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30. On multigrid methods for vector–valued Allen–Cahn
equations with obstacle potential

R. Kornhuber1, R. Krause 2

1. Introduction. Phase field models provide a well–established framework for the
mathematical description to free boundary problems for phase transitions. In contrast to
sharp interface models, the phase field approach postulates a diffuse interface with a small
but finite thickness. Approximations of the interface are recovered as level sets of a function u,
called order parameter or phase field. The main advantage of this approach is that topological
changes of the approximate interface cause no problems, because bulk phases and interface
are treated in the same manner. In this paper, we consider multicomponent phase transitions
as described by a vector–valued Allen–Cahn equation with obstacle potential [2, 3]. Semi–
implicit discretization in time is unconditionally stable but, after finite element discretization
in space, leads to large non–smooth algebraic systems. So far, fast solvers for such kind of
problems were not available. As a consequence, explicit schemes are applied, in spite of severe
stability restrictions on the time step [4]. We present a new class of multigrid methods based
on successive minimization in the direction of well selected search directions and prove global
convergence. Similar multigrid techniques have been applied in [6, 8] in a different context.
Numerical experiments illustrate the reliability and efficiency of our method.

2. Vector–valued Allen–Cahn equations and discretization. We consider
isothermal, multicomponent phase transitions in a polygonal (polyhedral) domain Ω ⊂ R

d,
d = 1, 2, 3. Each phase at a particular point (x, t) ∈ Q = Ω × [0, T0], T0 > 0, is represented
by the value of a component ui(x, t) of the order parameter u = (u1, . . . , uN )T . In practical
applications the components ui may represent concentrations or volume fractions of the
different phases in the system. Hence, we impose the condition that values of ui are non–
negative and add up to unity [3], i.e.

u(x, t) ∈ G = {v ∈ R
N | vi ≥ 0,

∑
i vi = 1} ∀(x, t) ∈ Q.

We further assume that the Ginsburg–Landau total free energy of our system is given by

E(u) =

∫
Ω

1
2
ε2 ∑

i |∇ui|2 + Ψ(u) dx, ε > 0.

The quadratic term describes interfacial energy and the non–convex free energy functional
Ψ has N distinct local minima on G giving rise to phase separation. Phase kinetics should
satisfy the second law of thermodynamics stating that total free energy is non–increasing
along solution paths. The vector–valued Allen–Cahn equation

ut = − d

du
E(u) = ε2∆u − T∇uΨ(u) (2.1)

is the most simple model with this property. Denoting 1 = (1, 1, . . . , 1) ∈ R
N , the projection

T : R
N → Σ0 = {v ∈ R

N |
∑

i vi = 0}, defined by

Tv = v − 1
N

(v · 1)1,

accounts for the fact that the values u(x, t) ∈ G ⊂ Σ = {v ∈ R
N |

∑
i vi = 1} must only vary

on the affine hyperplane Σ. See [3] for details.
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From now on, we concentrate on the obstacle potential Ψ = Ψ∞,

Ψ∞(u) =




∑
i<j uiuj , u ∈ G,

+∞, else.

Minimal values of Ψ∞ on G are attained at the N unit vectors e1, . . . , eN ∈ R
N which are

associated with pure phases. Imposing Neumann boundary conditions, a weak formulation
of (2.1) takes the form

d

dt
(u, v) + ε2(∇u,∇(v − u)) − (u, v − u) ≥ − 1

N
(1, v − u) ∀v ∈ G, (2.2)

where the time derivative is understood in an appropriate weak sense and

u(·, t) ∈ G := {v ∈ H1(Ω)N | v(x) ∈ G a.e. in Ω}, 0 < t ≤ T0.

In addition, we prescribe initial conditions u(·, 0) = u0 ∈ G.
Let TJ be a given partition of Ω into triangles (tetrahedra) with minimal diameter hJ =

O(2−J). The set of vertices is denoted by NJ and we set

SJ = {v ∈ C(Ω) | vi|t is linear ∀t ∈ TJ}.

