
Fourteenth International Conference on Domain Decomposition Methods
Editors: Ismael Herrera , David E. Keyes, Olof B. Widlund, Robert Yates c©2003 DDM.org

7. Domain Decomposition in the Mainstream of
Computational Science

D. E. Keyes1 2

1. Introduction. Computational peak performance on full-scale scientific appli-
cations, as tracked by the Gordon Bell prize, has increased by four orders of magnitude
since the prize was first awarded in 1988 — twenty-five times faster than can accounted
for by Moore’s Law alone. The extra factor comes from process concurrency, which is
as much as 8,192-fold on the $100M “ASCI White” machine at Lawrence Livermore,
currently ranked as the world’s second most powerful, after the new Japanese “Earth
Simulator”. The latter was recently clocked at more than 35 trillion floating point
operations per second (Tflop/s) on the LINPACK benchmark and at 26.6 Tflop/s on
a climate application [27]. Though architectural concurrency is easy to achieve, algo-
rithmic concurrency to match is less so in scientific codes. Intuitively, this is due to
global domains of influence in many problems presented to the computer as implicitly
discretized operator equations — implicitness being all but legislated for the multi-
scale systems of global climate, transonic airliners, petroleum reservoirs, tokamaks,
etc., the simulation of which justifies expenditures for the highest-end machines.

A key requirement of candidate solution algorithms is mathematical optimality.
This means a convergence rate as independent as possible of discretization param-
eters. In practice, linear systems require a hierarchical, multilevel approach to ob-
tain rapid linear convergence. Nonlinear systems require a Newton-like approach to
obtain asymptotically quadratic convergence. The concept of optimality can also
be extended into the physical modeling regime to include continuation schemes and
physics-informed preconditioning, so that multiple scale problems are attacked with a
manageable number of scales visible to the numerics at any given stage.

In this context, optimal parallel algorithms for PDE simulations of Jacobian-free
Newton-Krylov type, preconditioned with Schwarz and Schur domain decompositions,
including multilevel generalizations of Schwarz, are coming into prominence. One of
the main benefits of the Jacobian-free Newton-Krylov approach is the exploitation of
multiple discrete representations of the underlying continuous operator, the idea being
to converge fully to a representation of high fidelity through a series of inexpensive
and stable steps based on representations of lower fidelity. Simultaneous advances in
object-oriented software engineering have enabled the construction of internally com-
plex software systems in which these algorithmic elements can be combined modularly,
recursively, and relatively efficiently in parallel, while presenting a programming envi-
ronment that allows the user to function at a rather high level. For large systems with
strong nonlinearities robustification techniques have been developed, including pseudo-
transient continuation, parameter continuation, grid sequencing, model sequencing,

1Mathematics & Statistics Department, Old Dominion University, Norfolk, VA 23529-0077 and
ISCR, Lawrence Livermore Nat. Lab., Livermore, CA 94551-9989 and ICASE, NASA Langley Res.
Ctr., Hampton, VA 23681-2199, keyes@icase.edu

2Supported in part by the U.S. Department of Energy under SciDAC subcontract FC02-
01ER25476 to Old Dominion University, by Lawrence Livermore National Laboratory under ASCI
Level-2 subcontract B347882 to Old Dominion University, and by NASA under contract NAS1-19480
to ICASE.

80 KEYES

and nonlinear preconditioning. These improvements in nonlinear rootfinding have
made it possible for large-scale PDE-constrained optimization problems (e.g., design,
control, parameter identification — usually the ultimate problems behind the proxi-
mate PDEs) to be placed into the same domain-decomposed algorithmic framework
as the PDE, itself.

The architecture of the terascale systems available in the United States, built
around hierarchical distributed memory, appears hostile to conventional sequential
optimal PDE algorithms, but is ultimately suitable apart from reservations about
limited memory bandwidth. The distributed aspects must be overcome with judi-
cious combinations of message-passing and/or shared memory program models. The
hierarchical aspects must be overcome with register blocking, cache blocking, and
prefetching. Algorithms for these PDE-based simulations must be highly concurrent,
straightforward to load balance, latency tolerant, cache friendly (with strong tempo-
ral and spatial locality of reference), and highly scalable (in the sense of convergence
rate) as problem size and processor number are increased in proportion. The goal
for algorithmic scalability is to fill up the memory of arbitrarily large machines while
preserving constant (or at most logarithmically growing) running times with respect
to a proportionally smaller problem on one processor. Domain-decomposed multilevel
methods are natural for all of these desiderata. Domain decomposition is also natural
for the software engineering of simulation codes: valuable extent code designed for a
sequential PDE analysis can often be “componentized” and made part of an effective
domain-decomposed, operator-split preconditioner.

For a pair of web-downloadable full-scale reviews documenting these themes more
fully, see [17, 18]. This page-limited chapter skims these reviews at a high level, em-
phasizing the importance of domain decomposition to large-scale scientific computing.

2. The Newton-Krylov-Schwarz Family of Algorithms. Many problems
in engineering and applied physics can be written in the form

V
∂u
∂t

+ F(u) = 0, (2.1)

where u is a vector of functions depending upon spatial variables x and t, F is a
vector of spatial differential operators acting on u, and V is a diagonal scaling matrix
with nonnegative diagonal entries. If all of the equations are “prognostic” then V has
strictly positive diagonal entries; but we may also accommodate the case of entirely
steady-state equations, V = 0, or some combination of positive and zero diagonal
entries, corresponding to prognostic equations for some variables and steady-state
constraints for others. Steady-state equations often arise from a priori equilibrium
assumptions designed to suppress timescales faster than those of dynamical interest,
e.g., acoustic waves in aerodynamics, gravity waves in geophysics, Alfvén waves in
magnetohydrodynamics, etc.

