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46. A Dirichlet/Robin Iteration-by-Subdomain Domain
Decomposition Method Applied to Advection-Diffusion
Problems for Overlapping Subdomains

G. Houzeaux1, R. Codina2

1. Introduction. We present a domain decomposition (DD) method to solve scalar
advection-diffusion-reaction (ADR) equations which falls into the category of iteration-by-
subdomain DD methods.

Domain decomposition methods are usually divided into two families, namely overlap-
ping and non-overlapping methods. The former are based on the Schwarz method. At
the differential level, they use alternatively the solution on one subdomain to update the
Dirichlet data of the other. Contrary, non-overlapping DD methods use necessarily two dif-
ferent transmission conditions on the interface, in such a way that both the continuity of
the unknown and its first derivatives are achieved on the interface (for ADR equations). Let
us mention the Dirichlet/Neumann method introduced in [4, 8, 10]; the γ-Dirichlet/Robin
method [2]; the Robin/Robin method [6, 9, 7]; the coercive γ-Robin/Robin method [2]; the
Neumann/Neumann method [5, 3, 1], etc.

In the literature, all the mixed DD methods mentioned previously have been mainly
studied in the context of disjoint partitioning. However, there exists no particular reason for
restricting their application only to non-overlapping subdomains. This paper gives a possible
line of study for the generalization of the mixed method to overlapping subdomains. We
expect that the overlapping mixed DD methods will enjoy some properties of their disjoint
brothers as well as some properties of the classical Schwarz method, as for example the
dependence on the overlapping length.

Our motivation to study these types of methods has been to maintain the implementation
advantages of the Schwarz method when used together with a numerical approximation of the
problem. The possibility to have some overlapping simplifies enormously the discretization
of the subdomains. However, very often this overlapping needs to be very small in practice,
and thus the convergence rate of the Schwarz method becomes very small. Contrary to the
Schwarz method, the limit case of zero overlapping will be possible using the formulation
proposed herein. We have chosen to study an overlapping Dirichlet/Robin method, using the
coercive bilinear form presented in [2] in the context of the γ-D/R and γ-R/R methods. This
simplifies the analysis of the DD method as no assumption has to be made on the direction
of the flow and its amplitude on the interfaces of the overlapping subdomains.

We would like to stress that our approach is not to view domain decomposition as a pre-
conditioner for solving the linear systems of equations arising after the space discretization
of the differential equations. In our case, the domain is decomposed at the continuous level.
We are not concerned with the scaling properties with respect to the number of subdomains
of the iteration-by-subdomain strategy we propose. For our purposes, it is enough to an-
alyze two subdomains. More precisely, our final goal is to devise a Chimera type strategy
taking Dirichlet/Robin(Neumann) transmission conditions rather than the classical Dirich-
let/Dirichlet (Schwarz) approach. This paper must be understood as a theoretical basis for
such a formulation. We recall briefly the Chimera method, of which we give an example
in Figure 1.1. Firstly, independent meshes are generated for the background mesh and the
mesh around the cylinder. Secondly, the mesh around the cylinder is placed on the back-
ground mesh. Then, according to some criteria (order of interpolation, geometrical overlap
prescribed, etc.), we can impose in a simple way a Dirichlet condition on some nodes of the
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Figure 1.1: Chimera method.

background located inside the cylinder subdomain (this task is called hole cutting). Doing
so, we form an apparent interface on the background subdomain to set up an iteration-by-
subdomain method. Note that a natural condition of Neumann or Robin type is in general
not possible as the apparent interface is irregular. Finally, by imposing a Dirichlet, Neumann
or Robin condition on the outer boundary of the cylinder subdomain we can define completely
an iteration-by-subdomain method to couple both subdomains. The Chimera method was
first thought as a tool to simplify the meshing of complicated geometry. It is also a powerfull
tool to treat subdomains in relative motion.