Now we discretize (2.2) in time by backward Euler with step size τ > 0. The concave part
−(u, ·) of Ψ∞ is taken explicitly (cf. e.g. [1]). Discretization in space by piecewise linear finite
elements then leads to the discrete variational inequality

uJ,k ∈ GJ : 〈uJ,k, v − uJ,k〉 + τε2(∇uJ,k,∇(v − uJ,k)) ≥

〈(1 + τ)uJ,k−1 − τ
N

1, v − uJ,k〉 ∀v ∈ GJ

(2.3)

to be solved in the k–th time step. Here, 〈·, ·〉 stands for the lumped L2–product and the
continuous constraints G are approximated by

GJ = {v ∈ SN
J | v(p) ∈ G ∀p ∈ NJ}. (2.4)

As GJ is a non–empty, closed, convex subset of SN
J and the bilinear form appearing on the

left hand side of (2.3) is symmetric, positive definite on SN
J there is a unique solution uJ,k

for arbitrary step size τ > 0, see [5].

3. Polygonal relaxation. We now derive a Gauß–Seidel type relaxation scheme for
discrete variational inequalities of the form

uJ ∈ GJ : a(uJ , v − uJ) ≥ �(uJ , v − uJ) ∀v ∈ GJ (3.1)

with a symmetric, positive definite bilinear form a(·, ·) on SN
J , � ∈ (SN

J )′ and GJ defined in
(2.4). Of course, (2.3) is a special case of (3.1).

Note that GJ is a subset of an affine subspace of SN
J spanned by the hyperplane HJ =

{v ∈ SN
J |

∑
j vj(p) = 0}. Hence, each splitting of HJ gives rise to a successive subspace

correction method for (3.1). We consider the splitting

HJ =

mJ∑
l=1

Vl, Vl = span{µl}, µl(i,j) = λ(J)
pi

Ej , l = 1, . . . , mJ , (3.2)

where λ
(J)
pi , i = 1, . . . , nJ , denotes the nodal basis of SJ , the vectors Ej ∈ R

N , i = 1, . . . , M :=
1
2
N(N − 1) are given by the edges of G, l = l(i, j) is some enumeration and mJ := nJM .
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The resulting successive subspace correction method reads as follows. Starting with
the given ν–th iterate uν

J =: wν
0 ∈ GJ , we compute a sequence of intermediate iterates

wν
l = wν

l−1 = v∗
l , l = 1, . . . , mJ . The corrections v∗

l are the unique solutions of the local
subproblems

v∗
l ∈ D∗

l a(v∗
l , v − v∗

l ) ≥ �(v − v∗
l ) − a(wν

l−1, v − v∗
l ) ∀v ∈ D∗

l , (3.3)

where the closed convex subsets D∗
l = D∗

l (wν
l−1) are defined by

D∗
l (wν

l−1) = {v ∈ Vl | wν
l−1 + v ∈ GJ}.

Finally, we obtain the next iterate uν+1
J ,

uν+1
J = M(uν

J) := wν
mJ

= uν
J +

mJ∑
l=1

v∗
l . (3.4)

It is well–known from, e.g., [5] that (3.1) is equivalent to the constrained minimization
problem

uJ ∈ GJ : J (uJ) ≤ J (v) ∀v ∈ GJ (3.5)

for the quadratic energy functional

J (v) = 1
2
a(v, v) − �(v), v ∈ SN

J .

Successive subspace correction (3.4) can be regarded as a successive minimization of J in
the direction of µl, l = 1, . . . , mJ . In particular, we have

J (uν+1
J ) ≤ J (wν

l ) ≤ J (uν
J), ∀l = 1, . . . , mJ , ν = 0, 1, . . . . (3.6)

The following lemma is crucial for the convergence of (3.4).

Lemma 3.1 For any given U, W ∈ G there is a decomposition

W = U +

M∑
j=1

ωjEj , (3.7)

which is feasible in the sense that

U + ωjEj ∈ G ∀j = 1, . . . , M.

