (3.4) using the local PPUM parallel algorithm.

Theorem 3.1 Assume the solution to (2.8) satisfies u € H'T*(Q), o > 0, that quasi-
uniform meshes of sizes h and H > h are used for QY and Q\QY respectively, and that
diam(Q;) > 1/Q > 0 Vi. If the local solutions are built from C° piecewise linear finite
elements, then the global solution uy, in (3.3) produced by Algorithm PPUM satisfies
the following global error bounds:

Ju—uppllrz@) < VPMCus (C1h® + CoH'™™)
[V(u—upp)llr2@) < \/QPM(QQC% +C2) (C1ha + 02H1+a) ,

where P = number of local spaces V;. Further, if H < h®/(+®) then:
lu —uppllr2) < VPMCo max{Ci,C2}h",
IV (u— w2y < \/2PM(Q2CE + C%) max{Cy, Ca}h,

s0 that the solution produced by Algorithm PPUM is of optimal order in the H'-norm.

Proof. Viewing PPUM as a PUM gives access to the a priori estimates in Theorem 2.1;
these require local estimates of the form:

60(7;)7

Ju — willL2@na) = llu — uf |2 @nay <
IV(u—ui)lz20n) = IV(u = u))llL2@nay < (i)

Such local a priori estimates are available for problems of the form (2.8) [17, 22]. They
can be shown to take the following form:

o= oy < € (= ooy + = otz )
v eV

where

V0 cckinQ) c HY (N ),

and where
0 cc) Q=00 Q] = 1]~ Q).
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Since we assume u € H!T%(Q), a > 0, and since quasi-uniform meshes of sizes h and
H > h are used for QY and Q\QY respectively, we have:

1/2
(Hu — u?||2L2(Q,iﬁQ) + ||V(U - uzg)H%?(QlﬂQ))

< Cih® + CQHH'_Q.

llu — ug”Hl(QmQ)

Le., in this setting we can use €y(i) = €(i) = C1h® + CoH'T*. The a priori PUM
estimates in Theorem 2.1 then become:

1/2
lu —uppllrzy < VMCu <Z(Clha+02H1+“)2) ’

%

||V(“_“pp)||L2(Q) < va2M

([ (i) e

1/2
(Clha +CQH1+(X)2> .

If P = number of local spaces V;, and if diam(€2;) > 1/Q > 0 Vi, this is simply:

Ju—uppllrz < VPMCo (C1h® + CoH'™™)

[V(u—upp)llre@) < \/QPM(QQC% +C2) (C1h™ + CoH'T)

If H < h*/(+2) then upp from PPUM is asymptotically as good as a global Galerkin
solution when the error is measured in the H'-norm. |
Local versions of Theorem 3.1 appear in [22] for a variety of related parallel algorithms.
Note that the local estimates in [22] hold more generally for nonlinear versions of (2.8),
so that Theorem 3.1 can be shown to hold in a more general setting. Finally, it should
be noted that improving the estimates in the L?-norm is not generally possible; the
required local estimates simply do not hold. Improving the solution quality in the
L?norm generally requires more global information. However, for some applications
one is more interested in a quality approximation of the gradient or the energy of the
solution rather than to the solution itself.

4. Duality-based PPUM. We first briefly review a standard approach to the
use of duality methods in error estimation. (cf. [6, 7] for a more complete discussion).
Consider the weak formulation (2.9) involving a possibly nonlinear differential operator
F: H}(Q) — H1(Q), and a Galerkin approximation u,, satisfying (2.10). If F € C*,
the generalized Taylor expansion exists:

F(u—l—h):F(u)—&—{/OlDF(u—i—fh)df}h.

