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47. Boundary Point Method in the Dynamic and Static
Problems of Mathematical Physics

S. Kanaun, V. M. Romero1

1. Introduction. Boundary element method (BEM) is widely used for the numerical
solution of integral equations of mathematical physics [1]. For the use of the BEM, the
surface of the region should be divided into a finite number of subareas and the unknown
functions are approximated by standard (as a rule polynomial) functions in every subarea.
After applying the method of moments or the collocation method, the problem is reduced to
the solution of a finite system of linear algebraic equations. The components of the matrix of
this system are integrals over the subareas (boundary elements) of the surface. In many cases
these integrals are singular and the complexity of their calculations depends on the type of
approximating functions. In a standard BEM, a great portion of the computer time is spent
in calculating these integrals. A non trivial auxiliary problem is dividing an arbitrary surface
into a set of boundary elements.

In this work a new numerical method is used for the solution of boundary integral equa-
tions of some static and dynamic problems of mathematical physics. In this method actual
distributions of unknown functions on the surface of the region is approximated by Gaussian
functions located on the planes tangent to the boundary surface at some homogeneous set
of surface nodes. The idea to use these functions for the solution of a wide class of integral
equations of mathematical physics belongs to V. Maz’ya. The theory of approximation by
Gaussian functions was developed in the works of V. Maz’ya [5] and V. Maz’ya and G. Shmidt
[6].

In the method developed bellow we will use the following result of the mentioned authors.
Let u(x) be a scalar function in d-dimensional space Rd. If u(x) and its first derivative are
bounded, u(x) may be approximated by the following series

u(x) ≈ uh(x) =
∑

m∈Zd

umϕ(x − hm), ϕ(x) =
1

(πD)d/2
exp

(
− |x|2

Dh2

)
. (1.1)

Here m ∈ Zd is a d-dimensional vector with integer components, hm are the coordinates
of the nodes of this approximation and h is the distance between the neighboring nodes,
um = u(hm) is the value of the function u(x) at node x = hm, D is a non-dimensional
parameter. It is demonstrated in [2,3] that the following estimation holds

|u(x) − uh(x)| ≤ ch ‖�u‖ + |u(x)|R(D), R(D) = O(exp(−π2D)). (1.2)

Here ||∇u|| is the norm in the space of continuous functions, c = O(1). If h is sufficiently
small the error of the approximation (1.1) may be made negligible by the appropriate choosing
of the parameter D (D = O(1)). The properties of this approximation were studied in detail
in [5, 6].

The use of these functions for the solution of the integral equations of mathematical
physics has two main advantages. First, the action of the integral operators of the problems
on these functions in many cases is a combination of few standard functions. The latter may
be simply tabulated, kept in the computer memory and then used for the solution of any
similar problem for regions of arbitrary geometry. As a result, the time for the calculation of
the matrix of the linear system obtained after the discretization of the problem, is essentially
reduced in comparison with a standard BEM. It is also important that only the coordinates
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of the surface nodes and the surface orientations at the nodes are necessary for the surface
description in the present method. The method was called by V. Maz’ya the Boundary Point
Method (BPM) and in the latter the boundary points (nodes) play the role of boundary
elements of the conventional BEM. Note that the problem of covering an arbitrary smooth
surface by a homogeneous set of nodes is simpler than the detailed description of the geometry
of all the boundary elements that is necessary for the application of any traditional BEM to
the solution of surface integral equations.

Here we develope the method for the solution of 2D problems of elasticity and for 3D
electromagnetic wave diffraction problems. The numerical results are compared with exact
solutions existent in the literature.

2. Integral equations of the second boundary value problem of elastic-
ity. Let an elastic body occupy region V in 3D or 2D-space with closed boundary S. The
material of the body is homogeneous with elastic moduli tensor C (Cijkl). The stress tensor
in the body can be presented in the form

σij(x) =

∫
S

Sijkl(x − x′)nk(x′)bl(x
′)dS′. (2.1)

Here x(x1, x2, x3) is a point of the medium with Cartesian coordinates x1, x2, x3, summa-
tion with respect to repeated indexes is implied. The kernel of integral operators in Eq.(2.1)
has form

Sijpq(x) = −Cijkl �k �mGls(x)Cmspq − Cijpqδ(x), (2.2)

where Gls(x) is the Green function of the infinite medium with elastic moduli C. Tensor
σ(x) in Eq.(2.1) satisfies the system of equations of continuum mechanics: ∇ · σ(x) = 0,
ε(e)(x)= C−1·σ(x), Rot ε(e)(x) = 0, � = ei∂/∂xi is the vector gradient, ei (i = 1, 2, 3) are
unit vectors of the axes xi. A dot (·) is the scalar product, δ(x) is Dirac’s delta-function.
Thus, tensor σ(x) in Eq.(2.1) gives us the solution of the second boundary value problem of
elasticity if it satisfies the boundary conditions at the surface of the body

σ(x) · n(x)|S = f(x), (2.3)

where f(x) is the vector of surface forces.