Proof. We only sketch the basic idea of the proof which is easy for N = 2, 3, 4, but becomes
technical for arbitrary N . Let U, W ∈ G be given. Recall that e1, . . . , eN ∈ R

N denote the
unit vectors in R

N . By definition of G, there are coefficients α1, . . . , αN with the properties

w =
N∑

i=1

αiei, αi ≥ 0, α1 + · · · + αN = 1. (3.8)

Now it can be shown that the unit vectors ei can be decomposed in such a way that insertion
in (3.8) provides the desired feasible decomposition (3.7).

We are ready to prove convergence.

Theorem 3.1 For any initial iterate u0
J ∈ GJ , the polygonal relaxation (3.4) converges to

the solution uJ of (3.1).
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Proof. We only sketch the proof based on similar arguments as the proof of Theorem 2.1
in [7]. Utilizing (3.6), we have J (uν

J) ≤ J (u0
J) < ∞ for all ν ≥ 0. As a consequence, the

sequence of iterates (uν
J)ν∈N is bounded. As SN

J has finite dimension, any subsequence of
(uν

J)ν∈N has a subsubsequence (uνk
J )k∈N that converges to some u∗

J ∈ GJ . We now show that
u∗

J = uJ . Observe that (3.6) leads to

J (u
νk+1
J ) ≤ J (M(uνk

J )) ≤ J (uνk
J ) ∀k = 1, . . . ,

where M is defined in (3.4). As J , M are continuous on GJ , we can pass to the limit in
order to obtain

J (M(u∗
J)) = J (u∗

J).

Hence, starting with w0 = u∗
J , all corrections v∗

l computed from (3.3) are zero, giving

0 ≥ �(v) − a(u∗
J , v) ∀v ∈ D∗

l (u∗
J), l = 1, . . . , mJ . (3.9)

Now, let w ∈ GJ be arbitrary chosen. As an immediate consequence of Lemma 3.1, there is
a decomposition w = u∗

J +
∑mJ

l=1 vl such that vl ∈ Vl and u∗
J + vl ∈ GJ , i.e. vl ∈ D∗

l (u∗
J).

Inserting v = vl in (3.9) and summing up for l = 1, . . . , mJ , we obtain

a(u∗
J , w − uJ) ≥ �(w − uJ).

Hence, u∗
J is a solution of (3.1). As uJ is the unique solution of (3.1), we get u∗

J = uJ . We
have shown that any subsequence has a subsubsequence converging to uJ . Hence, the whole
sequence (uν

J)ν∈N must converge to uJ .

Implementation of (3.4) is based on the representation

D∗
l(i,j) = {v ∈ Vl | v = zλ(J)

pi
Ej , ψ

i,j
≤ z ≤ ψi,j}

with local obstacles ψ
i,j

≤ 0 ≤ ψi,j depending on the actual intermediate iterate wν
l . In

contrast to box constraints, each correction vl(i,j) requires an update of all local obstacles

ψ
i,s

, ψi,s s = 1, . . . , M . As a consequence, each iteration step of the polygonal relaxation

requires O(M2nJ) = O(N4nJ) point operations.

4. Extended polygonal relaxation. The convergence speed of Gauß–Seidel type
relaxation (3.4) deteriorates rapidly with decreasing mesh size hJ . In order to accelerate
convergence, we consider the extended splitting

HJ =

mJ∑
l=1

Vl +

Mν
J∑

l=mJ+1

V ν
l , V ν

l = span{µν
l }, µν

l ∈ HJ , (4.1)

with Vl, l = 1, . . . , mJ , defined in (3.2). The additional search directions µν
l are intended

to improve the representation of the low–frequency contributions of the error and therefore
should have large support. The µν

l might be iteratively adjusted to the unknown solution uJ

and, for this reason, are allowed to vary in each iteration step.

We consider the resulting extended polygonal relaxation defined as follows. Starting from
a given iterate uν

J ∈ GJ , we first compute a smoothed iterate ūν
J = wν

mJ
= M(uν

J) by fine
grid smoothing (3.4). Successive “coarse grid corrections” vl are then obtained from

vl ∈ Dl : a(vl, v − vl) ≥ �(v − vl) − a(wν
l−1, v − vl) ∀v ∈ Dl, (4.2)
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denoting wν
l = wν

l−1 + vl, l = mJ + 1, . . . , Mν
J . Due to large support of µν

l , it might be
too costly to check whether some v ∈ V ν

l is contained in D∗
l or not. Hence, we may use

approximate closed convex subsets Dl, satisfying

0 ∈ Dl ⊂ D∗
l = {v ∈ V ν

l | wν
l−1 + v ∈ GJ}.