With e = u — ugp, and with F(u) = 0, leads to the linearized error equation:
F(uqp) = F(u —€) = F(u) + Augy —u) = —Ae,

where the linearization operator A is defined as:

1
A= /O DF (u + £h)de.
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Assume now we are interested in a linear functional of the error i(e) = (e, ¥), where
1 is the (assumed accessible) Riesz-representer of I(+). If ¢ € H}(2) is the solution to
the linearized dual problem:
Al¢ =y,
then we can exploit the linearization operator A and its adjoint A7 to give the fol-
lowing identity:
(e,9) = (e, AT9) = (Ae, ¢) = —(F(uap), ¢). (4.1)

If we can compute an approximation ¢., € V C H}(Q) to the linearized dual problem
then we can estimate the error by combining this with the (computable) residual
F(uap):
(e, V) = [(F(uap), §)| = {F (uap), & — dap)l,

where the last term is a result of (2.10). The term on the right is then estimated
locally using assumptions on the quality of the approximation ¢,, and by various
numerical techniques; cf. [6]. The local estimates are then used to drive adaptive
mesh refinement. This type of duality-based error estimation has been shown to be
useful for certain applications in engineering and other areas where accuracy in a
linear functional of the solution is important, but accuracy in the solution itself is not
(cf. [7]).

Consider now this type of error estimation in the context of domain decomposition
and PPUM. Given a linear or nonlinear weak formulation as in (2.9), we are interested
in the solution u as well as in the error in PPUM approximations u,, as defined
in (3.3)-(3.4). If a global linear functional I(u — uyp) of the error u — uy, is of interest
rather than the error itself, then we can formulate a variant of the PPUM parallel
algorithm which has in some sense a more general approximation theory framework
than that of the previous section. There are no assumptions beyond solvability of the
local problems and of the global dual problems with localized data, and perhaps some
minimal smoothness assumptions on the dual solution. In particular, the theory does
not require local a priori error estimates; the local a priori estimates are replaced by
solving global dual problem problems with localized data, and then incorporating the
dual solutions explictly into the a posteriori error estimate. As a result, the large
overlap assumption needed for the local estimates in the proof of Theorem 3.1 is
unnecessary. Similarly, the large overlap assumption needed to achieve the bounded
gradient property (2.6) is no longer needed.

The following result gives a global bound on a linear functional of the error based
on satisfying local computable a posteriori bounds involving localized dual problems.

Theorem 4.1 Let {¢;} be a partition of unity subordinate to a cover {Q;}. If 1 is
the Riesz-representer for a linear functional l(u), then the functional of the error in
the PPUM approzimation wu,, from (3.3) satisfies

l(u - upp) = Z<F(u?)’wi>v

1

where uf are the solutions to the subspace problems in (3.4), and where the w; are the

solutions to the following global dual problems with localized data:

Find w; € HY(Q) such that (ATw;,v)r20) = (#0,v)12), Yo € HY(Q).  (4.2)
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Moreover, if the local residual F(ul), weighted by the localized dual solution w;, satisfies
the following error tolerance in each subspace:

\g«ﬁ%wﬂ<§, i=1,...,p (4.3)

then the linear functional of the global error u — uy,), satisfies

1w — upp)| < e. (4.4)

Proof. With I(u — upp) = (4 — Upp, V) 12(0), the localized representation comes from:

p

P
(4 = Upp, V) L2 Z¢zu Z@Ufﬂﬁ Jr2(Q) = Z(¢z( u)), V) 2 (0na,)-
k=1 i=1
From (4.1) and (4.2), each term in the sum can be written in terms of the local residual
F(uf) as follows:
(fi(u —ui), ¥) 12 n0)

w(lﬁz V)2 (Qne;)

(u—
= ( WZ)Lz(Q)
(A(u —uf),wi)r2(0)
= —(F(uf s Wi)L2(9)-
This gives then

|(u = tpyp, ) L252)|<Z| |<Z_:

k=1

|
We will make a few additional remarks about the parallel adaptive algorithm which
arises naturally from Theorem 4.1. Unlike the case in Theorem 3.1, the constants
Cw and Cg in (2.5) and (2.6) do not impact the error estimate in Theorem 4.1,
removing the need for the a priori large overlap assumptions. Moreover, local a priori
estimates are not required either, removing a second separate large overlap assumption
that must be made to prove results such as Theorem 3.1. Using large overlap of
a priori unknown size to satisfy the requirements for Theorem 3.1 seems unrealistic
for implementations. On the other hand, no such a priori assumptions are required
to use the result in Theorem 4.1 as the basis for a parallel adaptive algorithm. One
simply solves the local dual problems (4.2) on each processor independently, adapts
the mesh on each processor independently until the computable local error estimate
satisfies the tolerance (4.3), which then guarantees that the functional of the global
error meets the target in (4.4).