The integral equation for vector b(x) in Eq.(2.1) follows from the boundary condition
(2.3) and takes the form ∫

S

Tij(x, x′) · bj(x
′)dS′ = fi(x), (2.4)

Tij(x, x′) = nk(x)Skijl(x − x′)nl(x).

The kernel of the integral operators in Eq.(2.4) has a high singularity and should be
understood in the sense of some regularizations.

3. Numerical solution in 2D-case. Let us consider the plane problem of elasticity
for homogeneous and isotropic elastic body. The body occupies a closed region Ω in 2D-space
with the bourder Γ. The solution of this problem may be found in the form similar to Eq.(2.1)

σij(x) =

∫
Γ

Sijkl(x − x′)nk(x′)bl(x
′)δ(Γ

′
)dx′. (3.1)

Here δ(Γ) is delta-function concentrated on the contour Γ, integration in this formula is
spread over 2D-space. For the numerical solution of Eq.(2.3) let us chose a set of nodes x(i)

on boundary Γ of the body with equal distances h between neigboring nodes.
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Figure 3.1: The local and global coordinate systems

Then let us change the potential (3.1) concentrated on Γ for the sum of potentials concen-
trated on the tangent lines γi at every node i (see Fig.(3.1)). Thus, density nk(x)bl(x)δ(Γ)
of the potential in Eq.(3.1) is approximated by the equation

nk(x)bl(x)δ(Γ) =
∑

i

n
(i)
k b

(i)
l ϕi(x)γi(x), ϕi(x) =

1√
πD

exp

(
−|x − x(i)|2

Dh2

)
. (3.2)

Here n(i) is the external normal vector to Γ at the node x(i), γi(x) is delta function
concentrated in the tangent line γi to Γ in the node x(i), h is the distance between neighboring
nodes, D = 2. The vectors b(i) in every node should be found from the solution of the problem
and are the main unknowns of the method. If we substitute Eq.(3.2) into Eq.(3.1) the latter
is converted into the sum of potentials concentrated in the tangent lines γi

σij(x) =

∫
Γ

Sijkl(x − x′)nk(x′)bl(x
′)δ(Γ

′
)dx′ ≈

∑
i

I
(i)
ij (x) · b(i)

j ,

I
(i)
ijl (x) =

∫
γi

Sijkl(x − x′)nk(x′)ϕs(x′)γi(x′)dx′. (3.3)

Let us introduce the local coordinate systems (s, z) connected with the nodes; (s(i) ,n(i))
are the unit vectors of axis s directed along tangent line γi and of axis z directed along
normal to Γ at the node x(i) (Fig.(3.1)). In this basis vector b(i) in Eq.(3.1) has the form

b(i) = b(i)
s s(i) + b(i)

n n(i). (3.4)

After substituting Eq.(3.2) into Eq.(3.3) and calculating the integrals we go to the fol-
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lowing expression of the tensor I(i) in the local basis of the i-th node (see [4] for details)

I(i)(s, z) = −4µ0κ0

[
J11(s, z)t

(i)
11 + J12(s, z)t

(i)
12 + J21(s, z)t

(i)
21 + J22(s, z)t

(i)
22

]
,

J11(s, z) =
h

4p2
sign(ζ) [2sign(η)j1(|ζ|, |η|) − ηj2(|ζ|, |η|)] ,

J12(s, z) =
h

4p2
[j3(|ζ|, |η|) − |η|j4(|ζ|, |η|)] ,

J21(s, z) =
h

4p2
ηj2(|ζ|, |η|), J22(x, y) =

h

4p2
[j3(|ζ|, |η|) + |η|j4(|ζ|, |η|)] ,

t
(i)
11 = s(i)⊗s(i)⊗s(i), t

(i)
22 = n(i)⊗n(i)⊗n(i)

t
(i)
12 = s(i)⊗s(i)⊗n(i)+s(i)⊗n(i)⊗s(i)+n(i)⊗s(i)⊗s(i),

t
(i)
21 = s(i)⊗n(i)⊗n(i)+n(i)⊗s(i)⊗n(i)+n(i)⊗n(i)⊗s(i).

Here p2 = (h2D)/4, ζ = s/p, η = z/p, κ0 = (λ0 + µ0)/((λ0 + 2µ0), λ0, µ0 are Lamé
parameters of the material.