The next iterate is given by

uν+1
J = wν

Mν
J

= ūν
J +

Mν
J∑

l=mJ+1

vl. (4.3)

The convergence proof is almost literally the same as for Theorem 2.1 in [6].

Theorem 4.1 For any initial iterate u0
J ∈ GJ , the extended polygonal relaxation (4.3) con-

verges to the solution uJ of (3.1).

The subset of all nodes with vanishing i–th phase is denoted by

N •
J,i(uJ) = {p ∈ NJ | uJ,i(p) = 0}, i = 1, . . . , N.

It would be interesting to know whether

N •
J,i(u

ν
J) = N •

J,i(uJ), ν ≥ ν0, (4.4)

holds for some ν0 ∈ N. In fact, assuming reasonable search directions µν
l , a non–degeneracy

condition of the form

a(uJ , λ(J)
p Ej) < (−1)rj �(λ(J)

p Ej) ∀j with (ei · Ej) �= 0 ∀p ∈ N •
J,i(uJ)

with suitable rj depending on the orientation of Ej and finally that uJ(p) �= ej holds for all
j �= i and p ∈ N •

J,i(uJ), convergence of phases (4.4) can be shown in a similar way as Lemma
2.2 in [6]. Unfortunately, this result is of minor relevance for discretized vector–valued Allen–
Cahn equation (2.3), because uJ(p) = ej stands for pure phase j. Recall that pure phases
are local minima of Ψ∞.

5. Monotone multigrid. Assume that TJ is resulting from J refinements of an
intentionally coarse triangulation T0. In this way, we obtain a sequence of triangulations
T0 ⊂ · · · ⊂ TJ and corresponding nested finite element spaces S0 ⊂ · · · ⊂ SJ . Though the
algorithms to be presented can be easily generalized to the non–uniform case, we assume for
simplicity that the triangulations are uniformly refined. More precisely, each triangle t ∈ Tk

is subdivided into four congruent subtriangles in order to produce the next triangulation
Tk+1.

Using the nodal basis functions λ
(k)
p , p ∈ Nk on all levels k = J, . . . , 0, we define the

search directions µν
l appearing in the splittings (3.2) and (4.1) by

µl(i,j,k) = λ(k)
pi

Ej , l = 1, . . . , MJ := M(nJ + · · · + n0).

The enumeration l(i, j, k) is taken from fine to coarse, i.e. l(i, j, k) > l′(i′, j′, k′) implies k ≤ k′.
Approximate constraints in (4.2) have the form

Dl = {v = zλ(k)
pi

Ej ∈ Vl(i,j,k) | ψ
l
≤ z ≤ ψl}, l = MnJ + 1, . . . , MJ .

Local obstacles ψ
l
, ψl can be constructed by quasioptimal monotone restriction [6]. As a

consequence of Theorem 4.1, the resulting standard monotone multigrid method converges
for all initial iterates u0

J ∈ GJ . It can be implemented as a multigrid V –cycle. Smoothing
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Figure 6.1: Initial condition u0 and approximate solution at t = 4

is performed by polygonal relaxation (3.4) on each level. Restriction of stiffness matrix and
residual and prolongation of corrections are canonical, if representation in terms of search
directions λ

(k)
p Ej is used. The numerical complexity of each iteration step is O(N4nJ), i.e.

of the same order as fine–grid smoothing. Asymptotic multigrid convergence rates could be
derived in the framework of linear successive subspace correction (cf. [6, 9]), provided that
convergence of phases (4.4) holds for all i = 1, . . . , N .

In related algorithms, convergence speed of standard monotone multigrid could be im-
proved by so–called truncation of coarse grid nodal basis functions [6, 7, 8]. In the present
case, truncation leads to the coarse grid search directions

µ̃ν
l(i,j,k) = T ν

J,k,jλ
(k)
pi

Ej , l = MnJ + 1, . . . , MJ .