Whether such a duality-based approach will produce an efficient parallel algorithm
is not at all clear; however, it is at least a mechanism for decomposing the solution
to an elliptic problem over a number of subdomains. Note that ellipticity is not
used in Theorem 4.1, so that the approach is also likely reasonable for other classes of
PDE. These questions, together with a number of related duality-based decomposition
algorithms are examined in more detail in [5]. The analysis in [5] is based on a different
approach involving estimates of Green function decay rather than through partition
of unity methods.
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5. Implementation in FETK and MC. Our implementations are performed
using FETK and MC (see [9] for a more complete discussion of MC and FETK).
MC is the adaptive multilevel finite element software kernel within FETK, a large
collection of collaboratively developed finite element software tools based at UC San
Diego (see www.fetk.org). MC is written in ANSI C (as is most of FETK), and is
designed to produce highly accurate numerical solutions to nonlinear covariant elliptic
systems of tensor equations on 2- and 3-manifolds in an optimal or nearly-optimal way.
MC employs a posteriori error estimation, adaptive simplex subdivision, unstructured
algebraic multilevel methods, global inexact Newton methods, and numerical continu-
ation methods. Several of the features of MC are somewhat unusual, allowing for the
treatment of very general nonlinear elliptic systems of tensor equations on domains
with the structure of (Riemannian) 2- and 3-manifolds. Some of these features are:

o Abstraction of the elliptic system: The elliptic system is defined only through
a nonlinear weak form over the domain manifold, along with an associated lin-
earization form, also defined everywhere on the domain manifold (precisely the
forms (F'(u),v) and (DF(u)w,v) in the discussions above).

e Abstraction of the domain manifold: The domain manifold is specified by giving
a polyhedral representation of the topology, along with an abstract set of coor-
dinate labels of the user’s interpretation, possibly consisting of multiple charts.
MC works only with the topology of the domain, the connectivity of the poly-
hedral representation. The geometry of the domain manifold is provided only
through the form definitions, which contain the manifold metric information.

e Dimension independence: Exactly the same code paths in MC are taken for
both two- and three-dimensional problems (as well as for higher-dimensional
problems). To achieve this dimension independence, MC employs the simplex
as its fundamental geometrical object for defining finite element bases.

As a consequence of the abstract weak form approach to defining the problem, the
complete definition of a complex nonlinear tensor system such as large deformation
nonlinear elasticity requires writing only a few hundred lines of C to define the two
weak forms. Changing to a different tensor system (e.g. the example later in the
paper involving the constraints in the Einstein equations) involves providing only a
different definition of the forms and a different domain description.

A datastructure referred to as the ringed-vertex (cf. [9]) is used to represent meshes
of d-simplices of arbitrary topology. This datastructure is illustrated in Figure 5.1.
The ringed-vertex datastructure is similar to the winged-edge, quad-edge, and edge-
facet datastructures commonly used in the computational geometry community for
representing 2-manifolds [15], but it can be used more generally to represent arbitrary
d-manifolds, d > 2. It maintains a mesh of d-simplices with near minimal storage,
yet for shape-regular (non-degenerate) meshes, it provides O(1)-time access to all in-
formation necessary for refinement, un-refinement, and Petrov-Galerkin discretization
of a differential operator. The ringed-vertex datastructure also allows for dimension
independent implementations of mesh refinement and mesh manipulation, with one
implementation (the same code path) covering arbitrary dimension d. An interest-
ing feature of this datastructure is that the C structures used for vertices, simplices,
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Figure 5.1: Polyhedral manifold representation. The figure on the left shows two over-
lapping polyhedral (vertex) charts consisting of the two rings of simplices around two
vertices sharing an edge. The region consisting of the two darkened triangles around
the face f is denoted wy, and represents the overlap of the two vertex charts. Poly-
hedral manifold topology is represented by MC using the ringed-vertex (or RIVER)
datastructure. The datastructure is illustrated for a given simplex s in the figure on
the right; the topology primitives are vertices and d-simplices. The collection of the
simplices which meet the simplex s at its vertices (which then includes those simplices
that share faces as well) is denoted as wy.

and edges are all of fixed size, so that a fast array-based implementation is possible,
as opposed to a less-efficient list-based approach commonly taken for finite element
implementations on unstructured meshes. A detailed description of the ringed-vertex
datastructure, along with a complexity analysis of various traversal algorithms, can
be found in [9].

