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48. V –cycle Multigrid Convergence for Cell Centered Finite
Difference Method, 3-D case.

D. Y. Kwak1

1. Introduction. In this paper, we study a multigrid algorithm for cell centered finite
difference method for elliptic problems in three dimensions.

Cell centered finite difference methods are very popular among engineering circle working
on various fluid computations such as oil reservoir simulation, underground water flow, or
steady Euler equations, etc. It seems mainly due to the conservation property and simplicity
of the scheme. On the other hand, as a solution process of the corresponding linear system,
multigrid methods have been known fast for many class of problems[1],[7], [9],[4], [5],[2]. The
performance of multigrid algorithms for two dimensional cell-centered finite difference method
have been investigated in [10],[6] and W–cycle convergence has been analyzed in [3]. Recently
V –cycle convergence has been shown with certain weighted prolongation operator[8]. This
paper is a continuation of [8] dealing with three dimensional aspect of multigrid algorithm
for cell-centered finite difference methods.

One of the main ingredient of multigrid algorithms in the nonstandard discretization is
the design of prolongation operators between two consecutive levels, since for the cell centered
finite difference case, the natural injection increases the energy norm even in two dimensional
problems as shown in [3, 8]. Hence we consider a certain weighted prolongation and show its
energy norm is bounded by one. Another natural operator is trilinear based operator. In this
case, we also show the energy norm is less than equal to 1. Finally, we consider prolongation
with different weight. This is motivated by the geometric configuration: when a box element
is subdivided by 8 subboxes, one of the subbox shares three faces with its mother box, while it
shares just one face with three neighboring box, thus the weights {3, 1, 1, 1}. In this last case,
one can only show the energy norm is bounded by

√
10/9, but the multigrid performance

is better than any other operator(either as an iterative solver or as a preconditioner). The
rest of the paper is organized as follows. In section 2, we derive cell-centered FDM for a
model 3-dimensional problem through the use of Raviart-Thomas-Nedelec element for the
mixed formulation. In section 3, we describe the multigrid algorithm and some convergence
theory. In section 4, we consider various prolongation operators together with their energy
norm estimates. Finally in section 5, we present numerical experiments.

2. Derivation of Cell Centered FDM from RTN. Consider a model problem

−∇ · K∇p = f in Ω
p = 0 on ∂Ω

(2.1)

where Ω is a unit cube, K is a diagonal tensor whose entries are piecewise smooth. Let
h := hk = 2−k for some positive integer k. Assuming the domain has been subdivided
by axis parallel planes into small cubes of equal size h with index (i, j, l), we consider the
Raviart-Thomas-Nedelec (RTN) mixed finite element space. Let

�Vh = {uh = (a1 + a2x, b1 + b2y, c1 + c2z) on each element } ∩ H(div Ω) (2.2)

Lh = {ph : piecewise constant on each element}. (2.3)

The RTN mixed method is to find (uh, ph) ∈ �Vh × Mh such that

(K−1uh,v) − (divv, ph) = 0, v ∈ �Vh (2.4)

(divuh, q) = (f, q), q ∈ Lh. (2.5)
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Let v be a test function in �Vh whose only nonzero component, the x component, is one at a
vertex i + 1/2 and zero at all others. One uses the trapezoidal rule to evaluate first integral.
Then we get

u1
i+1/2,j,lFac = h2(pi,j,l − pi+1,j,l), (2.6)

where

Fac =
h

2

[∫ j+ 1
2

j− 1
2

∫ l+ 1
2

l− 1
2

K−1
L (xi+ 1

2
, y, z)dydz +

∫ j+ 1
2

j− 1
2

∫ l+ 1
2

l− 1
2

K−1
R (xi+ 1

2
, y, z)dydz

]
.

Similarly we integrate along y-directional and z-directional volumes using y, z directional
test functions to get difference equations along the y and z axes. The second equation of
mixed formulations reads:

h2(u1
i+ 1

2 ,j,l − u1
i− 1

2 ,j,l + u2
i,j+ 1

2 ,l − u2
i,j− 1

2 ,l + u3
i,j,l+ 1

2
− u3

i,j,l− 1
2
) = h3fi,j,l, (2.7)

where we assumed f is piecewise constant for simplicity. By substituting the expressions for
u1

i+1/2,j,l etc, if we denote the integral of K−1
L simply as K−1

L , we have

2

[
−pi−1,j,l − pi+1,j,l − pi,j−1,l + 6pi,j,l − pi,j+1,l − pi,j,l−1 − pi,j,l+1

K−1
L + K−1

R

]
= fi,j,lh

2. (2.8)

When K = 1 the stencil for interior is(without h-factor) −1,−1,−1, 6,−1,−1,−1 while on
the boundary face −1,−1,−1, 7,−1,−1, 0 and on the boundary edge 0,−1,−1, 8,−1,−1, 0
and on the corner −1,−1,−1, 9, 0, 0, 0. This is the cell-centered finite difference method.
If we denote by Mk the space of functions which are piecewise constant on each cell, the
problem can be viewed as seeking a solution x ∈ Mk satisfying an algebraic equation of the
form

Akx = b, (2.9)

where x is identified as the vector representation of ph.