For each direction Ej , the truncation operators T ν
J,k,j : SJ → Sk are defined according to

[6]. Truncation is implemented by modification of quasioptimal restriction and canonical
restriction and prolongation: All entries from N •

J,i(ū
ν
J) are set to zero. In this way, we ob-

tain a truncated monotone multigrid method. Again, convergence follows from Theorem 4.1
and asymptotic multigrid convergence rates could be derived, if all phases i = 1, . . . , N con-
verge according to (4.4). Mesh independent global bounds for convergence rates of monotone
multigrid methods, e.g. from [6], are still an open problem.

6. Numerical experiments. We consider grain growth as described by the vector–
valued Allen–Cahn equation (2.2) on the unit square Ω = (0, 1) × (0, 1) with N = 3 and
ε = 0.002. For example, each of the N = 3 different phases may reflect a different crystalline
structure. The initial condition u0 ∈ G is a randomly chosen superposition of 500 circular
grains, each of which corresponds to a pure phase. The randomly chosen radii are ranging
from 0.01 to 0.04. See the left picture in Figure 6.1 for illustration.

The continuous problem is approximated by the discretization (2.3) with step size τ = 1
and triangulation TJ resulting from J = 8 uniform refinements. The initial triangulation T0

is obtained by subdivision of Ω into two congruent triangles and a subsequent refinement
step. The right picture in Figure 6.1 and Figure 6.2 show the approximate discrete solution
at t = 4, t = 100 and T0 = 600, respectively. Observe that reduction of total free energy
goes with a reduction of the (diffuse) interfaces by smoothing and coarsening. Interfaces at
triple junctions tend to meet at an angle of 120◦. This supports formal asymptotic analysis
in [2]. In order to illustrate the convergence behavior of our iterative schemes, we consider
the spatial problem to be solved in the first time step. The left picture in Figure 6.3 shows
the iteration history of polygonal relaxation (cf. Section 3) as compared to the standard
monotone multigrid method with V –cycle and three pre–smoothing and post–smoothing
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Figure 6.2: Approximate solutions at t = 100 and T0 = 600
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Figure 6.3: Iteration history and averaged convergence rates

steps, respectively (cf. Section 5). The algebraic error ‖uJ − uν
J‖ is measured by the energy

norm ‖ · ‖ = a(·, ·)1/2. The initial iterate u0
J = e3 ∈ GJ has little to do with uJ . Nevertheless,

we observe very fast convergence of our multigrid method throughout the iteration process.
The averaged convergence rate is ρSTD

J := ν0
√

‖uJ − uν0
J ‖/‖uJ − u0

J‖ ≈ 0.005 where ν0 is
chosen such that ‖uJ − uν0

J ‖ < 10−12. Taking into account that each iteration step is
much cheaper, polygonal relaxation performs reasonably well with averaged convergence
rate ρGS

J = 0.56. This seems to be a consequence of the redundancy of search directions
in combination with a moderate number of grid points in the diffuse interface. The right
picture in Figure 6.3 illustrates the mesh dependence of averaged convergence rates ρGS

j , ρSTD
j ,

j = 0, . . . , 8. Iteration always starts with the “arbitrary” initial iterate u0
j = e3 ∈ Gj . As

expected, we observe only minor sensitivity of multigrid as compared to single grid. On the
other hand, it seems that the mesh size hJ = 2−9 ≈ 1

2
ε is still too large to provide saturation.

7. Conclusion an perspective. We have introduced and analyzed new Gauß–
Seidel type relaxation and monotone multigrid methods for systems of variational inequalities
with local triangular constraints. Such problems arise in mathematical description of certain
free boundary problems by phase field models. Future work will concentrate on more realistic
Ginzburg–Landau functionals, involving anisotropic interfacial energy and logarithmic free
energy [4]. Of course, adaptive mesh refinement will be indispensable for a better resolution
of the diffuse interface. In this case, truncated multigrid might also be profitable.
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