Semidiscretizing in space to approximate F(u) with f(u), and in time with implicit
Euler, we get the algebraic system:

(
V

τ �
)u� + f(u�) = (

V

τ �
)u�−1. (2.2)

Higher-order temporal schemes are easily put into this framework with the incorpora-
tion of additional history vectors with appropriate weights on the right-hand side. We

DOMAIN DECOMPOSITION IN THE MAINSTREAM OF COMP. SCIENCE 81

are not directly concerned with discretization or the adaptivity of the discretization
to the solution in this chapter. However, the achievement of nonlinear consistency by
Newton’s method on each time step is motivated by a desire to go to higher order
than the pervasive standard of no better than first-order in time and second-order in
space. Because f may be highly nonlinear, even a steady-state numerical analysis is
often made to follow a pseudo-transient continuation until the ball of convergence for
Newton’s method for the steady-state problem is reached. In this case, time accuracy
is not an issue, and τ � becomes a parameter to be placed at the service of the algorithm
[16].

Whether discretized time accurately or not, we are left at each time step with a
system of nonlinear algebraic equations (2.2), written abstractly as F�(u�) = 0. We
solve these systems in sequence for each set of discretized spatial grid functions, u�,
using an inexact Newton method. The resulting linear systems for the Newton cor-
rections involving the Jacobian of F� with respect to instantaneous or lagged iterates
u�,k, are solved with a Krylov method, relying only on Jacobian-vector multiplica-
tions. (Here, u�,0 ≡ u�−1, and u�,k → u�, as k → ∞ in a Newton iteration loop on
inner index k.) The Krylov method needs to be preconditioned for acceptable inner
iteration convergence rates, and the preconditioning is the “make-or-break” aspect
of an implicit code. The other phases possess high concurrency and parallelize well
already, if properly load balanced, being made up of vector updates, inner products,
and sparse matrix-vector products.

The job of the preconditioner is to approximate the action of the Jacobian inverse
in a way that does not make it the dominant consumer of memory or cycles in the
overall algorithm and (most importantly) does not introduce idleness through chained
data dependencies, as in Gaussian elimination. The true inverse of the Jacobian
is usually dense, reflecting the global Green’s function of the continuous linearized
PDE operator it approximates, and it is not obvious that a good preconditioner ap-
proximating this inverse action can avoid extensive global communication. A good
preconditioner saves time and space by permitting fewer iterations in the Krylov loop
and smaller storage for the Krylov subspace than would be required in its absence.
An additive Schwarz preconditioner accomplishes this in a localized manner, with an
approximate solve in each subdomain of a partitioning of the global PDE domain.
Applying any subdomain preconditioner within an additive Schwarz framework tends
to increases floating point rates over the same preconditioner applied globally, since
the smaller subdomain blocks maintain better cache residency. Combining a Schwarz
preconditioner with a Krylov iteration method inside an inexact Newton method leads
to a synergistic parallelizable nonlinear boundary value problem solver with a classical
name: Newton-Krylov-Schwarz (NKS). In the remainder of this section, we build up
NKS from the outside inwards.

Inexact Newton Methods. We use the term “inexact Newton method” to
denote any nonlinear iterative method for solving F(u) = 0 through a sequence uk =
uk−1 +λkδuk, where δuk approximately satisfies the true Newton correction equation

F′(uk−1)δuk = −F(uk−1), (2.3)

in the sense that the linear residual norm ||F′(uk−1)δuk + F(uk−1)|| is sufficiently
small. Typically the right-hand side of the linear Newton correction equation, which
is the nonlinear residual F(uk−1), is evaluated to full precision, so the inexactness

82 KEYES

arises from incomplete convergence employing the true Jacobian, freshly evaluated at
uk−1, or from the employment of an inexact Jacobian for F′(uk−1).

Newton-Krylov Methods. A Newton-Krylov (NK) method uses a Krylov
method, such as GMRES [26], to solve (2.3) for δu�. From a computational point
of view, one of the most important characteristics of a Krylov method for the linear
system Ax = b is that information about the matrix A needs to be accessed only in
the form of matrix-vector products in a relatively small number of carefully chosen di-
rections. When the matrix A represents the Jacobian of a discretized system of PDEs,
each of these matrix-vector products is similar in computational and communication
cost to a stencil update phase (or “global flux balance”) of an explicit method applied
to the same set of discrete conservation equations, or to a single finest-grid “work
unit” in a multigrid method. NK methods are suited for nonlinear problems in which
it is unreasonable to compute or store a true full Jacobian, where the action of A can
be approximated by discrete directional derivatives.

Newton-Krylov-Schwarz Methods. A Newton-Krylov-Schwarz (NKS) method
combines a Newton-Krylov method, such as Newton-GMRES [6], with a Krylov-
Schwarz (KS) method, such as restricted additive Schwarz [9]. If the Jacobian A
is ill-conditioned, the Krylov method will require an unacceptably large number of it-
erations. In order to control the number of Krylov iterations, while obtaining concur-
rency proportional to the number of processors, they are preconditioned with domain-
decomposed additive Schwarz methods [28]. The system is transformed into the equiv-
alent form B−1Ax = B−1b through the action of a preconditioner, B, whose inverse
action approximates that of A, but at smaller cost. It is in the choice of precondi-
tioning that the battle for low computational cost and scalable parallelism is usually
won or lost. In KS methods, the preconditioning is introduced on a subdomain-by-
subdomain basis through a conveniently computable approximation to a local Jaco-
bian. Such Schwarz-type preconditioning provides good data locality for parallel im-
plementations over a range of parallel granularities, allowing significant architectural
adaptability.