2.1. Multgrid Method. Now we describe a V –cycle multigrid algorithm (with one
smoothing Rk, e.g, Gauss-Seidel) for solving (2.9) for k = J . First consider the sequence of
spaces

M1, · · · , MJ .

One can view this sequence of space nested with obvious injection. But as we shall see other
types of operator to be considered in this paper work better for multigrid.

ALGORITHM. If k = 1, set B1b = A−1
1 b. Otherwise define Bk recursively as follows:

1. Pre-smooth

x1
k := Rkb.

2. Set

q = Bk−1P
0
k−1(b − Akx1

k).

3. Correct

x2
k := x1

k + Ikq.

4. Post-smooth

Bkb := x2 + Rt
k(b − Akx2

k).
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For the convergence analysis, we need two conditions to verify: One is the so-called
regularity and approximation property: There exist constants α ∈ (0, 1] and Cα such that,
for all k = 1, · · · , J ,

Ak((I − IkPk−1)u, u) ≤ C2
α

(
‖Aku‖2

λk

)α

Ak(u, u)1−α, ∀u ∈ Mk. (2.10)

Here, λk is the largest eigenvalue of Ak, and Pk−1 is the elliptic projection defined by

Ak−1(Pk−1u, v) = Ak(u, Ik
k−1v), ∀u ∈ Vk, v ∈ Mk−1. (2.11)

The next is

Ak(Ikv, Ikv) ≤ CIAk−1(v, v), ∀v ∈ Vk−1. (2.12)

With these verified one can prove the following result[5].

Theorem 2.1 We have
1. If CI ≤ 1, then V –cycle multigrid algorithm satisfies

0 ≤ Ak(Eku, u) ≤ δkAk(u, u), ∀u ∈ Mk, (2.13)

where Ek = I − BkAk and δk = Ck
Ck+1

.
2. If CI ≤ 1 + Chk, then Bk is a good preconditioner in the sense that

η0Ak(u, u) ≤ Ak(BkAku, u) ≤ η1Ak(u, u), ∀u ∈ Mk, (2.14)

where η1 is independent of k and η0 ≤ 1 − δk.

3. Energy norm estimate of various prolongations. For all the prolongation
operators to be considered below, this regularity and approximation property holds(see [8]
for details). Hence we concentrate (2.12) only. To make things easier we summarize 2-D
result briefly first and extend it to 3-D. Referring to figure 2.1, we shall use the notation (i, j)
to denote a coarse grid cell center, while we use (I1, J1) etc, to denote the fine grid center
obtained by halving the coarse cell. We define the prolongation operator Ik : Mk−1 → Mk

as follows: With any positive number w let

(Ikv)I−1,J−1 =
1

w
((w − 2)vi,j + vi−1,j + vi,j−1) (3.1)

(Ikv)I−1,J =
1

w
((w − 2)vi,j + vi,j+1 + vi−1,j) (3.2)

(Ikv)I,J−1 =
1

w
((w − 2)vi,j + vi+1,j + vi,j−1) (3.3)

(Ikv)I,J =
1

w
((w − 2)vi,j + vi,j+1 + vi+1,j) (3.4)

One can show that in this case (2.12) holds with CI = (2(w−2)2+8)/w2 whose minimum
is obtained when w = 4. Thus we have weight {1/2, 1/4, 1/4}. Hence the analysis in [8] can
be carried out to show that symmetric V –cycle with one smoothing yields a convergence
factor δ < 1. For 3D, the situation is different. The weight has to be changed to get suitable
operator. We use similar notations as in 2-D. Fix a box element (i, j, l) in k − 1 level and
divided it by 8 axi-parallel subboxes, denoted by (I, J, L), (I1, J, L), (I, J1, L), (I1, J1, L) and
(I, J, L1), (I1, J, L1), (I, J1, L1), (I1, J1, L1), etc. It is natural to define Ikv on each subbox
as a linear combination of values of v on (i, j, l) and its adjacent boxes. Referring to figure
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Figure 3.1: Numbering of (i, j) element and its subdivision
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Figure 3.2: A box element and its subdivision