2. Problem statement. Let us consider the advection-diffusion-reaction problem of
finding u such that: {

Lu := −ε∆u + ∇ · (au) + σu = f in Ω,
u = 0 on ∂Ω,

(2.1)

where Ω is a d-dimensional domain (d = 1, 2, 3) with boundary ∂Ω, ε is the diffusion constant
of the medium, f is the force term, a is the advection field (not necessarily solenoidal) and
σ is a source (reaction) term.

We denote by (·, ·) the inner product in L2(Ω), and by V := H1
0 (Ω) the space where u

will be sought. Likewise, we use the notation

〈·, ·〉ω := 〈·, ·〉Hs(ω)×H−s(ω), (2.2)

for the duality pairing between the space Hs(ω) and its topological dual H−s(ω), with s = 1
when ω is d-dimensional and with s = 1/2 when ω is (d − 1)-dimensional.

Let us consider our differential problem 2.1. We restrict ourselves to solutions in V . To
guarantee existence, we take f ∈ H−1(Ω) and a, σ,∇ · a ∈ L∞(Ω). Since∫

Ω

va · ∇u dΩ = −
∫

Ω

ua · ∇v dΩ −
∫

Ω

uv∇ · a dΩ ∀ u, v ∈ V, (2.3)

we transform the convective term into a skew symmetric operator, and we can enunciate our
problem as follows: find u ∈ V such that

a(u, v) = 〈f, v〉 ∀ v ∈ V, (2.4)

where the bilinear form is

a(w, v) := ε(∇w,∇v) +
1

2
(a · ∇w, v) − 1

2
(w, a · ∇v) + (σ0w, v), (2.5)

with σ0 = σ + 1
2
∇ · a.
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Figure 3.1: Examples of decomposition of a domain Ω into two overlapping subdomains
Ω1 and Ω2.

3. Overlapping Dirichlet/Robin method.

3.1. Domain partitioning and definitions. We perform a geometrical decom-
position of the original domain Ω into three disjoint and connected subdomains Ω3, Ω4 and
Ω5 such that

Ω = int
(
Ω3 ∪ Ω4 ∪ Ω5

)
. (3.1)

From this partition, we define Ω1 and Ω2 , as two overlapping subdomains:

Ω1 := int
(
Ω3 ∪ Ω4

)
, Ω2 := int

(
Ω5 ∪ Ω4

)
. (3.2)

Finally, we define Γa as the part of ∂Ω2 lying in Ω1, and Γb as the part of ∂Ω1 lying in Ω2.
The geometrical nomenclature is shown in Figure 3.1. Γb and Γa are the interfaces of the
domain decomposition method we now present. Ω4 is the overlap zone. In the following,
index i or j refers to a subdomain or an interface.

Let us introduce the following definitions:

(w, v)Ωi :=

∫
Ωi

wv dΩ, (3.3)

ai(w, v) := ε(∇w,∇v)Ωi +
1

2
(a · ∇w, v)Ωi −

1

2
(w, a · ∇v)Ωi + (σ0w, v)Ωi (3.4)

Vi := {v ∈ H1(Ωi) | v|∂Ω∩∂Ωi
= 0}, (3.5)

V 0
i := H1

0 (Ωi), (3.6)

where i can be any of the five subdomains introduced previously, i.e. i = 1, 2, 3, 4 or 5. Let
us define the linear and continuous trace operators Ta and Tb on Γa and Γb, respectively. We
explicitly define the trace space on Γa and Γb as Λa := {µa ∈ H1/2(Γa)} and Λb := {µb ∈
H1/2(Γb)}, respectively.