The four functions ji(ζ, η) in these equations are connected with function Erf(ξ) (the
error function) by the equations

j1(ζ, η) + ij3(ζ, η) = iF1

(
η + iζ

2

)
, j2(ζ, η) + ij4(ζ, η) = iF2

(
η + iζ

2

)
, (3.5)

F1(z) =
1

2π

[
1 −

√
πz exp(z2) (1 − Erf(z))

]
,

F2(z) =
1

2π

[
−z +

√
π

2
(1 + 2z2) exp(z2) (1 − Erf(z))

]
. (3.6)

The system of linear algebraic equations for the components (b
(i)
s , b

(i)
n ) of the vectors b(i)

in the local bases can be obtained from the boundary conditions (2.3) that will be satisfied
in all the nodes (the collocation method). Let us introduce vector X of the unknowns that

is connected with the components b
(m)
s , b

(m)
n by the relations

X = ‖Xj‖ , j = 1, 2, 3, ..., 2M,

X2m−1 = b(m)
s , X2m = b(m)

n , m = 1, 2, 3, ..., M (3.7)

Here M is the total number of nodes. The vector-column F defines the forces that act in
the nodes

F = ‖Fj‖ , j = 1, 2, 3, ..., 2M,

F2m−1 = − f
(m)
s

4µ0κ0
, F2m = − f

(m)
n

4µ0κ0
, m = 1, 2, 3, ..., M. (3.8)

Here f
(m)
s , f

(m)
n are the values of the forces applied at the nodes that are known from

the boundary conditions.
The equation for the vector X follows from the boundary conditions at the nodes and

takes the form
2N∑
j=1

BijXj = Fi, j = 1, 2, 3, ..., 2M. (3.9)

Here the components of the matrix B = ‖Bij‖ are defined in [3] and expressed via the
standard functions j1, ..., j4 defined in Eqs.(3.5, 3.6). The computer time of calculation of
these functions is very small.
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Figure 3.2: Distribution of stresses in a disk subjected with two concentrated forces.

Let us consider a numerical example. An elastic disk of unit radius, R = 1, subjected
by two concentrated forces applied along its diameter. The distributions of normal stress
σ(x1, x2) in various intersections orthogonal to the direction of the force application are
presented in Fig.3.2. Solid lines are exact solutions; dashed lines correspond to 60 nodes
homogeneously distributed along the boundary. It is seen that the error of the numerical
solution is essential only in a small vicinity of the points of application of the forces.

4. The integral equation of the problem of electromagnetic wave diffrac-
tion on a perfectly conducting screen. Let a monochromatic electromagnetic wave
of frequency ω propagate through a homogeneous and isotropic medium, and Ω be a smooth,
perfectly conducting surface embedded in this medium. The electric field E(x) in the medium
with such a surface may be presented in the form

E(x) = E0(x) + Es(x), Es(x) = −i
4πc

k0

∫
Ω

K(x − x′) · J(x′)dΩ′,

K(x) = �⊗�g(x) + k2
0g(x)1. (4.1)

Here 1 is the second-rank unit tensor, c is the wave velocity, k0 = ω/c. E0(x) is an
incident field that is assumed to be a plane monochromatic wave: E0(x) = e exp(−ik0 · x),
k0 = k0m, |m| = 1, k0 is the wave vector, and e is the polarization vector of this wave. The
kernel K(x) of the integral operator in Eq.(4.1) is the second derivative of Green function
g(x) of Helmholtz’s operator, and in the 3D-case g(x) takes the form g(x) = (e−ik0r)/(4πr),
r = |x|.

The density J(x) of the potential in Eq.(4.1) is the surface current generated on Ω by
incident field E0(x). Vector J(x) belongs to Ω and satisfies the integral equation

i
4πc

k0

∫
Ω

U(x, x′) · J(x′)dΩ′ = θ(x) · E0(x), θ(x) = 1 − n(x) ⊗ n(x), x ∈ Ω. (4.2)

U(x, x′) = θ(x) · K(x − x′) · θ(x′).

The integral on the left hand side of Eq.(4.2) has a strong singularity and should be
understood in terms of some regularization (see [3]).

5. Numerical solution of the diffraction problems. Integral equation (4.2)
may be presented in the form

i
4πc

k0

∫
U(x, x′) · J(x′)Ω(x′)dx′ = θ(x) · E0(x), x ∈ Ω, (5.1)
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where Ω(x) is delta-function concentrated on the surface Ω and integration in this equation is
spread over 3D-space. Let us cover the scattering surface by a set of nodes x(i) (i = 1, 2, ..., M)
with approximately the same distances between neighboring nodes, and ωi be the tangent
plane to Ω at the i-th node. For the application of the BPM the actual current distribution
on Ω is changed for the following sum

J(x)Ω(x) ≈
∑

i

J(i)ϕi(x)ωi(x), ϕi(x) =
1

πD
exp

(
−|x − x(i)|

Dh2

)
. (5.2)