Our modifications to MC to implement PPUM are minimal, and are described in
detail in [4]. These modifications involve primarily forcing the error indicator to ignore
regions outside the subdomain assigned to the particular processor. The implementa-
tion does not form an explicit partition of unity or a final global solution; the solution
must be evaluated locally by locating the disjoint subdomain containing the physical
region of interest, and then by using the solution produced by the processor assigned
to that particular subdomain. Note that forming a global conforming mesh as needed
to build a global partition of unity is possible even in a very loosely coupled par-
allel environment, due to the deterministic nature of the bisection-based algorithms
we use for simplex subdivision (see [9]). For example, if bisection by longest edge
(supplemented with tie-breaking) is used to subdivide any simplex that is refined on
any processor, then the progeny types, shapes, and configurations can be predicted
in a completely determinstic way. If two simplices share faces across a subdomain
boundary, then they are either compatible (their triangular faces exactly match), or
one of the simplices has been bisected more times than its neighbor. By exchanging
only the generation numbers between subdomains, a global conforming mesh can be
reached using only additional bisection.
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6. Example 1: The Einstein Constraints in Gravitation. The evolution of
the gravitational field was conjectured by Einstein to be governed by twelve coupled
first-order hyperbolic equations for the metric of space-time and its time derivative,
where the evolution is constrained for all time by a coupled four-component elliptic
system. The theory basically gives what is viewed as the correct interpretation of
the graviational field as a bending of space and time around matter and energy, as
opposed to the classical Newtonian view of the gravitational field as analogous to
the electrostatic field; cf. Figure 6.1. The four-component elliptic constraint system

i
[ . U

Figure 6.1: Newtonian versus general relativistic explanations of gravitation: the small
mass simply follows a geodesic on the curved surface created by the large mass.

consists of a nonlinear scalar Hamiltonian constraint, and a linear 3-vector momen-
tum constraint. The evolution and constraint equations, similar in some respects to
Maxwell’s equations, are collectively referred to as the Finstein equations. Solving the
constraint equations numerically, separately or together with the evolution equations,
is currently of great interest to the physics community due to the recent construc-
tion of a new generation of gravitational wave detectors (cf. [12, 11] for more detailed
discussions of this application).

Allowing for both Dirichlet and Robin boundary conditions on a 3-manifold M
with boundary OM = 9y M U 91 M, as typically the case in black hole and neutron
star models (cf. [12, 11]), the strong form of the constraints can be written as:

1

1A
A = — K 245 '1
0 = gho+ (K% (6.1)
1 .« o
=5 (Aap + (LW)ap)?6™" = 2mpp~" in M,
D% +cdp = zon NOM, (6.2)
¢ = fondyM, (6.3)
A A 2 A A
Dy(LW)® = §¢>6D“trK+87rj“ in M, (6.4)
(LW)®7hy + CLWP = Z% on 9, M, (6.5)
we = F% on 0y M, (6.6)
where the following standard notation has been employed:
A¢ = Daﬁa¢77
~ . N 2 A
(LW)ab — Dawb + waa _ gﬂ/achWC,
tI'K = ’yab ab)
(Cap)? = C™Cq.
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In the tensor expressions above, there is an implicit sum on all repeated indices in
products, and the covariant derivative with respect to the fixed background metric 9
is denoted as Da The remaining symbols in the equations (R7 K, *Zzlab, 0, 5‘17 z, 2%,
f, F*, ¢, and C}) represent various physical parameters, and are described in detail
in [12, 11] and the referenences therein. Stating the system as set of tensor equations
comes from the need to work with domains which generally have the structure of
3-manifolds rather than single open sets in R? (cf. [9]).

Equations (6.1)—(6.6) are known to be well-posed only for certain problem data
and manifold topologies [16, 13]. Note that if multiple solutions in the form of folds
or bifurcations are present in solutions of (6.1)—(6.6) then path-following numerical
methods will be required for numerical solution [14]. For our purposes here, we select
the problem data and manifold topology such that the assumptions for the two general
well-posedness results in [12] hold for (6.1)—(6.6). The assumptions required for the
two results in [12] are quite weak, and are, for the most part, minimal assumptions
beyond those required to give a well-defined weak formulation in LP-based Sobolev
spaces.