3.2. Variational formulation. We propose to solve the following problem: find
u1 ∈ V1 and u2 ∈ V2 such that



a1(u1, v1) = 〈f, v1〉Ω1 ∀ v1 ∈ V 0
1 ,

u1 = u2 on Γb,
a2(u2, v2) = 〈f, v2〉Ω2 ∀ v2 ∈ V 0

2 ,
a3(u1, E3µa) + a2(u2, E2µa) = 〈f, E3µa〉Ω3 + 〈f, E2µa〉Ω2 ∀ µa ∈ Λa,

(3.7)

where Ei denotes any possible extension operator from Λa to H1(Ωi), that is to say,

Ei : Λa −→ H1(Ωi), TaEiµa = µa ∀ µa ∈ Λa. (3.8)
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Equations 3.71 and 3.73 are the equations for the unknown in subdomains Ω1 and Ω2 re-
spectively. Equation 3.72 is the condition that ensures continuity of the primary variable
across Γb, and levels the solution in both subdomains. Finally, Eq. 3.74 is the equation for
the primary variable on the interface Γa.

Theorem 3.1 Problems 3.7 and 2.4 are equivalent.

The proof can be obtained as in the case of the Dirichlet/Neumann method applied to disjoint
subdomains. See for example [10].

3.3. Alternative formulation. We develop an alternative formulation for the do-
main decomposition method given by Eqs. 3.71−4.

Lemma 3.1 The solution of the domain decomposition problem satisfies

∂u1

∂n2
− 1

2
(a · n2)u1 =

∂u2

∂n2
− 1

2
(a · n2)u2 on Γa, (3.9)

where ∂(·)/∂n2 = n2 · ∇(·), n2 being the exterior normal to Ω2 on Γa.

In addition, we have the following result.

Theorem 3.2 System of Eqs. 3.71−4 can be reformulated as follows: find u1 ∈ V1 and
u2 ∈ V2 such that




a1(u1, v1) = 〈f, v1〉Ω1 ∀ v1 ∈ V 0
1 ,

u1 = u2 on Γb,

a2(u2, v
′
2) = 〈f, v′

2〉Ω2 + 〈ε∂u1

∂n2
− 1

2
(a · n2)u1, v

′
2〉Γa ∀ v′

2 ∈ V2.
(3.10)

The interpretation of the domain decomposition method now appears clearly. A Dirichlet
problem is solved in Ω1 using as Dirichlet data on the interface Γb the solution in Ω2, whereas
a mixed Dirichlet/Robin problem is solved in Ω2 using as Robin data on Γa the solution in
Ω1. This formulation justifies the name overlapping Dirichlet/Robin method to designate this
domain decomposition method.

Remark 3.1 The system of Eqs. 3.101−3 could have been derived directly from the following
DD problem applied at the differential level:




Lu1 = f in Ω1,
u1 = 0 on ∂Ω1 ∩ ∂Ω,
u1 = u2 on Γb,
Lu2 = f in Ω2,
u2 = 0 on ∂Ω2 ∩ ∂Ω,

ε
∂u2

∂n2
− 1

2
(a · n2)u2 = ε

∂u1

∂n2
− 1

2
(a · n2)u1 on Γa.

(3.11)

3.4. Interface equations. A convenient way to study DD methods is to derive
equations for the interface unknown(s). To do so, the problem is first rewritten into two
purely Dirichlet problems for which the Dirichlet data are the unknowns on the interfaces.
Starting form Eqs. 3.111−6, the problems to consider are:




Lw1 = f in Ω1,
w1 = 0 on ∂Ω1 ∩ ∂Ω,
w1 = λb on Γb,




Lw2 = f in Ω2,
w2 = 0 on ∂Ω2 ∩ ∂Ω,
w2 = λa on Γa.

(3.12)
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Now let us decompose w1 and w2 into L-homogeneous and Dirichlet-homogeneous parts,

w1 = u0
1 + u∗

1, w2 = u0
2 + u∗

2, (3.13)

where the L-homogeneous parts u0
1 and u0

2 are the solutions of


Lu0
1 = 0 in Ω1,

u0
1 = 0 on ∂Ω1 ∩ ∂Ω,

u0
1 = λb on Γb,




Lu0
2 = 0 in Ω2,

u0
2 = 0 on ∂Ω2 ∩ ∂Ω,

u0
2 = λa on Γa,

(3.14)

and the Dirichlet-homogeneous parts u∗
1 and u∗

2 are the solutions of{
Lu∗

i = f in Ωi,
u∗

i = 0 on ∂Ωi,
(3.15)

for i = 1, 2. We refer to u0
1 as the L-homogeneous extension of λb into Ω1, and we denote it

by L1λb. Similarly, we call u0
2 the L-homogeneous extension of λa into Ω2, and we denote it

by L2λa. In the case when L = −∆, L is the harmonic extension and is usually denoted by
H. The Dirichlet-homogeneous parts u∗