Schwarz Methods. Schwarz methods [7, 11, 28, 32] create concurrency at a
desired granularity algorithmically and explicitly through partitioning, without the
necessity of any code dependence analysis or special compiler. Generically, in continu-
ous or discrete settings, Schwarz partitions a solution space into n subspaces, possibly
overlapping, whose union is the original space, and forms an approximate inverse of the
operator in each subspace. Algebraically, to solve the discrete linear system, Ax = f ,
let Boolean rectangular matrix Ri extract the ith subset of the elements of x defining
an algebraic subspace: xi = Rix, and let Ai ≡ RiART

i be invertible within the ith

subspace. Then the additive Schwarz approximate inverse is defined as

B−1
ASM =

∑
i

Ri
T A−1

i Ri. (2.4)

From the PDE perspective, subspace decomposition is domain decomposition. B−1 is
formed out of (approximate) local solves on (possibly overlapping) subdomains.

In the grid-based context of a PDE, Boolean operators Ri and RT
i , i = 1, . . . , n,

represent gather and scatter (communication) operations, mapping between a global
vector and its ith subdomain support. When A derives from an elliptic operator and
Ri is the characteristic function of unknowns in a subdomain, optimal convergence

DOMAIN DECOMPOSITION IN THE MAINSTREAM OF COMP. SCIENCE 83

(independent of dim(x) and the number of partitions) can be proved, with the ad-
dition of a coarse grid, which is denoted with subscript “0”: B−1

ASM = RT
0 A−1

0 R0 +∑
i>0 RT

i A−1
i Ri. Here, R0 is a conventional geometrically based multilevel interpola-

tion operator. It is an important freedom in practical implementations that the coarse
grid space need not be related to the fine grid space or to the subdomain partitioning.
The A−1

i (i > 0) in B−1 are often replaced with inexact solves in practice, such as
a multigrid V-cycle. The exact forward matrix-vector action of A in B−1A is still
required, even if inexact solves are employed in the preconditioner.

Table 2.1: Theoretical condition number estimates κ(B−1A), for self-adjoint positive-definite

elliptic problems [28] and corresponding iteration count estimates for Krylov-Schwarz based

on an idealized isotropic partitioning of the domain in dimensions 2 or 3.

Preconditioning κ(B−1A) 2D Iter. 3D Iter.
Point Jacobi O(h−2) O(N1/2) O(N1/3)

Domain Jacobi O((hH)−1) O((NP)1/4) O((NP)1/6)
1-level Additive Schwarz O(H−2) O(P 1/2) O(P 1/3)
2-level Additive Schwarz O(1) O(1) O(1)

Condition number estimates for B−1A are given in the first column of Table 1
in terms of the quasi-uniform mesh parameter h, and subdomain parameter H. The
two-level Schwarz method with generous overlap has a condition number that is inde-
pendent of the fineness of the discretization and the granularity of the decomposition,
which implies perfect algorithmic scalability. However, there is an increasing imple-
mentation overhead in the coarse-grid solution required in the two-level method that
offsets this perfect algorithmic scalability. In practice, a one-level method is often
used, since it is amenable to a perfectly scalable implementation. Alternatively, a
two-level method is used but the coarse level is solved only approximately, in a trade-
off that depends upon the application and the architecture. These condition number
results are extensible to nonself-adjointness, mild indefiniteness, and inexact subdo-
main solvers. The theory requires a “sufficiently fine” coarse mesh, H, for the first
two of these extensions, but computational experience shows that the theory is often
pessimistic.

The restricted additive Schwarz Method (RASM) eliminates interprocess commu-
nication during the interpolation phase of the additive Schwarz technique [9]. In
particular, if we decompose a problem into a set of overlapping subdomains Ωi, the
conventional additive Schwarz method is a three-phase process consisting of first col-
lecting data from neighboring subdomains via global-to-local restriction operators Ri,
then performing a local linear solve on each subdomain A−1

i , and finally sending par-
tial solutions to neighboring subdomains via the local-to-global prolongation operators
Ri

T . The RASM preconditioner performs a complete restriction operation but does
not use any communication during the interpolation phase, denoted instead as R′

i
T .

This provides the obvious benefit of a 50% reduction in nearest-neighbor communica-
tion overhead. In addition, experimentally, it preconditions better than the original
additive Schwarz method over a broad class of problems [9], for reasons that are be-
ginning to be understood [8].

84 KEYES

Although the spectral radius, ρ(I − B−1A), may exceed unity, the spectrum,
σ(B−1A), is profoundly clustered, so Krylov acceleration methods work well on the
preconditioned solution of B−1Ax = B−1f . Krylov-Schwarz methods typically con-
verge in a number of iterations that scales as the square-root of the condition number
of the Schwarz-preconditioned system. For convergence scalability estimates, assume
one subdomain per processor in a d-dimensional isotropic problem, where N = h−d

and P = H−d. Then iteration counts may be estimated as in the last two columns of
Table 1.

The proof of these estimates is generally approached via an algebra of projec-
tion operators, Pi ≡ Ri

T A−1
i RiA. The ratio of upper bound to lower bound of the

spectrum of the sum of the orthogonal projections Pi is an estimate of the condition
number for B−1A =

∑
i Pi. Since ||Pi|| ≤ 1, the upper bound follows easily from the

geometry of the decomposition and is a generally a constant related to the number
of colors required to color the subdomains. The lower bound depends crucially upon
the partitioning of the solution space. Without a coarse subspace to support the so-
lution at subdomain boundaries, the fine space contributions must fall rapidly to zero
from finite values in the subdomain interiors, resulting in high H1 “energy” inversely
proportional to the overlap distance over which the solutions must decay.