In [9], two quasi-optimal a priori error estimates are established for Galerkin ap-
proximations to the solutions to (6.1)—(6.6). These take the form (see Theorems 4.3
and 4.4 in [9]):

HU7uh||H1(M) § C inf ||’u,7’0||H1(M) (67)
veV)
lu = unllzzngy < Can inf flu—vfm ), (6.8)

where Vj, C H'(M) is e.g. a finite element space. In the case of the momentum
constraint, there is a restriction on the size of the elements in the underlying finite
element mesh for the above results to hold, characterized above by the parameter ay,.
This restriction is due to the fact that the result is established through of the Garding
inequality result due to Schatz [18]. In the case of the Hamiltonian constraint, there
are no restrictions on the approximation spaces.

To use MC to calculate the initial bending of space and time around a single
massive black hole by solving the above constraint equations, we place a spherical
object of unit radius in space, and infinite space is truncated with an enclosing sphere
of radius 100. (This outer boundary may be moved further from the object to im-
prove the accuracy of boundary condition approximations.) Reasonable choices for
the remaining functions and parameters appearing in the equations are used below to
completely specify the problem for use as an illustrative numerical example. (More
careful examination of the various functions and parameters appear in [12], and a
number of detailed experiments with more physically meaningful data appear in [11].)

We then generate an initial (coarse) mesh of tetrahedra inside the enclosing sphere,
exterior to the spherical object within the enclosing sphere. The mesh is generated
by adaptively bisecting an initial mesh consisting of an icosahedron volume filled with
tetrahedra. The bisection procedure simply bisects any tetrahedron which touches
the surface of the small spherical object. When a reasonable approximation to the
surface of the sphere is obtained, the tetrahedra completely inside the small spherical
object are removed, and the points forming the surface of the small spherical object
are projected to the spherical surface exactly. This projection involves solving a linear
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elasticity problem, together with the use of a shape-optimization-based smoothing
procedure. The smoothing procedure locally optimizes the shape measure function
described in [9] in an iterative fashion. A much improved binary black hole mesh
generator has been developed by D. Bernstein; the new mesh generator is described
in [11] along with a number of more detailed examples using MC.

The initial coarse mesh is shown in Figure 6.2, generated using the procedure de-
scribed above, has approximately 30,000 tetrahedral elements and 5,000 vertices. To
solve the problem on a 4-processor computing cluster using a PPUM-like algorithm,
we begin by partitioning the domain into four subdomains (shown in Figure 6.3) with
approximately equal error using the recursive spectral bisection algorithm described
in [4]. The four subdomain problems are then solved independently by MC, starting
from the complete coarse mesh and coarse mesh solution. The mesh is adaptively re-
fined in each subdomain until a mesh with roughly 50000 vertices is obtained (yielding
subdomains with about 250000 simplices each).

The refinement performed by MC is confined primarily to the given region as driven
by the weighted residual error indicator described in [9], with some refinement into
adjacent regions due to the closure algorithm which maintains conformity and shape
regularity. The four problems are solved completely independently by the sequential
adaptive software package MC. One component of the solution (the conformal factor
@) of the elliptic system is depicted in Figures 6.4 (the subdomain 0 and subdomain
1 solutions).

A number of more detailed examples involving the contraints, using more phys-
ically meaningful data, appear in [11]. Application of PPUM to massively parallel
simulations of microtubules and other extremely large and complex biological struc-
tures can be found in [3, 2]. The results in [3, 2] demonstrate both good parallel scaling
of PPUM as well as quality approximation of the gradient of electrostatic potentials
(solutions to the Poisson-Boltzmann equation; cf. [10]).

-

Figure 6.2: Recursize spectral bisection of the single hole domain into four subdomains
(boundary surfaces of three of the four subdomains are shown).
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Figure 6.3: Recursize spectral bisection of the single hole domain into four subdomains.
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Cutplane Cutplane

node 09, nede gy
1.88 1.87

- 1.78 - 1.77
- 1.68 - 1.68
1.58 1.58
1.49 1.48
1.39 1.39
1.29 1.29
1.2 1.13

1.1 1.1

Figure 6.4: Decoupling of the scalar conformal factor in the initial data using PPUM,;
domain 0 in the left column, and domain 1 on the right.