1 and u∗
2 are rewritten as G1f and G2f , respectively.

Comparing systems 3.12 with system 3.11, we have that wi = ui for i = 1, 2 if and only
if the following two conditions are satisfied:


ε
∂w2

∂n2
− 1

2
(a · n2)w2 = ε

∂w1

∂n2
− 1

2
(a · n2)w1 on Γa,

w1 = w2 on Γb.
(3.16)

Using the previous definitions, conditions 3.16 can be rewritten as


ε
∂L2λa

∂n2
− 1

2
(a · n2)L2λa = ε

∂L1λb

∂n2
− 1

2
(a · n2)L1λb

+ε
∂G1f

∂n2
− 1

2
(a · n2)G1f − ε

∂G2f

∂n2
+

1

2
(a · n2)G2f on Γa,

λb = TbL2λa + TbG2f on Γb.

(3.17)

Let us clean up this system by introducing some definitions. In the first equation, we recognize
the Steklov-Poincaré operator S2 associated to subdomain Ω2, defined as

S2 : H1/2(Γa) −→ H−1/2(Γa), (3.18)

S2λa := ε
∂L2λa

∂n2
− 1

2
(a · n2)L2λa (evaluated on Γa). (3.19)

Note that L2λa = λa on Γa. We define S̃b, a Steklov-Poincaré-like operator acting on Γb, as

S̃b : H1/2(Γb) −→ H−1/2(Γa), (3.20)

S̃bλb := −ε
∂L1λb

∂n2
+

1

2
(a · n2)L1λb (evaluated on Γa). (3.21)

We also define T̃b, the trace on Γb of the L-extension of λa into Ω2:

T̃b : H1/2(Γa) −→ H1/2(Γb), (3.22)

T̃bλa := TbL2λa. (3.23)

Finally, χ and χ′ are defined as follows

χ = ε
∂G1f

∂n2
− 1

2
(a · n2)G1f − ε

∂G2f

∂n2
+

1

2
(a · n2)G2f, (3.24)

χ′ = TbG2f, (3.25)
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where we have χ ∈ H−1/2(Γa) and χ′ ∈ H1/2(Γb). Owing to the previous definitions, the
system of two equations for the interface unknowns reads

{
S2λa = −S̃bλb + χ in H−1/2(Γa),

λb = T̃bλa + χ′ in H1/2(Γb).
(3.26)

Let us introduce now the operator

S̃1 : H1/2(Γa) −→ H−1/2(Γa), (3.27)

S̃1λa := S̃bT̃bλa, (3.28)

and define S as

S = S̃1 + S2. (3.29)

After substituting λb given by Eq. 3.262 into Eq. 3.261, we finally obtain the following system
of equations for the interface unknowns

{
Sλa = χ − S̃bχ

′ in H−1/2(Γa),

λb = T̃bλa + χ′ in H1/2(Γb).
(3.30)

Once λa and λb are obtained, we can solve the two Dirichlet problems 3.14 to obtain the
L-homogeneous parts u0

1 and u0
2. The Dirichlet-homogeneous parts u∗

1 and u∗
2 are obtained

by solving Eqs. 3.15 for i = 1, 2. Hence, the solutions u1 and u2 are calculated by adding up
their respective L and Dirichlet-homogeneous contributions.