2.1 and 2.2, let uU
I,J,L, uU

I1,J,L, etc., denote Ikv on the upper part of the box (i, j, l), and let
uL

I,J,L, uL
I1,J,L etc., denote its lower part. We define

uU
I1,J1,L =

1

w
((w − 3)vi,j,l + vi−1,j,l + vi,j−1,l + vi,j,l+1) (3.5)

uU
I1,J,L =

1

w
((w − 3)vi,j,l + vi,j+1,l + vi−1,j,l + vi,j,l+1) (3.6)

uU
I,J1,L =

1

w
((w − 3)vi,j,l + vi+1,j,l + vi,j−1,l + vi,j,l+1) (3.7)

uU
I,J,L =

1

w
((w − 3)vi,j,l + vi,j+1,l + vi+1,j,l + vi,j,l+1) (3.8)

and uL are defined similarly with l + 1 replaced by l − 1.

This choice of weight reflects that the prolongation operator must have a certain approx-
imation property, i.e, ‖Ikv− v‖ ≤ Ch‖v‖1,h for all piecewise constant functions. Here ‖ · ‖1,h

denotes the discrete energy norm Ak(v, v)1/2. By considering the differences between two
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cell centers, it is easy to see that for v ∈ Mk−1,

(Ak−1v, v)k−1 = −hk−1

∑
i,j,l

vi,j,l

[
(vi,j,l+1 − vi,j,l) + (vi,j,l−1 − vi,j,l)

+(vi,j+1,l − vi,j,l) + (vi,j−1,l − vi,j,l)

+(vi+1,j,l − vi,j,l) + (vi−1,j,l − vi,j,l)
]

= hk−1

∑
i,j,l

(vi,j,l − vi−1,j,l)
2 + (vi,j,l − vi,j−1,l)

2 + (vi,j,l − vi,j,l−1)
2.

Let u = Ikv. Then

(Aku, u)k = hk

∑
i,j,l

(D2
i + D2

j + D2
l ), (3.9)

where Di, Dj and Dl are the differences along the x, y, z directions respectively, i.e,

Di = (ui,j,l − ui−1,j,l), Dj = (ui,j,l − ui,j−1,l), Dl = (ui,j,l − ui,j,l−1).

First fix L and consider square differences along the x direction of the upper part of
subdivisions. Across e1, the square is (uI1,J1,L − uI2,J1,L)2. Similarly, across e2, the square
difference is (uI1,J2,L −uI2,J2,L)2. If we let Ei denote the contribution from edge ei, then we
see that, ignoring the 1

w2 factor,

E1 =
[
(w − 3)vi,j,l + vi−1,j,l + vi,j−1,l + vi,j,l+1

−((w − 3)vi−1,j,l + vi,j,l + vi−1,j−1,l + vi−1,j,l+1)
]2

=
[
(w − 4)(vi,j,l − vi−1,j,l) + (vi,j−1,l − vi−1,j−1,l) + (vi,j,l+1 − vi−1,j,l+1)

]2
≤ (w − 2)[(w − 4)(vi,j,l − vi−1,j,l)

2 + (vi,j−1,l − vi−1,j−1,l)
2

+(vi,j,l+1 − vi−1,j,l+1)
2]

where general Cauchy-Schwarz inequality

(
∑

wiαi)
2 ≤ (

∑
wi)(

∑
wiα

2
i )

has been used. Similarly, the contributions from edges e2, · · · , e8 are estimated.

E2 ≤ (w − 2)[(w − 4)(vi,j,l − vi−1,j,l)
2 + (vi,j+1,l − vi−1,j+1,l)

2

+(vi,j,l+1 − vi−1,j,l+1)
2]

E3 =
[
(w − 3)vi,j,l + vi+1,j,l + vi,j−1,l + vi,j,l+1

−((w − 3)vi,j,l + vi−1,j,l + vi,j−1,l + vi,j,l+1)
]2

≤ 2(vi+1,j,l − vi,j,l)
2 + 2(vi,j,l − vi−1,j,l)

2

E4 ≤ 2(vi+1,j,l − vi,j,l)
2 + 2(vi,j,l − vi−1,j,l)

2.