For simple intuition behind this table consider the following: errors propagate
from the interior to the boundary in steps that are proportional to the largest implicit
aggregate in the preconditioner, whether pointwise (in N) or subdomainwise (in P).
The use of overlap in going from Domain Jacobi to Additive Schwarz avoids the
introduction of high energy at near discontinuities at subdomain boundaries. The
two-level method projects out low-wavenumber errors rapidly at the price of solving
a global problem.

Only the two-level method scales perfectly in convergence rate (constant, indepen-
dent of N and P), like a traditional multilevel iterative method [4, 5, 14, 30]. However,
the two-level method shares with multilevel methods a nonscalable cost-per-iteration
from the necessity of solving a coarse-grid system of size O(P). Unlike recursive mul-
tilevel methods, a two-level Schwarz method may have a rather fine coarse grid, for
example, H = O(h1/2), which potentially makes it less scalable overall. Parallelizing
the coarse grid solve is necessary. Neither extreme of a fully distributed or a fully
redundant coarse solve is optimal, but rather something in between. When reuse is
possible, storing a parallel inverse can be cost-effective [31].

When it appears additively in the Schwarz preconditioner, the coarse grid injects
some work that potentially spoils the “single-program, multiple data” (SPMD) par-
allel programming paradigm, in which each processor runs an identical image over
local data. For instance, the SPMD model would not hold if one subset of processors
worked on the coarse grid problem concurrently to the others each working on subdo-
mains. Therefore, in two-level SPMD implementations, other Schwarz preconditioner
polynomials than the purely additive are used in practice. A preconditioner may be
defined that solves the fine subdomains concurrently in the standard way, and then
assembles a new residual and solves the coarse grid in a separate phase. This leads to
the method denoted “Hybrid II” in [28]:

B−1 = A−1
0 + (I − A−1

0 A)(
n∑

i=1

A−1
i).

DOMAIN DECOMPOSITION IN THE MAINSTREAM OF COMP. SCIENCE 85

The subspace inverses are typically done approximately, as in the purely additive case.
Readers uncomfortable with the appearance of the Schwarz formula A−1 ≈

∑
i Ri

T A−1
i Ri,

implying that the inverse of the sum is well approximated by the sum of the inverses in
subspaces, may benefit from recalling an exact result from eigenanalysis. Let {ri}N

i=1

be a complete set of orthonormal row (left) eigenvectors for an SPD matrix A. Then
riA = airi, or ai = riArT

i , for corresponding eigenvalues ai. Then, we have the
representations of A and A−1 as sums over subspaces,

A =
N∑

i=1

rT
i airi and A−1 =

N∑
i=1

rT
i a−1

i ri =
N∑

i=1

rT
i (riArT

i)−1ri.

The latter is nothing but a special case of the Schwarz formula! In practice, invariant
subspaces are far too expensive to obtain for practical use in Schwarz, and their basis
vectors are general globally dense, resulting in too much storage and communication
in forming restrictions and prolongations. Characteristic subspaces of subdomains, in
contrast, provide locality and sparsity, but are not invariant upon multiplication by
A, since the stencils overlap subdomain boundaries. Choosing good decompositions is
a balance between conditioning and parallel complexity, in practice.

Contrast of Domain Decomposition with Other Decompositions. It is
worthwhile to emphasize the architectural advantages of Schwarz-type domain de-
composition methods vis-à-vis other mathematically useful decompositions.

Given the operator equation Lu = f in Ω, and a desire for either concurrent or
sequential “divide-and-conquer,” one can devise operator decompositions L =

∑
j Lj ,

function-space decompositions u =
∑

j ujφj , or domain decompositions Ω = ∪j Ωj .
Let us contrast an example of each on the parabolic PDE in two space dimensions

∂u

∂t
+ [Lx + Ly]u = f(x, y, t) in Ω, (2.5)

with u = 0 on ∂Ω, where Lx ≡ − ∂
∂xax(x, y) ∂

∂x + bx(x, y) ∂
∂x , (ax > 0) and with a

corresponding form for Ly. Upon implicit time discretization
[

I

∆t
+ Lx + Ly

]
u(�+1) =

[
I

∆t

]
u(�) + f ≡ f̃ ,

we get an elliptic problem at each time step.
The Alternating Direction Implicit (ADI) method is an example of operator de-

composition. Proceeding in half-steps, one each devoted to the x- and y-directions,
we write [

I

∆t/2
+ Lx

]
u(�+1/2) =

[
I

∆t/2
− Ly

]
u(�) + f

[
I

∆t/2
+ Ly

]
u(�+1) =

[
I

∆t/2
− Lx

]
u(�+1/2) + f.

The overall iteration matrix mapping u(�) to u(�+1) is factored into four sequential sub-
steps per time step: two sparse matrix-vector multiplies and two sets of unidirectional
bandsolves. If the data is alternately laid out in unidirectional slabs on the proces-
sors, so as to allow each set of unidirectional bandsolves to be executed independently,

86 KEYES

then we have perfect parallelism within substeps, but, global data exchanges between
substeps. In other words, computation and communication each scale with the bulk
size of the data of the problem.

A Fourier or spectral method is an example of a function-space decomposition. We
expand

u(x, y, t) =
N∑

j=1

aj(t)φj(x, y).

Enforcing Galerkin conditions on (2.5) with the basis functions φi, we get

d

dt
(φi, u) = (φi,Lu) + (φi, f), i = 1, . . . , N.

Plugging the expansion into the Galerkin form,

N∑
j=1

(φi, φj)
daj

dt
=

N∑
j=1

(φi,Lφj)aj + (φi, f), i = 1, . . . , N.