Let us go back to system 3.30. We can show that S2 is both continuous (with constant
MS2) and coercive (with constant NS2) and S̃1 is continuous (with constant MS1) and non-
negative. As a result we have the following theorem:

Theorem 3.3 The operator S defined in 3.29 is invertible and system 3.30 has a unique
solution {λa, λb}.

The solutions of our interface problem can be written as

{
λa = S−1(χ − S̃bχ

′) in H1/2(Γa),

λb = T̃bS
−1(χ − S̃bχ

′) + χ′ in H1/2(Γb),
(3.31)

4. Iterative scheme.

4.1. Relaxed sequential algorithm. In this section, we derive an iterative proce-
dure to solve the domain decomposition problem 3.7. The sequential version of the iterative
overlapping D/R algorithm is defined solving first the Dirichlet problem, and then the Robin
problem. Now we investigate the interface iterates produced by this relaxed iterative proce-
dure. We enable relaxation of relaxation parameter θ > 0 of one of the transmission condition
at the same time. The Dirichlet-relaxed iterative scheme, denoted Dθ/R, is given for any
k ≥ 0 by

{
S2λ

k+1
a = −S̃bλ

k
b + χ,

λk+1
b = θ(T̃bλ

k+1
a + χ′) + (1 − θ)λk

b .
(4.1)

In terms of the interface unknowns, the Robin-relaxed iterative scheme, denoted D/Rθ,
produces the following iterates for any k ≥ 0:

{
S2λ

k+1
a = θ(−S̃bλ

k
b + χ) + (1 − θ)S2λ

k
a,

λk+1
b = T̃bλ

k+1
a + χ′.

(4.2)
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Let us rewrite the Dirichlet and Robin-relaxed schemes as Richardson procedures. It can
be shown that S2 is invertible. We can therefore reformulate the system for the interface
unknowns 3.26 as follows: {

Qaλa = χa,
Qbλb = χb,

(4.3)

where we have defined Qa, Qb, χa and χb by

Qa = Ia + S−1
2 S̃bT̃b, Qb = Ib + T̃bS

−1
2 S̃b, (4.4)

χa = S−1
2 χ − S−1

2 S̃bχ
′, χb = T̃bS

−1
2 χ + χ′. (4.5)

and where Ia is the identity on H1/2(Γa) and Ib is the identity on H1/2(Γb). By solving
the Dirichlet-relaxed and Robin-relaxed systems for λk+1

a and λk+1
b , we can show that both

schemes lead to the same following iterates for any k ≥ 1:

{
λk+1

a = θ(χa − Qaλk
a) + λk

a,

λk+1
b = θ(χb − Qbλ

k
b ) + λk

b .
(4.6)

We recognize here two stationary Richardson procedures for solving Eqs. 4.31 and 4.32. We
note that the Richardson procedure for solving λa is similar to that produced by the classical
Dirichlet/Neumann method.

4.2. Convergence. This section studies the convergence of the DD algorithm, given
by Eqs. 4.11−2 for the Dθ/R method and Eqs. 4.21−2 for the D/Rθ method. The result we
can prove is:

Theorem 4.1 Assume that ε is large enough so that

κ∗ := 2NS2 − 2‖a‖∞,ΓaC2
2

MS̃1
+ MS2

NS2

> 0, (4.7)

where NS2 , MS̃1
and MS2 are the coercivity constant of S2, and the continuity constants of

S̃1 and S2, respectively. Then, there exists θmax such that for any given λ0
a ∈ Λa and λ0

b ∈ Λb

and for all θ ∈ (0, θmax), the sequences {λk
a} and {λk

b} given by 4.6 converge in Λa and Λb,
respectively. The upper bound of the relaxation parameter θmax can be estimated by

θmax =
κ∗N2

S2

MS2(MS̃1
+ MS2)

2
(4.8)

More precisely, convergence is linear.

Remark 4.1 This result carries over to the discrete variational problems provided the sta-
bility and continuity properties of the continuous case are inherited. In particular, the rate
of convergence will be independent of the number of degrees of freedom.
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