The contribution E5, E6 are obtained from E1, E2 by interchanging the role of i, j. Thus

E5 ≤ (w − 2)[(w − 4)(vi,j,l − vi,j−1,l)
2 + (vi−1,j,l − vi−1,j−1,l)

2

+(vi,j,l+1 − vi,j−1,l+1)
2]

E6 ≤ (w − 2)[(w − 4)(vi,j,l − vi,j−1,l)
2 + (vi+1,j,l − vi+1,j−1,l)

2

+(vi,j,l+1 − vi,j−1,l+1)
2]
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Also, E7, E8 are obtained from E3, E4 by interchanging the role of i, j. Thus

E7 ≤ 2(vi,j+1,l − vi,j,l)
2 + 2(vi,j,l − vi,j−1,l)

2 (3.10)

E8 ≤ 2(vi,j+1,l − vi,j,l)
2 + 2(vi,j,l − vi,j−1,l)

2. (3.11)

Now let us count the terms of the form (vi,j,l−vi−1,j,l)
2. From E1, we see that the coefficient

is (w − 2)(w − 4), while E1 contributes w − 2 to the neighboring boxes (l + 1 and j − 1)
respectively. Thus the same amount come from those boxes. All together, the contribution to
(vi,j,l−vi−1,j,l)

2 is (w−2)(w−4)+2(w−2) = (w−2)2. By the same reasoning the contributions
from e2, e3 and e4 are (w − 2)2, 4, and 4. The lower part of the subdivision has the same
form except l + 1 is replaced by l − 1. Thus the sum of the coefficient for (vi,j,l − vi−1,j,l)

2

is 2 2(w−2)2+8

w2 . The same reasoning shows that the coefficients for (vi,j+1,l − vi,j,l)
2 and

(vi,j,l+1 − vi,j,l)
2 are shown to be the same. It is an elementary calculus to see 2 2(w−2)2+8

w2

has minimum 2 when w = 4. Considering hk factor in Ak form, we have proved (2.12) with
CI = 1. Thus we obtain {1, 1, 1, 1} as a good choice for weight.

3.1. Trilinear case. The prolongation is defined as (with w = 64)

uI1,J1,L =
3

w
(9vi,j,l + 3vi−1,j,l + 3vi,j−1,l + vi−1,j−1,l) (3.12)

+
1

w
(9vi,j,l+1 + 3vi−1,j,l+1 + 3vi,j−1,l+1 + vi−1,j−1,l+1) (3.13)

where other terms are similarly defined. By the same argument as above, we can show (2.12)
holds with CI = 1 for trilinear prolongation also. Hence the V -cycle convergence theory
follows.

3.2. Different weight. Finally consider weight {3, 1, 1, 1}. We can follow the same
line of argument but we could only show CI ≤ 10/9. However, the numerical result shows
this one performs best. This phenomenon is subject to further investigation.

4. Numerical experiment. We set K = 1 and compare all three prolongation with
natural injection whose weight can be viewed as {1, 0, 0, 0}. All three weighted operators
perform well and the reduction factor seems to be independent of the number of levels. We
note that the weight {3, 1, 1, 1} works best. As a reference, we give numerical estimate on
the size of prolongation operators in Table 5.

hJ λmin λmax K δ

1/8 0.734 1.283 1.749 0.279

1/16 0.702 1.475 2.102 0.467

1/32 0.684 1.678 2.452 0.666

1/64 0.673 1.880 2.794 0.863

Table 1. Natural injection {1, 0, 0, 0}

hJ λmin λmax K δ

1/8 0.615 0.999 1.626 0.378

1/16 0.581 0.999 1.721 0.410

1/32 0.556 0.999 1.797 0.432

1/64 0.536 0.999 1.864 0.450

Table 2. Weight {1, 1, 1, 1}
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hJ λmin λmax K δ

1/8 0.684 0.999 1.460 0.308

1/16 0.661 0.999 1.514 0.326

1/32 0.644 0.999 1.553 0.333

1/64 0.634 0.999 1.578 0.336

Table 3. {3, 1, 1, 1}

hJ λmin λmax K δ

1/8 0.641 0.999 1.560 0.353

1/16 0.616 0.999 1.624 0.374

1/32 0.599 0.999 1.669 0.383

1/64 0.589 0.999 1.698 0.389

Table 4. Trilinear

{1, 0, 0, 0} {1, 1, 1, 1} {3, 1, 1, 1} Trilinear

2 0.59 0.67 0.49

2 0.65 0.78 0.60

2 0.69 0.84 0.66

2 0.71 0.86 0.69

Table 5. Estimate of energy of Ik

Concluding remarks: We proved V -cycle multigrid convergence for the cell-centered
FDM for 3-dimensional problem for two kinds of weighted prolongation operators. A third
weight, {3, 1, 1, 1}, works slightly better even though the energy norm seems larger than
the other two. Thus, we guess that an operator with smaller energy norm (although they
guarantee convergence) does not always work better.
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