Inverting the mass matrix, M ≡ [(φj , φi)] on both sides, and denoting the stiffness
matrix by K ≡ [(φj ,Lφi)], we get a set of ordinary differential equations for the
expansion coefficients:

ȧ = M−1Ka + M−1g.

If the basis functions are orthogonal and diagonalize the operator, then M and K
are diagonal, and these equations perfectly decouple, creating N -fold concurrency for
the evolution of the spectral components. However, in applications, it is necessary
to frequently reconstitute the physical variable u. This is true for interpreting or
visualizing the model and also for handling possible additional terms of the PDE in
physical space in a “pseudo-spectral” approach, since it is unlikely that practically
arising operators readily lead to orthogonal eigenfunctions for which there are fast
transforms. Transforming back and forth from physical to spectral space on each
iteration leads, again, to an algorithm where the computation and the communication
together scale with the problem size, and there is all-to-all communication.

An additive Schwarz domain decomposition method for this problem has been de-
scribed already. We replace Au = f by B−1

ASMAu = B−1
ASMf and solve by a Krylov

method. There are several Krylov steps per time step, each requiring a matrix-vector
multiplies with B−1

ASMA. Due to the concurrency implied by the sum, there is paral-
lelism on each subregion. However the dominant communication is nearest-neighbor
data exchange, whose size scales as the perimeter (resp., surface in three dimensions),
compared to the computation, whose size scales as the area (resp., volume). Therefore,
domain decomposition possesses excellent scalability properties with respect to imple-
mentation on distributed memory computers. There is a need for a small global sparse
linear system solve in some problems, to obtain mathematical optimality. (This is not
necessary for the parabolic problem considered above.) Though this small problem
requires global communication (either to set up redundant instances, solved concur-
rently, or to carry out a collaborative solution) and demands analysis and extreme
care to keep subdominant, it escapes the bulk communication burdens of the other
approaches.

DOMAIN DECOMPOSITION IN THE MAINSTREAM OF COMP. SCIENCE 87

Physics-based Preconditioning. An important class of preconditioners for the
Jacobian-free Newton-Krylov method, complementary to the domain-split parallelism
of Schwarz, is physics-based operator splitting. The operator notation for the right-
preconditioned, matrix-free form of the method is:

J(u)B−1
splitv ≈

F(u + εB−1
splitv) − F(u)

ε
, (2.6)

where “split” denotes a preconditioning process handled in an operator-split manner.
Many operator-split time integration methods have been developed based on insight
from the physics of the underlying system. It is well understood that operator-split
methods have limitations as solvers, thus they most likely also have limitations as
preconditioners. However, they still provide an interesting class of preconditioners for
the Jacobian-free Newton-Krylov method.

The essential insight of physics-based preconditioning is that preconditioner in a
Newton-Krylov method maps a nonlinear residual to an approximate state-vector cor-
rection, namely, the Newton update. Such a map implicitly resides in most interative
procedures of computational physics. The use of operator-split solvers as precondition-
ers for Jacobian-free Newton-Krylov appears not to have a long history, but is rapidly
developing. See instances for time-independent reaction diffusion equations [24], time-
dependent MHD equations [10], steady state incompressible Navier-Stokes equations
[19, 25], and time-dependent incompressible Navier-Stokes equations [20, 25]. Also in
[20], a standard approximate linearization method used for phase-change heat con-
duction problems, has been employed as a preconditioner for a JFNK solution of
phase-change heat conduction problems.

3. Parallel Implementation of NKS Using PETSc. To implement NKS
methods on distributed memory parallel computers, we employ the “Portable, Ex-
tensible Toolkit for Scientific Computing” (PETSc) [1, 2], a library that attempts
to handle through a uniform interface, in a highly efficient way, the low-level details
of the distributed memory hierarchy. Examples of such details include striking the
right balance between buffering messages and minimizing buffer copies, overlapping
communication and computation, organizing node code for strong cache locality, pre-
allocating memory in sizable chunks rather than incrementally, and separating tasks
into one-time and every-time subtasks using the inspector/executor paradigm. The
benefits to be gained from these and from other numerically neutral but architecturally
sensitive techniques are so significant that it is efficient in both the programmer-time
and execution-time senses to express them in general purpose code. Among other
important packages implementing Newton-Krylov in parallel, we mention Aztec [15],
KINSOL [29], NITSOL [23], and the Iterative Template Library (ITL) [21].

PETSc is a large and versatile package integrating distributed vectors, distributed
matrices in several sparse storage formats, Krylov subspace methods, preconditioners,
and Newton-like nonlinear methods with built-in trust region or linesearch strategies
and continuation for robustness. It has been designed to provide the numerical in-
frastructure for application codes involving the implicit numerical solution of PDEs,
and it sits atop MPI for portability to most parallel machines. The PETSc library
is written in C, but may be accessed from user codes written in C, FORTRAN, and
C++. PETSc version 2, first released in June 1995, has been downloaded thousands

88 KEYES

of times by users worldwide. PETSc has many features relevant to PDE analysis,
including matrix-free Krylov methods, blocked forms of parallel preconditioners, and
various types of time-stepping.

When well tuned, large-scale PDE codes spend almost all of their time in two
phases: flux computations to evaluate conservation law residuals, where one aims
to have such codes spent almost all their time, and sparse linear algebraic kernels,
which are a fact of life in implicit methods. Altogether, four basic groups of tasks
can be identified based on the criteria of arithmetic concurrency, communication pat-
terns, and the ratio of operation complexity to data size within the task. These four
distinct phases, present in most implicit codes, are vertex-based loops, edge-based
loops, recurrences, and global reductions. Each of these groups of tasks has a distinct
proportion of work to datasize to communication requirements and each stresses a
different subsystem of contemporary high-performance computers. In the language of
a vertex-centered code, in which the data is

• Vertex-based loops

– state vector and auxiliary vector updates

• Edge-based “stencil op” loops

– residual evaluation, Jacobian evaluation

– Jacobian-vector product (often replaced with matrix-free form, involving
residual evaluation)

– interpolation between grid levels

• Sparse, narrow-band recurrences

– (approximate) factorization, back substitution, relaxation/smoothing

• Vector inner products and norms

– orthogonalization/conjugation

– convergence progress checks and stability heuristics

Vertex-based loops are characterized by work closely proportional to datasize,
pointwise concurrency, and no communication.