Here ωi(x) is delta-function concentrated in the plane ωi and J(i) is the vector of this
plane. The approximation of the scattered field Es(x) in Eq.(4.1) takes the form

Es(x) = −i
4πc

k0

∫
K(x − x′) · J(x′)Ω(x′)dx′ ≈ −i4πc

∑
i

I(i)(x) · J(i), (5.3)

I(i)(x) =
1

k0

∫
K(x − x′)ϕi(x

′)ωi(x
′)dx′. (5.4)

Let us introduce a local Cartesian basis
(
e
(i)
1 , e

(i)
2 , e

(i)
3

)
with the origin at the i-th node

(the unit vector e
(i)
3 coincides with the normal n(i) to ωi at point x(i)). In this local coordinate

system the scalar product I(i)(x) ·J(i) in Eq.(5.3) in the local basis of the i-th node takes the
form

I(i)(x) · J(i) =
4

Dκ0
[F1(κ0, η, ζ)1 + 2F2(κ0, η, ζ)µ ⊗ µ+

+2 sign(ζ)F3(κ0, η, ζ)n ⊗ µ] · J(i), n = e
(i)
3 , κ0 = k0h1,

η =
1

h1

(
x2

1 + x2
2

)1/2
, ζ =

x3

h1
, µ =

x1e
(i)
1 + x2e

(i)
2

h1η
, h1 =

D1/2

2
h.

Here the three functions Fi(κ0, η, ζ) are the following one dimensional integrals

F1(κ0, η, ζ) =
1

8π

∫ ∞

0

[
(2κ2

0 − κ2)J0(κη)−

−κ2J2(κη)
]
exp

[
−k2 − |ζ|β(κ, κ0)

] κdκ

β(κ, κ0)
,

F2(κ0, η, ζ) =
1

8π

∫ ∞

0

J2(κη) exp
[
−k2 − |ζ|β(κ, κ0)

] κ3dκ

β(κ, κ0)
,

F3(κ0, η, ζ) =
1

8π

∫ ∞

0

J1(κη) exp
[
−k2 − |ζ|β(κ, κ0)

]
κ2dκ, (5.5)

where β(κ, κ0) =
√

κ2 − κ2
0 if κ > κ0, and β(κ, κ0) = i

√
κ2

0 − κ2 if κ < κ0; Jn(z) is the

Bessel function of order n. For small values of the arguments η, ζ (ρ =
(
η2 + ζ2

)1/2 ≤ 10)
these integrals may be simply tabulated and kept in the computer memory. For ρ > 10 these
integrals have simple asymptotic expressions presented in [2].

Using approximation (5.3) one can reduce the integral equation (5.1) to the system of
linear algebraic equations which unknowns are the components of the vector J in the local
bases connected with the nodes. This linear system may be written in the canonical form

BX = F, (5.6)
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Figure 5.1: Error of the numerical solution for a sphere.

were the elements of the square matrix B of dimension (2M × 2M) are defined via standard
functions F1, F2, F3 in Eq.(5.5) and the components of vectors X and F are

Xi = J
(i)
1 , i ≤ M ; Xi = J

(i−M)
2 , i > M ;

Fi = E0
1(x(i)), i ≤ M ; Fi = E0

2(x(i−M)), i > M.

Here M is the total number of nodes. B in Eq.(5.6) is a dense matrix with maximal
terms concentrated near the main diagonal. For a homogeneous distribution of the nodes on
Ω matrix B is symmetric with the same elements in the main diagonal.

Let us consider a spherical surface Ω of unit radius (a = 1) when an analytical solution
of the problem may be constructed. For the application of the BPM, a homogeneous set of
nodes on Ω was generated by the algorithm described in [2]. In Fig.5.1 the dependences of
relative error ∆ of the numerical solutions on the number of surface nodes M are presented
for k0a = 1; 5; 8.

∆ =

∫
Ω
(|J∗| − |J|)2dΩ∫

Ω
|J|2dΩ

. (5.7)

Here J∗ is a numerical solution of Eq.(5.6), J is an exact current distribution.

6. Conclusion. The use of Gaussian approximating functions proposed in [5, 6] for
the solution of boundary integral equations has two main advantages: the simplicity of prepa-
ration of the initial data (the coordinates of surface nodes and surface orientations at the
nodes), and a short time for the construction of the matrix of the linear system obtained after
the discretization of the problem. The accuracy of the method depends on the density of
surface nodes. The method may be applied to a wide class of the problems of mathematical
physics that are reduced to surface pseudo-differential equations. In particular, the problems
of electrostatics, static elasticity and elasto-plasticity, the problems of elastic wave diffraction
on inclusions and cracks [3], etc., may be successfully solved with the help of the developed
version of BPM.
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