Edge-based “stencil op” loops have a large ratio of work to datasize, since each
vertex is used in many discrete stencil operations, and each degree of freedom at a point
(momenta, energy, density, species concentration) generally interacts with all others in
the conservation laws—through constitutive and state relationships or directly. There
is concurrency at the level of the number of edges between vertices (or, at worst,
the number of edges of a given “color” when write consistency needs to be protected
through mesh coloring). There is local communication between processors sharing
ownership of the vertices in a stencil.

DOMAIN DECOMPOSITION IN THE MAINSTREAM OF COMP. SCIENCE 89

Sparse, narrow-band recurrences involve work closely proportional to data size,
the matrix being the largest data object and each of its elements typically being used
once. Concurrency is at the level of the number of fronts in the recurrence, which
may vary with the level of exactness of the recurrence. In a preconditioned iterative
method, the recurrences are typically broken to deliver a prescribed process concur-
rency; only the quality of the preconditioning is thereby affected, not the final result.
Depending upon whether one uses a pure decomposed Schwarz-type preconditioner, a
truncated incomplete solve, or an exact solve, there may be no, local only, or global
communication in this task.

Vector inner products and norms involve work closely proportional to data size,
mostly pointwise concurrency, and global communication.

Based on these characteristics, one anticipates that vertex-based loops, recurrences,
and inner products will be memory bandwidth-limited, whereas edge-based loops are
likely to be only load/store-limited. However, edge-based loops are vulnerable to in-
ternode bandwidth if the latter does not scale. Inner products are vulnerable to in-
ternode latency and network diameter. Recurrences can resemble some combination
of edge-based loops and inner products in their communication characteristics if pre-
conditioning fancier than simple Schwarz is employed. For instance, if incomplete
factorization is employed globally or a coarse grid is used in a multilevel precondi-
tioner, global recurrences ensue.

Analysis of a parallel aerodynamics code reimplemented in PETSc [13] shows that,
after tuning, as expected, the linear algebraic kernels run at close to the aggregate
memory bandwidth limit on performance, the flux computations are bounded either by
memory bandwidth or instruction scheduling (depending upon the ratio of load/store
units to floating-point units in the CPU), and parallel efficiency is bounded primarily
by slight load imbalances at synchronization points.

4. Terascale Optimal PDE Simulations (TOPS). Under the Scientific Dis-
covery through Advanced Computing (SciDAC) initiative of the U.S. Department of
Energy (http://www.science.doe.gov/scidac/), a nine-institution team is building
an integrated software infrastructure center (ISIC) that focuses on developing, imple-
menting, and supporting optimal or near optimal schemes for PDE simulations and
closely related tasks, including optimization of PDE-constrained systems, eigenanal-
ysis, and adaptive time integration, as well as implicit linear and nonlinear solvers.
The Terascale Optimal PDE Simulations (TOPS) Center is researching and develop-
ing and will deploy a toolkit of open source solvers for the nonlinear partial differential
equations that arise in many application areas, including fusion, accelerator design,
global climate change, and the collapse of supernovae. These algorithms — primar-
ily multilevel methods — aim to reduce computational bottlenecks by one or more
orders of magnitude on terascale computers, enabling scientific simulation on a scale
heretofore impossible.

Along with usability, robustness, and algorithmic efficiency, an important goal of
this ISIC is to attain the highest possible computational performance in its imple-
mentations by accommodating to the memory bandwidth limitations of hierarchical
memory architectures.

PDE simulation codes require implicit solvers for multiscale, multiphase, mul-
tiphysics phenomena from hydrodynamics, electromagnetism, radiation transport,

90 KEYES

Optimization

Time integration

Nonlinear solvers

Linear solvers

Eigenanalysis

Indicates usage

Common Framework

Figure 4.1: An arrow from A to B indicates that A typically uses B. Optimization of systems

governed by PDEs requires repeated access to a PDE solver. The PDE system may be steady-

state or time-dependent. Time-dependent PDEs are typically solved with implicit temporal

differencing. After choice of the time-integration scheme, they, in turn, require the same types

of nonlinear solvers that are used to solve steady-state PDEs. Many algorithms for nonlinear

problems of high dimension generate a sequence of linear problems, so linear solver capability

is at the core. Eigenanalysis arises inside of or independently of optimization. Like direct

PDE analysis, eigenanalysis generally depends upon solving a sequence of linear problems.

All of these five classes of problems, in a PDE context, share grid-based data structures and

considerable parallel software infrastructure. Therefore, it is compelling to undertake them

together.

chemical kinetics, and quantum chemistry. Problem sizes are typically now in the
millions of unknowns; and with emerging large-scale computing systems and inexpen-
sive clusters, we expect this size to increase by a factor of a thousand over the next
five years. Moreover, these simulations are increasingly used for design optimization,
parameter identification, and process control applications that require many repeated,
related simulations.

The TOPS ISIC is concerned with five PDE simulation capabilities: adaptive time
integrators for stiff systems, nonlinear implicit solvers, optimization, linear solvers,
and eigenanalysis. The relationship between these areas is depicted in Figure 4.1. In
addition, TOPS emphasizes two cross-cutting topics: software integration (or inter-
operability) and high-performance coding techniques for PDE applications.

Optimal (and nearly optimal) complexity numerical algorithms almost invariably
depend upon a hierarchy of approximations to “bootstrap” to the required highly
accurate final solution. Generally, an underlying continuum (infinite dimensional) high
fidelity mathematical model of the physics is discretized to “high” order on a “fine”
mesh to define the top level of the hierarchy of approximations. The representations
of the problem at lower levels of the hierarchy may employ other models (possibly
of lower physical fidelity), coarser meshes, lower order discretization schemes, inexact
linearizations, and even lower floating-point precisions. The philosophy that underlies
our algorithmics and software is the same as that of this chapter — to make the
majority of progress towards the highly resolved result through possibly low-resolution

DOMAIN DECOMPOSITION IN THE MAINSTREAM OF COMP. SCIENCE 91

stages that run well on high-end distributed hierarchical memory computers.
The ingredients for constructing hierarchy-of-approximations-based methods are

remarkably similar, be it for solving linear systems, nonlinear problems, eigenvalue
problems, or optimization problems, namely:

1. A method for generating several discrete problems at different resolutions (for
example on several grids),

2. An inexpensive (requiring few floating point operations, loads, and stores per
degree of freedom) method for iteratively improving an approximate solution at
a particular resolution,

3. A means of interpolating (discrete) functions at a particular resolution to the
next finer resolution,

4. A means of transferring (discrete) functions at a particular resolution to the next
coarser resolution (often obtained trivially from interpolation).

Software should reflect the simplicity and uniformity of these ingredients over the
five problem classes and over a wide range of applications. With experience we expect
to achieve a reduction in the number of lines of code that need to be written and
maintained, because the same code can be reused in many circumstances.

The efforts defined for TOPS, the co-PIs joining to undertake them, and the al-
liances proposed with other groups have been chosen to exploit the present opportunity
to revolutionize large-scale solver infrastructure, and lift the capabilities of dozens of
DOE’s computational science groups as an outcome. The co-PIs’ current software
(e.g., Hypre [12], PETSc [1], ScaLAPACK [3], SuperLU [22]), though not algorithmi-
cally optimal in many cases, and not yet as interoperable as required, is in the hands
of thousands of users, and has created a valuable experience base. Just as we expect
the user community to drive research and development, we expect to significantly im-
pact the scientific priorities of users by emphasizing optimization (inverse problems,
optimal control, optimal design) and eigenanalysis as part of the solver toolkit.

Optimization subject to PDE-constraints is a particularly active subfield of opti-
mization because the traditional means of handling constraints in black-box optimiza-
tion codes — with a call to a PDE solver in the inner loop — is too expensive. We are
emphasizing “simultaneous analysis and design” methods in which the cost of doing
the optimization is a small multiple of doing the simulation and the simulation data
structures are actually part of the optimization data structures.

Likewise, we expect that a convenient software path from PDE analysis to eige-
nanalysis will impact the scientific approach of users with complex applications. For
instance, a PDE analysis can be pipelined into the scientific added-value tasks of
stability analysis for small perturbations about a solution and reduced dimension rep-
resentations (model reduction), with reuse of distributed data structures and solver
components.

The motivation behind TOPS is that most PDE simulation is ultimately a part
of some larger scientific process that can be hosted by the same data structures and
carried out with many of the same optimized kernels as the simulation, itself. We
intend to make the connection to such processes explicit and inviting to users, and this

92 KEYES

will be a prime metric of our success. The organization of the effort flows directly from
this program of “holistic simulation”: Terascale software for PDEs should extend from
the analysis to the scientifically important auxiliary processes of sensitivity analysis,
modal analysis and the ultimate “prize” of optimization subject to conservation laws
embodied by the PDE system.

5. Conclusions. The emergence of the nonlinearly implicit Jacobian-free Newton-
Krylov-Schwarz family of methods has provided a pathway towards terascale simu-
lation of PDE-based systems. Domain decomposition is desirable for possessing a
communication cost that is subdominant to computation – even optimal order com-
putation, linear in the problem size – and fixed in ratio, as problem size and processor
count are scaled in proportion.

Large-scale implicit computations have matured to a point of practical use on dis-
tributed/shared memory architectures for static-grid problems. More sophisticated
algorithms, including solution adaptivity, inherit the same features within static-grid
phases, of course, but require extensive additional infrastructure for dynamic paral-
lel adaptivity, rebalancing, and maintenance of efficient, consistent distributed data
structures.

While mathematical theory has been crucial in the development of NKS methods,
their most successful application also depends upon a more-than-superficial under-
standing of the underlying architecture and of the physics being modeled. In the
future, as we head towards petascale simulation and greater integration of complex
physics codes in full system analysis and optimization, we expect that this interdisci-
plinary interdependence will only increase.

Acknowledgements The author thanks Xiao-Chuan Cai, Omar Ghattas, Bill Gropp,
Dana Knoll, and Barry Smith for long-term collaborations on parallel algorithms, and Satish
Balay, Paul Hovland, Dinesh Kaushik, and Lois McInnes from the PETSc team at Argonne
National Laboratory (along with Gropp and Smith and others) for their wizardry in imple-
mentation.

REFERENCES

[1] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith. Efficient management of parallelism
in object-oriented numerical software libraries. In Modern Software Tools in Scientific
Computing, pages 163–201. Birkhauser, 1997.

[2] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith. The Portable, Extensible Toolkit for
Scientific Computing, version 2.3.1. http://www.mcs.anl.gov/petsc/, 2002.

[3] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Ham-
marling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley. ScaLAPACK
Users’ Guide. SIAM, 1997.

[4] A. Brandt. Multi-level adaptive solutions to boundary value problems. Math. Comp., 31:333,
1977.

[5] A. Brandt. Multigrid Techniques: 1984 Guide with Applications to Fluid Dynamics. Technical
report, von Karman Institute, 1984.

[6] P. N. Brown and Y. Saad. Hybrid Krylov methods for nonlinear systems of equations. SIAM
J. Sci. Stat. Comput., 11:450–481, 1990.

[7] X.-C. Cai. Some domain decomposition algorithms for nonselfadjoint elliptic and parabolic
partial differential equations. Technical Report 461, Courant Institute, 1989.

[8] X.-C. Cai, M. Dryja, and M. Sarkis. RASHO: A restricted additive Schwarz preconditioner
with harmonic overlap. In Proceedings of the 13th International Conference on Domain
Decomposition Methods. Domain Decomposition Press, 2002.

DOMAIN DECOMPOSITION IN THE MAINSTREAM OF COMP. SCIENCE 93

[9] X.-C. Cai and M. Sarkis. A restricted additive Schwarz preconditioner for general sparse linear
systems. SIAM J. Sci. Comput., 21:792–797, 1999.

[10] L. Chacon, D. A. Knoll, and J. M. Finn. An implicit nonlinear reduced resistive MHD solver.
J. Comput. Phys., 178:15–36, 2002.

[11] M. Dryja and O. B. Widlund. An additive variant of the Schwarz alternating method for the
case of many subregions. Technical Report 339, Department of Computer Science, Courant
Institute, 1987.

[12] R. D. Falgout and U. M. Yang. Hypre: a library of high performance preconditioners. In Lecture
Notes in Computer Science, vol. 2331, pages 632–641. Springer-Verlag, 2002.

[13] W. D. Gropp, D. K. K. D. E. Keyes, and B. F. Smith. High performance parallel implicit CFD.
Parallel Computing, 27:337–362, 2001.

[14] W. Hackbusch. Iterative Methods for Large Sparse Linear Systems. Springer, 1993.

[15] S. A. Hutchinson, J. N. Shadid, and R. S. Tuminaro. Aztec user’s guide: Version 1.1. Technical
Report SAND95-1559, Sandia National Laboratories, October 1995.

[16] C. T. Kelley and D. E. Keyes. Convergence analysis of pseudo-transient continuation. SIAM J.
Numer. Anal., 35:508–523, 1998.

[17] D. E. Keyes. Terascale implicit methods for partial differential equations. In Recent Advances
in Numerical Methods for Partial Differential Equations and Applications. AMS, 2002.

[18] D. A. Knoll and D. E. Keyes. Jacobian-free Newton-Krylov methods: A survey of approaches
and applications. submitted to J. Comput. Phys., 2002.

[19] D. A. Knoll and V. Mousseau. On Newton-Krylov multigrid methods for the incompressible
Navier-Stokes equations. J. Comput. Phys., 163:262–267, 2000.

[20] D. A. Knoll, W. B. VanderHeyden, V. A. Mousseau, and D. B. Kothe. On preconditioning
Newton-Krylov methods in solidifying flow applications. SIAM J. Sci. Comput., 23:381–
397, 2001.

[21] L.-Q. Lee and A. Lumsdaine. The iterative template library. submitted to ACM Transactions
on Mathematical Software, 2002.

[22] X. S. Li and J. W. Demmel. SuperLU DIST: A scalable distributed-memory sparse direct solver
for unsymmetric linear systems. submitted to ACM Transactions on Mathematical Software;
also available as Lawrence Berkeley National Laboratory tech report LBNL-49388, 2002.

[23] H. F. W. Michael Pernice. NITSOL: A Newton iterative solver for nonlinear systems. SIAM J.
Sci. Stat. Comput., 19:302–318, 1998.

[24] V. Mousseau, D. A. Knoll, and W. Rider. Physics-based preconditioning and the Newton-Krylov
method for non-equilibrium radiation diffusion. J. Comput. Phys., 160:743–765, 2000.

[25] M. Pernice and M. D. Tocci. A multigrid-preconditioned Newton-Krylov method for the incom-
pressible Navier-Stokes equations. SIAM J. Sci. Comput., 23:398–418, 2001.

[26] Y. Saad and M. H. Schultz. GMRES: A generalized minimal residual algorithm for solving
nonsymmetric linear systems. SIAM J. Sci. Stat. Comput., 7:856–869, July 1986.

[27] S. Shingu, H. Takahara, H. Fuchigami, M. Yamada, Y. Tsuda, W. Ohfuchi, Y. Sasaki,
K. Kobayashi, T. Hagiwara, S.-I. Habata, M. Yokokawa, H. Itoh, and K. Otsuka. A 26.58
Tflop/s global atmospheric simulation with the spectral transform method on the earth
simulator. Proceedings of SC2002, 2002.

[28] B. F. Smith, P. Bjørstad, and W. D. Gropp. Domain Decomposition: Parallel Multilevel Methods
for Elliptic Partial Differential Equations. Cambridge University Press, 1996.

[29] A. G. Taylor and A. C. Hindmarsh. User documentation for KINSOL: a nonlinear solver for
sequential and parallel computers. Technical Report UCRL-ID-131185, Lawrence Livermore
National Laboratory, July 1998.

[30] U. Trottenberg, A. Schuller, and C. Oosterlee. Multigrid. Academic Press, 2000.

[31] H. M. Tufo and P. Fischer. Fast parallel direct solvers for coarse grid problems. J. Par. Dist.
Comput., 61:151–177, 2001.

94 KEYES

[32] J. Xu. Iterative methods by space decomposition and subspace correction. SIAM Review,
34:581–613, 1991.

